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Sur Pinvariant de SMALE d’un plongement

par MicHEL A. KErvaIRE?!), New York (USA)

A toute immersion f:8? — R?*¢ d’une sphere dans l’espace euclidien
S. SMALE [16] associe un élément ¢, du groupe d’homotopie x,(V,,, ,), ou
Voie,» €St la variété de STIEFEL des p-repéres dans R?+¢. La définition de c,
est rappelée au § 3. S. SMALE démontre que deux immersions f, g: S? > R?H
sont réguliérement homotopes, i.e. qu’il existe une famille d’immersions
fe: 82 — RPt+¢ avec f,=f, f, = g, telle que I’application tangentielle induite
dépende continuement de ¢, si et seulement si ¢, = ¢,.

On va étudier le probléme de caractériser les éléments de =,(V,,, ,) as-
sociés aux plongements (sans self-intersection) de S? dans R?+4.

D’aprés [11], P'invariant de SMALE d’un plongement f:S? - R?*¢ avec
p <29 — 2 est nul pour p congruent & 2, 4, 5 ou 6 modulo 8. On avait
également quelques résultats pour p = 8s et p =8s + 1. (Cf. [11], Corol-
laires 5.2, 5.3 et 5.42).) On va voir que la nullité de ¢, (pour p < 2q — 2)
ne dépend pas de la classe de reste modulo 8 de p et peut étre démontrée in-
dépendemment de la connaissance des groupes d’homotopie stables du groupe
orthogonal.

Theoréme. Pour tout plongement f:SP — R4, avec p < 2q — 2, lin-
variant de SmALE c, de f est nul.

Autrement dit, compte tenu du théoréme de S.SMALE [16], Theorem A,
pour tout plongement f:S? - R?+ avec p < 2q — 2, il existe une famille
d’tmmersions f,: 8 — R?+¢  induisant une homotopie (continue) de 1’appli-
cation tangentielle, telle que

(a') f():f’

(b) fi(xg, 2qy,... x,) = (29, @y, ...,2,,0,...,0).

§ 1. Un lemme préliminaire

Soit M une variété différentiable fermée, presque parallélisable, de dimension
p + 1. Le fibré des vecteurs tangents & M, restreint & M — z, (x,, un point
de M), est trivial par hypothése®). Soit T,., un champ de (p -+ 1)-repéres

1) Pendant la préparation du présent article, ’auteur a été titulaire d’'une bourse de la Na-
tional Science Foundation, numéro N.S.F. — G 5863.

2) Dans le Corollaire 5.4 de [11], il y a une faute d’impression. On doit lire: Toute immersion
f:88 — Rn+88, ou n=8s—5, s=2, équivalente & un plongement est équivalente au plonge-
ment standard.

8) Toutes les variétés considérées sont connexes.
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sur M — x,, et o(r,T)en,(SO(p + 1)) lobstruction pour étendre T, ,
sur M. (7 est le fibré principal associé au fibré des vecteurs tangents a M .)

Dans toute la suite, (2, : 7, (SO(p + 1)) > #,(SO(p + ¢ + 1)) désignera
I’homomorphisme induit par I'injection SO(p 4+ 1) = SO(p 4+ ¢ + 1) donnée

par
A 0
1(A) = (0 Eq) ,

A «SO(p + 1), E, = matrice unité a ¢ lignes et ¢ colonnes.
Py 7, (SO(p + ¢+ 1)) = 7,(Vyyg41,p41) ©sb induit par y qui associe &
une matrice de SO(p + ¢ + 1) ses (p + 1) premiers vecteurs colonnes.
On pose jy = py 0 1% 1 7, (SO(Pp + 1)) = 7, (Vpig41,041) -

Lemme 1.1. St p < 29 — 2, alors jyo(r, T) = 0.

