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Sur l'invariant de Smale d'un plongement

par Michel A. Kebvaire1), New York (USA)

A toute immersion / : Sp -> Rp+q d'une sphère dans l'espace euclidien
S. Smale [16] associe un élément cf du groupe d'homotopie ^P(VP+QiP), où
Vj>+q,p es^ ^a variété de Stiefel des ^-repères dans Rp+q. La définition de cf
est rappelée au § 3. S. Smale démontre que deux immersions /, g : 8V -> RPH1

sont régulièrement homotopes, i. e. qu'il existe une famille d'immersions
ft: Sp -> Rp+q avec /0 /, ft g, telle que l'application tangentielle induite
dépende continuement de t, si et seulement si cf cg.

On va étudier le problème de caractériser les éléments de 7tv(Vp+qp)
associés aux plongements (sans self-intersection) de Sp dans Rp+q.

D'après [11], l'invariant de Smale d'un plongement f:8p-+ Rp+q avec

p fg 2q — 2 est nul pour p congruent à 2, 4, 5 ou 6 modulo 8. On avait
également quelques résultats pour p S s et p — 8s + 1. (Cf. [11], Corollaires

5.2, 5.3 et 5.42).) On va voir que la nullité de cf (pour p ^ 2q — 2)

ne dépend pas de la classe de reste modulo 8 de p et peut être démontrée in-
dépendemment de la connaissance des groupes d'homotopie stables du groupe
orthogonal.

Théorème. Pour tout plongement f : Sp ->¦ Rp+q, avec p <^2q — 2, V

invariant de Smale cf de f est nul.
Autrement dit, compte tenu du théorème de S. Smale [16], TheoremA,

pour tout plongement / : 8P -> Rp+q avec p ^ 2q — 2, il existe une famille
d'immersions ft:8p-^ Rp+q, induisant une homotopie (continue) de l'application

tangentielle, telle que

(a) /o /
(b) f^Zo, xl9... xp) (x0, xl9..., x9, 0,.. 0)

§ 1. Un lemme préliminaire

Soit M une variété différentiable fermée, presque parallèlisable, de dimension

p + 1. Le fibre des vecteurs tangents à M, restreint à M — x0 (x0, un point
de M), est trivial par hypothèse3). Soit Tp+1 un champ de (p + l)-repères

*) Pendant la préparation du présent article, l'auteur a été titulaire d'une bourse de la
National Science Foundation, numéro N.S.F. - G 5863.

2) Dans le Corollaire 5.4 de [11], il y a une faute d'impression. On doit lire: Toute immersion
f : #8* «> JRn+8», où n ^ 8s — 5, s ^ 2, équivalente à un plongement est équivalente au plongement

standard.
8) Toutes les variétés considérées sont connexes.
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sur M — x0, et o(r, T) e7tp(S0(p + 1)) l'obstruction pour étendre TP+1

sur M. (t est le fibre principal associé au fibre des vecteurs tangents à M.)
Dans toute la suite, tQ* : np(SO(p + 1)) -> ^(SOC^ + q + 1)) désignera

l'homomorphisme induit par l'injection SO(p + 1) -> SO(p + + 1) donnée

par

^4 c S0(^ +1), Eq matrice unité à g lignes et g colonnes.

¥>* • ^(5O(p + q + 1)) -> rcp(F*+a+i, jh-i) est induit par xp qui associe à

une matrice de SO(p + q + 1) ses (p + 1) premiers vecteurs colonnes.
On pose ù xp* o ^ : wp(SO(p + 1)) -> ^(
Lemme 1.1. /Si j? ^ 2g — 2, afors ?*^(T> 7")

Démonstration. On va voir tout d'abord que ig*o(T, T) est dans le noyau
de l'homomorphisme de Hopf-Whitehead J : nP{SO(r))-> 7tP+r(8r). Soit
K une triangulation de M, telle que #0 soit intérieur à un (p + l)-simplexe
de Jf. On plonge Mp+1 dans un espace euclidien Bp+N+1 de grande dimension.

