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Formes harmoniques sur une surface de RIEMANN

par ROGER BADER et WERNER SORENSEN

A Yorigine de ce travail!) se trouve une question posée dans [4] et déja
étudiée dans [8]. et [5]. Il s’agissait de caractériser ou de construire des diffé-
rentielles méromorphes ou méroharmoniques sur une surface de RIEMANN non
compacte (probléme de Cousin), différentielles qui se distingueraient, dans la
classe de celles ayant les mémes singularités et les mémes périodes, par un
comportement régulier a la frontiére de la surface.

Nous nous sommes d’emblée limités ici aux différentielles réelles.

Dans les trois travaux cités et dans d’autres [11] on a fait largement usage
des méthodes de géométrie différentielle qui sont utilisées pour aboutir aux
théorémes de décomposition de KoDAIRA-DE RHAM. Suivant une idée par-
tiellement exploitée dans [9], nous avons fait un usage encore plus systéma-
tique de ces méthodes, en douant la surface de RIEMANN d’une métrique par-
ticuliére, c’est-a-dire en la considérant comme un espace de RIEMANN. Comme
métrique nous avons pris celle qui est induite naturellement par une diffé-
rentielle abélienne de premiére espéce et de norme finie. Sauf sur un ensemble
de points isolés (les zéros de la différentielle) la métrique est localement eucli-
dienne et cela revient en quelque sorte & représenter de fagon bien déterminée
la surface de RIEMANN comme surface de recouvrement (feuillets plans) du
plan de GAuss.

L’avantage de ce choix quelque peu arbitraire de la métrique consiste essen-
tiellement en la possibilité d’utiliser les fonctions de GREEN et de NEUMANN
pour ’établissement des noyaux de GREEN-DE RHAM; ceux-ci ont alors une
expression qui généralise celle du cas euclidien ol 'on sait qu’elle est parti-
culiérement simple. D’autre part on peut alors, par rapport & cette métrique,
poser des problémes aux limites sur la surface non compacte, ce qui permet
en particulier de préciser le comportement & la frontiere des différentielles a
singularités polaires de fagon a rendre leur détermination unique.

Pourtant, bien que cette métrique dérive d’un élément de la surface de Rie-
MANN (la différentielle abélienne choisie) qui lui est intimement lié, nous n’avons
pas pu, sauf dans des circonstances particuliéres, délimiter 1’'influence de ce
choix sur les résultats obtenus. Nos résultats restent done, pour la plupart,
liés & cette différentielle particuliére, mais leur expression relativement simple
n’exclut pas la possibilité d’en démontrer le caractére intrinseque: peut-étre

1) Travail subventionné par le Fonds national suisse de la recherche scientifique (subsides
nos 788 et 1029).
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faudrait-il pour cela avoir quelques renseignements sur la distribution des zéros
d’une telle différentielle ?

Profitant des particularités de 1’espace de RIEMANN envisagé (deux dimen-
sions, presque partout localement euclidien), nous avons plutét porté notre
attention sur les différents problemes aux limites qui se posent naturellement
pour 1’équation de Poisson et dont un seul (le probleme de NEUMANN) sert
finalement a la résolution proposée du probléme de CousiN. Nous avons re-
marqué que, moyennant des hypothéses raisonnables sur la surface de Rik-
MANN (hypothéses (N) et (I°): les énergies des potentiels de NEUMANN et de
GREEN, relatifs a la métrique, dépendent continuement des masses) on ob-
tenait des inégalités du type de PoiNCARE (majoration de la norme ordinaire
en fonction de la D-norme pour certaines classes de formes différentielles) qui
sont nécessaires et suffisantes a la résolution des problémes aux limites posés.
I1 devient donc raisonnable de penser ou d’espérer que ces inégalités de PoIn-
CARE seront les hypothéses de base a faire sur des espaces de RIEMANN quel-
conques pour poser correctement les différents probléemes aux limites: une
fois en possession de ces inégalités on doit pouvoir en effet, bien que nous ne
Payons pas fait systématiquement dans notre cas a cause des singularités de
la métrique, résoudre les problémes aux limites par I'utilisation des méthodes
de I’espace de HILBERT et d’un théoréme de pE RHAM sur la régularité des
solutions d’une équation de Porsson [2].

Signalons enfin que I’étude des problémes aux limites a permis de préciser
le théoréme de décomposition de Kopaira-DE RHAM dans les cas envisagés

comme cela est fait pour les espaces de RIEMANN compacts (existence et pro-
priétés de I'opérateur G).

1. Notions relatives a une différentielle @

1.1. La surface S,. Les espaces €, €,, D, D,,%,, A, B,, B.

Sur toute surface de RiemMaNN 8, d’ordre de connexion supérieur a 1, il
existe une différentielle abélienne @, réguliére sur S et & intégrale de DIRICHLET
finie [3].

Soit @ = dz Yexpression de @ en coordonnées locales. En posant ds? =
dz-dz, on définit une métrique sur S, singuliére aux points isolés en lesquels
® = 0. Pour abréger, nous appelons ces points les points @ et nous désignons
par S, I’espace de RIEMANN obtenu en excluant les points @ de la surface S.

A toute forme C* sur S,, ¢, correspond sur S, une forme adjointe x¢
également C* sur S,, définie par:

+f =5 fdz A\ @z, x(adz + adz) = i(— adz + ada), xAdz \ dz = — 2i4 .
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A toute forme C* sur S, ¢, correspond sur S une différentielle dp également
C* sur S, définie indépendamment de @ par:

oa

df = afd + " dz, d(adz+adz)_(ig s

)dz/\ dz, d(Adz A dz) =
A toute forme C* sur §,, ¢, correspond sur S, une codifférentielle d¢p
également C* sur S,, définie par:

da , oa 04 04 —
of =0, 6(adz+adz)———-—2(a +6") 0(Adz /\dz)~—2(azd -a:z_dz).

On dira qu'une forme ¢, C* sur 8,, est C* sur S si son comportement au
voisinage des points @ permet un prolongement par continuité en ces points
et si la forme ainsi prolongée, toujours notée ¢, est C* sur S.

¢ désignera I’espace des formes qui sont C* sur S. €, désignera le sous-
espace de € formé des éléments dont les différentielles d’ordre < n, ainsi que
leur adjointe, appartiennent & €. A cause des singularités qui peuvent sur-
venir aux points @ dans le calcul de 1’adjointe et de la codifférentielle, ces
espaces sont strictement inclus les uns dans les autres [9].

D, D, désigneront les sous-espaces de €, €, , formés des éléments a support
compact sur S.

A, désignera le sous-espace de €, formé des éléments dont les différentielles
d’ordre < n sont de A-norme finie (4(p) = (p, ¢) = fp A *9¢).

Avec le produit scalaire (¢, ) = [@ A xp les espaces D, et A, sont pré-
hilbertiens et partout denses dans leur complété commun, I’espace des formes
de A-norme finie, qui sera désigné par 9.

B, (resp. xB,) désignera le sous-espace de €, des formes ¢ qui sont élé-
ments de U ainsi que leur différentielle dp (resp. codifférentielle dp). B (resp.
*x$B) désignera ’espace de HILBERT des formes ¢ telles que ¢ e W et dpeA
(resp. dp e NU).

Nous appellerons D-norme de ¢ la quantité D (¢) = (de, dp) + (d¢, d¢p).

L’opérateur & est le transposé métrique [1] de 'opérateur d sur l’espace
D,. L’opérateur de Laplace, 4 = dd + dd est son propre transposé métrique
sur D,.

1.2. Topologies sur les espaces de formes. Courants.

Un ensemble M de formes ¢ est dit localement borné au point p si, dans un
voisinage compact de p, les dérivées partielles d’ordre <k des coefficients
des formes ¢ sont bornées, quel que soit k.

I est borné dans € s’il est localement borné en tout point p. Il est dit
borné dans D s’il est borné dans € et si toutes les formes de IR ont leur sup-
port compris dans un compact fixe [1].
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I est borné dans U si I'’ensemble des 4-normes des ¢ est borné.

I sera dit borné dans €, (ou D,,) si les formes ¢ appartiennent & €, (ou D,)
et si I est borné dans € (ou D).

I sera dit borné dans U, s’il est borné dans € et si 'ensemble des normes
des différentielles d’ordre < n des formes ¢ est borné.

Il conviendra d’appeler courant toute fonctionnelle linéaire (7', ¢) sur D,,
continue dans le sens suivant: | (7, ¢)| reste borné sur tout ensemble de
formes borné dans D,.

L’espace vectoriel des courants, dual de D,, est noté D;. Nous désignerons
de méme par D, I’espace des fonctionnelles linéaires continues sur D,.

La différentielle dT' d’un courant T sera 1’élément de D] défini par:

(dTa (P)z (T’&p): ¢€Dl-

La définition de la codifférentielle 7' d’un courant comme élément de D,
et des différentielles d’ordre » de 7' comme éléments de D, est complétement
analogue.

1.3. Valeurs a la frontiére

Le courant 7' est continu en moyenne & l'infini si | (7', ¢) | reste borné sur
tout ensemble de formes de D, qui est borné dans U.

Soit alors ¢ une forme quelconque de €~ A. Il existe une suite de formes
@, €D, telles que:

1. le support de ¢ — ¢, soit extérieur & tout compact K pourvu que n
soit assez grand,

2. A(p — @,) tende vers 0.

On voit que (7', ¢,) converge vers une limite indépendante de la suite (g,)
choisie, si 7' est continu en moyenne & 'infini ([1], p. 167, prop. 6). La défini-
tion de (7', ¢) peut donc étre étendue, si 7' est continu en moyenne & l'infini,
a tout ¢ e €~ A, en posant:

(T, ¢) =1lim (7T, ¢,) -

Ces définitions s’étendent de maniére évidente au cas ou 7' est une fonc-
tionnelle linéaire de D;,.

Si T et dT sont des fonctionnelles linéaire continues en moyennes & 'infini,
la fonctionnelle linéaire :

(FT’ 99) = (dT’ (P) _ (T’ 6‘]3)

est définie pour tout ¢ e xB,. Elle est nulle sur D, et représente la frontiére
de T.
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On voit immédiatement que la frontiére de xT' est la fonctionnelle linéaire:
(F'THP) = (6Ta¢) - (T,d‘P) ’

définie et continue sur B, si 7" et 67 sont continus en moyenne 3 ’infini.
1

2. Espaces de champs harmoniques. Formules de décomposition [5, 11]
Une forme C*, @, est un champ harmonique si elle vérifie sur S, les équations
dp =0, Jdp=20

Les champs harmoniques de degré 0 sont les constantes Les champs har-
moniques de degré 1 sont, sur tout domaine simplement connexe, différentiel-
les de fonction harmonique Les champs harmoniques de degré 2 sont les cons-

tantes multipliées par dz A dz.