Démonstration. On va voir tout d’abord que 2, 0(r, T) est dans le noyau
de I’homomorphisme de Hopr-WHITEHEAD J :7,(SO(7)) - =,,,(87). Soit
K une triangulation de M, telle que z, soit intérieur & un (p -+ 1)-simplexe
de K. On plonge M?+' dans un espace euclidien R?*¥*! de grande dimen-
sion. (N = p + 2.) La section T de 7| M — =z, induit alors une application
T°: K? > V541,51 Qqui est homotope & IDapplication constante. (K?
désigne le p-squelette de K.) Soit T% une telle homotopie. On désigne par
7 Vpnt,o01 > Gpinar,on @ 7 Vonpw = Gpiypi,n = Gpyyia,pn les
projections canoniques sur les variétés de GRassMANN. En utilisant un reléve-
ment suivant n’ de ’homotopie =z o7T9%, on obtient une section F du fibré
principal » de groupe SO(N) associé au fibré normal induit par le plongement
M?»+1c R7HY+1 regtreint au p-squelette K?. Les sections T et F fournissent une
section TX F de 7 @ » restreint & K?, telle que la valeur du cocycle obstruc-
tion ¢(r @v, T X F) sur chaque (p + 1)-simplexe de K soit nulle. Or,

D(T (“B’V, T X F) - l’N*D(T: T) + (,p'f'l*o('p’ F) .

D’aprés [15], Lemma 1, Jo(¥, F)=0. Comme Joty= + FEo-J, on a
Jo0(r, T)= + E¥ *Ji,0(r,T)=0. EY ' est un isomorphisme dans
les dimensions considérées, donc Ji,o(7,T) =0, dou la conclusion:
Jio(r, T)=0 pour ¢ = 1.

Pour en déduire le lemme 1.1, on remarque que d’apres I. James [7], Theo-
rem (4.2), (a), pour p < 29 — 2, ’homomorphisme vy, : 7,(SO(p + ¢ + 1))
> 70,(V pigt1,p41) S€ factorise en g, = H,,, oJ, ou

H,. ;: 7opigir (879) = 70, (V pigi1, pi1)

est un invariant de Hopr généralisé. Il résulte donc de J %, 0(z, T) = 0 que
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1x0(7, T) = wet%o(r, T) = H, 1 J¥o(r,T) = 0. Le lemme 1.1 est dé-
montré.

§ 2. La condition (C)

Soit f: 87— R+ une immersion. On va décrire une condition pour f,
dont on verra au § 3 qu’elle entraine pour p < 29 — 2 la nullité de I’invariant
de SMALE c,.

(C) 1l existe une variété & bord V?+! différentiable, orientable, de bord
S? et une immersion f': V?+1 — R?+2+l telles que:

(C,) La restriction de ' au bord de V?+! est égale & I'immersion donnée f.
(On identifie R?t¢ au sous-espace x?+4+l = (0 de RP+atl))

(C;) f(V) rencontre RP+¢ orthogonalement, i.e. la restriction & S? du
fibré normal de f’ coincide avec le fibré normal de f.

(C;) Le fibré normal de f’ est trivial.

Remarque. La condition (C) entraine que le fibré normal v, de I'immersion
donnée f est trivial. Il doit en étre ainsi puisque v, trivial est une condition
nécessaire pour ¢, = 0. (Cf. par exemple [11], Lemme (3.4).)

Remarquons encore que si f est le plongement standard S? ¢ R?+! — R?+9,
la condition (C) est réalisée avec pour V?+! une hémisphére.

On forme la variété différentiable fermée M?+1, réunion de V?+! et du
disque D?+! avec identification des bords (par 'application identité S? — §?).
Comme V est une n-variété avec frontiére non-vide, elle est parallélisable.
(Cf. [14], Lemma 1.3.) Donc M?+! est presque parallélisable.

La restriction & 8? = V ~ D du fibré tangent & M est trivialle. (Suspension
du fibré tangent a S?.) Soit A,,, un champ de (p - 1)-repéres tangents &
M?+1 ] défini sur S?. On peut étendre f', comme immersion, & un voisinage W
de 8? dans M?+!, et df' | S? appliquée aux repéres A,,, fournit une applica-
tion @: 87— Vi 041,511

Lemme 2.1. Il existe un élément @, em,(SO(p + 1)), tel que jop, = @,
et satisfaisant
f 7o+ 0(D) = 0(M)

o (M) est une obstruction pour paralléliser M, et p(D) est lobstruction
pour étendre A,., a Vintérieur de D?+1,