(N 2£ ^ + 2.) La section f de t | J!f -— a:0 induit alors une application
T° : Kp-> VP+N+ltP+1 qui est homotope à l'application constante. (Kp
désigne le ^-squelette de K.) Soit T°t une telle homotopie. On désigne par
711 Vp+N+l,p+l'~> @p+N+l,p+l e^ n' : Vp+N+1,N ~> ®p+N+l,N ®p+N+l,p+l ^eS

projections canoniques sur les variétés de Geassmann. En utilisant un relèvement

suivant n1 de l'homotopie n°Tot, on obtient une section F du fibre
principal v de groupe SO (N) associé au fibre normal induit par le plongement
Mp+1czRp+N+1 restreint au p-squelette Kp. Les sections T et F fournissent une
section Tx F de r © v restreint à Kp, telle que la valeur du cocycle obstruction

c(r ®v,TxF) sur chaque (p + l)-simplexe de K soit nulle. Or,

o(r ®v, T x F) *\o(t, 7") + *P+I*o(v, F)

D'après [15], Lemma 1, Jo(v, F) 0. Comme J o i^ -j- E o J, on a

J^o(r, f) d= En~1Ji*o(t, T) 0. J?^"1 est un isomorphisme dans
les dimensions considérées, donc Ji*o(r, T) 0, d'où la conclusion:
Jiq*o(t, T) 0 pour q ^ 1.

Pour en déduire le lemme 1.1, on remarque que d'après I. James [7], Theo-
rem (4.2), (a), pour p <^ 2q — 2, l'homomorphisme y* : np($0(p + q + 1))

+i) se factorise en xp* jBTp+1 o J, où

est un invariant de Hopf généralisé. Il résulte donc de Ji%o(r, T) 0 que
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?'*o(r, T) v*^*o(r, T) Hv+1Ji%o(r, T) 0. Le lemme 1.1 est
démontré.

§ 2. La condition (C)

Soit /: #p-> Rp+q une immersion. On va décrire une condition pour /,
dont on verra au § 3 qu'elle entraine pour p ^ 2q — 2 la nullité de l'invariant
de Smale cf.

(C) II existe une variété à bord Vp+1 différentiable, orientable, de bord
8P et une immersion /' : Vp+1 -> Rp+z+1 telles que :

(Ci) La restriction de /' au bord de Vp+1 est égale à l'immersion donnée /.
(On identifie Rp+<* au sous-espace xp+*+1 0 de Rv^+1.)

(C2) f'{V) rencontre Bp+q orthogonalement, i. e. la restriction à 8* du
fibre normal de /' coincide avec le fibre normal de /.

(C3) Le fibre normal de /; est trivial.

Remarque. La condition (C) entraine que le fibre normal vf de l'immersion
donnée / est trivial. Il doit en être ainsi puisque vf trivial est une condition
nécessaire pour cf 0. (Cf. par exemple [11], Lemme (3.4).)

Remarquons encore que si / est le plongement standard Sp c Rp+1 c Rp+Q[,

la condition (C) est réalisée avec pour Vp+1 une hémisphère.

On forme la variété différentiable fermée Mp+1, réunion de Vp+1 et du
disque Dp+1 avec identification des bords (par l'application identité 8P -> 8P).
Comme V est une te-variété avec frontière non-vide, elle est parallèlisable.
(Cf. [14], Lemma 1.3.) Donc Mp+X est presque parallèlisable.

La restriction à Sp V ^ D du fibre tangent à M est trivialle. (Suspension
du fibre tangent à 8P.) Soit AP+1 un champ de (p + l)-repères tangents à
Mp+1, défini sur 8P. On peut étendre /', comme immersion, à un voisinage W
de 8P dans Mp+1, et df \ 8P appliquée aux repères Av+1 fournit une application

V:89-» Vv+Q+lt!P+1.

Lemme 2.1. Il existe un élément <p0 e7tP(S0(p +1)), tel que j*<p0 q>,

et satisfaisant ¦

où o(M) est une obstruction pour parallèliser M, et o(D) est l'obstruction

pour étendre AP+1 à Vintérieur de Dp+1.