Proposition 2.1. Les champs harmoniques de U forment un espace de
HeErT €.

La proposition est triviale pour les degrés 0 et 2. Pour le degré 1 il suffit
de constater qu’une suite de CaucHY en A4-norme de champs harmoniques
est, dans tout domaine simplement connexe, une suite de différentielles de
fonctions harmoniques qui forment une suite de CaAucrY avec la norme inté-
grale de DIRICHLET.

Un champ harmonique de U est dit symétrique si son adjointe est nulle a la

frontiére ; il est dit antisymétrique s’il est nul & la frontiére. Ces deux notions
sont indépendantes de @.

Proposition 2.2. Les champs harmoniques symétriques (antisymétriques)
constituent un sous-espace ¢, (€,) de €.

En effet, la relation (c,,df) = 0 pour tout feB, entraine la relation
(¢, df) = 0 pour la limite ¢ de la suite de CAUCHY en 4-norme, c,,.

Proposition 2.3. Dans le cas du degré 1 le complémentaire orthogonal

¢l (CL) de C,(C, dans € est le sous-espace E,(€,) des champs homologues
(cohomologues) & zéro de A :

C=¢,+¢=¢+C¢C,.

Il est immédiat que si ¢ =df, @ eQ@l. Pour démontrer la réciproque,
établissons d’abord le lemme suivant.

Lemme 2. Soit C un cycle quelconque de la surface. La forme fermée y
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associée & la fonctionnelle ¢ définie sur ’espace des formes fermées de U par
c

(y,9)= fo
C

est un champ harmonique symétrique.
Remarquons d’abord que [¢ est une fonctionnelle linéaire continue sur ’es-
c

pace des formes fermées de W, qui est manifestement un sous-espace de .
L’existence de y est donc assurée par le théoréme de RiEsz.
Prenons ¢ = df, ou f est a support compact. L’équation

(v, 9) = (y,df) = fdf =0
devient c

(dy,f)=0.

Elle entraine que Jdy = 0. Par suite y est un champ harmonique.
Comme [df = 0 vaut pour tout fe®B,, ona (dy, f) = (v, df) pour toutes
c

ces formes, ce qui signifie que xy est nulle & la frontiére. y est donc un champ
symétrique.

La proposition résulte immédiatement du lemme. Soit en effet ¢ un champ
quelconque de U, c, sa projection sur 'espace des champs symétriques. Soit
C un cycle quelconque, y le champ symétrique associé:

(c—c¢,7)=0 donc fc—c,=0.
¢

Toutes les périodes de ¢ — ¢, sont donc nulles, ¢ — ¢, = df est donc homo-
logue & zéro.

Un champ harmonique de degré 1 est dit analytique s’il est & la fois homologue
et cohomologue & zéro. Un tel champ du = xdv est un effet la partie réelle
de la différentielle df d’une fonction analytique uniforme f(z).

Proposition 2.4. Les champs harmoniques analytiques de U forment un
sous-espace €, de €.

On appelle champ de Scrorrry [4] un champ harmonique de U orthogonal &
tout champ harmonique analytique. L’espace des champs de ScmorTRY G4
est le complémentaire orthogonal de €, dans ¢ :

€=GA+¢S‘

Proposition 2.5. L’espace €y des champs de ScHOTTKY est la fermeture
de la somme ¢, + ¢, des espaces de champs antisymétriques et symétriques:

€, =G, +G,.
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L’inclusion ¢ o €, + €, est immédiate car €4, o €, et €g o €,. D’au-
tre part ¢ eCl et @ e @l entraine ¢ = dp et ¢ = df respectivement, donc
pelC, =CL. Ceci entraine €, + ¢, o C;.

Dans le cas d’un domaine relativement compact a frontiére tres réguliére,
tout champ de ScHOTTKY admet une décomposition unique:

Cg = €4 1+ €

en un champ antisymétrique et un champ symétrique [4]. De plus, comme
€, et €, sont de dimension finie et disjoints, il existe deux constantes finies
K' ett K" ne dépendant que du domaine, telles que

A(c,) < K'A (¢, + ¢)

Alcy) < K"A(c, + ¢ (©)

quels que soient les champs ¢, et c,.

Nous dirons d’une surface greenienne qu’elle vérifie I’hypothése (C) s’il existe
deux constantes finies K’ et K” ne dépendant que de la surface telles que les
conditions (C) soient vérifiées quels que soient les champs c, et ¢, 2?).

Cette hypothése est indépendante de la métrique.

Proposition 2.6. Sur une surface greenienne vérifiant 1’hypothése (C), tout
champ ¢ de degré 1 de A admet une décomposition

c = ¢, + C,
¢, et ¢, étant respectivement homologue et cohomologue & zéro, ou
Afcy) S L'A(c), Alc,) < L"A(c),

L' et L" deux constantes finies ne dépendant que de la surface.

Il suffit évidemment, & cause de la décomposition orthogonale € = €, + €5,
de prouver la propriété pour un champ de SCHOTTKY cg.

a) L’hypothése (C) entraine immédiatement €,~ €, = . Par suite:

(gs = (€~ Gs) + (€~ (Zs) .

b) L’hypothése (C) entraine ¢, 4 ¢, =C, 4 €,. Donc tout élément cg
peut s’écrire:

' Cg = Cq + €4,
c) Envisageons un élément ¢y de Cg de la forme
Cg = Co + €z,
?) L’hypothése (C) revient & supposer les espaces §, et €, non asymptotiques au sens de

J. Dixmier: Etudes sur les variétés et les opérateurs de JULIA avec quelques applications, Bull.
Soc. Math. de France, 77 (1949), p. 21.
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et soit ¢y un élément quelconque de €4 qu’on peut toujours écrire, d’aprés b),

sous la forme: , ; ,
Cg = C, + ¢, .

On a (c,,cg) = (c,,c)) = (cg,¢;), dou (c,,c5)? < A(cg)K"A(cy), pour tout
cg, c’est-a-dire A4(c,) < K" A(cg).
De fagon analogue on trouve:

A(c,) < K'A(cg) .
€ =¢~C +C~C,
et la proposition est démontrée, avec L' =1+ K', L" =1+ K",

A cause de a) et ¢):

Remarque: Etant donné une forme ¢ de A, nous appellerons Cyp, C,p, ete.,
les projections de ¢ dans les espaces €, €, etc.

3. Problémes élémentaires relatifs a ’équation A7 = U
dans le cas du degré zéro

3.1. Probléme de DIRICHLET sur une surface greenienne
Nous allons d’abord établir la proposition suivante:

Proposition 3.1.1. Sur une surface greenienne F'1 £ 0.

Pour cela il suffit de construire une forme ¢ e xB,; telle que (1, dp) 7% 0.
Etant donné un domaine relativement compact 2, & frontiere tres réguliére,
ne contenant pas de points @, considérons la mesure harmonique w de la
frontiére de S par rapport & S — 2 [10]. On sait que 0 < Dg_,(w). Pro-
longeons w dans 2 de fagon 4 obtenir une fonction C° sur 8, @. Avec ¢ = dw
ona pexPB, et

(1, 0p) = (1, )y = — [*p = ————g*dwz — Dy_o(w)<O0.
o ,

Le principe de DIrIcHLET [6, 7] nous permet alors d’établir un premier ré-
sultat contenu dans la proposition suivante:

Proposition 3.1.2. Soit U une distribution dont le support comporte un
nombre fini de points d’une surface greenienne. L’équation 47 = U admet
une et une seule solution 7', continue en moyenne a l’infini ainsi que d7', et
telle que F'7T = 0.

L’unicité est immédiate: AT = 0, T et dT continus en moyenne & l'in-
fini, FT = 0 entrainent que d7' «¢ [1] et que:

dT,dT) = 0,

done¢ 7 = const. La proposition 3.1.1. entraine alors 7' = 0.
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Pour P'existence de la solution, traitons d’abord le cas o CU = 0 (le
champ de €, CT', est défini pour tout courant 7' continu en moyenne & l'in-
fini par (CT, )= (T,C¢p); [1]). Nous allons construire la solution de ce pro-

bléme pour les domaines S, d’une exhaustion canonique de § (@; c 8,.;; sup-
port de U c 8,), puis obtenir 7' par passage & la limite.

Soit ¢, la fonction harmonique avec singularités sur 8,, prolongeable par
symétrie sur le double de ScHOTTKY de S, [8], telle que la distribution associée
T, = vpt, (valeur principale) satisfasse I’équation AT = U (t, existe car
CU = 0). Soient t,, »> 0 les fonctions harmoniques avec singularités sur
S,, prolongeables par antisymétrie sur le double de ScHOTTKY de S, telles
que les distributions associées 7', = vpt, satisfassent I'équation A7 = U.
Appelons encore ¢, et 7', les fonctions et distributions prolongées au dela de
S,par 0. T,, v> 0, vérifie la relation:

@ar,, ) = (T,, ép), pour tout ¢ ex*B,.

a) La suite (dt,) converge en A-norme sur S — S, :
Formons 7, =1¢, —t,. 7, est C* sur S, et 7 est C°sur §. 47, = 0 dans

S, et dans S, — §,. Ainsi, pour 0 < u<w¥:
D(z,— 7,,7) =0, donc D(t,) = D(z,) + D(z, — 1,).

Donc la suite de nombres positifs D(z,) est monotone décroissante et tend
vers un nombre d. Lorsque p et v— oo, D(z,)— d, D(r,)—> d et par suite
D(z,— 7,)—> 0. Or D(z, — 1,) = D(t, — t,).

b) Les fonctions ¢, sont bornées uniformément hors de S, :

La fonction ¢, est harmonique sur S, — §,. Comme {,, au voisinage du
support de U, prend des valeurs positives et négatives, car CU = 0, il en
est ainsi sur S;. ¢ admet donc un minimum négatif m, ; et un maximum
positif M, , sur S;. m, , et M, , étant définis de la méme maniére, on a:

mv,o g mv,l et Mv,o } Mv,l d,Oh OSi (tv) ‘< OS(’) (tv) ’

Og: (8,) désignant l'oscillation M, ; — m, ;. Cette relation vaut pour »> 1.

