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Zum potentialtheoretischen Aspekt der ALEXANDROWschen
Fliichentheorie

von ALFRED HUBER, Ziirich

1. Einleitung

Bekanntlich kénnen auf jeder geniigend reguliren Fliche im kleinen iso-
therme Parameter eingefiihrt werden. In neuerer Zeit haben mehrere Autoren
— wir erwihnen A. WINTNER [15, 16], S.S. CHERN, P. HARTMAN und A.
WINTNER [4], 1. G. RESCHETNJAK [13] - sich zum Ziel gesetzt, die Existenz
eines solchen Koordinatensystems unter moglichst schwachen Voraussetzun-
gen herzuleiten. Insbesondere hat REsCHETNJAK folgendes Resultat gefun-
denl!):

Sei M eine Mannigfaltigkeit beschrinkter Krimmung im Sinne von A. D,
Arexanprow [1, S. 493], und set D ein kreishomoomorpher Bereich in M,
dessen Berandung eine Schwenkung von beschrinkter Variation [1, S. 358] be-
sitzt. Dann existieren ewn Gebiet G in der komplexen z-Ebene, eine in G defi-
nierte, reellwertige Funktion w(2) sowre eine topologische Abbildung @ wvon G
auf D derart, daf folgendes erfiillt ist:

1. Hs gilt die Darstellung

u(z) = h(e) + flog| 2 — £ | dpley) (1.1)

wobet h eine in G harmonische Funktion, u eine daselbst definierte vollstindig
additive Mengenfunktion darstellt.

2. D ist eine Isometrie, falls wir tn D die durch M induzierte und in G die
Metrik

0(21, 2,) = inf [e¥® | dz | (1.2)
L L

betrachten, wobei iber alle z, mit z, verbindenden Polygone L in G variiert wird.
3. Die Mengenfunktion u entspricht bis auf einen konstanten Faktor der
Arexanprowschen Kriimmung w. Es ist ndmlich

ple) = — 5 0 (81(e)) (1.3)

fir jede BorELmenge e in Q.

1) Fiir Begriffe und Resultate der ALExANDROWschen Flachentheorie sei der Leser auf [1]
verwiesen. Dort (Seite 503 ff.) befindet sich auch eine kurze Orientierung iliber das RESOHETNJAK-
sche Ergebnis.
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Umgekehrt erweist sich jede Metrik der Form (1.2), wobet u(z) als Differenz
subharmonischer Funktionen — also lokal in der Form (1.1) — darstellbar ist,
als Metrik beschrinkter Kriimmung.

Da jeder Punkt von M als innerer Punkt eines solchen Bereiches D aufge-
falt werden darf, und da dann ferner in einer geniigend kleinen Umgebung
dieses Punktes die Metrik von M mit der durch M in D induzierten iiberein-
stimmt [1, S. 80], sichert dieses Resultat die Existenz lokaler isothermer Para-
meter auf M. Von diesem Ergebnis ausgehend beweisen wir in der vorliegen-
den Arbeit den folgenden globalen Darstellungssatz:

Satz A. Jede (offene oder geschlossene) orientierbare Mannigfaltigkeit be-
schrankter Kriommung ist isometrisch einem Raum von folgender Art:
Auf evner Rizmannschen Fliche R sei ein konform invariantes Linienelement

ds = e*® | dz | (2 = Ortsuniformisierende) (1.4)

definiert, wobei u sich als Differenz subharmonischer Funktionen darstellen lasse.
Zwet beliebrgen Punkten p und q auf R werde sodann der Abstand

o(p, q) = inf Jeu@ | dz | (1.5)
L L

zugeordnet. Dabei durchlaufe L die Gesamtheit aller stiickweise analytischen
Kurven, welche p mit q verbinden.

Umgekehrt stellt jeder derartige Rawm eine Mannigfaltigkeit beschrinkter
Krismmung dar.

Verzichtet man darauf, die Orientierbarkeit von M vorauszusetzen, so bleibt
dieser Satz trotzdem richtig, falls man unter R eine «verallgemeinerte Rik-
MANNsche Fliache» versteht, in deren Definition neben den konformen Nach-
barrelationen [10, S. 53] auch antikonforme zugelassen sind.