Démonstration. L'application tangentielle F-> 0^,^^^^ de V dans la
GnASSMAKisrienne des (p + 1)-plans orientés de Rp+Q+i est homotope à zéro.
(En effet, cette application est couverte par une application F-> VP+q+ltQ
donnée par une section du fibre normal de /', et HP+1(V) 0.) En utilisant
le lemme de relèvement des homotopies, on peut construire sur Vp+1 un champ
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Tp+i de (p + l)-repères tangents, tel que l'application F -> Vp+Q+1 p+1
donnée par x -> df (TP+1(x)) soit homotope à zéro. Il s'ensuit que la matrice
des produits scalaires des vecteurs de AP+1 et de Tp+1 restreint à 8P fournit
une application 8p->S0(p + 1) dont la classe d'homotopie <p0 €np(S0(p + 1))
a pour image cp par l'homomorphisme j*. On désignera par o (M) l'obstruction

o(r, T) pour étendre TP+1 comme champ de (p + 1)-repères tangents
sur Mp+K [o(M) €7iP(SO(p + 1)).] On a n + o(D)

§ 3. L'invariant de Smale

L'invariant de Smale cf d'une immersion / : Sp -> Rp+q est défini comme
suit (cf. [16]): Soit s: 8P-^ Rp+q une immersion de 8P dans Rp+* régulièrement

homotope au plongement standard, et telle que pour un voisinage Uo
de a* (— 1, 0,..., 0) e Sp on ait s \ Uo f | Uo. Soit U un voisinage

sphérique de a* tel que U c U c Uo, et soit Ap un champ de repères
tangent à 8P défini et continu sur X 8P — U. On introduit un difféo-
morphisme r : E\ -> X préservant l'orientation, et z -> 2* la reflexion par
rapport au plan de l'équateur E\ r> Ep_ On pose

w2x l(df)(A4(rz)) pour «c^Cf(Z) ~ \ (ds)(Ad(rz*)) pour z € Et

ct est une application continue de 8P dans F^,^j3). Sa classe d'homotopie,
également notée cf est par définition l'invariant de Smale de /.

Soit /' l'immersion de W 8P X [— s, e] dans Bp+Q+1 donnée par
f'(x, t) f{x) + tn, où n (0,..., 0, 1) e Rp+«+i (ou toute autre immersion

/' : W-> BP+**1, telle que f \ 8P X {0} / et (df jdt)^ n).
La restriction k 8P X {0} du fibre tangent à TF est trivialle. Soit Ap+1

un champ de (p + l)-repères tangents à TF, défini sur /Sp x {0}. L'application

prolongée df induit une application <p: 8P -> F^+a+1 >p+1.
Le même procédé appliqué au plongement standard fournit une application

a: 8*-+ Vp+q+ltP+1.
Désignons par k: VP+qp-> VP+q+liP+1 l'application qui adjoint le vecteur

n à tout p-repère de Rp+q. On a le

Lemme 3.1. Jc*(cf) <p — <r.

Démonstration. <p — o est indépendant du choix de >4J)+1. On prendra

Soit F l'espace obtenu à partir de la réunion disjointe de deux copies S
et 8f de 8P par identification x x1 pour x € U. On a des inclusions natu-
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relies i : 8P -> Y, et i' : 8P -> Y par composition avec le passage au
quotient des identités 8P -> S, Sp -> Sr respectivement.

k ocf se factorise par y oh, où h: Sp-> Y, y : Y-> F^+^j p+1, avec

i or(z) pour z e Ep+

V o r(z*) pour z c i?^.

Il est évident que h(Sp) est homologue à i(8p) — if(Sp), et comme T
est (p — l)-connexe, h est homotope à i — i'. On a donc

k o c* y o h o^. y o (i — ir) o^. y o i — y o if (p — or.

Ceci démontre le Lemme 3.1.
On remarquera que pour q ^ 2, k* : np{VP+qtP) -> ^(7,+^!^+!) est un

isomorphisme. (Suite exacte d'homotopie de la fibration VJ)+q+ltP+1j VP+Q>P

Lemme 3.2. Soit f:Sp~> Rp+Q une immersion satisfaisant à la condition
(C) du § 2. /Sï p ^2q — 2, aZors c, 0.