Démonstration. L’application tangentielle V — G ..., ,,;, de V dans la
Grassmannienne des (p + 1)-plans orientés de RP+e+1 est homotope & zéro.
(En effet, cette application est couverte par une application V — V,, .., ,
donnée par une section du fibré normal de f', et H?+1(V) = 0.) En utilisant
le lemme de relévement des homotopies, on peut construire sur ¥?+! un champ
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T,41 de (p + 1)-reperes tangents, tel que l'application V — V, ..., ;.
donnée par x — df'(T,,,(x)) soit homotope & zéro. Il s’ensuit que la matrice
des produits scalaires des vecteurs de A,,;, et de T,,, restreint & S* fournit
une application S?— SO(p-+ 1) dont la classe d’homotopie ¢, € 7, (SO (p+ 1))
a pour image @ par I’homomorphisme j,. On désignera par o(M) l’obstruc-
tion p(t, T) pour étendre T, , comme champ de (p 4 1)-repéres tangents
sur M?+1, [p(M) en,(SO(p + 1)).] Ona ¢, + o(D) = o(M).

§ 3. L’invariant de SMALE

L’invariant de SMALE ¢, d’'une immersion f:8? - R?*? est défini comme
suit (cf. [16]): Soit s: S? — R?*? une immersion de S? dans R?+2 réguliére-
ment homotope au plongement standard, et telle que pour un voisinage U,
de a*=(—1,0,...,0)e8” on ait s|U,=/f| U,. Soit U un voisinage
sphérique de a* tel que U c UcU 0, et soit A, un champ de repéres
tangent & 8P défini et continu sur X = 8? — U. On introduit un difféo-
morphisme 7: E% — X préservant 'orientation, et z — 2* la reflexion par
rapport au plan de ’équateur E% ~ E? . On pose

| (@f)(As(rz)) , pour zeE% |
%@ =\ (ds)(Ag(rz¥) . pour zeE” .

@f| X~AU=ds|X~U.)

¢, est une application continue de 8? dans V., ,. Sa classe d’homotopie,
également notée c, est par définition I'invariant de SMALE de f.

Soit f' I'immersion de W = 8% X [— ¢, ¢] dans R?+¢+1 donnée par
f(x,t)=f(x) +tn, ou n=(0,...,0,1)e R?*+l (ou toute autre immer-
sion f': W— Rr+e+1, telle que f'|8? x {0} = f et (df /dt),_q = n).

La restriction & S8? X {0} du fibré tangent & W est trivialle. Soit A,,,
un champ de (p + 1)-repéres tangents & W, défini sur S? x {0}. L’applica-
tion prolongée df induit une application ¢:8%— V,_, .y 1.

Le méme procédé appliqué au plongement standard fournit une application
0:87 = Vyrer1,p41-

Désignons par k:V,,, ,—> V441,41 'application qui adjoint le vecteur
n i tout p-repére de R**2. On a le

Lemme 3.1. k,(c,) = ¢ — .

Démonstration. ¢ — o est indépendant du choix de A,,,. On prendra
A= {A,,t} sur X=8"—-UT.

Soit Y I’espace obtenu & partir de la réunion disjointe de deux copies S
et 8’ de S” par identification x = 2’ pour z ¢ U. On a des inclusions natu-
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relles ¢:: 87— Y, et ¢': 87— Y par composition avec le passage au quo-
tient des identités S? - S, S? - 8§’ respectivement.
k oc, se factorise par yoh, ot h:8*—> Y, y: ¥ —> V_ , .01 1, avec
h(z) = t or(2) pour zek£%
T | er(z%) pour zeE? .

Il est évident que A(S?) est homologue a (S?) — ¢'(S?), et comme ¥
est (p — 1)-connexe, 4 est homotope & 7 — ¢’. On a donc

kocf_—_'yohgyo(i—i’)_r_w_yoi—-yoi':(p——o',

Ceci démontre le Lemme 3.1.

On remarquera que pour q = 2, ky: 7w, (V,y g 0) = 7,(Voigr1,p41) €86 un
isomorphisme. (Suite exacte d’homotopie de la fibration V, .3 511/ Vyie, =
Sp+q.)

Lemme 3.2. Soit f:S?—> R une tmmersion satisfaisant & la condition
C)du §2. 8t p <29 — 2, alors ¢, = 0.