Aufler dem Beweis von Satz A enthilt die vorliegende Arbeit die Herleitung
einer rein potentialtheoretischen Definition der Kurvenlinge (Satz B). Wir
beginnen mit einigen Lemmata iiber subharmonische Funktionen, welche — wie
sich nachtriglich herausgestellt hat — zwar nicht alle zum Beweis der beiden
Sédtze benotigt werden, die aber fiir sich von Interesse sind.

2. Hilfssétze iiber subharmonische Funktionen

Lemma 1. In einem einfach zusammenhingenden Gebiet G der z-Ebene set
etne als Differenz subharmonischer Funktionen darstellbare Funktion wu(z) =
Uy (2) — uy(2) definiert. Wir setzen voraus, daf die kleinsten harmonischen Majo-
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ranten?) h, von u, und hy von u, tn Q existieren, ferner daf o;, ay < 2, wobes
oy = (@) und oy = py(Q@) die u, und u, zugeordneten Totalmassen bezeich-
nen. Dann ist

u — h %2 h
|j'j'e dxdy j'j'e dzdy | Smax(z , 2—%) .!';je dxdy (2.1)
wobei h(z) = h,(z) — hy(2). ==+
Beweis. Es gelten die Darstellungen von F. Rigsz [14]
u1(2) = hy(2) f g(z, C)duy(e) (2.2)
und
Uy (2) = hy(2) —Gfg(z, dﬂz(eg) ) (2.3)

wobei g die GREENsche Funktion von &, u, und y, die %, und u, zugeordneten
Massenverteilungen bezeichnen. In [6] wurde die Ungleichung

fferdady <
(e

2
y— j;je"dxdy (2.4)

bewiesen fiir @ = [|z| < 1]. (Sie folgt dort aus den Beziehungen (2.4), (2.5)
und (2.11), wobei aber die dortigen Funktionen » und 4 durch %/2 und 4/2
zu ersetzen sind.) Die Giiltigkeit dieser Abschétzung fiir beliebige einfach zu-
sammenhingende Gebiete G folgt daraus durch konforme Abbildung?). Somit
ist

(_fj'e"d:z:dy)2 = (jj exp{ gg(z d,ul(eg)} .

exp {lb—gﬂ— — % afg(z, $)du, (eg)] dwdy)2 <
H exp {h(2) +afg §)du, (eg) ydxdy - H exp {h(2) éfg(z, C)duy(ep)}dady <

2
- j(;jehdxdy j(;je“dxdy .

Daraus folgt
vdxdy — hdrdy = — E_!-_ hdxdy . 2.5
‘(’;je ray j(;_fe rey = — 5 J(;_fe ray (2.5)

Aus (2.4) und (2.5) ergibt sich die Behauptung.

) Wir verwenden Begriffe und Sitze der Theorie der subharmonischen Funktionen, wie sie
etwa im Buche von T. Rapé6 [11] dargelegt sind.

3) Damit ist gleichzeitig bewiesen, daB die Existenz des rechten Integrals in (2.4) diejenige
des linken zur Folge hat.

8 CMH vol. 84
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Lemma 2. Lapt sich die in einem Gebiete G der z-Ebene definierte Funktion u
als Differenz subharmonischer Funktionen wu(z) = u,(2) — uy(2) darstellen, so
gult

1

Iim — etdxdy = euzo) 2.6
r—>0 712 |z—£{|<r 4 ( )

fir jeden Punkt z, von Q, in dem (u,(2,), %3(2)) 7# (— o0, — o0) ist.

Beweis. Zuerst beweisen wir

1
lim inf —- etdrdy = ew) . 2.7
r—>0 nr? |z—‘£!|<r y = ( )
Diese Ungleichung ist trivial, wenn wu,(z,) = — oo (us(2,) endlich), also
e = 0 ist.
Ist wuy(2,) = — oo(u,(2,) endlich, also e**? = o), so gibt es zu jeder

vorgegebenen Zahl N einen Radius gy > 0 mit der Eigenschaft, dafl in
|z —2,| < oy die Ungleichung wu,(2) < — N erfiillt ist. ¢***¥ ist subhar-
monisch. Fiir 0 <7 < gy gilt somit

enry < L[ gntN dgdy <

vdady .
nr? |z-Zl<r mre |z—‘£.‘,"|<re a4
Da N beliebig grofl gewihlt werden darf, folgt daraus (2.7).
Seien nun wu,(7,) und wu,(2,) beide endlich. Mit k,, und %,, bezeichnen
wir die besten harmonischen Majoranten von u, und u, fiir |z —z,| <.
Sei h, = hy, — h,,. e ist subharmonisch. Somit gilt