Démonstration. On applique le Lemme 2.1 à l'immersion / et au plongement
standard s. Il existe des éléments <p0, a0 e np(SO(p +1)) tels que j*(p0 ç?5

or, et satisfaisant

où o (aS27"1"1) est l'obstruction pour parallèliser 8P+1. Il s'ensuit

et comme i% o (/Sp+1) 0, en appliquant j% :

<p - o j*o(M)
On obtient donc, sans restriction de dimensions, sous l'hypothèse (C) :

Si p <^ 2q — 2, on peut appliquer le Lemme 1.1, et on conclut cf 0.
Pour obtenir le théorème de l'introduction, il reste à démontrer que si / :

Sp-> Rp+Q est un plongement, et si p ^ 2q — 2, alors la condition (C) est
satisfaite.

§ 4. Fin de la démonstration

/ : 8P -> Rp+q étant un plongement, il suit de p ^ 2q — 2 que le fibre
normal de / est trivial. (Cf. [9], Theorem 8.2.) Soit Fq une section arbitraire
du fibre principal associé. (FQ est un champ de g-repères orthogonal à f(8p).)
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Par un procédé connu (cf. [9]), on peut associer à / et Fq une classe

Lemme 4.1. Le plongement f : 8P -> Rp+* étant donné, p <L2q — 2, on
peut choisir Fq pour que oc(f, Fq) O4).

De là résulte immédiatement (cf. [15], démonstration du Lemma 1) qu'il
existe une variété à bord Vp+1 de bord 8P, et un plongement /' : Vp+1 ->
Rp+q+i satisfaisant aux conditions (Cx), (C2), (C3) du § 2.

Démonstration du lemme 4.1. La classe oc(f,Fq) admet un représentant
q? : 8P+Q -> 8P univoquement déterminé après choix d'un voisinage tubulaire
de f(8p) dans Rp+* et d'un difféomorphisme relatif r : (D«, S*-1) -> (#«, a*)
de degré 1. Le point a cSq, antipode de a*, est valeur régulière de ç?, et
ç?~1(a) f(Sp). (On identifie Ep+q avec son image dans 8P+Q par projection

stéréographique.)
D'après [9], Lemma 8.1, la restriction p fj 2q — 2 implique alors que

a (/ 9 FQ) est contenu dans l'image de l'homomorphisme J : nv (SO (q)) -> nP+q (SQ)

de Hopf-Whitehead5). Il existe donc une classe ju €7tP(SO{q)) telle que

D'autre part, à toute application £ : 8P -> SO(q), on peut associer un
nouveau champ £-Fq de ç-repères, orthogonal à f{Sp). Il suffit, pour tout
x e 8P de faire agir la matrice £(x) sur les vecteurs de Fq en f(x). Je dis que

où £ désigne également la classe d'homotopie de l'application | : 8P -> SO(q),
et a est l'automorphisme involutif de fl^+^/S5) donné par ^(a) (— l)p(eooc),
avec e (— l)Q-1iq.

La formule (*) ci-dessus implique le lemme 4.1.
Remarquons tout d'abord que a induit un automorphisme de l'image de J.

Il suffit de vérifier que o(J7tp(SO(q))) c JnP(SO(q)). Or, on sait que

(aiq) o oc aoc H [iff, iq] o jffO(X

(Cf. [4], formule 6.8.) On applique cette formule avec oc J|, et on utilise

H0JÇ Eq0*Ç, au signe près,

(Cf. [3], Lemma 4. $* : ^(SOtg')) -> n^S^1) est induite par la projection
de X € SO(q) sur son premier vecteur colonne.)

4) On comparera ce lemme avec Lemma 6.5 et 6.6 de J. Mz&nob [14].
5) Bans [9], Lemma 8.1, le lemme reste valable si l'on remplace la stricte inégalité d < 2n

portant sur les dimensions par d^2nf la démonstration restant inchangée. La validité pour
d^2n du diagramme utilisé est fournie par le théorème (77) de I. James, On the suspension
séquence. Ann. of Math. vol. 65 (1957), 74-107. C'est sous cette nouvelle forme que le lemme est
appliqué ici.