D’aprés un lemme de Jomansson [8], il existe une constante £ indépendante
de », telle que 0*5'6 t) < kOS(,) (¢,). Donc ¢, est borné indépendamment de »
sur §,, et par suite sur S, — 8,.

¢) Soit (¢,) une suite partielle de ¢, convergent uniformément sur tout
compact, ainsi que les différentielles df,, vers une fonction ¢, respectivement
vers la différentielle dt. 7' = vpt est une solution du probléme posé qui,
d’aprés a) et b) est continue en moyenne & linfini ainsi que d7'. En effet
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AT = U, car tous les ¢, ont mémes singularités. De plus, pour tout ¢ € xB,,
on® (T, 8g) = lim (T, 8p), (@7, ¢) = lim (dT,, 9) .

Comme (7,, ép) = (dT,, ¢) pour tout =, on a bien FT = 0.

Le cas général ou CU 5 0 peut étre maintenant obtenu en remarquant
simplement que la fonction de GREEN, ¢(p,q), résoud le probléme A7 =
d,, 6, mesure de Dirac au point ¢, 7', dT continus en moyenne & l’infini,
FT = 0. La propriété Fg = 0 s’obtient de nouveau par passage a la limite:
pour les domaines S, et les fonctions de GREEN ¢,(p, ¢) supposées prolongées
par zéro en dehors de §,, on a

(d9,(»,9), 9(p)) = (9,(p, q), dp(p)) pour tout ¢ exB, .

Or la suite (g,) converge uniformément sur tout compact de S — (g9) vers
g, les g, sont bornés dans leur ensemble & l’extérieur d’'un voisinage de ¢,

enfin les nombres Dg_,(g,), £ compact contenant ¢, sont bornés; donc par
passage a la limite Fg = 0.

3.2. Probléme de NEUMANN sur une surface greenienne

Proposition 3.2. Soit, sur une surface greenienne, U une distribution dont
le support comporte un nombre fini de points, orthogonale aux champs de
€, CU = 0. Léquation AT = U admet une solution unique 7' continue
en moyenne & l'infini ainsi que d7T', telle que F'dT = 0, c’est-a-dire (dT', dg)
= (U, ¢) pour tout ¢ € ; ~ B,, et telle que CT = 0.

Remarquons que la condition CU = 0 est nécessaire pour avoir F'dT = 0
car (6dT,c) = 0.

L’unicité de la solution résulte du fait que A7 = 0,7 ,dT continus en
moyenne 3 'infini entraine que d7' est un élément de € doncde €, ; or F'dT =0
entraine que d7'e€®,; donc d7' =0 car C,~E, = J; donc T = const.
et CT = 0 entraine 7' = 0.

Nous allons démontrer I’existence en construisant la solution de ce pro-

bléme pour les domaines S, d’une exhaustion canonique de § (E’: c S,
support de U < S,) puis obtenir 7' par passage a la limite.

Soit ¢, la fonction harmonique avec singularités, prolongeable par symétrie
sur le double de ScHOTTKY de S,, dont la distribution associée T, = vpt,
satisfait ’équation AT = U (t, existe car CU = 0), T, vérifie la condition
dT,,dyp) = (U, ¢), pour tout ¢ e € ~ B,.

a) (dt,) converge en A-norme sur tout compact de S-support de U; I'en-
semble des A-normes de (dt,) dans S, — 8§, est borné:

Formons 7,=1t, —t, sur S,

e sur Sv—~§0.

11 CMH vol. 34



150 RoGER BADER | WERNER SORENSEN

7, est C” dans S, et dans §, — §,; de plus xdz, est continue au travers de
sl
Envisageons I’ensemble des formes ¢, (¢),, vérifiant les conditions: ¢ est

C* dans 8,, ¢ est C* dans S, — Sy, @ +t, est C° dans S, — support de U,
D,(¢) < . T, fait partie de cet ensemble. Montrons que D,(t,) < D,(¢p):

D,,(q')—T,,,T)—O
D, ((p) (‘P'—' Tv) +D (T) d’ou D( ) D,,((P)
Soit 4 <». Ona (¢), O (p),. Parsuite 7,¢(¢),. Donc:
D,(z,) < D,(7)) < D,(v,) .

Les nombres D, (7,) forment une suite monotone croissante. De plus:

'Dp.(rv __ ry.) - Dp,(‘rv) + D (t ) - ( )
= Dy(v,) — D( )<D(1) D,(z,)
car D, (z,, v,) = Dy(v,,7) + Dul(r, — 7, 1) = Dy(7,, 7,)

La classe (p)g n’est pas vide: par exemple ft, —t,e(p)s si f est une
fonction C”, égale & 1 sur Sy, &4 O sur § — §,.
Soit d = inf D(p). Quel que soit ¢ € (p)g, on a:

9€(p)s

D,(z,) < D,(p) < D(¢), parsuite D,(7,) <d.

Les nombres D,(7,) sont donc bornés. Il en est de méme des nombres
DS”__ 8o (t) - Comme les premiers forment une suite croissante, ils convergent.
Par suite D, (7, — 7,) tend vers 0. Les dv, forment une suite de CAuCHY en
A-norme sur tout compact. Il en est de méme pour les formes dt, sur tout
compact de S-support de U. Ainsi les dt, convergent uniformément sur tout
compact de S-support de U.

b) Si I'on fixe la constante arbitraire dont dépend ¢, en posant ¢, (P) =0,
P e8,, (t,) converge uniformément sur tout compact vers une fonction ¢; la
distribution associée 7' permet de construire la solution (1 — C)7T du pro-

bléme. En effet:
dT,, dp), = (U, ¢) pour tout ¢ e €y~ B,, et par suite F'd7T = 0;

3.3. Solution de AT = U sur une surface non greenienne

Proposition 3.3. Soit, sur une surface non greenienne, U une distribution
dont le support comporte un nombre fini de points, orthogonale aux champs
de O, CU = 0; l'équation 4T = U admet une solution unique 7' continue
en moyenne & l'infini ainsi que d7', telle que CT = 0.
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La condition CU = 0 est nécessaire, sinon I’équation AT = §, aurait
une solution, ce qui équivaudrait a I’existence de la fonction de Green, con-
trairement & ’hypothése.

L’unicité est immédiate car AT = 0, T', dT continus en moyenne & I’in-
fini signifie que 7' est une fonction harmonique & intégrale de DIRICHLET finie
car dT ¢ A ; donc T = const. [3] et la condition CT = 0 entraine 7T = 0.

Pour démontrer l’existence on peut procéder soit comme en 3.1., cas
CU = 0, en prenant 7 — CT, soit comme en 3.2.

4. Les opérateurs I", I et N. Hypothéses relatives a la surface

4.1. Définitions

La solution du probléme de DIrICHLET (surface greenienne) pour (U, ¢) =
®(q) est la fonction de GREEN, & une singularité logarithmique + en ¢q. Nous
la désignerons par g(p, q).

La solution du probléme de NEUMANN (surface greenienne) pour (U, ¢) =
®(9) — @(g,) est la fonction de NEUMANN généralisée & une singularité loga-
rithmique 4 en ¢ et une singularité logarithmique — en ¢,. Nous la désigne-
rons par n(p;q,q,)-

Pour une surface non greenienne désignons encore par g(p;gq, ¢, la solu-
tion de I’équation de Poissox pour (U, ¢) = ¢(¢) — ¢(g,) construite par la
méthode du n°3.1.; par n(p;q,q, la solution normalisée par CT = 0.
g et n different d’au plus une constante. Nous les appellerons encore fonctions
de GREEN et de NEUMANN généralisées.

Soit k(p, q) la forme double:

k(p,q) = 1,1, + (dx,dx, + dy,dy,) + dx, A dy,-dz, A dy,

o dx + idy = dz est la différentielle abélienne @. Constituons les formes
doubles:

Y@, 9 =9@, Dk, 9), v{P:9,20) =9[D;9, %)k, 9
v(p; 4, 90) = (P34, Q) k(p, 9) .
Soient I', I'® et N les opérateurs admettant y, ¥° et » pour noyaux métriques:

Fo(p)= (y(»:9,%),9@), I¢pm) = P, 9,9Qq)
No@ = (»(»;49, %), ¢@) -

Pour tout ¢ €D, les formes I'p, I'¢ et N¢ sont définies. "¢ est C*.
I'p et Npsont C*saufen p = ¢, ol leurs coefficients présentent la singularité :

Ce sont donc encore des formes C® sur S lorsque Cg = 0.



152 ROGER BADER | WERNER SORENSEN

Proposition 4.1. Les formes ¢, I'(1 — C)p et N(1 — C)p sont défi-
nies et C ; elles vérifient sur S, les relations:

A9 =9, AI'l —C)g=AN(1 —O)g=(1 —C)p.

La démonstration peut se faire par calcul direct ; pour une autre démonstration
[9, p. 23].

Soulignons que I ¢ est seulement définie si la surface S est greenienne et que
Popérateur I' ne sera utilisé que dans le cas ol S est non greenienne.

4.2. Hypothése (N)

Dans la suite de ce travail nous faisons ’hypothese que N(1 — C)¢p a une
énergie finie pour tout ¢ ¢ A de degré 0 et que cette énergie dépend conti-
nuement de ¢ sur U :

D(N( — C)p) < const. A(p), pour tout @eW, dedegré 0.

Cette hypothése est évidemment satisfaite si la surface est compacte ou si
elle est constituée par un domaine relativement compact & frontiére trés ré-
guliére d’une autre surface de RIEMANN. Nous ignorons si elle est réalisée sur
toute surface de RieMaNnN. Il conviendrait d’abord de savoir dans quelle me-
sure elle dépend du choix de @.

Si la surface est non greenienne I’hypothése (&) entraine que I'(1 — O)gp,
qui ne differe de N(1 — C)¢ que d’un champ de €, a également une énergie
finie dépendant continuement de ¢ sur .

4.3. Hypothése (1)

Sur une surface greenienne nous faisons pour /™ I’hypothése correspondante
a (N), & savoir que le potentiel /¢ a une énergie finie pour tout ¢ de A et
que cette énergie dépend continuement de ¢ sur U :

D(I"¢) < const. 4(p), pour tout ¢ eA, de degré 0.

