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Formes harmoniques sur une surfaee de Riemann

par Rogeb Bader et Werner Sôrensen

A l'origine de ce travail1) se trouve une question posée dans [4] et déjà
étudiée dans [8]. et [5]. Il s'agissait de caractériser ou de construire des
différentielles méromorphes ou méroharmoniques sur une surface de Riemann non
compacte (problème de Cousin), différentielles qui se distingueraient, dans la
classe de celles ayant les mêmes singularités et les mêmes périodes, par un
comportement régulier à la frontière de la surface.

Nous nous sommes d'emblée limités ici aux différentielles réelles.
Dans les trois travaux cités et dans d'autres [11] on a fait largement usage

des méthodes de géométrie différentielle qui sont utilisées pour aboutir aux
théorèmes de décomposition de Kodaira-de Rham. Suivant une idée
partiellement exploitée dans [9], nous avons fait un usage encore plus systématique

de ces méthodes, en douant la surface de Riemann d'une métrique
particulière, c'est-à-dire en la considérant comme un espace de Riemann. Comme

métrique nous avons pris celle qui est induite naturellement par une
différentielle abélienne de première espèce et de norme finie. Sauf sur un ensemble
de points isolés (les zéros de la différentielle) la métrique est localement
euclidienne et cela revient en quelque sorte à représenter de façon bien déterminée
la surface de Riemann comme surface de recouvrement (feuillets plans) du
plan de Gatjss.

L'avantage de ce choix quelque peu arbitraire de la métrique consiste
essentiellement en la possibilité d'utiliser les fonctions de Green et de Netjmann
pour l'établissement des noyaux de Green-de Rham; ceux-ci ont alors une
expression qui généralise celle du cas euclidien où l'on sait qu'elle est
particulièrement simple. D'autre part on peut alors, par rapport à cette métrique,
poser des problèmes aux limites sur la surface non compacte, ce qui permet
en particulier de préciser le comportement à la frontière des différentielles à

singularités polaires de façon à rendre leur détermination unique.
Pourtant, bien que cette métrique dérive d'un élément de la surface de

Riemann (la différentielle abélienne choisie) qui lui est intimement lié, nous n'avons

pas pu, sauf dans des circonstances particulières, délimiter l'influence de ce

choix sur les résultats obtenus. Nos résultats restent donc, pour la plupart,
liés à cette différentielle particulière, mais leur expression relativement simple
n'exclut pas la possibilité d'en démontrer le caractère intrinsèque: peut-être

1) Travail subventionné par le Fonds national suisse de la recherche scientifique (subsides
nos 788 et 1029).
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faudrait-il pour cela avoir quelques renseignements sur la distribution des zéros
d'une telle différentielle?

Profitant des particularités de l'espace de Riemann envisagé (deux dimensions,

presque partout localement euclidien), nous avons plutôt porté notre
attention sur les différents problèmes aux limites qui se posent naturellement

pour l'équation de Poisson et dont un seul (le problème de Neumann) sert
finalement à la résolution proposée du problème de Cousin. Nous avons
remarqué que, moyennant des hypothèses raisonnables sur la surface de Rie-
mann (hypothèses (N) et (F0) : les énergies des potentiels de Neijmann et de

Geeen, relatifs à la métrique, dépendent continuement des masses) on
obtenait des inégalités du type de Poincaré (majoration de la norme ordinaire
en fonction de la D-norme pour certaines classes de formes différentielles) qui
sont nécessaires et suffisantes à la résolution des problèmes aux limites posés.

Il devient donc raisonnable de penser ou d'espérer que ces inégalités de Poincaré

seront les hypothèses de base à faire sur des espaces de Riemann
quelconques pour poser correctement les différents problèmes aux limites: une
fois en possession de ces inégalités on doit pouvoir en effet, bien que nous ne
l'ayons pas fait systématiquement dans notre cas à cause des singularités de
la métrique, résoudre les problèmes aux limites par l'utilisation des méthodes
de l'espace de Hilbert et d'un théorème de de Rham sur la régularité des

solutions d'une équation de Poisson [2],
Signalons enfin que l'étude des problèmes aux limites a permis de préciser

le théorème de décomposition de Kodaira-de Rham dans les cas envisagés
comme cela est fait pour les espaces de Riemann compacts (existence et
propriétés de l'opérateur G).

1. Notions relatives à une différentielle 0
1.1. La surface 80. Les espaces (S, (£n, D, î)n, 9tn, 91,$$1, 23.
Sur toute surface de Riemann S, d'ordre de connexion supérieur à 1, il

existe une différentielle abélienne 0, régulière sur S et à intégrale de Dirichlet
finie [3].

Soit 0 dz l'expression de 0 en coordonnées locales. En posant ds2

dz-dz, on définit une métrique sur S, singulière aux points isolés en lesquels
$ 0. Pour abréger, nous appelons ces points les points 0 et nous désignons

par 80 l'espace de Riemann obtenu en excluant les points 0 de la surface 8.
A toute forme C°° sur S0, <p, correspond sur 8# une forme adjointe *<p

également C00 sur 80, définie par :

*/ -;r-fdz/\ dz, *(adz + adz) i(— adz ~\- adz), *Adz A dz — 2iA
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A toute forme C°° sur S, <p, correspond sur S une différentielle dcp également
C°° sur S, définie indépendamment de 0 par:

df =1±dz + -~dz, d(adz + adz) =(^ — -^=\dz/\ dz, d(Adz A dz) 0
dz oz \oz oz]

A toute forme C°° sur 80, cp, correspond sur 8# une codifférentielle ôcp

également C00 sur 80, définie par:

On dira qu'une forme <p, C00 sur $0, est C°° sur /S si son comportement au
voisinage des points 0 permet un prolongement par continuité en ces points
et si la forme ainsi prolongée, toujours notée cp, est C°° sur S.

(Ê désignera l'espace des formes qui sont C°° sur S. (£w désignera le sous-

espace de © formé des éléments dont les différentielles d'ordre ^ n, ainsi que
leur adjointe, appartiennent à (g. A cause des singularités qui peuvent
survenir aux points 0 dans le calcul de l'adjointe et de la codifférentielle, ces

espaces sont strictement inclus les uns dans les autres [9].
!D, 3)w désigneront les sous-espaces de (S, (£w, formés des éléments à support

compact sur 8.
%n désignera le sous-espace de (£w formé des éléments dont les différentielles

d'ordre ^ n sont de A -norme finie (A((p) (g?, q>) j(p A *<p) •

Avec le produit scalaire (<p, ip) Jç> A *^ les espaces 3)n et %n sont pré-
hilbertiens et partout denses dans leur complété commun, l'espace des formes
de A -norme finie, qui sera désigné par 31.

JB1 (resp. *93i) désignera le sous-espace de Ç£x des formes <p qui sont
éléments de 31 ainsi que leur différentielle d<p (resp. codifférentielle ôq>). 93 (resp.
*SB) désignera l'espace de Hilbert des formes 9? telles que 9? € 31 et d<p e 31

(resp. ô<p e 31).

Nous appellerons Z)-norme de <p la quantité D(cp) (dy, dcp) + (ôq),ô(p).
L'opérateur ô est le transposé métrique [1] de l'opérateur d sur l'espace

!£>!. L'opérateur de Laplace, A dô + ôd est son propre transposé métrique
sur Dj.

1.2. Topologies sur les espaces de formes. Courants.

Un ensemble SOI de formes 9? est dit localement borné au point p si, dans un
voisinage compact de p, les dérivées partielles d'ordre ^ k des coefficients
des formes ç> sont bornées, quel que soit k.

SU est borné dans (£ s'il est localement borné en tout point p. Il est dit
borné dans 3) s'il est borné dans (£ et si toutes les formes de 501 ont leur
support compris dans un compact fixe [1].
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9JI est borné dans % si l'ensemble des A -normes des <p est borné.
501 sera dit borné dans (£n (ou T)w) si les formes 9? appartiennent à (£w (ou î)n)

et si 3R est borné dans (£ (ou 35).
9tR sera dit borné dans 2In s'il est borné dans (£ et si l'ensemble des normes

des différentielles d'ordre < n des formes <p est borné.
Il conviendra d'appeler courant toute fonctionnelle linéaire (T, 9?) sur î)0,

continue dans le sens suivant: | (T, <p) | reste borné sur tout ensemble de
formes borné dans 3)0.

L'espace vectoriel des courants, dual de 35O, est noté Dq. Nous désignerons
de même par T)rn l'espace des fonctionnelles linéaires continues sur X)n.

La différentielle dT d'un courant T sera l'élément de *£)[ défini par:

La définition de la codifférentielle ôT d'un courant comme élément de î)[
et des différentielles d'ordre n de T comme éléments de Dfn est complètement
analogue.

1.3. Valeurs à la frontière

Le courant T est continu en moyenne à l'infini si \ (T ,<p) \ reste borné sur
tout ensemble de formes de Do qui est borné dans tyL.

Soit alors q> une forme quelconque de (g ^ %. Il existe une suite de formes

<pn c T)o telles que :

1. le support de <p — (pn soit extérieur à tout compact K pourvu que n
soit assez grand,

2. A{(p — (pn) tende vers 0.
On voit que (T, <pn) converge vers une limite indépendante de la suite (q>n)

choisie, si T est continu en moyenne à l'infini ([1], p. 167, prop. 6). La définition

de (T, <p) peut donc être étendue, si T est continu en moyenne à l'infini,
à tout (p e (S r\ %, en posant :

Ces définitions s'étendent de manière évidente au cas où T est une
fonctionnelle linéaire de î)^.

Si T et dT sont des fonctionnelles linéaire continues en moyennes à l'infini,
la fonctionnelle linéaire :

{FT,<p) {dT,<p)-{T,ô<p)

est définie pour tout <p e *93i. Elle est nulle sur î>! et représente la frontière
de T.
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On voit immédiatement que la frontière de * T est la fonctionnelle linéaire :

définie et continue sur 23x si T et ôT sont continus en moyenne à l'infini.