Démonstration. On applique le Lemme 2.1 4 'immersion f et au plongement
standard s. Il existe des éléments ¢, o, € 7,(SO(p + 1)) tels que jp, = @,
jx 0, = o, et satisfaisant

@o + 0(D) = o (M)
oo + o(D) = o(87+1),

ou p(87+1) est I’obstruction pour paralleliser S?+!. Il s’ensuit
@o — Op = D(M) — 0(87+)
et comme ¢, 0(8?+!) = 0, en appliquant j,:
¢ — o = jx0(M) .
On obtient donc, sans restriction de dimensions, sous I’hypothése (C):
ky(c,) = jxo(M*+1) .

Si p <29 — 2, on peut appliquer le Lemme 1.1, et on conclut ¢, = 0.
Pour obtenir le théoréme de I'introduction, il reste & démontrer que si f:

S8? — R?+¢ est un plongement, et si p < 2¢ — 2, alors la condition (C) est
satisfaite.

§ 4. Fin de la démonstration

f: 82 > Rr+e étant un plongement, il suit de p < 2¢ — 2 que le fibré
normal de f est trivial. (Cf. [9], Theorem 8.2.) Soit F, une section arbitraire
du fibré principal associé. (F, est un champ de g-repéres orthogonal & f(S®).)
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Par un procédé connu (cf.[9]), on peut associer & f et F, une classe
a(f, Fy) € 7)., (87).

Lemme 4.1. Le plongement f: S? — R?+¢ étant donné, p < 2q — 2, on
peut choisir F, pour que (f, F,) = 0%).

De 13 résulte immédiatement (cf.[15], démonstration du Lemma 1) qu’il
existe une variété & bord V?+! de bord S?, et un plongement f': V?+l —»
Rr+a+1 gatisfaisant aux conditions (C,), (C,), (C;) du § 2.

Démonstration du lemme 4.1. La classe «(f, F,) admet un représentant
@ : 8?4 — §? univoquement déterminé aprés choix d’un voisinage tubulaire
de f(S?) dans R**? et d’un difféomorphisme relatif r: (D2, S¢-1) — (89, a*)
de degré 1. Le point a e S%, antipode de a*, est valeur réguliére de ¢, et
¢~ Y(a) = f(8?). (On identifie R?+? avec son image dans S?+¢ par projec-
tion stéréographique.)

D’aprés [9], Lemma 8.1, la restriction p < 2q — 2 implique alors que
«(f, F,) est contenu dans I’image de ’homomorphisme J : z,(SO(q)) = 7,.,,(S9)
de Horr-WHITEHEADS®). Il existe donc une classe uex,(SO(g)) telle que
Ju=oa(f, F,).

D’autre part, a toute application &: S8? - SO(g), on peut associer un nou-
veau champ &-F, de g-repéres, orthogonal & f(S?). Il suffit, pour tout
z € 8 de faire agir la matrice &(zx) sur les vecteurs de F,en f(x). Je dis que

a(f, &-F)) =alf, F) + o(J§), (*)
ou1 £ désigne également la classe d’homotopie de I'application &: 8% — SO(g),
et ¢ est 'automorphisme involutif de =, ,(S?) donné par o(x) = (—1)?(e0«x),
avec &= (— 1)771q,.

La formule (*) ci-dessus implique le lemme 4. 1.

Remarquons tout d’abord que ¢ induit un automorphisme de I'image de /.
Il suffit de vérifier que o (J#,(SO(q))) < J=,(SO(q)). Or, on sait que

(@i,) cox = ax + ﬂa—;—}—)—

(Cf. [4], formule 6.8.) On applique cette formule avec « = J &, et on utilise

[iq’ iq] 2 HO“ .

H,J¢=Eid, &, au signe pres,

(Cf. [3], Lemma 4. D, :7,(S0(q)) = 7,(8?%!) est induite par la projection
de X € SO(q) sur son premier vecteur colonne.)

4) On comparera ce lemme avec Lemma 6.5 et 6.6 de J. MiLNOR [14].

§) Dans [9], Lemma 8.1, le lemme reste valable si ’on remplace la stricte inégalité d < 2n
portant sur les dimensions par d = 2n, la démonstration restant inchangée. La validité pour
d = 2n du diagramme utilisé est fournie par le théoréme (77) de 1. JAMES, On the suspension
sequence. Ann. of Math. vol. 65 (1957), 74-107. C’est sous cette nouvelle forme que le lemme est
appliqué ici.