Concernant la réalisation de cette hypothése, ou sa dépendance de @ on
peut faire les mémes remarques que pour I’hypothése (N).

4 .4. Proposition 4.4.1. Sur une surface non greenienne les formes I'(1 — C)¢
et xI'(1 — C)p sont nulles & la frontiére, pour tout ¢ de A.
Envisageons d’abord le cas du degré 0 et posons (1 — C)p = f:

Ira—Cye=(9(p;q,9),f(@) -

Nous avons: (d,9(p; ¢, %), v(P)) = (9(2; 9, %), dy(p)) , pour tout y de
*x3B,, comme il est montré au n® 3.1. L’hypothése (V) entraine que dI'(1 — C)
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est un opérateur borné sur . L’égalité précédente montre que son transposé
métrique, c’est-a-dire (dI'(1 — C))’, est tel que:

@ra —0))'y= (1 —0C)I""ép, pourtout p de *B,.
On peut donc écrire:
@rf,y) = (f, I'"éy), pour tout yp de %B,.
Prenons ¢y =dlg, Cg =0, geWA. On a:
@rIf,dlg) = (f, I'"g) .

Cette relation montre que (I'g, (1 — C)¢p) existe pour tout ¢ de A, de degré
0. Or (I'"g, ¢) existe pour tout ¢ de D, donec (I"g, Cp) = (I"g,1)Cop existe
pour tout ¢ de . La relation:

(I"g, )= (I"g,(1 = C)g) + (I'"g,1)Cyp,
montre alors que I"g définit une fonctionnelle linéaire continue sur U car:
| (I"g, 9) | = | (@I, dlg) | < DH(I'f)DH(Ig) < const. 4} (p) A}(g);

(1 —-0C)I'"(1 — C) est donc un opérateur borné sur . Son transposé métri-
que est (1 — C)I'(1 — C). Ainsi:

(I"g,H=1(9,Th,

et on a bien: (dI'f, v) = (I'f, dyp), pour tout p de *B,.
Notons encore:
D(I'1—-C)¢) = T'(1 —C)p,(1 —C)p), pour tout ¢ de A, de degré 0.
Le cas du degré 2 se traite de la méme maniére car & ¢ de degré 2, élément
de YA, correspond ¢’ = x¢p de degré 0, également élément de A et
D(I'(1 — C)g) = D(I'(1 — C)¢).
Dans le cas du degré 1, posons ¢’ = (1 — C)p = adx + bdy.

1. C¢' = 0 implique Ca = Cb = 0. En effet C¢’' = 0 implique (¢', dzx)
= 0, c’est-d-dire (¢,1) =0, d’ot Ca = 0; de méme (¢',dy) = (b,1) =0
entraine Cb = 0.

2. 'l — C)¢ = I'adx + I'bdy. Comme A(¢p')=A(a)+ A(b), ¢ AN
implique a e et b e A, donc I'a et I'b sont de 4 + D-norme finie. D’aprés
le résultat ci-dessus, les coefficients I'a et I'b sont nuls & la frontiére.

L’affirmation résulte du lemme suivant:

Lemme 4.4. Si une forme F = Adx + Bdy a des coefficients de 4 + D-
norme finie, nuls & la frontiére et finis sur S, F et xF sont nuls & la frontiére.
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F est bien de A + D-norme finie. Soit » = fdz A dy une forme de *B,.
Il s’agit de prouver que:
(dF,y) = (F, doy) .

On note que wy € *B, signifie que f est de 4 4 D-norme finie. Par suite fdx
et fdy appartiennent & *B. Les relations:

(d4,¢) = (4, ép), (dB,¢p) = (B, dp), pourtout ¢ex*xB,,

sont encore vraies pour tout ¢ exPB, car *PB, est dense sur *B avec la
norme A -+ (8, 6) (d’aprés [2], p. 79 nous savons que A% sur S, est dense
sur *B, or A® sur S, est contenu dans *B ;). Ainsi:

(@F, ) = (d4, fdy) + (dB, fdz) = (4, 6(fdy)) + (B, é(fdz)) =
_ of of\ _ of of
_(A’@)+(B’5§) ——-(Adx + Bdy, —a-gdx ——%dy)

(@dF,y) = (F, dy) .

On démontre de la méme maniére que (0F, y) = (F, dy), pour tout y eB,.
Comme, de fagon générale, pour tous ¢, ¢’ dont les coefficients sont de
A + D-norme finie, ¢ = adz + bdy, ¢' =a'dx + b'dy

D(p, ¢') = (da,da’) + (db, db") — (da, xdb') + (db, xda') ,
ona:  Dip,¢) < ((da,da)t + (db, db)})?,
et par suite, d’aprés ce qui préceéde:
(I'A—=0C)p, (1 —C)g) =D(I'(1 —C)p) < const. 4(g),
pour tout ¢ de A.
La continuité de 'opérateur dI'(1 — C), supposée vraie pour le degré 0

est donc démontrée pour les degrés 1 et 2. La continuité de I'opérateur
(1 — C)I'(1 — C) est démontrée pour les 3 degrés.

Proposition 4.4.2. Pour tout ¢ de A, de degré 0, la forme *dN (1 — C)¢
est nulle & la frontiére. De méme, pour tout ¢ de A, de degré 2, dN(1 — O)¢
est nulle & la frontiére.

Examinons le cas du degré 0. Nous avons:

(d,m(p; 9,90, dyp(p)) = y(g) — v(g,), pour tout v de B,,

comme il est montré au n®3.2. L’hypothése (N) entraine que dN (1 — C)
est un opérateur borné sur Y. L’égalité précédente montre que son transposé
métrique (dN(1 — C))’ est tel que:

(@N(Q1 —C)'dy=(1—0)(y(@) — (@) =v,
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pour tout y de B,. On peut donc écrire (mémes notations qu’en 4.4.1):

(dNf, dy) = (f, v),

ce qui démontre I’affirmation.
Pour ¢ de degré 2, ¢' = x¢ est de degré 0 et N(1 — C)p = xN(1 — C)¢’,
ON(1 —C)g = — xdN(1 — C)¢'.

Proposition 4.4.3. Sur une surface greenienne les formes I™¢p et *I?¢p
sont nulles & la frontiére, pour tout ¢ de A.

La démonstration peut se faire exactement de la méme maniére que celle
de la proposition 4.4.1., moyennant quelques simplifications dues & la dis-
parition du facteur (1 — C).

On a ici:

(I, ¢) = D(I'¢) < const. A(p), pour tout ¢ de UA.

De nouveau, la continuité de I'opérateur dI™, supposée vraie pour le degré 0
est donc démontrée pour les degrés 1 et 2. La continuité de l'opérateur I™
est démontrée dans les 3 cas.

5. Inégalités du type de POINCARE

En se fondant sur les hypotheses (1) et (N), il est possible d’établir simple-
ment quelques inégalités fondamentales qui bornent la norme ordinaire d’une
forme par sa D-norme.

Proposition 5.1. Il existe une constante finie, ne dépendant que de la sur-
face, telle que pour toute forme ¢ de 4 + D-norme finie vérifiant Cp = 0,
on ait:

A (@) < const. D(g) .

Envisageons d’abord le cas du degré 0. Soit f une fonction de 4 + D-
norme finie, Cf = 0. En utilisant la proposition 4.4.2.:

AX(f) = (dNf, df)* < D(N[)D(f) < const. A(f)D(f).
Ainsi: A (f) < const. D(f) .

La démonstration est la méme pour le degré 2.
Envisageons maintenant le cas du degré 1.

a) Sur une surface greenienne, constituons:

@ = Iy + dI"ép .
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On vérifie immédiatement que

dp! =dp, 6¢' =0p, Cp'’=0. Donc ¢ =¢.
Par suite:

At (p) < 4} (8I°dg) + A} (@dI°dp) = (IVdp, dg) + (IPdg, Op) ,
en utilisant la proposition 4.4.3. Donc:
A () < const. D(¢), en utilisant I’hypothése (I™) .
b) Sur une surface non greenienne, la formule:

montre que:

Cdp = déI'(1 — C)dp — dp = d (6I'(1 — C)dyp — ¢)
Cédp=40dI'(1 — C)ép — dp = 6(AI'(1 — C)dp — ¢) .

Si I'on n’a pas identiquement Cdp = 0, il existe donc une forme x de A-
norme finie pour laquelle xdx = 1. Si 'on n’a pas Cdp = 0, il existe de
méme une forme g pour laquelle 68 = 1.

Soit ¢ une forme de A4 4 D-norme finie telle que Cp = 0. Constituons:

¢ =6I'l — C)dp + dI'(1 — C)dp + (1 — C)x(xCdy) 4+ (1 — C)Cd¢p .
On vérifie immédiatement que:

dp' =dp, 6¢' =6dp, C¢p'=0. Donc ¢ =g¢p.
Par suite:

At (p) < A¥(6r(1 — C)dy) + A2 (dI(1 — C) b¢) +
+ 4% (1 — C)x(xCdg)) + A} ((1 — C)BC dp) .

En appliquant la proposition 4.4.1. pour les formes de degré 0 et 2 & dp et
dg, on voit qu’il existe une constante finie telle que A (¢) < const. D(p), ce
qu’il fallait démontrer.

Proposition 5.2. Sur une surface greenienne, il existe une constante finie
ne dépendant que de la surface, telle que pour toute forme ¢ de A + D-
norme finie, satisfaisant &4 F¢ = 0, F'¢ = 0, on ait:

A (p) < const. D(p) .
Pour une forme de degré 0, nulle & la frontiére, nous avons:

A(p) = (6dI™gp, ) = D(Igp, 9) < D¥(I"p) D¥(p) < const. A}(p) DE(g)
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ce qui démontre la proposition dans ce cas. La démonstration est analogue
dans le cas du degré 2.

Dans le cas du degré 1, posons ¢ = (1 — C)p + Cep. Nous venons de
montrer que:

A ((1 — O)¢) < const. D(g) .

Nous pouvons poser (proposition 2.6.) C¢ = dh, + 6h,. Nous avons (pro-
position 2.6.):

A (dhy) < const. A(Cp), A(Shy) < const. A(Cey).

Or on peut supposer sans restriction que Ch, = Ch, = 0. La proposition
5.1. permet alors d’écrire:

A (hy) < const. 4(Cp), A(hy) < const. 4(Co).
Par ailleurs:

A(Cop) = (p, Cop) = (p, dhy) + (p, oh,) .