2. Espaces de champs harmoniques. Formules de décomposition [5, 11]

Une forme C00, ç?, est un champ harmonique si elle vérifie sur S0 les équations

d<p 0 ô(p 0

Les champs harmoniques de degré 0 sont les constantes Les champs
harmoniques de degré 1 sont, sur tout domaine simplement connexe, différentielles

de fonction harmonique Les champs harmoniques de degré 2 sont les

constantes multipliées par dz A dz.

Proposition 2.1. Les champs harmoniques de 31 forment un espace de

Hilbebt (£.

La proposition est triviale pour les degrés 0 et 2. Pour le degré 1 il suffit
de constater qu'une suite de Catjchy en A -norme de champs harmoniques
est, dans tout domaine simplement connexe, une suite de différentielles de
fonctions harmoniques qui forment une suite de Caxjchy avec la norme
intégrale de Dibichlet.

Un champ harmonique de % est dit symétrique si son adjointe est nulle à la
frontière ; il est dit antisymétrique s'il est nul à la frontière. Ces deux notions
sont indépendantes de 0.

Proposition 2.2. Les champs harmoniques symétriques (antisymétriques)
constituent un sous-espace <£s ((£0) de (£.

En effet, la relation (cn,df) 0 pour tout / €^t entraîne la relation
(c, df) 0 pour la limite c de la suite de Cauchy en A -norme, cn.

Proposition 2.3. Dans le cas du degré 1 le complémentaire orthogonal
®H^i) de (£s((£a) dans (£ est le sous-espace dh((£c) des champs homologues
(cohomologues) à zéro de % :

Il est immédiat que si q> df, <pe&}. Pour démontrer la réciproque,
établissons d'abord le lemme suivant.

Lemme 2. Soit C un cycle quelconque de la surface. La forme fermée y
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associée à la fonctionnelle J9? définie sur l'espace des formes fermées de 31 par
c

(y><p) hc
est un champ harmonique symétrique.

Remarquons d'abord que J99 est une fonctionnelle linéaire continue sur l'es-
c

pace des formes fermées de 3t, qui est manifestement un sous-espace de 3t.
L'existence de y est donc assurée par le théorème de Riesz.

Prenons <p df, où / est à support compact. L'équation

devient c

(ôy,f) O.

Elle entraîne que ôy 0. Par suite y est un champ harmonique.
Comme $df 0 vaut pour tout /ciB^ on a (ôy, /) (y, df) pour toutes

c
ces formes, ce qui signifie que *y est nulle à la frontière, y est donc un champ
symétrique.

La proposition résulte immédiatement du lemme. Soit en effet c un champ
quelconque de 31, c8 sa projection sur l'espace des champs symétriques. Soit
C un cycle quelconque, y le champ symétrique associé:

(c — c8, y) 0 donc Je — c8 0
c

Toutes les périodes de c — c8 sont donc nulles, c — cs df est donc homologue

à zéro.
Un champ harmonique de degré 1 est dit analytique s'il est à la fois homologue

et cohomologue à zéro. Un tel champ du *dv est un effet la partie réelle
de la différentielle df d'une fonction analytique uniforme f(z).

Proposition 2.4. Les champs harmoniques analytiques de 31 forment un
sous-espace &A de (£.

On appelle champ de Schottky [4] un champ harmonique de 31 orthogonal à

tout champ harmonique analytique. L'espace des champs de Schottky &s
est le complémentaire orthogonal de (£A dans (£ :

Proposition 2.5. L'espace (£s des champs de Schottky est la fermeture
de la somme (£a + (£g des espaces de champs antisymétriques et symétriques :
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L'inclusion (£s 3 £a + (£5 est immédiate car (£s => (£a et ds z> &s. D'autre

part 9? c (££ et ç? e (£J- entraîne 9? àxp et q> df respectivement, donc

y €Q,A ($,±. Ceci entraîne £a + £s (£5.
Dans le cas d'un domaine relativement compact à frontière très régulière,

tout champ de Schottky admet une décomposition unique :

en un champ antisymétrique et un champ symétrique [4]. De plus, comme
da et (£s sont de dimension finie et disjoints, il existe deux constantes finies
K1 et K" ne dépendant que du domaine, telles que

quels que soient les champs co et cs.
Nous dirons d'une surface greenienne qu'elle vérifie Vhypothèse (C) s'il existe

deux constantes finies K1 et K" ne dépendant que de la surface telles que les
conditions (C) soient vérifiées quels que soient les champs ca et cs2).

Cette hypothèse est indépendante de la métrique.

Proposition 2.6. Sur une surface greenienne vérifiant l'hypothèse (C), tout
champ c de degré 1 de 31 admet une décomposition

c ch + cc

ch et cc étant respectivement homologue et cohomologue à zéro, où

L' et L" deux constantes finies ne dépendant que de la surface.

Il suffit évidemment, à cause de la décomposition orthogonale (£ &A +
de prouver la propriété pour un champ de Schottky cs

a) L'hypothèse (C) entraîne immédiatement (£a^ (£s 0. Par suite:

b) L'hypothèse (C) entraîne (£a + Œs (£a + d8. Donc tout élément cs
peut s'écrire:

% ^a + C8

c) Envisageons un élément cs de Cs de la forme

2) L'hypothèse (C) revient à supposer les espaces (£a et Ç£8 non asymptotiques au sens de
J. Dixmier: Etudes sur les variétés et les opérateurs de Jtjlia avec quelques applications, Bull.
Soc. Math, de France, 77 (1949), p. 21.



Formes harmoniques sur une surface de Riemann 147

et soit Cg un élément quelconque de ds qu'on peut toujours écrire, d'après b),
sous la forme :

cS=ca+ ci -

On a (cc,c's)=(cc,c'8) (cs,c'8), d'où (cc, c's)*^A(cs)K"A(c's), pourtout
c's, c'est-à-dire A(cc) < K"A{cs).

De façon analogue on trouve :

A(ch)<K'A(cs).
A cause de a) et c):

et la proposition est démontrée, avec Lf l -\- Kf, L" l -\- K".

Remarque: Etant donné une forme 9? de 31, nous appellerons C<p, Ca<p, etc.,
les projections de <p dans les espaces (£, (£a, etc.

3. Problèmes élémentaires relatifs à l'équation AT U
dans le cas du degré zéro

3.1. Problème de Dirichlet sur une surface greenienne

Nous allons d'abord établir la proposition suivante :

Proposition 3.1.1. Sur une surface greenienne fl 7^ 0.
Pour cela il suffit de construire une forme <p e *3?1 telle que (1, ô<p) 7^ 0.

Etant donné un domaine relativement compact Û, à frontière très régulière,
ne contenant pas de points 0, considérons la mesure harmonique a> de la
frontière de S par rapport à S — Q [10]. On sait que 0 < Ds_Q(co).
Prolongeons co dans Q de façon à obtenir une fonction C00 sur S, cô. Avec cp dœ

on a <p € * ©! et

(1, ôq>) (1, dq>)Q — J*ç? —$*dw — Ds_Q(co) < 0
Q' Q'

Le principe de Dirichlet [6, 7] nous permet alors d'établir un premier
résultat contenu dans la proposition suivante :

Proposition 3.1.2. Soit U une distribution dont le support comporte un
nombre fini de points d'une surface greenienne. L'équation AT U admet
une et une seule solution î7, continue en moyenne à l'infini ainsi que dT, et
telle que FT 0.

L'unicité est immédiate : A T 0, T et dT continus en moyenne à Fin-
fini, FT 0 entraînent que dT e£ [1] et que:

(dT,dT) 0,
donc T const. La proposition 3.1.1. entraîne alors T 0.
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Pour l'existence de la solution, traitons d'abord le cas où C U 0 (le
champ de (£, CT, est défini pour tout courant T continu en moyenne à l'infini

par (CT,<p) (T,Ccp); [1]). Nous allons construire la solution de ce

problème pour les domaines 8V d'une exhaustion canonique de 8 (8V c 8V+1 ;

support de U c 80), puis obtenir T par passage à la limite.
Soit t0 la fonction harmonique avec singularités sur 80, prolongeable par

symétrie sur le double de Schottky de 80 [8], telle que la distribution associée

To vpt0 (valeur principale) satisfasse l'équation AT U (t0 existe car
CU 0). Soient tv, v>0 les fonctions harmoniques avec singularités sur
8V, prolongeâmes par antisymétrie sur le double de Schottky de 8V, telles

que les distributions associées Tv vptv satisfassent l'équation AT U.
Appelons encore tv et Tv les fonctions et distributions prolongées au delà de

8V par 0. Tv, v > 0, vérifie la relation :

(dTv,<p) (Tv,ô(p), pour tout <p c *^
a) La suite (dtv) converge en A -norme sur S — So:
Formons rv tv — tQ. rv est C1 sur Sv et r est C° sur 8. A rv 0 dans

80 et dans 8V — 80. Ainsi, pour 0 < fi < v :

D(rv-TfA,Tv) 0, donc D^) D{tv) + D(rv - T#l)

Donc la suite de nombres positifs D(rv) est monotone décroissante et tend
vers un nombre d. Lorsque p et v-> oo, D(r^)-> d, D(rv)-> d et par suite
£>(*„ - ^)-> 0. Or D(rv - r^) Dft, - g.

b) Les fonctions tv sont bornées uniformément hors de 80 :

La fonction tv est harmonique sur 8V — So. Comme tv, au voisinage du
support de U, prend des valeurs positives et négatives, car CU 0, il en
est ainsi sur $(. t admet donc un minimum négatif mvl et un maximum
positif MVfl sur 8[. mv0 et Mv0 étant définis de la même manière, on a:

^,o<^,i et Mv0^MVtl d'où 0^(U<0^(g,
0^'. (tv) désignant l'oscillation Mvi — mvi. Cette relation vaut pour v>l.
D'après un lemme de Johansson [8], il existe une constante k indépendante
de v, telle que 0s,(tv) ^ k0s, (^). Donc tv est borné indépendamment de v

sur 80, et par suite sur 8V — So.
c) Soit (tn) une suite partielle de tv, convergent uniformément sur tout

compact, ainsi que les différentielles dtn> vers une fonction t, respectivement
vers la différentielle dt. T vpt est une solution du problème posé qui,
d'après a) et b) est continue en moyenne à l'infini ainsi que dT\ En effet
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AT U, car tous les tn ont mêmes singularités. De plus, pour tout <p c *3?i,
°n a

(T, àcp) Km (Tni ô<p), (dT, <p) Km (dTn, <p).