. .. 1
ez = lim etr%) < lim inf —  ff ePrdady . (2.8)
r—>0 r—>0 TCT® |z—2zq|<7

Da wu,(2,) und wu,(2,) endlich sind, erfiillen die %, und u, zugeordneten Mas-
senbelegungen u, und u, die Beziehungen

Hm p (|2 — 20| <r)=1limu,(|2 — 25| <7r)=0.
r—>0 r—>0

Unter Anwendung von Lemma 1 erhélt man

1 Jf e*dxdy . (2.9)

1
lim inf — etr dxdy = lim inf
2 “” wey r—>0 7 |2—zg|<r

r—>0 TET® |z2—20|<r
(Es ist zundchst denkbar, dafl diese Beziehung die Form + oo = + oo an-
nehmen kann ; nachtriglich stellt sich allerdings heraus, daB dieser Fall nicht
auftritt.) (2.7) folgt aus (2.8) und (2.9).
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Wir haben noch

limsup —- ff etdzxdy < %) (2.10)
r—>0 TET® |z—2|<7
zu beweisen. Im Falle u,(z,) = — oo (u,(2,) endlich) sagt diese Ungleichung

nichts aus.

Sei also wu,(2,) endlich. Wir zeigen: Zu vorgegebenem ¢ > 0 gibt es ein
00(€) > 0 derart, daB fiir alle r < g,(¢)

—_nl,.z [J emdady < emvalo)+e (2.11)
|z—2o|<r

ist. Zu diesem Zweck betrachten wir die Rieszsche Zerlegung [14]

Ug (2) = hy(2) +1%” log|z — | d.uz(eg) (2.12)

fiir eine in G liegende Kreisscheibe K vom Zentrum 2, und einem Radius
< 1. Es ist dann

Y = hy(2o) — ua(z0) = ""1! log | Cldﬂz(eg) =0. (2.13)
Da hy(z) harmonisch ist, gibt es ein g, (¢) > 0 derart, daB fir |z —2,| <@,
hy(2) > hy(20) — -;- (2.14)

ist. Ferner behaupten wir die Existenz einer Zahl g,(¢) > 0 mit der Eigen-
schaft, daB fir |z — 2, | < o,

- §f exp {— flog|z — L dpg(eg)}dady <€ 2 (2.15)
TS \z=z9|<r

ist. Zum Beweise betrachten wir zundchst den Spezialfall, da u,(e;) aus einer

einzigen Punktmasse m in einem Punkte {, # z, besteht. (Wegen u,(29)> — oo

kann in 2, keine Masse liegen.) Dann ist m = — y/log | 2, — {,| und es wird

1 1 Y A
[f exp{—loglz—Cldus(ep)}dady = —; [f |z~ o[ ETn"bldady.

I |2 2y |<r 7" |z2—2ol<r
(2.16)

Aus einer elementaren Betrachtung ersieht man, dafl dieser Mittelwert stets
kleiner ist als

1

T l 2o — Co 12 |z—{ol<|z0—{0l

2eY

2+ yflog|zg— Lol
(2.17)

Y
| 2z — &, |108|Zo—Co| dxdy = —
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Aus (2.17) schlieBen wir, dal es eine Zahl d(e, y) > 0 gibt mit folgender
Eigenschaft: Fiir alle {,in |z — 2,| < § ist der Mittelwert (2.17) — und da-
mit a fortiori (2.16), und zwar letzterer fiir alle in Frage kommenden Werte
von r — kleiner als e"**%, Fiir {,e[|2z — 2| = 6]n K sind aber die mit-

L4
telnden Funktionen |z — £, |8lo—%! im Punkte 2, gleichgradig stetig. Da sie
ferner fiir z = 2, alle den Wert ¢” annehmen, folgt: Es gibt eine nicht von ¢,
abhiingige Zahl g,(y, ¢) > 0 derart, daB der Mittelwert (2.16) fiir alle Werte
r < g, kleiner als ¢’**? ist. Damit ist (2.15) fiir den Spezialfall einer Einzel-
masse bewiesen. (Dieser Beweis wire wesentlich einfacher ausgefallen, falls man
sich mit einem von {, abhingigen g, begniigt hitte. Damit lieBe sich jedoch
der nun folgende Ubergang auf allgemeine Massenverteilungen nicht durch-
fithren.)
Nun nehmen wir an, dal u, aus endlich vielen Einzelmassen