Comme ¢ et *x¢ sont nuls & la frontiére, on a donec:

Par suite:

4(Cy) < A¥(8¢) A} (ko) + A¥(dp) A} (hy) < const. 4}(C) Di(g) .
Il existe donc une constante finie telle que
A (Ce) < const. D(p)

ce qu’il restait 4 démontrer.

Proposition 5.3. Sur une surface greenienne il existe une constante ne dé-
pendant que de la surface, telle que pour toute forme ¢ vérifiant les conditions
Fop=0 et C,p =0, on ait:

A (p) < const. D(p) .

Pour le degré 0, la propriété revient a la proposition 5.2. puisqu’alors
C,p = 0 est automatiquement réalisée.
Pour le degré 2, la proposition revient & la proposition 5.1. puisqu’alors
Fg = 0 est automatiquement réalisée.
Pour le degré 1, remarquons d’abord que Fg¢ = 0 implique Cdp = 0.
Formons alors:
¢ = O6N(1 — C)dp + dI"dp .

On vérifie immédiatement que ¢’ est nul & la frontiére. En effet, pour tout
YexB;:
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(do', ) = (do, v),
(¢', 0y) = (0N dgp, dy) + (dI"dy, dy) = (ANdp, y) = (dp, v) .

Comme d¢' = dgp, d¢' = dp, ¢’ ne difféere de ¢ que par un champ de €,. Or
C,¢'=0. Donc ¢’ =¢. On a:

A} () < const. (4% (dp) + 4% (8¢)),

ce qui démontre la propriété.

6. Formes pseudoharmoniques

Une forme ¢ ¢ € est dite pseudoharmonique si elle vérifie sur S, 1’équation
Ap = 0. La forme est harmonique si elle appartient & €,.

Proposition 6.1. Il existe une forme pseudoharmonique ¢ de 4 + D-norme
finie, vérifiant les conditions suivantes:

a) a=dt+3t- en @, ol dz = tdt
b) o=a® + aP, ou |a| < oo en tout autre point &,
c) Fo=Fo=0.

Soient en effet u et v les fonctions vérifiant les conditions suivantes:

a) u et v sont harmoniques, de D-norme finie hors d’'un compact conte-
nant 9, ,

b) u est singuliére comme R (-%), en @, ; v est singuliére en @, comme / (—;—) ,

¢) u et v sont nulles & la frontiére.
Constituons la fonction complexe f = u + tv, puis
c=fd + ;‘_5 .

11 est immédiat que o est pseudoharmonique et vérifie les conditions a) et
b). Les fonctions » et v peuvent étre construites par la méthode utilisée au
n® 3.1. Elles sont donc de A4 + D-norme finie en dehors d’un compact con-
tenant @,; de plus elles sont nulles & la frontiére. La propriété c) se démontre
alors comme le lemme 4.4. car ¢ est de A -+ D-norme finie.

Les deux formes o et *o seront appelées les deux formes pseudoharmoniques
élémentaires attachées au point @,. Le cas ou dz = ¢,dt, n > 1, se traite de
fagon analogue: il y a alors 2n formes pseudoharmoniques élémentaires atta-
chées au point @,.

Remarquons encore ici, ce dont nous aurons besoin plus loin (n° 7), qu’en
vertu de I’étude de la convergence faite au n®3.1., o est limite uniforme sur
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tout compact des o, correspondants aux domaines S, et que les nombres
D, (o,) + 4,(c,) sont bornés dans leur ensemble.

Proposition 6.2. Sur une surface greenienne, étant donné une forme con-
tinue, «, de A 4 D-norme finie, il existe une forme pseudoharmonique w
telle que F(w — &) = F'(w — &) = 0.

a) Considérons les formes ¢ de D, nulles ainsi que leur * aux points @.
Les formes « + ¢ forment un ensemble convexe dans l’espace des formes de
A + D-norme finie. La norme D(x + ¢) atteint un minimum d. Il existe
une suite minimale o, =« + ¢,, telle que D(w,)—~ d, suite de CavcHY
en D-norme. La suite ¢, est donc également une suite de CAucHY en D-norme,
donc en 4 + D-norme, en vertu de la proposition 5.2. Il existe donc une
limite ¢, telle que (4 4+ D)¢, < oo et D(x + ¢,) = d; nous écrirons
0 =0+ Q.

b) En écrivant que D(w,y) = 0 pour tout e & & support compact sur
S, on voit que w est harmonique sur S,.

c) Etant donné un compact & frontiére trés réguliére 2, contenant un seul
point @,, appelons ¢ la forme pseudoharmonique égale ainsi que son * &
au point @,, égale ainsi que son x & w sur £’ [9]. On a:

Dg,(0,0 —w)=Ilim D,y(s, 0 — w,) =lim [(0 — w,)\ *do— do A (0 — w,) =0.
n n Q
Donc D, (0) < D,(w). Si w n’était pas égale & o dans 2 on pourrait former
une suite w, convergent vers w i ’extérieur de Q et vers o dans Q, qui aurait
une D-norme inférieure a celle de w, ce qui est absurde. Nous avons donc
démontré qu’aux points @, w est C”. Ainsi w est pseudoharmonique.
. Nous avons encore la proposition suivante, valable sur toute surface.

Proposition 6.3. Les formes pseudoharmoniques de A + D-norme finie
constituent un espace de HILBERT en A4 -+ D-norme.

La proposition est immédiate pour les formes de degré 0 et 2 car les formes
pseudoharmoniques sont alors harmoniques.

Pour une forme pseudoharmonique de degré 1, ¢ = adx 4 bdy, a et b
sont des fonctions harmoniques sur 8,. Ces fonctions peuvent présenter aux
points @ des singularités, telles toutefois que o soit C* en ces points.

a) Si ¢, converge en A-norme vers ¢, on peut dire, puisque A4 (o) = 4 (a) +
+ A4 (b), que les fonctions harmoniques sur S,, a, et b, convergent en norme
vers les fonctions harmoniques sur S,, a et b: en effet (a,, 4p) = 0 pour
tout @ €Dy, donc (a, 4d¢) = 0, donc da = 0 sur S,.

b) Les coefficients des o, = «,dt + x,dt exprimés dans une uniformisante
locale dt convergent en chaque point @. En effet, on peut choisir une forme
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pseudoharmonique ¢ dans un compact 2 contenant un seul point @,, nulle
ainsi que son * sur ' (supposée trés réguliére) telle que pour tous les o, :

D, (o,, ¢) =¢j'on/\ xdp — oy A\ x0, = R(x,(0)) ou I (x,(0)).

¢) Soient o, les formes pseudoharmoniques dans Q, égales en @, & la limite
o des o,, & mémes valeurs que les ¢, sur ' (pour l’existence de ces formes
pseudoharmoniques dans un domaine relativement compact & frontiére treés
réguliére [9]). Soit w la forme pseudoharmonique égale & o en @D, et sur 2'.
On a

D,(w — a)) =éf(w — A *¥d(w — a)) — 6(w — o)) A *(w — a))— 0.

Donc o),— w en D-norme. Or ¢, — g,— 0 en D-norme. Ainsi D, (w — ¢)=0
donc w = o car w = ¢ sur £'. Ainsi o est pseudoharmonique.

7. L’équation Ay = y dans le cas greenien

Nous allons résoudre 1’équation Adu = v en imposant & la solution trois
sortes de conditions aux limites.

7.1. Probléme de DIRICHLET

Proposition 7.1. Si p eW,, I'’équation Ay =y admet dans U, une solu-
tion unique vérifiant les conditions aux limites Fu = F'u = 0, et telle que

D(u,p) = (y,p), pourtout @e¥A,, Fop=F¢p=0.

Unicité. Si u et u' sont deux solutions, u — u’ €W, est une forme har-
monique. D(u — p', ) = 0 pour tout ¢ eWA;,, Fp = F ¢ =0, implique,
puisqu’on peut prendre ¢ = u — p' que pu — p' est un champ de €. Mais
Fu—4y)=F (u—u')=0 entraine que y — pu' e€,~C,, donc u=p'.

Existence. Des propositions 5.2 et 6.3. il découle que I’ensemble des formes
pseudoharmoniques de 4 + D-norme finie nulles ainsi que leur * & la fron-
tiére constitue un espace de HILBERT avec la norme D. Il en résulte que
(@, o) est une fonctionnelle linéaire continue dans cet espace. Il existe donc
une forme pseudoharmonique H°yp, de A + D-norme finie, telle que F H%p =
F'H = 0, satisfaisant & la relation

D(H, o) = (p, 0),

pour tout ¢ pseudoharmonique de 4 -+ D-norme finie, telle que Fog= F'c = 0.
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Montrons que la forme:

p=UL"+H)Yy, ueE,

est la solution du probléme. u e € vérifie sur S, ’équation Ay = . D’autre
part Fu = F'u= 0. Le fait que ueE, découle des deux lemmes suivants:

Lemme 7.1.1. La forme Iy, ou v e, vérifie la relation:
D(Iyp,0)=0,
pour tout o pseudoharmonique de 4 + D-norme finie.
Soit g,(p, q) la fonction de GREEN relative & S,. Posons:
Iy = (9, (@, Ok(p, 9, v(@)s, -

Supposons d’abord le support K de v compact et contenu dans S,. Il ré-
sulte des remarques finales de la proposition 3.1.2. que:

Dy(Iy — I'y)—> 0, Dg_y(Iy — I'}y) borné,
quel que soit le compact 2. Par suite:
D(I*y, ¢) =1lim D,(I'}y, ¢) ,

sous la seule condition D(p) << co. Cette relation a lieu en particulier si
@ = o est une forme pseudoharmonique de A4 + D-norme finie. Or:
D,(I'My, 0) = (Iy, do), + [ Iy A *xdo — o A\ xIp =0,
S, +o
puisque [Py = xI"y = 0 sur S, et qu’aux points @ les singularités de *do
et de do sont compensées par les zéros de I'y et *xIy.
Donc D(I®y,0) = 0 si o est pseudoharmonique de A4 -+ D-norme finie

et pe®D. Montrons que cette relation vaut pour tout ye . Soit y,eD,
on a

DIy — y,) = (I(p — v,), v — y,) < const. A(p — p,).
Done si 4(y — v,)— 0, on a également D (I'°(yp — y,)) = 0. Donc:

D(Iy,,0) =0 entraine D(I%y,0)=0.