Comme (Tn, ô<p) (dTn, <p) pour tout n, on a bien FT 0,
Le cas général où CU =£ 0 peut être maintenant obtenu en remarquant

simplement que la fonction de Green, g(p,q), résoud le problème AT
ôq, ôQ mesure de Dirac au point q, T, dT continus en moyenne à l'infini,
FT 0. La propriété Fg 0 s'obtient de nouveau par passage à la limite:
pour les domaines Sv et les fonctions de Green gv(p, q) supposées prolongées

par zéro en dehors de Sv,ona
(dgv(P>Q),<P(p)) (9v(P, ?)> fy>(P)) Pour to^t ç> € *5B!.

Or la suite (gv) converge uniformément sur tout compact de S — (q) vers
g, les gv sont bornés dans leur ensemble à l'extérieur d'un voisinage de q,
enfin les nombres Ds_Q(gv), Q compact contenant q, sont bornés; donc par
passage à la limite Fg 0.

3.2. Problème de Neumann sur une surface greenienne

Proposition 3.2. Soit, sur une surface greenienne, U une distribution dont
le support comporte un nombre fini de points, orthogonale aux champs de
(£? CU — 0. L'équation AT U admet une solution unique T continue
en moyenne à l'infini ainsi que dT, telle que F' dT 0, c'est-à-dire {dT, d<p)

(U,(p) pour tout ç? € (£2 ^ 951? et telle que CT 0.
Remarquons que la condition C U 0 est nécessaire pour avoir Ff dT 0

car (ôdT,c) 0.
L'unicité de la solution résulte du fait que AT 0, T, dT continus en

moyenne à l'infini entraîne que dT est un élément de (£ donc de (£h ; or F'dT 0

entraîne que dT € (£,8 ; donc dT 0 car (£s ^ Ç£h 0 ; donc T const.
et CT 0 entraîne 7=0.

Nous allons démontrer l'existence en construisant la solution de ce

problème pour les domaines 8V d'une exhaustion canonique de S (Sv c $v+1;

support de U c So) puis obtenir T par passage à la limite.
Soit tv la fonction harmonique avec singularités, prolongeable par symétrie

sur le double de Schottky de Sv, dont la distribution associée Tv vptv
satisfait l'équation AT U (tv existe car CU 0), Tv vérifie la condition
(dTv,d<p) (U,<p), pour tout (pe^^^Bt-

a) (dtv) converge en A -norme sur tout compact de /S-support de U;
l'ensemble des A -normes de (dtv) dans Sv — So est borné:

Formons rv tv — t0 sur 80

tv sur Sv — #0

11 CMH vol. 34
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%v est C°° dans 80 et dans Sv — 80; de plus *drv est continue au travers de
s'o.

Envisageons l'ensemble des formes <p, (<p)v, vérifiant les conditions: <p est

C°° dans 80, <p est O00 dans 8V — 80, <p + t0 est C° dans 8V - support de £7,

Dv(<p) < oo. Tv fait partie de cet ensemble. Montrons que Dv(rv) < Dv(<p) •*

2>F(ç> - tv, tf) 0

Dv(<p) Dv(<p - tv) + Dv(tv) d'où D,(Tr)<%).
Soit \i<v. On a (ç?)^ 3 (ç?)v. Par suite xv € (9?)^. Donc :

Les nombres /^(fy) forment une suite monotone croissante. De plus:

Dp(% - tm) 1V(tv) + D^) - 22)^^, t^)
Dp(Tw) - J^^) < Dv(rv) - D^)

car i>M(Tv, fy) ^(r^, tm) + D^t,, - rM, r^) D^, tJ
La classe (<p)s n'est pas vide: par exemple ftx — tO€(<p)s si / est une

fonction C°° égale à 1 sur /S0,à0 sur 8 — 8x.
Soit rf inf D(q>). Quel que soit 9? € (92)3, on a:

W<^(^K%)5 par suite 2^^) < d

Les nombres 2)f4(rA4) sont donc bornés. Il en est de même des nombres

Ds -s0 (^/i) • Comme les premiers forment une suite croissante, ils convergent.
Par suite 2)/i(r|f — t^) tend vers 0. Les dxv forment une suite de Cauchy en
A -norme sur tout compact. Il en est de même pour les formes dtv sur tout
compact de /S-support de U. Ainsi les dtv convergent uniformément sur tout
compact de /S-support de U.

b) Si l'on fixe la constante arbitraire dont dépend tv en posant tv(P) 0,
P € 8Q, (tv) converge uniformément sur tout compact vers une fonction t ; la
distribution associée T permet de construire la solution (1 — C)T du
problème. En effet:

(dTv, d<p)v (U, <p) pour tout <p e (£2 ^ Sx, et par suite F'dT 0 ;

3.3. Solution de AT V sur une surface non greenienne

Proposition 3.3. Soit, sur une surface non greenienne, V une distribution
dont le support comporte un nombre fini de points, orthogonale aux champs
de C, CU 0; l'équation AT U admet une solution unique T continue
en moyenne à l'infini ainsi que dT, telle que CT 0.
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La condition CU 0 est nécessaire, sinon l'équation AT ôq aurait
une solution, ce qui équivaudrait à l'existence de la fonction de Green,
contrairement à l'hypothèse.

L'unicité est immédiate car AT 0, T, dT continus en moyenne à l'infini

signifie que T est une fonction harmonique à intégrale de Dirichlet finie
car dT c 31; donc T const. [3] et la condition CT 0 entraîne T 0.

Pour démontrer l'existence on peut procéder soit comme en 3.1., cas
CU 0, en prenant T — CT, soit comme en 3.2.

4. Les opérateurs F, F0 et N. Hypothèses relatives à la surface

4.1. Définitions
La solution du problème de Dikichlet (surface greenienne) pour (U, <p)

<p(q) est la fonction de Green, à une singularité logarithmique -\- enq. Nous
la désignerons par g (p, q).

La solution du problème de Neumann (surface greenienne) pour (U, (p)

(p(q) — (p(q0) est la fonction de Nettmann généralisée à une singularité
logarithmique + en q et une singularité logarithmique — en qQ. Nous la désignerons

par n(p;q,q0).
Pour une surface non greenienne désignons encore par g (p ; q, q0) la solution

de l'équation de Poisson pour (U, q>) <p(q) — (p(qQ) construite par la
méthode du n°3.1.; par n(p;q,q0) la solution normalisée par CT 0.
g et n diffèrent d'au plus une constante. Nous les appellerons encore fonctions
de Green et de Nexjmann généralisées.

Soit k(p,q) la forme double :

k(p,q)= lPlq+ (dxpdxQ + dyvdyq) + dxp/\ dyp-dxqf\ dyq

où dx + idy dz est la différentielle abélienne 0. Constituons les formes
doubles :

y°(p, q) g(p, q)k(p, q),

Soient F, F0 et N les opérateurs admettant y, y0 et v pour noyaux métriques:

F<p(p) (y(p;q, qQ), <p{q)) F°cp(p) (y°(p, q),(p(q))

N<p(p) {v(p;q9q0),<p(q))

Pour tout cp €Î), les formes F(p, JT°ç? et N<p sont définies. F°(p est O00.

Fcp etN<p sont C°° sauf en p qQ où leurs coefficients présentent la singularité :

2n l0g

Ce sont donc encore des formes C00 sur S lorsque Cep 0.
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Proposition 4.1. Les formes r°ç>, F(l — C)<p et JV(1 — C)<p sont définies

et C°° ; elles vérifient sur 80 les relations :

q> AF{1 — C)q> AN(l - C)<p (1 — C)q>

La démonstration peut se faire par calcul direct ; pour une autre démonstration
[9, p. 23].

Soulignons que F°q> est seulement définie si la surface S est greenienne et que
l'opérateur F ne sera utilisé que dans le cas où 8 est non greenienne.

4.2. Hypothèse (N)
Dans la suite de ce travail nous faisons l'hypothèse que N(l — C)(p a une

énergie finie pour tout ç? c 51 de degré 0 et que cette énergie dépend conti-
nuement de <p sur 31 :

D (N(l — C)<p) < const. A (<p), pour tout <p e 51, de degré 0

Cette hypothèse est évidemment satisfaite si la surface est compacte ou si

elle est constituée par un domaine relativement compact à frontière très
régulière d'une autre surface de Riemank. Nous ignorons si elle est réalisée sur
toute surface de Riemann. Il conviendrait d'abord de savoir dans quelle
mesure elle dépend du choix de 0.

Si la surface est non greenienne l'hypothèse (N) entraîne que F(l — C)<p,

qui ne diffère de N(l — C)q> que d'un champ de (£, a également une énergie
finie dépendant continuement de <p sur 3t.

4.3. Hypothèse (F0)

Sur une surface greenienne nous faisons pour F0 l'hypothèse correspondante
à (N), à savoir que le potentiel Foq> a une énergie finie pour tout <p de % et

que cette énergie dépend continuement de <p sur 31 :

D(F°<p) ^ const. A (y) pour tout <p c % de degré 0

Concernant la réalisation de cette hypothèse, ou sa dépendance de 0 on
peut faire les mêmes remarques que pour l'hypothèse (N).

4.4. Proposition 4.4.1. Sur une surface non greenienne les formes F(l —C)cp
et *Jn(l — C)q> sont nulles à la frontière, pour tout <p de 3t.