Sur l'invariant de Smale d'un plongeaient 133

d : nq{8q) -> nQ-i(SO(q)) étant rhomomorphisme bord de la suite exacte
d'homotopie de la fibration SO(q + l)/SO(q). Enfin, J fi o Eqy J(f}oy),
au signe près, /S e nq-i(SO(q)) y e nq(8q~1). On en conclut

c pouvant être 0, — 1 ou + 1 suivant les valeurs de p et q.
Il existe donc une classe A € nP(SO(q)) telle que <%(/, Fq) J fx a(JX).

On prendra | - A. D'après (*), on a *(/, £-Fa) «(/, Fq) - o(JX) 0.
Le champ £-fa répond aux exigences du lemme 4.1. Reste à démontrer

la formule (*).
Soit s: 8p-+Rp+q le plongement standard (s(8P) c Rp+1), et Aq le

champ (x, tP+2,..., ^+ff), où tr (ôTtl,..., ^,3,+g)- Considérons oc(s, Ç-Aq),
où Ç : 8P ~-> SO(q) est l'application de la formule (*). On a vu dans [9], 1.8,
page 349, que a (s, £• Aq) a(JÇ). Il faut donc démontrer

*(/, |.fg) <x(f, Fq) + *(*, f • Atf) (**)

Des voisinages tubulaires de f(8p) et s(8p) étant choisis, ainsi qu'un dif-
féomorphisme relatif r : (Dq, /S5"1) -> (Sq, a*), on considère les représentants
canoniques (pç,(pde oc(f,ÇFq), oc(f,Fq), et ipç de oc(s,i--Aq).

Pour construire une homotopie entre tpç et ç? + Vf» on Par^ ^e l'homo-
topie triviale h : $p+« x I -> 8q donnée par h(z, t) (p(z). Le point a e 8q

(antipode de a*) est valeur régulière pour h, et fe~1(a) Q est difféomorphe
à 8P x / par le plongement /'(x, t) (f(x), t) dans Rp+q x /. Soit y un
point intérieur de Q et c : / -> i?p+« x / un chemin différentiable, de point
final y, dont le point initial se trouve dans Rp+q Rp+q x {0}, tel que
c(I)r\Q= {y}. On peut encore supposer que pour s voisin de 0, on a
c(s) (c(0), s), et qu'en son point final, c rencontre Q orthogonalement. On
se sert alors de c et d'un champ de repères normaux à c(I) pour définir un
plongement sf : Dp+1 X /-> Rp+q X I, tel que sr \ {0} x I — c, et l'image
de Dî)+1 x / ne rencontre pas Q excepté en un voisinage sphérique U de y
sur lequel Dp+X x {1} est appliqué par le difféomorphisme sf \ Dp+1 x {1}.
Soit N la variété obtenue par réunion de Q — U et s' (8P X I) après avoir
arrondi les angles le long de la frontière de U. (Cf. [14], Appendix.) Le champ
de ^-repères normaux sur Q — U s'étend sans difficulté sur N. On peut
même supposer que la restriction de ce champ à s'(8p X {0}) s(8p) est
le champ banal formé de la normale à s(Sp) dans Rp+1 et des (q — l)-vec-
teurs tM,...,tM.

Comme N est connexe, il existe sur N un chemin différentiable joignant un

10 CMH vol. 34
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point de s(8p) à un point de f(Sp) x {l}c(J qui rencontre le bord de N
orthogonalement en ses extrémités et n'a pas d'autre point commun avec ce
bord. Soit T un voisinage tubulaire de ce chemin dans N, et H : Dp x / -> T
un difféomorphisme. L'application f : (Sp, a*) -> (SO(g), E) détermine une
application f o r |' : (Dp, /S3"-1) -» (SO(g), I?), où E est la matrice unité.
On remplace alors le champ Fq de g-repères sur N par F'q, égal à Fq sur
iV — y et égal à £'(H~1z)-FQ(z) pour z e T. La variété N munie du champ
Fg fournit une homotopie entre q>ç et tp + V>£- D'où la formule (**).