Sur l'invariant de SMALE d’un plongement 133
[g> 2g) = J 0%, ,

0: 7 (89 — m,_,(SO(q)) étant I’homomorphisme bord de la suite exacte
d’homotopie de la fibration SO(q + 1)/SO(g). Enfin, JB.Ely = J(f-7y),
au signe pres, fen, (SO(q)), ¥ €7, (821). On en conclut

o(J&) = J (L & + ¢ 0ty 0 Dy é),

¢ pouvant étre 0, — 1 ou + 1 suivant les valeurs de p et gq.

Il existe donc une classe 4ex,(SO(q)), telle que x(f, F,) =Ju =oa(JA).
On prendra & = — 1. D’aprés (*), on a «(f, &-F,) = «(f, F,) — a(J1) = 0.

Le champ &-F, répond aux exigences du lemme 4.1. Reste & démontrer
la formule (*).

Soit s: 87— R?+? le plongement standard (s(S§%) c R?*1), et A, le
champ (x,&,.9,...,8514), OU & = (6y,1,..., 0y ,,). Considérons (s, &-A,),
ou &:8?— SO(q) est I'application de la formule (*). On a vu dans [9], 1.8,
page 349, que «(s, &-A,) = o(J§). Il faut donc démontrer

x(f, §-F)) = alf, F) + (s, &+ Ap) . (**)

Des voisinages tubulaires de f(S?) et s(8?) étant choisis, ainsi qu’un dif-
féomorphisme relatif r: (D2, §9-1) - (8¢, a*), on considére les représentants
canoniques ¢;, ¢ de «(f, &F,), a(f, F,), et y, de (s, &-A,).

Pour construire une homotopie entre ¢; et @ + yg, on part de I’homo-
topie triviale h:8?+¢ x I — S? donnée par h(z,t) = ¢(2). Le point a eS¢
(antipode de a*) est valeur réguliére pour 4, et hA~1(a) = @ est difféomorphe
a 87 X I par le plongement f'(xz,t¢) = (f(x),t) dans R?+? x I. Soit y un
point intérieur de @ et c¢:I — R?* x I un chemin différentiable, de point
final y, dont le point initial se trouve dans R?+? = R+ x {0}, tel que
¢(I)~@ = {y}. On peut encore supposer que pour s voisin de 0, on a
¢(s) = (¢(0), 8), et qu’en son point final, ¢ rencontre ¢ orthogonalement. On
se sert alors de ¢ et d’'un champ de repéres normaux & c¢(I) pour définir un
plongement s':D?+l x I — R?+2 X I, tel que s'| {0} X I = ¢, et l'image
de D?+1 x I ne rencontre pas ¢ excepté en un voisinage sphérique U de y
sur lequel D?+! x {1} est appliqué par le difféomorphisme s’ | D7+l x {1}.
Soit N la variété obtenue par réunion de @ — U et s'(S? x I) aprés avoir
arrondi les angles le long de la frontiére de U. (Cf. [14], Appendix.) Le champ
de g-repéres normaux sur @ — U s’étend sans difficulté sur N. On peut
méme supposer que la restriction de ce champ & §'(8? X {0}) = s(S?) est
le champ banal formé de la normale & s$(S?) dans R?+! et des (¢ — 1)-vec-
teurs £,,4,..., fyiq-

Comme N est connexe, il existe sur N un chemin différentiable joignant un

10 CMH vol. 34
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point de s(S?) & un point de f(S?) x {1} € @ qui rencontre le bord de N
orthogonalement en ses extrémités et n’a pas d’autre point commun avec ce
bord. Soit 7" un voisinage tubulaire de ce chemin dans N, et H:D? x [ - T
un difféomorphisme. L’application &:(8?, a*) > (SO(q), ) détermine une
application &or = & :(D?,871)—> (SO(q), E), ou E est la matrice unité.
On remplace alors le champ F, de g-repéres sur N par F,, égal & F, sur
N — T etégal a &' (H-'z)-F,(2) pour zeT. La variété N munie du champ
F; fournit une homotopie entre ¢; et @ + ;. D’ou la formule (**).