Envisageons d'abord le cas du degré 0 et posons (1 — C)<p f :

F(l-C)cp=(g(p;q,qo),f(q)).
Nous avons: (dpg(p;q, qo),y)(p)) (g(p;q,q0), àf(p)) pour tout ip de

*2?1? comme il est montré au n° 3.1. L'hypothèse (N) entraîne que dF{\ — G)
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est un opérateur borné sur 31. L'égalité précédente montre que son transposé
métrique, c'est-à-dire (dF(l — C))', est tel que:

(dr(l - C))> (1 - C)F'àip pour tout y) de *»!
On peut donc écrire :

(dFf, xp) (/, r ôxp) pour tout y) de *©!
Prenons \p dFg, Cg 0, g c 91. On a:

Cette relation montre que (F'g, (1 — C)ç>) existe pour tout <p de 31, de degré
0. Or (jT'gs <p) existe pour tout q> de î), donc (-TV? ^V) C^'?» 1)CV existe

pour tout <p de 31. La relation :

(7*0, ç>) (F'g, (1 - C)9) + (rrg, l)Cq>,

montre alors que F'g définit une fonctionnelle linéaire continue sur 31 car:

| (F'g, <p)\ \ (dFf> dFg) \ < Di(Ff)Di(Fg) < const. A*(v)Ai(g);

(1 — C)Ff(l — C) est donc un opérateur borné sur 31. Son transposé métrique

est (1 — C)F(l — C). Ainsi:

et on a bien: (dFf, %p) (Ff, ôip), pour tout y> de *93x.
Notons encore :

D(F(l - C)(p) (F(l - C)<p, (1 - C)q>), pour tout <p de 91, de degré 0.
Le cas du degré 2 se traite de la même manière car à <p de degré 2, élément

de 31, correspond tpf *y de degré 0, également élément de 3t et

Dans le cas du degré 1, posons 9?' (1 — C)<p adx + bdy.

1. C<pf 0 implique Ga Cb 0. En effet Oç/ — 0 implique (<pr, dx)
0, c'est-à-dire (a, 1) 0, d'où Ca 0; de même (cpf,dy) (6, 1) 0

entraîne Cb 0.

2. jT(1 — C)<p Tada; + Tô^. Comme ^4 (9/) A (a) + A (6), <pf c 31

implique a € 31 et 6 € 31, donc .Fa et Fb sont de ^4 + D-norme finie. D'après
le résultat ci-dessus, les coefficients Fa et Fb sont nuls à la frontière.

L'affirmation résulte du lemme suivant :

Lemme 4.4. Si une forme F — Adx + Bdy a des coefficients de A + D-
norme finie, nuls à la frontière et finis sur 8, F et *jF sont nuls à la frontière.
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F est bien de A + D-norme finie. Soit ip fdx A dy une forme de *951.

Il s'agit de prouver que :

>) (F,ôy>).

On note que \p € *©! signifie que / est de A -f D-norme finie. Par suite fdx
et fdy appartiennent à *23. Les relations:

(dA, q>) (A, ôq)) (dB, cp) (B, ôq>) pour tout <p c *$51

sont encore vraies pour tout ç>€*18, car *©! est dense sur *2? avec la

norme A + (ô, ô) (d'après [2], p. 79 nous savons que A°° sur S0 est dense

sur *5B, or ^4°° sur 80 est contenu dans *2$1). Ainsi:

(dF, V) (dA,fdy) + (dB, fdx) (A, ô(fdy)) + {B, ô(fdx))

On démontre de la même manière que (ôF, ip) (F, dy>), pour tout xp e SB1#

Comme, de façon générale, pour tous ç?, 9/ dont les coefficients sont de

A + D-norme finie, 9? adx + bdy, <pf a'dx + b'dy

D(<p, <p') (da, da') + (db, dbf) - (da, *dbf) + (db, *da'),

on a: D((p, <p) < ((da, dafi + (db, db)*)*,

et par suite, d'après ce qui précède :

C)cp, (1 - C)<p) D(r(l - C)(p) < const. A(cp)

pour tout 9? de %.
La continuité de l'opérateur dr(l — (7), supposée vraie pour le degré 0

est donc démontrée pour les degrés 1 et 2. La continuité de l'opérateur
(1 — C)F(l — C) est démontrée pour les 3 degrés.

Proposition 4.4.2. Pour tout <p de 31, de degré 0, la forme *dN(l — C)y
est nulle à la frontière. De même, pour tout 9? de 31, de degré 2, ôN(l — C)<p

est nulle à la frontière.
Examinons le cas du degré 0. Nous avons :

(dPn(p;q, qQ), dy>(p)) y>(q) - tp(qQ) poux tout xp de 95^

comme il est montré au n°3.2. L'hypothèse (N) entraîne que dN(l —G)
est un opérateur borné sur 3t. L'égalité précédente montre que son transposé
métrique (dN(l — C))1 est tel que:

(dN(l - C)Ydf (1 - C) (y>(q) - y>(q0)) - y
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pour tout ip de ^t. On peut donc écrire (mêmes notations qu'en 4.4.1 ):

ce qui démontre l'affirmation.
Pour <p de degré 2, q>r *ç> est de degré 0 et N(l ¦— C)<p *iV(l — C)q>r,

ÔN(l -C)<p= - *dN(l — C)(pf.

Proposition 4.4.3. Sur une surface greenienne les formes JP°ç? et *jT°ç>
sont nulles à la frontière, pour tout y de 91.

La démonstration peut se faire exactement de la même manière que celle
de la proposition 4.4.1., moyennant quelques simplifications dues à la
disparition du facteur (1 — C).

On a ici:

(r°<p, cp) D(r°<p) ^ const. A((p) pour tout ç> de 91.

De nouveau, la continuité de l'opérateur dF°, supposée vraie pour le degré 0
est donc démontrée pour les degrés 1 et 2. La continuité de l'opérateur F0
est démontrée dans les 3 cas.

5. Inégalités du type de Poincaré

En se fondant sur les hypothèses (jT°) et (N), il est possible d'établir simplement

quelques inégalités fondamentales qui bornent la norme ordinaire d'une
forme par sa D-norme.

Proposition 5.1. Il existe une constante finie, ne dépendant que de la
surface, telle que pour toute forme <p de A + D-norme finie vérifiant Cq> 0,
on ait :

A(cp) ^ const. D((p)

Envisageons d'abord le cas du degré 0. Soit / une fonction de A -\- D-
norme finie, Cf 0. En utilisant la proposition 4.4.2.:

(dNf, df? < D(Nf)D(f) < const. A(f)D(f).

Ainsi: A(f) < const. D(f).

La démonstration est la même pour le degré 2.
Envisageons maintenant le cas du degré 1.

a) Sur une surface greenienne, constituons :

y' âr>d<p + dr°ô<p
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On vérifie immédiatement que

d<p' d(p ôq)' ô(p, C<pf 0 Donc q>' <p

Par suite :

.4*(çO < Ai(ôr°d<p) + Al(dF>ô<p) (r<%, d<p) + (r°<fy>,

en utilisant la proposition 4.4.3. Donc:

A (<p) < const. D(<p), en utilisant l'hypothèse (JP°)

b) Sur une surface non greenienne, la formule :

— C)(p <p — C<p

montre que :

-dcp d (ôr(l -
Si l'on n'a pas identiquement Cdcp 0, il existe donc une forme oc de A-
norme finie pour laquelle *doc 1. Si l'on n'a pas Cà<p 0, il existe de
même une forme fi pour laquelle ôf$ 1.

Soit <p une forme de ^4 + D-norme finie telle que C(p 0. Constituons:

- C)d(p + dr(l — C)â<p + (1— C)oc(*Cd<p) + (1 - C)f!Cô<p

On vérifie immédiatement que :

dq>' dq>, ôy' ôcp C<p' 0 Donc q>' ç?.
Par suite :

-4*(y) < Ai (ôr(l - C)#) + Ai (dr(l - 0) ô<p) +
+ Ai((l - C)*{*Cdq>)) + Ai((l - C)pCÔ<p)

En appliquant la proposition 4.4.1. pour les formes de degré 0 et 2 à (5ç> et
d<p, on voit qu'il existe une constante finie telle que A(q>) ^ const. D(<p), ce

qu'il fallait démontrer.

Proposition 5.2, Sur une surface greenienne, il existe une constante finie
ne dépendant que de la surface, telle que pour toute forme tp de A + D-
norme finie, satisfaisant à F<p 0, F'q> 0, on ait:

A (q>) ^ const. D (<p)

Pour une forme de degré 0, nulle à la frontière, nous avons:

A(<p) (ôdr><p, <p) D(r°<p, <p) < Di(r°<p)Di(<p) < const.
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ce qui démontre la proposition dans ce cas. La démonstration est analogue
dans le cas du degré 2.

Dans le cas du degré 1, posons ç> (1 — C)<p -\- Cep. Nous venons de
montrer que :

A ((1 — C)<p) < const. D{(p)

Nous pouvons poser (proposition 2.6.) C<p dh0 + ôh2. Nous avons
(proposition 2.6.):

A (dh0) ^ const. A (C<p) A (ôh2) ^ const. A (Cq?).

Or on peut supposer sans restriction que Ch0 Ch2 0. La proposition
5.1. permet alors d'écrire:

A (h0) ^ const. A (C<p) A (h2) ^ const. A (C<p)

Par ailleurs :

A(C<p) (99, Ctp) (<p, dh0) + (<p, ôh2)

Comme <p et *ç> sont nuls à la frontière, on a donc:

Par suite :

A{C<p) < Ai(d<p)Al(h0) + A*{d<p)A*(ht) < const. Al(C<p)D*(<p)

Il existe donc une constante finie telle que

A(C<p) < const. D(<p)

ce qu'il restait à démontrer.

Proposition 5.3. Sur une surface greenienne il existe une constante ne
dépendant que de la surface, telle que pour toute forme <p vérifiant les conditions
F<p 0 et Ca(p 0, on ait:

A(<p) < const. D(<p)

Pour le degré 0, la propriété revient à la proposition 5.2. puisqu'alors
Ca<p 0 est automatiquement réalisée.