§ 5. Remarques

Soit / : 8P -» j?**3 un plongement. Pour que cr soit nul, il est nécessaire

que le fibre normal de / soit trivial.
Or, outre le cas p <: 2q — 2 que l'on vient d'étudier, on sait que le fibre

normal de / est trivial pour q ^ 3. (Bien connu pour q ^ 2. Résultat récent
de W. S. Massey [13] pour q 3.) Il est donc naturel de se demander si

l'invariant de Smale d'un plongement / : 8P -> Rp+q avec q <£ 3 est toujours
nul.

J'ignore totalement quelle est la situation pour q 2 ou 3. On trouvera
ci-dessous quelques résultats, obtenus en collaboration avec J. Milnor,
concernant le cas q 1.

On commence par un problème de groupes d'homotopie :

Problème 1. On sait [2] que tz8s(SO(N)) et n8s+1(SO(N)) sont cycliques
d'ordre 2. (N ^ 8«s + 3.) Soient e8s et e88+1 les générateurs de ces groupes.
Les éléments oc8s Je88 et oc88+1 e/£8s+i sont-ils nuls? (J : 7tr(SO{N))
-> 7tr+N(8N) est Vhomomorphisme de Hopf-Whitehead.)

On sait que Je8 ^0 et Je9 ^ 0. En outre, e8s+1 e8s orj8s pour tout
s ^ 1, où yj%8 est le générateur de rc8s+i($88) ^Z2. Donc si Je88 est nul,
alors Jfi8s+1 l'est aussi. (Cf. [12], Lemma 1.2.)

On va voir que ce problème est en relation avec les problèmes suivants:

Problème 2. Soit f:8p-> Rp+1 un plongement. L'invariant de Smale cf de

f est-il nul
Considérons la région bornée Vp+1 de Rp+1 dont le bord est f(8p). Soit

Zp+1 la variété difïérentiable obtenue à partir de la réunion disjointe
Vp+1 ^ Dp+1 par identification de x e 8P avec f(x)eVp+1, pour tout
xeSp. La variété Zp+1 est une sphère d'homotopie6), et un raisonnement

6) Dans ce qui suit, «sphère d'homotopie» signifie: Variété différentiable ayant le type
d'homotopie d'une sphère. Ces variétés ont été étudiées par J. Milnob [14].
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analogue à celui de la démonstration du Lemme 3.1 montre que

1) (5.1)

où o(Zp+1), o(8p+1) €7iP(SO(p + 1)) sont les obstructions pour parallèliser
Zp+1 et 8P+1 respectivement.

Soient r(Zp+1)9 t(8p+1) e 7iv+1(BSOiP+1)) les classes d'homotopie des
applications tangentielles de Zp+1 et Sp+1. On a

où d - np+i(Bso(p+i)) ~* ftp(SO{p + 1)) est Fisomorphisme bord de la suite
exacte d'homotopie du fibre classifiant pour SO(p +1).

Problème 3. A-t-on r(Zp+1) r(Sp+1), quelle que soit la sphère d'homotopie

Zp+1?

Les formules (5.1) et (5.2) montrent qu'une réponse affirmative au
Problème 3 entraîne une réponse affirmative au Problème 2.

On va voir que le Problème 3 est équivalent au

Problème 4. Toute sphère d'homotopie Zp+1 est-elle une n-variété? (C'est-à-
dire : Toute sphère d'homotopie plongée dans un espace euclidien d'assez grande
dimension admet-elle un fibre normal trivial?)

Remarque: D'après les résultats de M. Hirsch [5], Zp+1 est une jz-variété
si et seulement si l'on peut immerger Zp+1 dans Rp+2.

(3)->(4). Si t(Z)=t(8), alors aussi o(Z) o{8). Donc i*o(Z) 0,
i. e. Z est une n-variété.

(4) -> (3). Si la sphère d'homotopie Zp+1 est une jr-variété, tout plongement

/ : Zp+l -> Rp+N+1 avec N ^ p + 2 induit un fibre normal trivial. Il
s'ensuit que la suspension du fibre tangent (sa classe de /S-équivalence) est
trivialle. Donc t*o(Z) 0. Par suite (exacte): o(Z) e Im A, où

à:n,+i(8*+1)->np(SO(p+ 1)).