. PsY
log | zg — £

. Py
log |2y — ¢

_ Puw¥
log [ zg — & |

in §,,

| in ¢, | in &,...,

bestehe, wobei p,>0 (k=1,2,...,m). (2.13) ist &quivalent mit
m
2p, = 1. Eine Anwendung der HOoLDERschen Ungleichung [5, S. 140] fiihrt

k=1
uns auf den bereits behandelten Spezialfall zuriick. Fir r < g,(y, ¢) ist ndm-

lich

o J]_exp{— flog|z — {| dus(ep)}dady =

r? sz |<r

m Y
L 00wz — & R dady <

I |o_iol<r k=1
8

LB Jf |z O (R Tdndyme< T
nr? g=1 |2—zo|<r

Die Tatsache, dal p; nur von y und ¢ abhingt, ermoglicht es, die Einzel-
massen zu verschmieren und (2.15) fiir beliebige Verteilungen u, zu beweisen.
Dies sei dem Leser iiberlassen. Setzen wir g, = min [g,, p,], so folgt (2.11)
aus (2.12) bis (2. 15).

Ist u,(z,) endlich, so gibt es zu vorgegebenem &> 0 ein g (¢) > 0 derart,
daB fir |z — 2z, | <o

Uy (2) < uy(z0) + € (2.18)

ist. (2.10) ergibt sich aus (2.11) und (2.18).
Ist %,(z) = — oo, so gibt es zu jeder vorgegebenen Zahl N ein gy > 0
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derart, daB fiir |z — 2, | < oy
U 2) < — N (2.19)

ist. Dann folgt (2.10) aus (2.11) und (2.19). Q.E.D.

Lemma 3. Im Ringgebiet Q = [R < |z| <1], 0< R <1, sei etne als Dif-
ferenz subharmonischer Funktionen darstellbare Funktion w(z) = u,(2) — uy(2)
definiert. Wir setzen voraus, daf die kleinsten harmonischen Majoranten h, von
u, und h, von u, tn Q2 existieren und dafy die Totalmasse u,(Q2) endlich se:.
D gl liminf | e*|dz|=lim [ ¢*|dz], (2.20)

r—>1  |z|=r r—>1 |z|=r

wober h(2) = hy(2) — hy(2).

Bemerkungen. Die Voraussetzung u,(22) < oo darf nicht weggelassen wer-
den. Dies erhellt aus folgendem Beispiel : Sei

u(e) = blog |z — 1|+ fgle, )1 — ) 1, (2.21)

wobei g die GREENsche Funktion fiir das Innere des Einheitskreises bezeich-
net. Dann ist

h(z) = —3%log|z—1]. (2.22)
Mit den Bezeichnungen z =re®, o=1—7r und v=1—1t gilt fir ¢t =»
— 27t cos ¢ + r2t?

g(z t) = %log 2
— 2rtcos @ 4 ¢ (2.23)
_ (1 —17r2) (1 —¢?) ot
%log[l-{— — 27t cos ¢ + 2 g4|z—-1|2'
Man verifiziert leicht, da8 fiir § <r <1 und —a <S¢ =+ =
12l <iam1i<ipl+o (2.24
ist. Aus (2.22) und der linken Ungleichung (2.24) schlieBen wir, dafl
im f et|dz]|<oo (2.25)
r—>1 |z|=r
ist. Aus (2.21), (2.23) und der rechten Ungleichung (2.24) folgt
liminf | e*|dz| =liminf § [e"j'g z,t) (1 —1¢) %dt] | dz |
r—>1 |z|==r r—>1 |z|=2r
_— o1 — o) (2.26)
Zoﬂlnjz +l(p|5/2 ‘p'—’Jr'oo