Pour le degré 2, la proposition revient à la proposition 5.1. puisqu'alors
F<p 0 est automatiquement réalisée.

Pour le degré 1, remarquons d'abord que Fy 0 implique Cdq> 0.
Formons alors :

<pr ÔN(1 - C)dq> + dr°ô<p

On vérifie immédiatement que q>1 est nul à la frontière. En effet, pour tout
\p c *»! :
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(d<pf,y>) (d<p,y>)

(ç>', dtp) (ôNd<p, àip) + (djPify, ôy)) (ANd<p,y>)

Comme dç>' dç>, <5ç/ e5ç?, ç/ ne diffère de <p que par un champ de (£a. Or
(7oç/ o. Donc <pf cp. On a:

const.

ce qui démontre la propriété.

6. Formes pseudoharmoniques

Une forme cp e CE est dite pseudoharmonique si elle vérifie sur $0 l'équation
A <p — 0. La forme est harmonique si elle appartient à G^.

Proposition 6.1. Il existe une forme pseudoharmonique a de A + -D-norme
finie, vérifiant les conditions suivantes:

a) a dt + dt en &0 où dfe ftft

b) a a0 + a&, où | a | < oo en tout autre point 0
c) Fa F'a 0

Soient en effet % et # les fonctions vérifiant les conditions suivantes :

a) u et v sont harmoniques, de D-norme finie hors d'un compact contenant

0Q

b) u est singulière comme R -— 1, en &0 ; v est singulière en <P0 comme / ~ 1,

c) u et v sont nulles à la frontière.

Constituons la fonction complexe f — u -{• iv, puis

Il est immédiat que a est pseudoharmonique et vérifie les conditions a) et
b). Les fonctions u et v peuvent être construites par la méthode utilisée au
n° 3.1. Elles sont donc de A + -D-norme finie en dehors d'un compact
contenant 0O ; de plus elles sont nulles à la frontière. La propriété c) se démontre
alors comme le lemme 4.4. car a est de A + D-norme finie.

Les deux formes a et *a seront appelées les deux formes pseudoharmoniques
élémentaires attachées au point 0O. Le cas où dz tndt, n > 1, se traite de

façon analogue: il y a alors 2n formes pseudoharmoniques élémentaires
attachées au point 0Q.

Remarquons encore ici, ce dont nous aurons besoin plus loin (n° 7), qu'en
vertu de l'étude de la convergence faite au n° 3.1., a est limite uniforme sur
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tout compact des av correspondants aux domaines 8V et que les nombres
Dv(av) + Av{ov) sont bornés dans leur ensemble.

Proposition 6.2. Sur une surface greenienne, étant donné une forme
continue, oc, de A + D-norme finie, il existe une forme pseudoharmonique co

telle que F(co — oc) Ff (œ — oc) 0.
a) Considérons les formes <p de î), nulles ainsi que leur * aux points 0.

Les formes oc + q> forment un ensemble convexe dans l'espace des formes de
A + D-norme finie. La norme D(oc + q>) atteint un minimum d. Il existe
une suite minimale cow <% + <pn> telle que D(con) -> d, suite de Cauchy
en D-norme. La suite <pn est donc également une suite de Cauchy en D-norme,
donc en A + D-norme, en vertu de la proposition 5.2. Il existe donc une
limite (p^ telle que (A + D)<Poo < °° et D(oc + 9?oo) &\ nous écrirons
O) =0C + ^.

b) En écrivant que D(co,y)) 0 pour tout ficï à support compact sur
S0, on voit que co est harmonique sur 80.

c) Etant donné un compact à frontière très régulière Q, contenant un seul

point 0O, appelons a la forme pseudoharmonique égale ainsi que son * à <x

au point 0O, égale ainsi que son * à w sur Q' [9]. On a:

DQ(o, a — (o) — limDQ(o, a — a>w) lim J((T — con)/\ *do — ôof\ *(or — cî>w) 0.
n n Q'

Donc DQ(a) < DQ((o). Si co n'était pas égale à o1 dans £? on pourrait former
une suite oJn convergent vers co à l'extérieur de Q et vers a dans Q, qui aurait
une D-norme inférieure à celle de co, ce qui est absurde. Nous avons donc
démontré qu'aux points 0, co est C00. Ainsi co est pseudoharmonique.

• Nous avons encore la proposition suivante, valable sur toute surface.

Proposition 6.3. Les formes pseudoharmoniques de A + D-norme finie
constituent un espace de Hilbert en A -f- D-norme.

La proposition est immédiate pour les formes de degré 0 et 2 car les formes
pseudoharmoniques sont alors harmoniques.

Pour une forme pseudoharmonique de degré 1, a adx + bdy, a et b

sont des fonctions harmoniques sur 8#. Ces fonctions peuvent présenter aux
points 0 des singularités, telles toutefois que a soit O00 en ces points.

a) Si an converge en A -norme vers a, on peut dire, puisque A (a) A (a) +
+ A (b), que les fonctions harmoniques sur S0, an et bn convergent en norme
vers les fonctions harmoniques sur 80, a et b : en effet (an, A<p) 0 pour
tout <p €Î>2, donc (a, A(p) 0, donc Aa 0 sur 80.

h) Les coefficients des an ocndt + Ôcndt exprimés dans une uniformisante
locale dt convergent en chaque point 0. En effet, on peut choisir une forme
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pseudoharmonique q> dans un compact Q contenant un seul point &0, nulle
ainsi que son * sur Q' (supposée très régulière) telle que pour tous les an:

DQ{an, <p) Jcrn A *dcp — àxp A *<rn R(<xn{0)) ou / (ocn(O))
*©

c) Soient a!n les formes pseudoharmoniques dans Q, égales en 0O à la limite
a des ani à mêmes valeurs que les an sur Qr (pour l'existence de ces formes
pseudoharmoniques dans un domaine relativement compact à frontière très
régulière [9]). Soit co la forme pseudoharmonique égale à a en &0 et sur Q'.
On a

DQ{a> - o'n) $(a> - a'n) A *d(œ - o£) - ô(co - <) A *(co - o'n)-+ 0

Donc a^-> co en D-norme. Or an — a^-> 0 en D-norme. Ainsi DQ(a> — o)=0
donc a) cr car a) o sur 42'. Ainsi or est pseudoharmonique.

7. L'équation J/j ^ dans le cas greenien

Nous allons résoudre l'équation Afi y> en imposant à la solution trois
sortes de conditions aux limites.

7.1. Problème de Dirichlet
Proposition 7.1. Si ^e3l0, l'équation A/a xp admet dans %x une solution

unique vérifiant les conditions aux limites F/u F' jn 0, et telle que

D(/x9 <p) (y>, cp), pour tout <p e 9^ F<p F cp 0

Unicité. Si fjt, et p' sont deux solutions, fx — jjl' €%x est une forme
harmonique. D(fi — jur ,<p) 0 pour tout ç? c ttt1? F<p F'<p 0, implique,
puisqu'on peut prendre <p fi — ju' que /n -— /*' est un champ de (£. Mais

F(fji — fxr) Ff (fi — /i') 0 entraîne que p — /j,' €(£a^(&8, donc ^ ^'.
Existence. Des propositions 5.2 et 6.3. il découle que l'ensemble des formes

pseudoharmoniques de -4 + D-norme finie nulles ainsi que leur * à la frontière

constitue un espace de Hilbert avec la norme D. Il en résulte que
(y>9 a) est une fonctionnelle linéaire continue dans cet espace. Il existe donc
une forme pseudoharmonique HQ\p, de A + -D-norme finie, telle que FH°ip
F'H°y) 0, satisfaisant à la relation

T) (V>, a),

pour tout a pseudoharmonique de .4 + D-norme finie, telle que Fa F'a 0.
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Montrons que la forme:

est la solution du problème, ju, e (£ vérifie sur $# l'équation Aju \p. D'autre
part F/u, Ff[x 0. Le fait que fi c (£t découle des deux lemmes suivants:

Lemme 7.1.1. La forme r°tp, où \p€%, vérifie la relation :

D(J>,cr) O,

pour tout a pseudoharmonique de A + D-norme finie.
Soit gv (p, q) la fonction de Green relative à 8V. Posons :

Supposons d'abord le support K de rp compact et contenu dans Sv. Il
résulte des remarques finales de la proposition 3.1.2. que:

2)r(J>-/>)-> 0, Ds_E{r»xp - /» borné,

quel que soit le compact 27. Par suite:

sous la seule condition D{<p) < oo. Cette relation a lieu en particulier si

(p a est une forme pseudoharmonique de 4 + D-norme finie. Or:

Dv{r°9V,o) (r»,y>,Ao)v+ J r°vfA*do-ôoA*r°vy> 0,
8p+4>

puisque r°vip *r°vy> 0 sur 8rv et qu'aux points 0 les singularités de *do
et de <5<r sont compensées par les zéros de r°vip et *I^f.

Donc D(r°ip, a) 0 si <r est pseudoharmonique de 4 + D-norme finie
et \p € !D. Montrons que cette relation vaut pour tout y) € %. Soit ^n € 3),
on a

D (F>(y> - Vn)) (r>(V - Vn), v - Vw) < const. A (v - y>n)

Donc si A (y) — y>J-> 0, on a également D(r°(ip — ipn)) -> 0. Donc:

D(r°ipn, a) 0 entraîne D(r°y), a) 0

Lemme 7.1,2, La relation D^, cr) (zl^, o1), pour tout a pseudoharmonique

de 4 + Z)-norme finie tel que Fa F'a 0, entraîne /* € 9t1? si

^ € (£, zl/^ et /^ étant respectivement de A et D-norme finie.
En effet, on a pour les deux formes pseudoharmoniques élémentaires

attachées en un point 0O :

cr) {Aju, a) + fer A *^/* —
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puisque l'égalité est vraie pour les av correspondants à o dans 8V et que le
passage à la limite est possible en vertu de la remarque faite à la proposition
6.1. (dfi, ôfi, Aju c 31). Il en résulte que:

jjo A *dfA — ôju /\ *o 0

pour ces deux formes. Un calcul local [9, p. 10] montre que ces deux conditions

entraînent la régularité de * dp et de ôju au point 0O. Donc fi €%x.
Le raisonnement fait correspond au cas où dz tdt mais s'étend sans

autre au cas où dz tndt par la considération des 2n formes pseudoharmoniques

élémentaires attachées alors au point 0O.
La dernière propriété qu'il reste à vérifier est contenue dans le lemme

suivant:

Lemme 7.1.3. Si D(fi, a) (xp, a), pour tout a pseudoharmonique de
A + D-norme finie tel que Fa F! a 0, alors D(fi, <p) — (xp, (p), pour
tout (p de A + D-norme finie tel que Fcp F'y 0, ç? c 3I1? xp et ^ étant
respectivement de A et D-norme finie.