§ 5. Remarques

Soit f:8? — R?*? un plongement. Pour que c, soit nul, il est nécessaire
que le fibré normal de f soit trivial.

Or, outre le cas p < 29 — 2 que I'on vient d’étudier, on sait que le fibré
normal de f est trivial pour ¢ < 3. (Bien connu pour ¢ < 2. Résultat récent
de W. S. Massey [13] pour ¢ = 3.) Il est donc naturel de se demander si
Pinvariant de SMALE d’un plongement f:8? — R?+? avec ¢ < 3 est toujours
nul.

J’ignore totalement quelle est la situation pour ¢ = 2 ou 3. On trouvera
ci-dessous quelques résultats, obtenus en collaboration avec J. MILNOR, con-
cernant le cas ¢ = 1.

On commence par un probléme de groupes d’homotopie:

Probléme 1. On sait [2] que 7z, (SO(N)) et mg 1 (SO(N)) sont cycliques
d’ordre 2. (N = 8s + 3.) Soient &5, et &g, les générateurs de ces groupes.
Les éléments og, = Jeg, € gy = J Egey, SOnt-ils nuls? (J: 7, (SO(N))
— 71,5 (8%) est Uhomomorphisme de HoPF-WHITEHEAD.)

On sait que Jeg #0 et Jey £ 0. En outre, &4, = &, 07, pour tout
8§ =1, ou 7, est le générateur de mg,,,(8%) L 2Z,. Donc si Jeg, est nul,
alors Jeg,,, l'est aussi. (Cf. [12], Lemma 1.2.)

On va voir que ce probléme est en relation avec les problémes suivants:

Probléme 2. Soit f: 8? — R?+1 un plongement. L’invariant de SmaLE ¢, de
f est-il nul?

Considérons la région bornée V?+1 de R?*+! dont le bord est f(S?). Soit
2P+l la variété différentiable obtenue & partir de la réunion disjointe
Vr+l v D?P+1 par identification de xeS8? avec f(x)e V?*, pour tout
x e S?. La variété X?+! est une sphere d’homotopie®), et un raisonnement

¢) Dans ce qui suit, «sphére d’homotopie» signifie: Variété différentiable ayant le type d’ho-
motopie d’une sphére. Ces variétés ont été étudiées par J. MiLNoOR [14].
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analogue & celui de la démonstration du Lemme 3.1 montre que
¢, = 0(ZP+1) — p(874) (5.1)

o 0 (27+), 0(8?+!) en,(SO(p + 1)) sont les obstructions pour paralléliser
27+l et §7+1 respectivement.

Soient 7(2?+1), 7(8?+!) e m,,,(Bsgps1)) les classes d’homotopie des appli-
cations tangentielles de 27+ et S*+!. On a

9T (ZPHl) = p(ZP+),  97(SP*) = p(SPH), (5.2)

ot 9:7, 4 (Bsops) > 7,(SO(p + 1)) est 'isomorphisme bord de la suite
exacte d’homotopie du fibré classifiant pour SO(p + 1).

Probléme 3. A-t-on t(27+') = t(S?*!), quelle que soit la sphére d’homo-
topre XP+17?

Les formules (5.1) et (5.2) montrent qu’une réponse affirmative au Pro-
bléme 3 entraine une réponse affirmative au Probléme 2.

On va voir que le Probléme 3 est équivalent au

Probléme 4. Toute sphére d’homotopie 2XP+! est-elle une m-variété? (C’est-a-
dire: Toute sphére d’homotopie plongée dans un espace euclidien d’assez grande
dimension admet-elle un fibré normal trivial ?)

Remarque: D’apres les résultats de M. HirscH [5], 2?*! est une n-variété
si et seulement si I’on peut immerger X?+! dans R?+2.

(3) > (4). Si (&)= ©(S), alors aussi p(2) = 0(S). Donc i,0(2) =0,
1. e. X est une n-variété.

(4) = (3). Si la sphére d’homotopie 2P+! est une m-variété, tout plonge-
ment f:X?+1— RPTN*! gyec N = p + 2 induit un fibré normal trivial. Il
s’ensuit que la suspension du fibré tangent (sa classe de S-équivalence) est
trivialle. Donc *p(X) = 0. Par suite (exacte): 0(ZX)eIm 4, ou

A4:7, (SP) = 7, (SO(p + 1)).