Pour p impair, 0^o(Zp+1) x(^P+1) x(SP+1) #* 0 (/8f*+1), et
Ker &* r, Im A 0. Donc o{Z*+1) o(Sp+1).

Pour p pair, 8P+1 parallèlisable, o (8P+1) 0, et Im A 0. Donc
o(i?+i) o o(Sp+1).

Pour p pair, Sp+1 non parallèlisable, Im A est isomorphe à Z2, engendré
par Aip+I o(8p^1). Si o(Zp+1) était différent de o^^1), on aurait
o(Zp+1) 0, donc Zp+1 parallèlisable. Or, la semi-caractéristique #*(Z'P+1)
de Zp+1 vaut 1. D'après [8], Theorem 9.3, une variété de dimension p + 1

dont la semi-caractéristique vaut 1 ne peut être parallèlisable que s'il existe
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dans 7i2p+z(8p+2) un élément d'invariant de Hopf 1. D'après J. F. Adams [1],
ceci implique 8P+1 parallèlisable. On a donc o(£p+1) o(Sp+1) dans ce cas

également.
Comme d :np+t(BS0(p+1))-^ nP(SO(p + l)) est un isomorphisme, on a

aussi t(2?+1) T08P+1).
Résultats connus (pour autant que je sache) :

Théorème 5.1. Pour p ^ 8s, 85+1? toute sphère d'homotopie de dimension

p ~{~ l est une n-variété.

Théorème 5.2. Toute sphère d'homotopie de dimension 9 ou 10 est une n-
variété. Pour p 8s avec s ^ 1, les deux 'propositions suivantes sont équivalentes.

Pour p 8s + 1, la proposition (b) entraîne (a).
(a) Toute sphère d'homotopie Up+1 est une n-variété

(b)Jep^O.
On se trouve ramené au Problème 1.

A Vexception des cas p 8s ou p 8s + 1 avec un s ^ 2, on a donc,
en vertu des remarques qui précèdent :

Corollaire 5.1. Avec la restriction ci-dessus pour p, tout plongement f:
Sp -> Rp+1 est régulièrement homotope au plongement standard.

Corollaire 5.2. Avec la même restriction pour p, le fibre tangent à toute sphère

d'homotopie Zp+1 est donné par le même élément de nP+i(Bso(p+i)) $ue Ie H^ré
tangent de la sphère ordinaire.

Ce corollaire s'applique en particulier aux sphères de Milnob dont les

dimensions sont favorables.

Démonstration du théorème 5.1.
/ : Zp+1 -» rp+n+1 étant un plongement dans un espace euclidien de grande

dimension (N ^ p + 2), et v le fibre principal normal de groupe SO(N)>
soit FN une section de v restreint à S — x°. L'obstruction o(v, FN) pour
étendre FN (comme section de v) sur Zp+1 est un élément de

jEP+i(JP+i; np(SO(N)))=7tp(SO(N)).
On connaît nP(S0(N)) pour N ^ p + 2. (Cf. [2].) Les valeurs sont

Z2 Z2 0 1 0 0 0 Z
pour

p= 0 1 2 3456 7 modulo 8

respectivement, (p ^ 1.)
Le théorème 5.1 (qui revient à affirmer que o(v, FN) 0) est donc banal

pour p 2, 4, 5, 6 modulo 8.
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On a exclu p 0, 1 modulo 8. Il reste donc à examiner le cas où p 4 k — 1.
Pour ces valeurs de p, o(v, FN) est un entier au signe près. On sait que

où pk€ Hik{Eik\Z) est la classe de Pontrjagin de Z4* en dimension 4k, et
ak 1 + sin2(fc^/2). (Cf. [10], Lemma (1.1).)

Comme l'index de 274& est lié à pk par

(formule de l'index, F. Hirzebrtjch [6], Hauptsatz 8.2.2.), et que Hi{Sik) 0

pour 1 ^ i ^ 4k — 1 entraine /(Z4*) 0, P(^,..., pfc-1) 0, il s'ensuit

pk 0. (^ ^ 0.) Donc aussi o(v, FN) 0. Le théorème 5.1 est
démontré.