Lemme 7.1.2. La relation D(u, o) = (4u, o), pour tout ¢ pseudoharmo-
nique de A + D-norme finie tel que Fo = F'oc = 0, entraine ueA,, si
pe@®, Au et u étant respectivement de A et D-norme finie.

En effet, on a pour les deux formes pseudoharmoniques élémentaires atta-
chées en un point @, :

D(u,0) = (Au,0) + fo A xdu — du A\ *o,
Go
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puisque I’égalité est vraie pour les o, correspondants & ¢ dans S, et que le
passage & la limite est possible en vertu de la remarque faite & la proposition
6.1. (du, ou, Au € ). 1l en résulte que:
foAxdu — Su\ xo =0,
Do
pour ces deux formes. Un calcul local [9, p. 10] montre que ces deux condi-
tions entrainent la régularité de xdu et de du au point @,. Donec ue¥,.
Le raisonnement fait correspond au cas ol dz = tdf mais s’étend sans
autre au cas ou dz = t"dt par la considération des 27 formes pseudoharmo-
niques élémentaires attachées alors au point @,.
La derniére propriété qu’il reste a vérifier est contenue dans le lemme sui-
vant:

Lemme 7.1.3. Si D(u,0) = (y,0), pour tout o pseudoharmonique de
A 4+ D-norme finie tel que Fo = F'¢ =0, alors D(u, ¢) = (y,¢), pour
tout ¢ de A4 -+ D-norme finie tel que Fo = F'¢ =0, ¢ eU,, p et u étant
respectivement de 4 et D-norme finie.

Pour tous ces ¢ et pour tous les ¢, & support compact, nuls ainsi que leur x
aux points @ :

D(p,p) — (p,9) =D, 9o+ ¢,) — (@, 9+ @,) .

Or, on a montré (proposition 6.2 ) qu’on peut choisir ¢, de telle maniére
que ¢ + ¢, tende en A4 4 D-norme vers une forme pseudoharmonique de
A + D-norme finie nulle ainsi que son * & la frontiere Donc on a bien:

D(p,p) = (p,p), pourtout ¢peA,, Fp=Fep=0.

Remarques 1) L’existence de I 4 H° aurait pu étre obtenue directement
par projection dans l’espace des formes de A + D-norme finie nulles ainsi
que leur * & la frontiére.

2) La derniére propriété établie, qui entraine I'unicité du probléme pourrait
étre satisfaite par toute solution u e, de du =y telleque Fu=F'yu =0
si on savait montrer que ddu, ddu ¢ A, ou encore si 'on savait démontrer
que D est dense dans I’espace des formes de A -+ D-norme finie nulles ainsi
que leur * & la frontiére.

7.2. Probléme de NEUMANN

Proposition 7.2. Si, mais seulement si, y ¢ W, vérifie la condition Cy = 0,
Iéquation Ay = y admet dans 9, une solution vérifiant la condition & la
frontiere Foéu = F'du = 0. La solution est unique si 'on exige Cu = 0.

Unicité. Si p et u' sont deux solutions, D(u — u', ) = 0, pour tout
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¢ €A, implique, puisqu’'on peut prendre ¢ = u — u', que u — u' est un
champ de €. Comme C(u — p') =0, ona u=yu'.

Existence: La condition Cyp = 0 est bien nécessaire car:
0= D(u,c) = (y,c), pour tout champ de ¢ .

De la proposition 5.1. et de la proposition 6.3. il découle que ’ensemble des
formes pseudoharmonique de A + D-norme finie, orthogonales aux champs
de €, est un espace de HILBERT avec la norme D. On en déduit I'existence
d’une forme pseudoharmonique Hy de 4 + D-norme finie, telle que CHg = 0,
vérifiant la relation:

'D(HWaG) = ('/’9 O') ’

pour tout ¢ pseudoharmonique de A4 + D-norme finie, Co = 0. Il est im-
médiat que cette relation vaut alors pour toute forme pseudoharmonique de
A <+ D-norme finie.

Montrons que la forme:

p=01—-C)I"+H)yp, upneC,

est la solution du probleme. u satisfait sur S, & ’équation Au = v. u véri-
fie la relation D(u, o) = (v, 6), pour tout ¢ pseudoharmonique de 4 + D-
norme finie, en vertu du lemme 7.1.1. et de la propriété de Hy. En vertu
du lemme 7.1.2., u e @, et par suite ue¥,.

De fagon analogue au lemme 7.1.3. on a le lemme suivant:

Lemme 7.2.1. Si D(u, o) = (y, 0), pour tout o pseudoharmonique de
A + D-norme finie, alors D(u, ¢) = (v, ¢), pour tout ¢ eU;, p et u étant
respectivement de A4- et D-norme finie.

Il résulte enfin du lemme suivant que ddu et ddu sont de 4-norme finie et
que Fdéu = F'dy = 0. Appelons G I'opérateur:

G=(1—C)I°+ H)(1 —0C).

Lemme 7.2.2. Les deux décompositions:

¢ =déGp + ddGp + Cp, ¢ =H,p+ Hyp + Cop, pour tout ¢e,
(Hltpe(iﬁ, adhérence de dD sur S, dans A, H,ypedD; [2, p. 72]) sont
identiques.

On peut poser H,p = dx; dx est limite en 4-norme de dx,, x,eD sur
S5. A cause de la proposition 5.2. «x est limite en A4 -+ D-norme de la suite
(¢,). Donc Fx = 0. De méme on peut poser H,p = d8, avec F'f =0,
B limite en A + D-norme de B, sur S,.



164 RoGER BADER| WERNER SORENSEN

Formons ¢, =d&, + 68, et o, =dlx,+ 6I°8,. On a dw,=2_8,,
dw, = «, et w, appartient & A,. D’autre part:

s 89)  + Bardy) = (9, 9)
(6Qy,, oy) + (dGy,, dy) = (¢,, v), pour tout yde A, .

En prenant y = G¢, — w, et en soustrayant membre & membre les deux
relations précédentes on obtient «, = dG¢, et B, = dGp,. Or G transforme
toute partie bornée de W en une partie bornée de 1’espace des formes de 4 + D-
norme finie, comme nous le verrons indépendamment en 9¢). Donc quand
«, et B, tendent en A-norme vers « et 8, ¢, tend vers (1 — C)p et on a:

x=0Gp, f=dGyp, c.q.f.d.

7 .3. Probléme mixte

Proposition 7.3. Si, mais seulement si, p ¢ A vérifie la condition C,yp = 0,
I’'équation Ay =y admet dans U, une solution vérifiant la condition & la
frontiere Fu = 0, et Fdou = 0 dans le sens généralisé:

D(p,9) = (p,p), pourtout peU,, Fo=0.

La solution est unique si 'on exige que C,u = 0.

Unicité. Si p et p’ sont deux solutions, D(u — u', ¢) =0, pour tout
peU,, Fp= 0. Comme on peut prendre ¢p = u — u', u — ' est un champ
de €, donc de §,. Comme C,(u — pu') =0, ona u=pu'.

Euxistence. La condition C,p = 0 est bien nécessaire car:
0=D(u,c,) = (p,c,), pour tout champ de ¢, .

De la proposition 5.3. et de la proposition 6.3. résulte que ’ensemble des
formes pseudoharmoniques de A -+ D-norme finie, telles que Fo =0 et
C,o0 = 0, est un espace de HILBERT avec la norme D. On en déduit I'exis-
tence d’une forme pseudoharmonique H,y de A + D-norme finie orthogo-
nale aux champs de €,, nulle & la frontiére, satisfaisant & la relation:

D(Ha"/” o) = ("/” o),

pour tout ¢ pseudoharmonique de A4 -+ D-norme finie, F¢ =0, C,0 = 0.
Il est immédiat que cette relation vaut alors pour toute forme ¢ pseudohar-
monique de A4 + D-norme finie, telle que Fo = 0.

Montrons que la forme

p=(1—C,)(I"+ H,)y
est la solution du probléme. u vérifie sur S, ’équation du = p. p vérifie la
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condition aux limites Fyu = 0. u satisfait &

D(u, o) = (y, 0)

pour tout o pseudoharmonique de A4 -+ D-norme finie, tel que Fo = 0. En
vertu du lemme 7.1.2.,ona donc u e, car ueE et est de A + D-norme
finie.

On a de la méme maniére que le lemme 7.1.3.:

Lemme 7.3. Si D(u, o) = (y,0), pour tout o pseudoharmonique de
A + D-norme finie tel que Fo = 0, alors D(u, ¢) = (v, ¢) pour tout ¢ de

A + D-norme finie tel que Fop =0, ¢ eU,, y et u étant respectivement de
A- et D-norme finie.

8. L’équation Au = y dans le cas non greenien

Nous ne considérerons dans la suite que des surfaces non greeniennes qui,
munies de la métrique induite par @, satisfont & ’hypothése (N). Nous sup-
poserons en outre que sur ces surfaces:

Toute forme harmonique de 4 + D-norme finie est un champ de §.

Notons que pour les formes de degrés 0 et 2, cette propriété est vérifiée sur
toute surface non greenienne, puisqu’une fonction harmonique & intégrale de
DiIricHLET finie est une constante sur une telle surface. Pour les formes de
degré 1, nous supposerons que cette propriété a lieu, sans savoir si cette hypo-
theése restreint la classe des surfaces envisagées.

Proposition 8.1. Sur une surface non greenienne du type envisagé, toute
forme de A + D-norme finie est nulle ainsi que son x & la frontiere.

Démontrons d’abord la proposition dans le cas du degré 1:

a) Tout champ de € est nul ainsi que son * & la frontiére.

Cela résulte immédiatement des décompositions orthogonales ¢ = ¢, + df
et ¢ =c,+ dp établies dans la proposition 2.3. et du fait que les seules
fonctions harmoniques & intégrale de DirIcHLET finie sont les constantes.

b) Toute forme de A + D-norme finie orthogonale aux champs de € est
nulle ainsi que son * & la frontiére. Nous allons le prouver en montrant que
tout (1 — C)y de A 4 D-norme finie est limite en A4 4 D-norme de
(1 — C)p, ou ¢ est & support compact.

Envisageons I’espace de HILBERT des formes orthogonales aux champs,
muni de la D-norme (voir proposition 5.1.). Montrons que le sous-ensemble
des formes (1 — C)@, o @ €D, y est dense. Soit x un élément de l’espace
orthogonal au sous-ensemble, c’est-a-dire tel que D(u,p) =0 pour tout
p € D. On établit successivement que:

12 CMH vol. 34
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1) u est harmonique sur S, ; en effet, si ¢ a son support sur S,, D(u, ¢) = 0
s’éerit (du, ¢) = 0 d’oua l'on tire du = 0.