Pour p impair, @D,0(ZPH) = y(ZP+) = x(8*+) = D, 0(S?), et
Ker @, ~ Im 4 = 0. Donc p(XZ?+1) = p(8?+1).

Pour p pair, 8?1 parallélisable, o(8?+!) =0, et Im A= 0. Donc
0(2?+1) = 0 = p(8P+Y).

Pour p pair, 8P+ non parallélisable, Im A est isomorphe & Z,, engendré
par Ai, , = p(8**Y). Si p(2?+l) était différent de o (SP+!), on aurait
D(2?+) = 0, donc XP+! parallélisable. Or, la semi-caractéristique x*(Z?+1)
de X*+1 vaut 1. D’aprés [8], Theorem 9.3, une variété de dimension p + 1
dont la semi-caractéristique vaut 1 ne peut étre parallélisable que s’il existe
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dans m,,,3(8?*%) un élément d’invariant de Hopr 1. D’apreés J. F. Apawms [1],
ceci implique 8?+! parallélisable. On a done p(X?+!) = p(S?*!) dans ce cas
également.

Comme 0:7,,,(Bsopiy) > 7,(SO(p 4 1)) est un isomorphisme, on a
aussi 7(27+1) = 7(S?+1).

Résultats connus (pour autant que je sache):

Théoréme 5.1. Pour p = 8s, 8s + 1, toute sphére d’homotopie de dimen-
sion p + 1 est une m-variété.

Théoréme 5.2. Toute sphére d’homotopie de dimension 9 ou 10 est une n-
variété. Pour p = 8s avec s = 1, les deux propositions suivantes sont équiva-
lentes. Pour p = 8s + 1, la proposition (b) entraine (a).

(a) Toute sphére d’homotopie XP+! est une m-variété

(b) Je, # 0.

On se trouve ramené au Probléme 1.

A Dexception des cas p =88 ou p=8s+ 1 avec un s = 2, on a donc,
en vertu des remarques qui précédent :

Corollaire 5.1. Awvec la restriction ci-dessus pour p, tout plongement f:
S? — R?+1 est réguliérement homotope au plongement standard.

Corollaire 6.2. Avec la méme restriction pour p, le fibré tangent a toute sphére
d’homotopie 27+1 est donné par le méme élément de 7, (Bsopi1) que le fibré
tangent de la sphére ordinaire.

Ce corollaire s’applique en particulier aux sphéres de MILNOR dont les di-
mensions sont favorables.

Démonstration du théoréme 5.1.

f: v+l RP+N+1 gtant un plongement dans un espace euclidien de grande
dimension (N = p + 2), et » le fibré principal normal de groupe SO(N),
soit Fy une section de » restreint & X — 2°. L’obstruction o(v, Fy) pour
étendre Fy (comme section de ») sur X?+1 est un élément de
H1 (2745 7, (SO(N))) = ,(SO(V).

On connait x,(SO(N)) pour N = p + 2. (Cf.[2].) Les valeurs sont

Z Z, 0 Z o0 o0 o0 Z
pour
p=0 1 2 3 4 5 6 7 modulo8

respectivement. (p = 1.)
Le théoréme 5.1 (qui revient 3 affirmer que o(», Fy) = 0) est donc banal
pour p = 2,4, 5, 6 modulo 8.
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On a exclu p=0, 1 modulo 8. Il reste donc & examiner le cas ot p=4k —1.
Pour ces valeurs de p, o(», Fy) est un entier au signe prés. On sait que

D[] = a,- 2k — 1)lo(v, Fy) ,

ou p; e H¥ (X% ; 7Z) est la classe de Pontrjagin de X% en dimension 4k, et
a, =1+ sin?(kn/2). (Cf. [10], Lemma (1.1).)
Comme l'index de 2*k est lié & p, par

I(Z%) = s,py 4+ P(py, -+ Pra) »

(formule de I'index, F. HIrzEBRUCH [6], Hauptsatz 8.2.2.), et que H*(XZ**) =0
pour 1 <3 <4k — 1 entraine I(X%)=0, P(p,,..., Pp_y) = 0, il s’en-
suit p, = 0. (8 7% 0.) Donc aussi o(v, Fy) = 0. Le théoréme 5.1 est dé-
montré.