Pour tous ces (p et pour tous les q>n à support compact, nuls ainsi que leur *
aux points 0 :

p) — (y), cp) D(fi,<p + <pn) — (y), <p + <pn)

Or, on a montré (proposition 6.2 qu'on peut choisir (pn de telle manière

que (p -f- (pn tende en A -f- D-norme vers une forme pseudoharmonique de
A + D-norme finie nulle ainsi que son * à la frontière Donc on a bien :

D(ju, <p) (tp, (p), pour tout ç? c5tl5 F<p Ff<p 0

Remarques 1) L'existence de F0 + H° aurait pu être obtenue directement
par projection dans l'espace des formes de 4 + D-norme finie nulles ainsi
que leur * à la frontière.

2) La dernière propriété établie, qui entraîne l'unicité du problème pourrait
être satisfaite par toute solution ju e ^ de Aju y> telle que F/u Ff fi 0
si on savait montrer que ddju, dôfx <¦%, ou encore si l'on savait démontrer
que î) est dense dans l'espace des formes de A + D-norme finie nulles ainsi
que leur * à la frontière.

7.2. Problème de Neumann

Proposition 7.2. Si, mais seulement si, xp € 3I0 vérifie la condition Ctp 0,
l'équation A/u xp admet dans %x une solution vérifiant la condition à la
frontière Fèfx F' dp 0. La solution est unique si l'on exige C [a 0.

Unicité, Si p et ju' sont deux solutions, D(fx — ju', q?) 0, pour tout
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<p € %x implique, puisqu'on peut prendre <p ju, — //, que fi — ^ est un
champ de (£. Comme C(ju — p!) 0, on a p ju'.

Existence: La condition 0^ 0 est bien nécessaire car:

0 D(fx, c) (y), c) pour tout champ de (£

De la proposition 5.1. et de la proposition 6.3. il découle que l'ensemble des
formes pseudoharmonique de A + D-norme finie, orthogonales aux champs
de (£, est un espace de Hilbert avec la norme D. On en déduit l'existence
d'une forme pseudoharmonique Hip de A + D-norme finie, telle que CHq> 0,
vérifiant la relation :

pour tout a pseudoharmonique de A + D-norme finie, Ca 0. Il est
immédiat que cette relation vaut alors pour toute forme pseudoharmonique de
A + D-norme finie.

Montrons que la forme :

est la solution du problème, ju, satisfait sur 8# à l'équation Afx ip. ju, vérifie

la relation D(ju,, a) (ip, a), pour tout a pseudoharmonique de A + D-
norme finie, en vertu du lemme 7.1.1. et de la propriété de Hxp. En vertu
du lemme 7.1.2., [i€^&1 et par suite (x c %x.

De façon analogue au lemme 7.1.3. on a le lemme suivant:

Lemme 7.2.1. Si D(ju, a) (y>, a), pour tout a pseudoharmonique de
A -f D-norme finie, alors D(/bt, <p) (f, 99), pour tout 9? c 3Il5 ^ et ^ étant
respectivement de .4- et D-norme finie.

Il résulte enfin du lemme suivant que dôp et &£/* sont de A -norme finie et
que Fô/j, F'dju, 0. Appelons G l'opérateur:

Lemme 7.2.2. Les deux décompositions:
(p dôGcp + ôdGq? + Ctp, <p Hxy + H2(p + C<p, pour tout ç> c 31,

{H1(f€d1ùi adhérence de dî) sur fl^ dans 91, H2<p€#£); [2, p. 72]) sont
identiques.

On peut poser H^ doc; doc est limite en A -norme de docn, ocn€*£) sur
80. A cause de la proposition 5.2. oc est limite en A + D-norme de la suite
(ocn). Donc Foc 0. De même on peut poser H2<p <5/?, avec Fr/3 0,
fi limite en ^4 + D-norme de /?w € D sur S0.
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Formons q>n docn + ôpn et con dr°ocn + ôr°pn. On a de*>n pn,
ôa>n <%n et oyn appartient à Sl1. D'autre part:

+ (A,, dtp) (<pn, xp),

ôf) + {dG<pn, dtp) (<pn9 y>) pour tout y) de 9^

En prenant ip G<pn — con et en soustrayant membre à membre les deux
relations précédentes on obtient ocn ôGq>n et /?w dOq?n. Or C? transforme
toute partie bornée de 91 en une partie bornée de l'espace des formes de A + D-
norme finie, comme nous le verrons indépendamment en 9 c). Donc quand
ocn et f)n tendent en A -norme vers oc et /?, <pn tend vers (1 — C)q> et on a:

oc 6G(p /? dGcp c.q.f.d.

7.3. Problème mixte

Proposition 7.3. Si, mais seulement si, xp €?I vérifie la condition Cay) O,

l'équation A/bt y) admet dans ^ une solution vérifiant la condition à la
frontière F[i 0, et Fôfx 0 dans le sens généralisé:

D(/j,, q>) (y>, ç?) pour tout (p € ^ Jç? 0

La solution est unique si l'on exige que Ca[i 0.

Unicité. Si fi et // sont deux solutions, D(ju, — ju', <p) 0, pour tout
ç? € SKj, Fcp 0. Comme on peut prendre (p /* — //, fj, — p' est un champ
de (£, donc de (£a. Comme Ca(fx — (à1) 0, on a ju juf.

Existence. La condition Ca\p 0 est bien nécessaire car :

0 D^, cj (^, ca), pour tout champ de (£0

De la proposition 5.3. et de la proposition 6.3. résulte que l'ensemble des

formes pseudoharmoniques de A + D-norme finie, telles que Fa 0 et
Cacr 0, est un espace de Hilbert avec la norme D. On en déduit l'existence

d'une forme pseudoharmonique Haip de 4 + D-norme finie orthogonale

aux champs de (£a, nulle à la frontière, satisfaisant à la relation :

pour tout a pseudoharmonique de A + D-norme finie, Fa 0, Caa 0.
Il est immédiat que cette relation vaut alors pour toute forme a pseudoharmonique

de A + D-norme finie, telle que Fa 0.
Montrons que la forme

est la solution du problème, p vérifie sur 8# l'équation A/t y>. fi vérifie la
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condition aux limites Fp 0. fi satisfait à

pour tout a pseudoharmonique de A + D-norme finie, tel que Fa 0. En
vertu du lemme 7.1.2., on a donc fi c %x, car p c {£ et est de .4 + D-norme
finie.

On a de la même manière que le lemme 7.1.3.:

Lemme 7.3. Si D(ju, a) (xp, a), pour tout a pseudoharmonique de
A + D-norme finie tel que Fa 0, alors D(/*, ç?) {\p, q>) pour tout <p de
.4 + -D-norme finie tel que Ftp 0, ç> € S^, ip et fx étant respectivement de
.4- et D-norme finie.

8. L'équation A/u ip dans le cas non greenien

Nous ne considérerons dans la suite que des surfaces non greeniennes qui,
munies de la métrique induite par 0, satisfont à l'hypothèse (N). Nous
supposerons en outre que sur ces surfaces :

Toute forme harmonique de A + D-norme finie est un champ de (£.

Notons que pour les formes de degrés 0 et 2, cette propriété est vérifiée sur
toute surface non greenienne, puisqu'une fonction harmonique à intégrale de

Dibichlet finie est une constante sur une telle surface. Pour les formes de

degré 1, nous supposerons que cette propriété a lieu, sans savoir si cette hypothèse

restreint la classe des surfaces envisagées.

Proposition 8.1. Sur une surface non greenienne du type envisagé, toute
forme de A + D-norme finie est nulle ainsi que son * à la frontière.

Démontrons d'abord la proposition dans le cas du degré 1 :

a) Tout champ de (E est nul ainsi que son * à la frontière.
Cela résulte immédiatement des décompositions orthogonales c c8 + df

et c c0 + è<p établies dans la proposition 2.3. et du fait que les seules

fonctions harmoniques à intégrale de Dirichlet finie sont les constantes.
b) Toute forme de A + D-norme finie orthogonale aux champs de (£ est

nulle ainsi que son * à la frontière. Nous allons le prouver en montrant que
tout (1 — C)\p de A + D-norme finie est limite en A + D-norme de

(1 — C)<p, où 9? est à support compact.
Envisageons l'espace de Hilbert des formes orthogonales aux champs,

muni de la D-norme (voir proposition 5.1.). Montrons que le sous-ensemble
des formes (1 — C)<p, où ç?€$), y est dense. Soit /x un élément de l'espace
orthogonal au sous-ensemble, c'est-à-dire tel que D(/4,ç>) 0 pour tout
<p c 3). On établit successivement que :

12 CMH vol. 34
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1 fi est harmonique sur 80 ; en effet, si <p a son support sur 8#, D (//, <p) 0

s'écrit (Zl/*, ç>) 0 d'où Ton tire Api 0.
2) // est pseudoharmonique ; en effet, si Q est un compact ne contenant

qu'un point 0 et si a désigne la forme pseudoharmonique dont les coefficients
ont même valeur que ceux de n sur Q' et en 0 (où /u est continu), on a

D(fx, fjt — a) 0 et D(a, fi — a) 0 d'où Ton tire aisément [x a.
3) /* est harmonique; en effet, pour tout <p ayant son support dans Q,

D(fj,,cp) 0 s'écrit
— fyi A *<P 0

Comme le développement de ç? en 0 est arbitraire, on en tire que *d[i et ô[i
sont réguliers en 0. Donc ^ €^x,

4) /j est nul; en effet, sur la surface envisagée, la forme harmonique fj, est
un champ ; or ju est orthogonal aux champs.