2) u est pseudoharmonique; en effet, si £ est un compact ne contenant
qu’un point @ et si ¢ désigne la forme pseudoharmonique dont les coefficients
ont méme valeur que ceux de u sur 2’ et en @ (ol x est continu), on a
D(u,u —0)=0 et D(o,up — o) =0 d’ou l'on tire aisément u = o.

3) u est harmonique; en effet, pour tout ¢ ayant son support dans 2,
D(u, ¢) = 0 s’écrit

q)ffp/\ *dyu — o\ xp = 0.

Comme le développement de ¢ en @ est arbitraire, on en tire que xdu et du
sont réguliers en @. Donc u € €, .

4) u est nul; en effet, sur la surface envisagée, la forme harmonique u est
un champ; or u est orthogonal aux champs.

Tout (1 — C)y de A 4 D-norme finie est donc limite en D-norme de
(1 —0)p, ou peD. En vertu de la proposition 5.1., il est aussi limite de
ces mémes formes en 4 + D-norme.

Pour les formes de degré 0, c’est-a-dire les fonctions, on constate d’abord
que d’aprés ce qui précede:

(1, 6p) = 0 pour tout ¢ e*B,,

car 1’égalité vaut pour tout p de B ~ *B, donc pour tout p de A, < B ~ «B
donc pour tout ¢ de *B car A, de S, est dense sur *B ([2], p. 79) et A, de
S4 est contenu dans W, . Donc tous les champs de degré 0 sont nuls & la fron-
tiére.

On peut alors refaire le méme raisonnement que plus haut: ’ensemble des
1—0C)p, peD, de degré 0 est ici dense dans B.

La proposition se démontre de maniére analogue pour les formes de degré 2
et est ainsi complétement établie.

Corollaire 8. Sur les surfaces non greeniennes envisagées toute forme de B
est nulle & la frontiére.
En effet d’aprés la proposition précédente, si ¢ € B ~ *B on a:

(p, 0yp) = (dp,y) pour tout pexB;

la relation est donc vraie pour tout ¢ ¢ W; B ~ xB, donc pour tout ¢ ¢ A,
sur S, et comme A, sur S, est dense sur B, 1’égalité vaut pour tout ¢ de B.

Proposition 8.2, Si, mais seulement si, p ¢ W, vérifie la condition Cy = 0,
Iéquation Au =y admet dans U, une solution unique telle que Cu = 0
et que ddu, ddu .
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L’unicité est immédiate.
Existence. La condition Cy = 0 est bien nécessaire car:
0= D(u,c) = (yp,c), pour tout champ de ¢ .

Comme dans le cas greenien on définit Hy, forme pseudoharmonique de
A 4+ D-norme finie satisfaisant & :

D(HV’,G) - ('/’,0) s

pour toute forme pseudoharmonique ¢ de A + D-norme finie.
Pour la forme I'y on a le lemme suivant, correspondant au lemme 7.1.1.:

Lemme 8.1. La forme I'p, ou peWA, Cyp = 0, vérifie la relation:
D(F(l "—C)'(P,G) =0,

pour tout ¢ pseudoharmonique élémentaire.

Posons I'y = adx + bdy, ¢ = a'dx + b'dy. A l'extérieur d’'un compact
¢ qui contient le point @, ol ¢ n’est pas nul a, b, a’, b’ sont de 4 + D-norme
finie et on peut écrire:

Dg_,(I'y, 0) = (da, da’)s_, + (db, db')s_, — (da, *db')s_, + (db, +da’)s_, .

Comme a et b sont nuls & la frontiére (résultat établi au cours de la démons-
tration de la proposition 4.4.1.) le deuxiéme membre vaut:

féo AN xI'y — I'p A\ *xdo .

Or cette quantité tend vers 0 quand le compact ¢ se reserre autour du point
o

-
Montrons maintenant que la forme:

p=Q0-—-0C)(I+Hy

est la solution du probléme. On a d’abord u eB ~ *xB, Adu = . Ensuite
p € €. Pour voir que ue €, on applique le lemme correspondant au lemme
7.1.2.:

Lemme 8.2. Si u e €~ B~ B, larelation D(u, o) = (4u, o), pour tout
¢ pseudoharmonique élémentaire, entraine u e €, .

La démonstration de ce lemme est identique & celle du lemme 7.1.2.

La derniére propriété de u, savoir ddu, ddu €W résulte du lemme cor-
respondant au lemme 7.2.2.:

Lemme 8.3. En appelant G 'opérateur (1 — C)(I"+ H)(1 — C), les deux
décompositions:
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¢ =déGp 4+ 6dGy + Co, ¢ = H,p + H,p + Cp, pour tout ¢ ¢UA, sont
identiques.

Ce lemme peut se démontrer de maniére trés analogue & ce qui est fait au
lemme 7.2.2. Il faut d’abord remarquer qu’on a:

DGy,yp)= (1 —C)p,yp), pourtout peN,.

En effet cette égalité vaut pour tout (1 — C)y, ypeD, et pour tout ¢
pseudoharmonique élémentaire, donc pour tout yde B ~ xB et A, = B~ xB.

11 suffit alors de poser H,p = dx, H,p = 6f, de constater que (1 — C)«
et (1 — C)f sont limites en 4 + D-norme de (1 — C)«,, (1 — C)B, ou
O, Ba€D, et enfin d’utiliser la forme w, construite comme ¢’ & la proposi-
tion 5.1.:

W, = 6-[1(1 - C)ﬂn + d[‘(l - 0)“7& + (l — 0)0‘0(*0/910) + (1 - C)ﬂO(C“n)

(icl g, B, désigne le couple &, 8 de la proposition 5.1.!). La suite du raisonne-
ment est immédiate en prenant de nouveau ¢, = dx, + 6f,.

9. Propriétés de I’opérateur G

a) @ est son propre transposé métrique.
En effet nous avons, parce que G ¢A,, pour tout ¢ ¢ A, et que CGep = 0,
FéGo = F'dGep = 0:

D(Go, Gy) = (G, y) = (¢, Gy),
pour tout ¢, v eWA,, donc pour tout ¢, peA.
b) G4y = ¢ — C¢, pour toute forme de D,.
Soit ¢ une forme quelconque de D,. Nous avons:

(GAg,y) = (4p, Qy) = (p, 4Gy) = (p,p — Cy) = (p — Co, p)

puisque @ et y sont & support compact. D’ou I’égalité annoncée en tout point
de 8.

¢) L’opérateur @ transforme une partie bornée de 9, en une partie bornée
de U,.

En effet ’'opérateur H est continu dans U ; d’aprés la proposition 5.1.:

A(Hg¢) < const. D(H ¢p) = const. (¢, Hep) < const. At (®) A} (He) ,

done: A(Hg) < const. 4 (p) .

Plus, 'opérateur H transforme toute partie bornée de U en une partie bor-
née de A,. En effet, la convergence en A-norme de fonctions harmoniques
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entraine leur convergence uniforme sur tout compact. Au voisinage d’un point
@, on peut écrire:

Hp = «(dt 4+ Ji) +h ou tx(dt — ¢-i-t) + h, « = const., h harmonique,

et on a vu, lemme 6.3., que si (H ¢) est une suite de CAuCHY en A-norme, ()
est une suite convergente, donc (k) est une suite de CAUCHY en A-norme;
H g appartenant & €,, (Hg) est donc borné dans U, si (p) est borné dans A.

De méme J’'opérateur C transforme toute partie bornée de U en une partie
bornée de U,,.

Enfin, I'opérateur I'® a un noyau métrique C, en dehors de la diagonale
p = ¢ ou il a une singularité logarithmique. Un raisonnement identique &
celui de pE REAM ([1], p. 139) montre alors que /™ transforme toute partie
bornée de A, en une partie bornée de ¢, parce que I®¢ e §,. On peut faire
le m&me raisonnement avec I’opérateur I'(1 — C) dans le cas non greenien.

On a (proposition 5.1.):

A(Ge) < const. D(G¢) = (¢, Gop) < const. 4A(p),

ce qui montre qu'une partie bornée de U, a pour image par G, non seulement
une partie bornée de U,, mais de A, car Gp ¢ €,; enfin c’est méme une partie
bornée de A, car G e €, et:

(ddQyp, déQy) + (8dGy, 6dGy) = (4Qp, AQp) = (p,(1 — C)¢) < const. 4 (p).
d) G vérifie pour toute forme de D, les formules:
dGdep =0, dGQép =0.

Pour démontrer la premiére, par exemple, différentions les deux membres de
Péquation:
AQdy = dp — Cdyp
dAGQdy = AdGdep = 0 ;

d@dg est donc une forme harmonique. Seul le cas du degré 2 n’est pas trivial.
Comme F'dGdp = 0 cette forme harmonique est un champ de €, donc 0 en
vertu de la proposition 3.1.1. dans le cas greenien et du fait suivant dans le
cas non greenien: & cause de la proposition 8.1. tout champ de degré 2 de €
a son x nul & la frontiére donc dG,dp qui est un champ (toute fonction har-
monique & intégrale de DIrICHLET finie est une constante) est orthogonale
aux champs, donc identiquement nulle.

e) La partie @, de @, relative aux formes de degré 1, vérifie pour toute
forme de D, les formules:

4@ 0p =g, OGdp=g¢p.
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Différentions en effet les deux membres de 1’équation:
AG,0p = dp — Cp
dAG, ép = AdQ,ép = Ay,
A(dQ 6p — @) = 0.

La forme dG,dp — ¢ est donc harmonique et ’on peut conclure comme
en d).

f) Si 7' est un courant continu en moyenne & l'infini, les propriétés de @
signalées en c¢) permettent de définir G@7' en posant:

(GT,¢) = (T,Gep), pourtout ¢peD,.

Cette définition s’étend naturellement au cas de fonctionnelles linéaires con-
tinues de D] ou D,, pour peu qu’elles soient continues en moyenne & l'infini.
g) Si T est continu en moyenne & I’infini, on a dans D :

AGT =T — COT .

Eneffet: (46T, ¢) = (GT, 4¢) = (T, GAp) = (T, — Cg) = (T — CT, ¢),
pour toute forme de D,.
h) Si 7' et *+T sont nuls & la frontiére on a dans D :

ddT =0, 6GdT =0, dG,6T =T, 0G,dT =T.