Démonstration du théoréme 5.2. La premiére assertion découle des suivantes
et de Jeg £ 0, Jegyg # 0.

(b) > (a): Soit X?+! une sphére d’homotopie et f: X?+1— RPN+l yp
plongement. (N = p 4 2.) Soit Fy une section du fibré principal normal »,
restreint &4 X — #,. Considérons l'obstruction o(v, Fy)exn,(SO(N)) L Z,
pour p = 8s ou 8s 4 1. On sait que Jo(v,, Fy) = 0. (Cf. [15], Lemma 1.)
Donc si Je, % 0, il s’ensuit o(v,, Fy) # ¢,. Donc o(v,, Fy) = 0. Autre-
ment dit, 2?+! est une m-variété.

(a) = (b): On démontre la contraposition. Supposons Je, = 0. D’apreés
[15], Lemma 1, il existe une variété presque parallélisable M?+! et un plon-
gement f: M?+1— RP*¥*1 avec une section Fy du fibré principal normal v,
restreint & M — xz,, tels que o(v, Fy) = ¢,. On simplifie M?+! par chirur-
gie. (Cf. J. MiLNoR [14], § 5.) Le résultat est une sphére d’homotopie XP+?
plongée dans R?*¥*! et ’application caractéristique du fibré normal est «,.
Cette sphére d’homotopie X+ n’est donc pas une m-variété. D’olr le théoréme
5.2,

En relation avec le Probléme 2 (invariant de SMALE d’un plongement
f: 87— R?+1) on ale

Probléme 5. Soit f: 8 — R?*¢ wune immersion et h: S?— S? un difféo-
morphisme de degré 1. A-t-on ¢, = c,?

On va voir que la réponse est affirmative si p < 2¢g — 2 en vertu du théo-
reme des §§ 1-4, et également si p est une dimension pour laquelle le Pro-
bléme 2 admet une réponse affirmative. (Donc en vertu du Corollaire 5.1,
pour p # 8s, 88+ 1 avec s = 2.) Dans ce deuxiéme cas la réponse au
Probléme 5 est affirmative sans restriction sur gq.

On peut regarder & comme un plongement A: S? — R ?+1. L’inclusion u :
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R?+! — R?*¢ induit une application v: ¥V, ., ,— V, ., ,, et on a ¢, =
v4(c;). On va démontrer que

Cron = € + Cyon - (5.3)

Il s’ensuit que c¢;,, = ¢, si

1.) p =2q — 2, caralors ¢,,;, = 0 en vertu du théoréme de I'introduction ;

2.) p#8s et p#£8s+ 1 avec s =2, car alors en vertu du Corollaire
5.1, ona ¢, = 0, donc aussi ¢,,; = v4(c;) = 0.

Reste & démontrer la formule (5.3). Soit W =87 x [—¢,¢], et f:
Wr+l —» RP+e+l Jimmersion donnée par f'(x,t) = (f(x),t). Soit A, , la
restriction & S? X {0} d’'un champ de (p -4 1)-repéres tangents & W (qui
est parallélisable). df' induit une application ¢:8?— V,, ..y ».;. Le méme
argument appliqué au plongement standard fournit o:8?— V .,y ,.;. On
a vu (Lemme 3.1) que kyc, = ¢ — 0.

Soit A': W~ W le difféomorphisme donné par &'(z,t) = (h(x),t), et
soit Ap., =dh'(A,,,).

En utilisant ci-dessus A,,, au lieu de A,,,, on obtient ¢’ et o':
8? = V,1041,p41- 1l existe une application é: 8% — SO(p + 1), donnée par

la matrice des produits scalaires des vecteurs de A,,, et A, ,, telle que

jx0=¢' —@g=0 —o0.
On en conclut:

kgCiop =¢' —0=¢' — o'+ 0" — 0,
=¢ —0 +0¢ —o,
= k€ + kxCyon = kx(C; + Cyon) -

Pour ¢ = 2, k, est un isomorphisme et (5.3) s’ensuit. Pour ¢ =1, le
méme principe de démonstration s’applique, en faisant appel & un champ de
normales & f(S7).
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