Démonstration du théorème 5.2. La première assertion découle des suivantes
et de Je8 ^ 0, Je9 ^ 0.

(b)-^ (a): Soit Z**1 une sphère d'homotopie et /: Zp+1-^ Rp+N+1 un
plongement. (N ^ p + 2.) Soit F^ une section du fibre principal normal vf
restreint à Z— z0. Considérons l'obstruction o(v, FN) €7tp(SO(N)) ¥kZ2
pour p 8s ou 85+I. On sait que Jo(vf, FN) 0. (Cf. [15], Lemma 1.)
Donc si Jep ^ 0, il s'ensuit o(vf, FN) ^ e9. Donc o(vf, FN) 0. Autrement

dit, Zp+1 est une ^-variété.
(a)-> (b): On démontre la contraposition. Supposons Jev 0. D'après

[15], Lemma 1, il existe une variété presque parallèHsable Jfp+1 et un
plongement / : Mp+1 -> i?P+^+1 avec une section FN du fibre principal normal vf
restreint à M — x0, tels que o(vf,FN)=ep. On simplifie Mp+1 par chirurgie.

(Cf. J. Milnob [14], § 5.) Le résultat est une sphère d'homotopie Z%+1

plongée dans JRP+^+1) et l'application caractéristique du fibre normal est eP.
Cette sphère d'homotopie E%+1 n'est donc pas une ^-variété. D'où le théorème
5.2.

En relation avec le Problème 2 (invariant de Smale d'un plongement
f:8p-> Bp+1), on a le

Problème 5. Soit f:Bp-> Rp+Q une immersion et h: 8p-> Sp un difféo-
morphisme de degré 1. A-t-on cfoh cfï

On va voir que la réponse est affirmative si p ^ 2q — 2 en vertu du théorème

des §§ 1-4, et également si p est une dimension pour laquelle le
Problème 2 admet une réponse affirmative. (Donc en vertu du Corollaire 5.1,
pour p =£ 8s, 8^+1 avec s 2^ 2.) Dans ce deuxième cas la réponse au
Problème 5 est affirmative sans restriction sur q.

On peut regarder h comme un plongement h : Sp -> R p+1. L'inclusion u :
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induit une application v: V9+lt9-± V9+Qt9, et on a cuoh

v* (ch) • On va démontrer que

II s'ensuit que cfoh cf si

1.) p <J 2g — 2, car alors cuoh 0 en vertu du théorème de l'introduction ;

2.) p z£ 8 s et £>:^8s+l avec s ^ 2, car alors en vertu du Corollaire
5.1, on a ch 0, donc aussi cwoft #*(cft) 0.

Reste à démontrer la formule (5.3). Soit W Sp x [— e, s], et /':
Wp+1 -> Bp+*+1 l'immersion donnée par f'(z, t) (f(x), t) Soit AP+1 la
restriction à Sp X {0} d'un champ de (^ + l)-repères tangents à W (qui
est parallèlisable). df induit une application q> : Sp -> F^+^x^^. Le même

argument appliqué au plongement standard fournit a : Sp -> Fp+a+lfîP+1. On
a vu (Lemme 3.1) que &**;, ç> — a.

Soit A7: TF-> W le difféomorphisme donné par hr(x,t) (h(x),t), et
soit 4;+1 dA'(^+1).

En utilisant ci-dessus /ïp+i au lieu de Av+l, on obtient 9/ et </ :

S*-* V9+Q+lt9+1. Il existe une application ô: Sp-> SO(p + l), donnée par
la matrice des produits scalaires des vecteurs de Av+1 et A'p+1, telle que

Vr — <P <rr — o •

On en conclut :

k*cfoh <p' — a (p1 — af + a! — a
ç? — a -{- or — o

Pour g^2, &* est un isomorphisme et (5.3) s'ensuit. Pour q 1, le

même principe de démonstration s'applique, en faisant appel à un champ de

normales à f(8p).
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