Ces formules s’obtiennent par transposition & partir de celles de d) et e).

Sur une surface non greenienne, il suffira de supposer 7', dT' et 67 continus
en moyenne & l'infini parce qu’alors le corollaire 8 entraine immédiatement
que 7' et x7T sont nuls & la frontiére.

i) Si 7', *T, *dT, 6T sont nuls & la frontiere, on a:

GAT =T — OT .

on obtient:

d’ou

En effet:

(GAOT, ¢) = (48T, Gg) = (8T, 6Gp) = (T, ddGy)

(GodT , ¢) = (8dT, Go) = (dT', dGo) = (T, édGy),
pour tout ¢ € D,, d'ou:

(GAT, ¢) = (T, AGp) = (T, ¢ — Cp) = (T' — CT, 9) .
Méme remarque qu’en A) dans le cas non greenien: il suffit alors de supposer
T, dT', 6T, déT et 6dT continus en moyenne & l'infini.
10. Application au probléme de Cousin [12]

Un courant T' sera dit fermé, cofermé ou harmonique selon que d7 =0
dans D;, 67 = 0 dans D, AT = 0 dans D,. Nous utiliserons dans la suite
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la proposition suivante qui adapte & notre cas 'important théoréme de régu-
larité des courants harmoniques de DE REAM ([1], p. 149).

Proposition 10. Un courant harmonique dans un domaine relativement com-
pact 2 est une forme harmonique dans Q2.

L’essentiel de cette proposition résulte donc du théoréme cité de pE Ruam
qui, appliqué & S;, nous apprend que le courant harmonique est une forme
harmonique sur Sz~ 2, soit x. Il reste & montrer que « ¢ &, sur 2, c’est-
a dire & étudier le comportement de x aux points @.

Il résulte de Aax = 0 dans D, que, pour tout ¢ eD,, nul en dehors
d’un compact contenu dans £ et ne contenant qu’un seul point @, soit D,,
on doit avoir:

foue A xdp — @ A\ *dox + dx \ *@ — dp A\ *x = 0.
Dy

Supposons comme toujours que @ = tdt en D,.
Considérons d’abord le cas du degré 0. Montrons que x e € = €, = €, en
prouvant que le développement de x en @, ne peut contenir 1’expression:

a, log tt + Z(%-I—gﬁ), a, réel ,
1 tn

en montrant que la relation écrite plus haut entraine a, = a, = 0. Ceci s’ob-
tient en prenant successivement ¢ = f pour a,, ¢ = f(a," + En_t;’) pour a,,,
n > 0 (f étant une fonction C”, égale & 1 dans un voisinage de @,, dont le
support compact contenu dans £ ne renferme pas d’autres points @ que D).
La proposition est ainsi démontrée dans le cas du degré 0 et du méme coup
dans le cas du degré 2 car alors xx est un courant harmonique de degré 0!

Considérons finalement le cas du degré 1. Montrons que « ¢ € = €,, c’est-
a-dire que le développement de « en @, ne peut contenir I’expression:

" —_ T i n E'n n b'n n
log tt (agtdt + aotdt) + X <—?,—,— + —.t.n—) tdi + (%—- + 7,—) tds
1

en montrant que notre relation entraine a, = a, = b, = 0. Ceci s’obtient en
prenant successivement @ = f(aotdt + @otdé) poura,, p = f(a,ttrdt + @, ttnds)
pour a, et ¢ = f(b, "t dt + 5,,;‘,_”+1d;§—) pour b,. Pour montrer que « e, il
suffit, par exemple, de prendre ¢ = f(dt + dt_) et ¢ =if(dt — dt_) ([9], p.15)
et ceci achéve la démonstration de la proposition.

10.1. Examinons le probléme de CousIN suivant, intéressant en théorie des
fonctions, et qui regarde spécialement le degré 1.
On donne dans des ouverts ¥V, formant un recouvrement de S des formes
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w, fermées et cofermées en dehors d’un point singulier ¢, de V,, vérifiant la
condition de compatibilité suivante: w; — w; est une forme fermée et co-
fermée dans V,~ V,. On demande de trouver une forme fermée et cofermée
dans tout domaine de la surface S — (g;,) telle que w — w; soit un champ
harmonique dans V,.

La forme w n’est pas caractérisée univoquement par ses parties singuliéres
et ses périodes. Il faut lui imposer en outre une condition de régularité a
Pinfini. Nous choisirons la suivante: le courant 7 = vpw doit étre continu
en moyenne & l'infini.

Soit T'; = vpw, le courant associé dans ¥V, & la forme w,. Soient U, et U,
les courants ou plus exactement les formes linéaires continues sur D,, définies
localement pas 67'; et dT,, définitions possibles grace aux conditions de com-
patibilité:

or,-7,)=0, d7,—T,)=0, dans V,~ V,.

Le courant cherché 7' doit satisfaire aux conditions suivantes:

1) dT = U,, 6T = U,.

2) T est continu en moyenne & l'infini.

3) T est orthogonal aux champs de €.

Les conditions 1) et 2) déterminent la solution 4 un champ harmonique de
€ prés (proposition 10). La condition 3) fixe celui-ci univoquement. La solu-
tion est donc unique si elle existe.

Pour que la solution existe il suffit que les fonctionnelles U, et x U, soient
nulles & la frontiére.

Formons le courant 7' = G,(dU, + 6U,), ce qui est possible puisque ’hy-
potheése faite implique que dU, et U, sont continus en moyenne & l’infini.
Vérifions qu’il satisfait aux conditions.

1) Les formules de 9.h) sont applicables:

dT = d@,86U, = U,, 6T = 6Q,dU, = U, dans D;.

2) dU, et U, étant continus en moyenne & l'infini, il en est de méme de
G,dU, et G,8U, et par suite de T'.

3) CT =00,dU, + 6U,) = 0.

Remarque. Si les singularités sont en nombre fini, I’hypothése faite sur U,
et x U, est automatiquement réalisée. Cette hypothése est de toute maniére
nécessaire si ’on exige que pour la solution 7', les fonctionnelles 67" et xdT
soient nulles & I'infini. Dans le cas non greenien il suffit, & cause du corollaire 8,
de supposer U,, dU,, U, et U, continus en moyenne & I'infini.

10.2. Examinons enfin le probléme suivant, intéressant surtout pour le
degré 0.

On donne dans des ouverts V, formant un recouvrement de 8 des formes
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méroharmoniques w,, vérifiant la condition de compatibilité suivante: w, — w;,
est une forme harmonique dans V,~ V,. On demande de trouver une forme
méroharmonique w telle que w — w; soit harmonique dans V,; quel que soit <.

Soient T'; = vpw, le courant associé dans V; & w;, T = vpw le courant
associé a la solution w, si elle existe.

Formons dans V,; la fonctionnelle U, = AT,. Les U, définissent globale-
ment une fonctionnelle U de D; et le probléme peut étre formulé comme suit:
résoudre 1’équation AT = U.

Dans le cas greenien d’abord, supposons que U soit continu en moyenne &
Iinfini. En cherchant une solution continue en moyenne a l’infini ainsi que
ses différentielles premiéres, on détermine le probléme & une forme harmonique
(proposition 10) de A4 4+ D-norme finie prés. Imposons lui donc d’étre nulle
ainsi que son * & la frontiére et la solution sera unique.

En appelant G° Popérateur I'° + H°, la solution est alors donnée par G°U .

Remarquons d’abord que G° est son propre transposé métrique: pour tout
couple ¢, e A, on a:

D¢, ) = (G, ) = (p, @),

donc cette derniére égalité vaut encore pour tout couple ¢, y e .

On a d’autre part Q°4dp = ¢ pour tout ¢ ¢D,, comme le montre un
calcul direct analogue & ce qui est fait sous 9b).

Des deux propriétés précédentes il résulte que:
AQ°U =U dans D;.

On montre, comme en 9¢) que G° transforme toute partie bornée de A, en

une partie bornée de U,, donc aussi toute partie bornée de A en une partie
bornée de B ~ *xB.

Montrons que FG°U = F'Q°U = 0. Nous avons besoin pour cela de re-
marquer que G°dp et G°dp peuvent étre définis comme éléments de A pour
tout ¢ de N: considérons G°dp pour ¢ ¢D,; nous avons, pour tout yeWA:

(@dp, p) = (6p, @) = (p, dG%) ;

comme forme linéaire continue sur A, G°dp dépend donc continuement de ¢
dans U (D, est dense dans UA) et on peut définir G°dp pour tout ¢ de U par
la relation précédente car si ¢ € *xB, on a aussi (F@°yp = 0):

(p, d@%) = (dp, G'y) = (G*dp, ) .

Ceci montre que si ¢, €D, tend vers ¢ dans A,

d@eU, ¢,) = (U, G°é¢,) tend vers (U, G°dp).
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Cette relation nous montre que dG°U est continu en moyenne & l'infini.
D’autre part, si p e xB, ona (¢, eD,, ¢, tend vers ¢ dans UA):

@d@°U, @) = lim (dG°U, ¢,) = (U, G°dp) = (G°U, d9) ,

ce qui montre bien que FG°U = 0.

De la méme maniére on peut obtenir que F'@°U = 0.

Dans le cas non greenien la condition nécessaire et suffisante pour que
I’équation AT = U, ou U est continu en moyenne & l'infini, ait une solution
T continue en moyenne & l'infini ainsi que ses différentielles premiéres et se-
condes, est que CU = 0. La solution est unique avec la condition CT = 0.

D’apres le corollaire 8 une telle solution satisfait & F 67T = F'dT = 0 et
donc on a bien (¢, U)=/(c, AT) = 0 pour tout ¢ de €.

La solution est GU. On a évidemment AGU = U, d’aprés les propriétés
de Popérateur G et on peut montrer que dGU, 6QU, d6GU et 6dQU sont
continus en moyenne & I’infini comme on a montré que d@°U et §Q°U l’étaient.
On remarque en effet ici qu'on peut définir Gdp, Gdp, Qddp, Gddp comme
éléments de A pour tout ¢ de A par les relations (p e A):

(Gdp,y) = (p, 0Gy) , (Gép,y) = (p,dGy) ,
(Qddp, v) = (p,ddGy), (Gddep,y) = (p, 6dGy),

ce qui permet de conclure comme plus haut.
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