Tout (1 — C)tp de A + D-norme finie est donc limite en D-norme de

(1 — C)(p, où 9?eî). En vertu de la proposition 5.1., il est aussi limite de
ces mêmes formes en i + D-norme.

Pour les formes de degré 0, c'est-à-dire les fonctions, on constate d'abord
que d'après ce qui précède :

(1, ô<p) 0 pour tout (p e *33i

car l'égalité vaut pour tout (p de 93 ^ *93, donc pour tout q? de 3^ c SB ^ *25
donc pour tout q> de *33 car 31^ de $0 est dense sur *25 [2], p. 79) et $!«, de
S0 est contenu dans SC1. Donc tous les champs de degré 0 sont nuls à la
frontière.

On peut alors refaire le même raisonnement que plus haut : l'ensemble des

(1 — C)<p, (p c T), de degré 0 est ici dense dans 2}.
La proposition se démontre de manière analogue pour les formes de degré 2

et est ainsi complètement établie.

Corollaire 8. Sur les surfaces non greeniennes envisagées toute forme de SB

est nulle à la frontière.
En effet d'après la proposition précédente, si 9?€$B^*93 on a:

(<p, ôip) (dqj, ip) pour tout \p c *23 ;

la relation est donc vraie pour tout 9?€9t1c5Brv*$B5 donc pour tout q? c 31^
sur 80 et comme 31^ sur 80 est dense sur SB, l'égalité vaut pour tout <p de SB.

Proposition 8,2. Si, mais seulement si, ip € 3I0 vérifie la condition Cip 0,
l'équation A/u, ip admet dans 3IX une solution unique telle que C fi 0

et que dàfi, àdfi e %.
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L'unicité est immédiate.

Existence. La condition Cxp 0 est bien nécessaire car:

0 D(jj,, c) (y>, c) pour tout champ de (£

Comme dans le cas greenien on définit Hxp, forme pseudoharmonique de
A -f- D-norme finie satisfaisant à :

D(Hxp,a) (xp,a),

pour toute forme pseudoharmonique a de A + D-norme finie.
Pour la forme Fxp on a le lemme suivant, correspondant au lemme 7.1.1.:

Lemme 8.1. La forme Ftp, oh xp €%, Cxp 0, vérifie la relation:

pour tout a pseudoharmonique élémentaire.
Posons Ftp adx + bdy, a a'dx + b'dy. A l'extérieur d'un compact

s qui contient le point @a où a n'est pas nul a, b, a', b' sont de A + D-norme
finie et on peut écrire :

Ds_e(Fy>, or) (cto, da')s_B + (db, db')s_B - (du, *db')s_e + (db, *da')s_e.

Comme a et 6 sont nuls à la frontière (résultat établi au cours de la démonstration

de la proposition 4.4.1.) le deuxième membre vaut:

$ôo A */y — Fip A *da

Or cette quantité tend vers 0 quand le compact e se reserre autour du point

Montrons maintenant que la forme :

est la solution du problème. On a d'abord /* c 95 ^ *93, A/i tp. Ensuite
//€(£. Pour voir que /j, € G^ on applique le lemme correspondant au lemme
7.1.2.:

Lemme 8.2. Si//€(£^23rN*233la relation D([t, o) — (A/z, or), pour tout
cr pseudoharmonique élémentaire, entraîne p € G^.

La démonstration de ce lemme est identique à celle du lemme 7.1.2.
La dernière propriété de fi, savoir dôfi, ôdfi e 51 résulte du lemme

correspondant au lemme 7.2.2.:

Lemme 8.3. En appelant G l'opérateur (1 — C)(F + H)(l — C), les deux
décompositions :
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q> ddG<p + âdOq> + Gq>, (p Hx<p + H2<p + C<p, pour tout 90 c 31, sont
identiques.

Ce lemme peut se démontrer de manière très analogue à ce qui est fait au
lemme 7.2.2. Il faut d'abord remarquer qu'on a:

D(Q<p, tp) ((1 — C)(p, %p) pour tout y> c %x.

En effet cette égalité vaut pour tout (1 — C)y>, %p eT)1 et pour tout a
pseudoharmonique élémentaire, donc pour tout ^ de $8^*33 et 3^ c 23^ *33.

Il suffit alors de poser Ht(p d<x, H2<p àfi, de constater que (1 — C)oc

et (1 — C)P sont limites en A + Z>-norcne de (1 — C)ani (1 — C)pn où

<xn, pn c î), et enfin d'utiliser la forme con construite comme 9/ à la proposition

5.1.:

con AT(1 - C)pn + dr(l - C)<xn + (1 - C)«0(*C/?J + (1

(ici <x0, po désigne le couple a, p de la proposition 5.1.!). La suite du raisonnement

est immédiate en prenant de nouveau <pn docn + àfin.

9. Propriétés de l'opérateur G

a) G est son propre transposé métrique.
En effet nous avons, parce que G<p € %lf pour tout q? € 3t0 et que CG<p 0,

FôG<p F'dGtp 0 :

D((?9>, %) {Gq>, V) (V, Oy)

pour tout <p, y) € 3I0, donc pour tout 9?, ^ € 31.

b) GA<p <p — C<p, pour toute forme de î)2.
Soit y) une forme quelconque de î)0. Nous avons :

(GA<p} y)) (Jç>, Gty) (<p, AGtp) (9?, y> — (7^) (9? — C99, ^)

puisque ç? et y> sont à support compact. D'où l'égalité annoncée en tout point
de S.

c) L'opérateur G transforme une partie bornée de 3t0 en une partie bornée

de3ta.
En effet l'opérateur H est continu dans 3t; d'après la proposition 5.1.:

A(H(p) ^ const. D(H<p) const. (9?, Hq>) ^ const. A%(<p)A%(H9?),

A(H<p) ^ const. A (<p).

Plus, l'opérateur H transforme toute partie bornée de 31 en une partie bornée

de 3l0. En effet, la convergence en A -norme de fonctions harmoniques
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entraîne leur convergence uniforme sur tout compact. Au voisinage d'un point
0, on peut écrire :

H<p <x(dt + dt) + h ou ioc(dt — dt) + h, oc const., h harmonique,

et on a vu, lemme 6.3., que si {Hep) est une suite de Cauchy en A -norme, (oc)

est une suite convergente, donc (h) est une suite de Cauchy en A -norme;
Hq> appartenant à (Eo, (H<p) est donc borné dans 3I0 si (q>) est borné dans 31.

De même l'opérateur C transforme toute partie bornée de 31 en une partie
bornée de 3I0.

Enfin, l'opérateur FQ a un noyau métrique C^ en dehors de la diagonale
p — q où il a une singularité logarithmique. Un raisonnement identique à
celui de de Rham ([1], p. 139) montre alors que F0 transforme toute partie
bornée de 3t0 en une partie bornée de (£0 parce que F°<p c (£0. On peut faire
le même raisonnement avec l'opérateur F(l — C) dans le cas non greenien.

On a (proposition 5.1.):

A(O(p) < const. D(G<p) (<p, G<p) < const. A(q>)

ce qui montre qu'une partie bornée de 3I0 a pour image par G, non seulement
une partie bornée de 3I0, mais de 3IX car G<p € (£t ; enfin c'est même une partie
bornée de 3Ï2 car Gq)€Ï£2 et:

(dôGcp, dôGtp) + (ôdGtp, ôdGcp) (AGkp, AG<p) (ç>,(l - <7)ç>)< const. A (<p).

d) G vérifie pour toute forme de î)x les formules :

dGdcp 0 ôGôy 0

Pour démontrer la première, par exemple, différentions les deux membres de

l'équation :

AGd<p d(p — Cd<p

dAGdcp AdGdcp 0 ;

dGdçp est donc une forme harmonique. Seul le cas du degré 2 n'est pas trivial.
Comme FfdGd<p 0 cette forme harmonique est un champ de (£, donc 0 en
vertu de la proposition 3.1.1. dans le cas greenien et du fait suivant dans le
cas non greenien: à cause de la proposition 8.1. tout champ de degré 2 de £
a son * nul à la frontière donc dGxdq> qui est un champ (toute fonction
harmonique à intégrale de Dirichlet finie est une constante) est orthogonale
aux champs, donc identiquement nulle.

e) La partie Gx de G, relative aux formes de degré 1, vérifie pour toute
forme de î^ les formules :
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Différentions en effet les deux membres de l'équation :

AGxôy — è(p — C ô<p

on obtient:
dAG1oq> AdG1oq) Acp

d'°h
A(dG1ô(p-<p) 0.

La forme dGt ôcp — <p est donc harmonique et l'on peut conclure comme
en d).

f) Si T est un courant continu en moyenne à l'infini, les propriétés de G

signalées en c) permettent de définir GT en posant:

(GT, cp) (T, G<p) pour tout <p c Do.

Cette définition s'étend naturellement au cas de fonctionnelles linéaires
continues de !£>i ou î>2, pour peu qu'elles soient continues en moyenne à l'infini.

g) Si T est continu en moyenne à l'infini, on a dans î)^ :

AGT T -CT
En effet: {AGT, <p) (GT, Acp) (T, GAq?) (T,(p- Cep) (T - CT, <p),

pour toute forme de X)2.

h) Si T et * y sont nuls à la frontière on a dans î){ :

dGdT 0, ÔGÔT O, dGtôT T ÔGtdT T
Ces formules s'obtiennent par transposition à partir de celles de d) et e).