Aus (2.25) und (2.26) ersehen wir, daBl in diesem Fall (2.20) nicht erfiillt ist.
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Beweis. Da A(z) harmonisch ist, ist |z |e?® subharmonisch, somit das
auf der rechten Seite von (2.20) stehende Integral (als Mittelwert zu inter-
pretieren) eine konvexe Funktion von log . Daraus folgt die Existenz des
Limes, dessen Wert endlich oder + oo sein kann. Es gelten die Rieszschen
Zerlegungen

uy(2) = by (2) — fg(z, §)du, (e) (2.27)
und q

Uy (2) = hy(2) -—-fj;g(z, $)dug(ey) , (2.28)

wobei nun g die GREENsche Funktion von 2 bezeichnet. Wir beweisen zunichst

lim [ exp{h(z) —;)fg(z, O)dus(ep)} | dz| =lim | et|dz|. (2.29)

r—>1 |z|=r r—>1 |z|=r

Die Existenz des linken Grenzwerts verifiziert man auf dieselbe Weise wie die-
jenige des rechten. Wir fiihren die Abkiirzung

v(2) = h(2) *{)Ig(z, E)duy (ef)

ein und definieren

1
= v(z), falls 1——n—§]z|<l,

v, (2) { = beste harmonische Majorante von v fiir das Gebiet

1

R<|z|<l——, falls R<|z|<1——,

n n
n=1,2,3,.... wv,ist subharmonisch in R < |z| < 1. Daraus folgt das-
selbe fiir |z|e™. Also ist | €’ |dz| eine konvexe Funktion von logr

|z|=7
(n=1,2,3,...). Trivialerweise ist
im [ e"|dz|=1lm [ € |dz]|.
r—>1 |z|=7r r—>1|z|=r

Fiir festes r gilt
lim § e™|dz|= [ er|dz].

n—>oe |z|=17r |zj=r

Aus diesen Aussagen schlieBen wir, dafl

im | et|dz| =lim | ev|dz]|.
r—>1 |z|=r r—>1|z|=r
Da anderseits A = v ist, kommt nur die Gleichheit in Frage. Damit ist (2.29)
bewiesen.
Der letzte und wichtigste Schritt im Beweis von Lemma 3 besteht in der
Verifikation von
liminf § e¥|dz| <lim | et|dz], (2.30)

r—>1 lz|=r r—>1|z|=r
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wobei zur Abkiirzung
W) = h(e) + § 9(e, Odpnaley (2.31)

gesetzt wurde. Natiirlich ist nur der Fall zu betrachten, da der rechte Grenz-
wert endlich ist.

Wire (2.30) nicht erfiillt, so gidbe es zwei Zahlen >0 und R* <1 der-
art, daf

§§ evdxdy = (1 +1n) [f erdady (2.32)

e<lz|<1 e<lzl<1

fir R* < p < 1. Dies wird uns auf einen Widerspruch fiihren.
Zunichst definieren wir

m = inf | et|dz]|
und R¥<r<l |2z|=1
M = sup f er|dz],

Rx<r<1 |z|<r

beides positive, endliche Zahlen.

. ; 1 1
Die Gebietsfolge o, = [1——%<|zl<l ——W] n=1,23,...,
besitzt folgende Eigenschaft: Jede Niveaulinie
V2 + 1
2, () = log —— fest 2.33
9(e, 8) =log —="— (¢ fest) (2.33)

schneidet hochstens zwei dieser Bereiche. Zum Beweis betrachten wir die-
jenige Halbebene H,, welche Q enthilt und begrenzt wird durch die Tan-
gente an den Einheitskreis im Punkte {/|{|. Durch direkte Rechnung weist
man nach, daf3 die Niveaulinie

V2 + 1
V2 —1

wobei g die GREENsche Funktion von H, bedeutet, hochstens zwei Gebiete
w, schneidet, woraus sich dieselbe Eigenschaft fiir die innerhalb (2.34) ver-
laufende Kurve (2.33) a fortiori ergibt. Ferner siecht man leicht ein, dal das
Innengebiet von (2.33) fiir | ¢ | > § stets einfach zusammenhingend ist.
Aus den bisherigen Definitionen schlieBen wir noch, daB} fir » > 1/(1 — RB¥)

3z, ¢) = log (¢ fest) (2.34)