Sur une surface non greenienne, il suffira de supposer T, dT et ôT continus
en moyenne à l'infini parce qu'alors le corollaire 8 entraîne immédiatement

que T et *7 sont nuls à la frontière.
i) Si T, *T, UT, ÔT sont nuls à la frontière, on a:

GAT= T -GT
En effet:

(GdôT, <p) (dôT, G(p) (ÔT, ÔG<p) (T, dôG<p)

(GôdT, q>) (ôdT, Gcp) (dT, dGcp) (T, M(fy),
pour tout 99 € î)0, d'où :

(Gziy, y) (T, AG<p) (T,<p- Cep) (T~ CT, cp)

Même remarque qu'en h) dans le cas non greenien : il suffit alors de supposer
T, dT, ôT, dôT et ôdT continus en moyenne à l'infini.

10. Application au problème de Cousin [12]

Un courant T sera dit fermé, cofermé ou harmonique selon que dT 0

dans î)(, ôT 0 dans J)(, AT 0 dans î^. Nous utiliserons dans la suite
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la proposition suivante qui adapte à notre cas l'important théorème de
régularité des courants harmoniques de de Rham ([1], p. 149).

Proposition 10. Un courant harmonique dans un domaine relativement compact

Q est une forme harmonique dans Q.
L'essentiel de cette proposition résulte donc du théorème cité de de Rham

qui, appliqué à S0, nous apprend que le courant harmonique est une forme
harmonique sur S0<^ Q} soit oc. Il reste à montrer que oc e (£j sur Q, c'est-
à dire à étudier le comportement de oc aux points 0.

Il résulte de Aoc 0 dans î)^ que, pour tout #?€Î)2, nul en dehors
d'un compact contenu dans Q et ne contenant qu'un seul point 0, soit 0O,

on doit avoir:

§oc A *d<p — <p A *doc + àoc A *<p — àcp A *oc 0

Supposons comme toujours que 0 tdt en 0Q.
Considérons d'abord le cas du degré 0. Montrons que oc € (g (£0 (£x en

prouvant que le développement de oc en 0O ne peut contenir l'expression:

a0 log tt + S\-~ + y1) a0 réel,
i \t Kl

en montrant que la relation écrite plus haut entraîne a0 an 0. Ceci

s'obtient en prenant successivement cp f pour a0, <p f(antn + <Mn) pour an,
n > 0 (/ étant une fonction 0°°, égale à 1 dans un voisinage de 0Qi dont le

support compact contenu dans Q ne renferme pas d'autres points 0 que 0O).
La proposition est ainsi démontrée dans le cas du degré 0 et du même coup
dans le cas du degré 2 car alors *oc est un courant harmonique de degré 0!

Considérons finalement le cas du degré 1. Montrons que «eÊ Ê0J c'est-
à-dire que le développement de oc en 0O ne peut contenir l'expression:

log û (aotdt + âotdt) + z(^ + y)tdt + (fr + ¥
en montrant que notre relation entraîne a0 an bn 0. Ceci s'obtient en

prenant successivement cp f(aotdt + ~âotdt) poura0, cp f(anttndt + anttndt)

pour an et cp f(bntn+1dt + bntn+1dt) pour bn. Pour montrer que oc e ©x il
suffit, par exemple, de prendre cp f(dt + dt) et cp **/(^ — dt) [9], p. 15)

et ceci achève la démonstration de la proposition.

10.1. Examinons le problème de Cousin- suivant, intéressant en théorie des

fonctions, et qui regarde spécialement le degré 1.
On donne dans des ouverts V€ formant un recouvrement de 8 des formes
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co4 fermées et cofermées en dehors d'un point singulier q{ de Ft, vérifiant la
condition de compatibilité suivante: t*>t. — co^ est une forme fermée et co-
fermée dans F, ^ V$. On demande de trouver une forme fermée et cofermée
dans tout domaine de la surface S — (q4) telle que co — cot. soit un champ
harmonique dans V4.

La forme w n'est pas caractérisée univoquement par ses parties singulières
et ses périodes. Il faut lui imposer en outre une condition de régularité à

l'infini. Nous choisirons la suivante: le courant T vpco doit être continu
en moyenne à l'infini.

Soit Tf vpoij le courant associé dans Vi à la forme cDr Soient UQ et U2
les courants ou plus exactement les formes linéaires continues sur î)1, définies
localement pas ôT^ et dTi, définitions possibles grâce aux conditions de

compatibilité :

ô(Tj - Tk) 0 d(Tj -Tk) 0, dans V^Vk.
Le courant cherché T doit satisfaire aux conditions suivantes :

1) dT= U2, ÔT= Uo.
2) T est continu en moyenne à l'infini.
3) T est orthogonal aux champs de (£.

Les conditions 1) et 2) déterminent la solution à un champ harmonique de

d près (proposition 10). La condition 3) fixe celui-ci univoquement. La solution

est donc unique si elle existe.
Pour que la solution existe il suffit que les fonctionnelles Uo et * U2 soient

nulles à la frontière.
Formons le courant T O^dU^ + ât^)» ce <ïui es^ possible puisque

l'hypothèse faite implique que dU0 et ôU2 sont continus en moyenne à l'infini.
Vérifions qu'il satisfait aux conditions.

1) Les formules de 9.h) sont applicables:

dT dOtôU2 =U2, ÔT= ôQ^Uo Uo dans D{

2) dU0 et ôU2 étant continus en moyenne à l'infini, il en est de même de

GidUç et O1àU2 et par suite de T.
3) CT CO^dUo + ÔU2) 0.

Remarque. Si les singularités sont en nombre fini, l'hypothèse faite sur Uo

et * U2 est automatiquement réalisée. Cette hypothèse est de toute manière
nécessaire si l'on exige que pour la solution T, les fonctionnelles ôT et *dT
soient nulles à l'infini. Dans le cas non greenien il suffit, à cause du corollaire 8,
de supposer Uo, dU0, U2 et ôU2 continus en moyenne à l'infini.

10.2. Examinons enfin le problème suivant, intéressant surtout pour le

degré 0.
On donne dans des ouverts V{ formant un recouvrement de S des formes
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méroharmoniques cof, vérifiant la condition de compatibilité suivante : cof — <of

est une forme harmonique dans Vi <-\ Vi% On demande de trouver une forme
méroharmonique m telle que œ — eot soit harmonique dans Vt quel que soit i.

Soient Tt vpa){ le courant associé dans Ft à o>t, T vpco le courant
associé à la solution eo, si elle existe.

Formons dans V{ la fonctionnelle £7t- ATi. Les E7t définissent globalement

une fonctionnelle U de D£ et le problème peut être formulé comme suit :

résoudre l'équation AT U.
Dans le cas greenien d'abord, supposons que U soit continu en moyenne à

l'infini. En cherchant une solution continue en moyenne à l'infini ainsi que
ses différentielles premières, on détermine le problème à une forme harmonique
(proposition 10) de A + Z)-norme finie près. Imposons lui donc d'être nulle
ainsi que son * à la frontière et la solution sera unique.

En appelant Q° l'opérateur jT° + H°, la solution est alors donnée par G°U.
Remarquons d'abord que 6° est son propre transposé métrique: pour tout

couple <p, y) € AQ on a:

D(Q\, <?» (GV y) (<p, G°y>),

donc cette dernière égalité vaut encore pour tout couple q>, xp € 21.

On a d'autre part O°Acp <p pour tout 9?€Î)2, comme le montre un
calcul direct analogue à ce qui est fait sous 9b).

Des deux propriétés précédentes il résulte que :

AO°U U dans $£

On montre, comme en 9 c) que 0° transforme toute partie bornée de 3ÏO en
une partie bornée de 2I1? donc aussi toute partie bornée de 3t en une partie
bornée de SB ^ *33.

Montrons que F0°U FfG°U 0. Nous avons besoin pour cela de

remarquer que G°ô(p et G°d<p peuvent être définis comme éléments de 21 pour
tout <p de 2Ï: considérons G°ô<p pour çjcÎV, nous avons, pour tout y€%:

>, tp)

comme forme linéaire continue sur 2t, G°ô<p dépend donc continuement de q>

dans % (!&! est dense dans 21) et on peut définir G°ô<p pour tout y de 2t par
la relation précédente car si <p e *231 on a aussi (FG°y> 0):

(V, dG«W) (ty, G«y>) (G'dq,, xp).

Ceci montre que si ç>n e î^ tend vers q> dans 2t,

(dG°U, <pn) {U, G°ô<pn) tend vers (U, G°dq>).
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Cette relation nous montre que dGùU est continu en moyenne à l'infini.
D'autre part, si <p € *931 on a (<pn et)1, <pn tend vers cp dans 3t):

{dG»U, <p) Km (dG°U, <pn) {U, Q*dq>) (G°U, ôy),
ce qui montre bien que FG°U 0.

De la même manière on peut obtenir que F' G0 U 0.
Dans le cas non greenien la condition nécessaire et suffisante pour que

l'équation AT U, où U est continu en moyenne à l'infini, ait une solution
T continue en moyenne à l'infini ainsi que ses différentielles premières et
secondes, est que OU 0. La solution est unique avec la condition CT 0.

D'après le corollaire 8 une telle solution satisfait à F ôT F' dT 0 et
donc on a bien (c, U) — (c, AT) 0 pour tout c de (£.

La solution est GU. On a évidemment AGU U, d'après les propriétés
de l'opérateur G et on peut montrer que dGU, ôGU, dôGU et ôdGU sont
continus en moyenne à l'infini comme on a montré que dG°U et ôG°U l'étaient.
On remarque en effet ici qu'on peut définir Gdcp, Gô<p, Gdô<p, Gôdcp comme
éléments de 21 pour tout ç? de 21 par les relations (y> e 2t) :

(Gd(p,tp) =(<p,ÔGy)) (Gôcp,ip) =((p,dGy>)
(Gdô<p, y>) (<p, ddChp), (GdéUp, tp) (<p, ôdGxp),

ce qui permet de conclure comme plus haut.
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