{f erdady = —élnﬂ—“e"dxdy ; (2.35)

on4-1

Seien nun k£ und ! zwei natiirliche Zahlen, iiber die spéiter verfiigt werden
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wird. Vorldufig werde nur vorausgesetzt, dal % >1> 1/(1 — R*) sei. Wir
zerlegen 2 in die Bereiche

[ 1

i 1 1
E, = 1—--2—,-g|z|§1-—-——]

2k )’
i 1 1
i 1
Ezz 1— 2k+1$,2|<1]

und fiihren die Bezeichnungen
E=E UE,Uw,, a=p(2), o= pu ()

ein. Von nun an setzen wir noch voraus, dafl 7 so grof3 sei, dafl «; <1 ist.
Es gilt

J;.fe"’dxd?/ = g exp {h(z) +I!g(z, C)dps(eq) +E|'9(z, C)duy(ep) Ydzdy =

(2.36)
Cklﬁ”‘ exp {h(2) + fg(z, f)dﬂz(eg)}d“’dy )
wobei C,, =exp {a- sup g¢(z,{)}.
2€E;, €D
Es existiert ein Punkt Z ¢ £ mit der Eigenschaft, daB fiir alle (¢ £
K (2) = [f exp {h(z) + g (z, )} dady (2.37)

= gf exp {h(2) + xg(z, Z)}dzdy .

K (C) ist stetig auf E. Die Existenz von Z ist gesichert, falls wir nun noch
zeigen, daf fiir jede gegen einen Punkt des Einheitskreises konvergierende
Folge {{,}

lim K(,) = j'j'e"dxdy (2.38)
N—>o0
ist. Offenbar gilt
lim inf K (¢,) = “e"dxdy (2.39)
n—> oo

Sei &> 0 vorgegeben. Es gibt einen Index N (e) derart, daB fiir alle n > N
die Niveaulinie g(z, {,) = ¢ einfach geschlossen und in E, enthalten ist. Es
bezeichne I deren Innengebiet, A das Komplement von I beziiglich &,. Fiir
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n > N gelten die Abschitzungen

f§exp {h(z) + 19(z, {,)}dady < e [fetdxdy (2.40)
und A 4

{j exp {h(2) + o9(2, ¢,)}dxdy = e"‘“{f exp {h(z) + «;9,(2, ,)}dzdy

ole
< 22:3— " fjerandy, (2.41)
wobei g, die GREENsche Funktion von I bedeutet. (2.40) ist evident. In (2.41)
wurde zuerst die Beziehung g¢(z, {,) = ¢ + ¢,;(2, {,) verwendet, dann Un-
gleichung (2.4). Durch Wahl erst eines geniigend kleinen ¢, dann eines genii-
gend groBen N, konnen wir erreichen, dal sich die rechte Seite von (2.40)
beliebig wenig von j j ehdxdy unterscheidet, wihrend diejenige von (2.41)

gleichzeitig beliebig klem wird. Zusammen mit (2.39) ergibt dies (2.38).
Aus (2.36) und (2. 37) folgt unter Anwendung der HoLDERschen Ungleichung

[fevdzdy < CK(Z) . (2.42)
Es

Nun unterscheiden wir drei Fille je nach der Lage der — fortan mit L (Z)
bezeichneten — Niveaulinie

V2 +1
V2 —1
a) L(Z) liege ganz in E,. Aus (2.32) und (2.42) folgt

g(Z,Z) = log

1 1419
K(Z) =+ [fevdzdy = hdady . 2.43
( )—Okzi'fe = Cri )g;,'e v ( )
Anderseits gilt

V2 +1 o V§+1>az 2 "
K@ s () dedy + (2L g2 g ey

V2 4 1\= .
g(ﬁ”l) 5 o ) j'je dxdy .

Dabei bezeichnet I das Innengebiet von L(Z), 4 das Komplement von I
beziiglich E,. Zum Beweise von (2.44) zerlegt man K (Z) in die beiden Teil-
integrale iiber 4 und I und wendet auf diese die in (2.40) und (2.41) beniitz-
ten Abschitzungsmethoden an.

(2.44)

b) L(Z) liege teilweise in E,. Auf Grund der oben erwiahnten Eigenschaft
der Gebietsfolge {w,} schlieBen wir, da8 L(Z) in E,; U w, enthalten ist.
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Wir fiihren die Bezeichnungen

G,_:‘-Iﬂa)k s Gz——IﬂEz,
G,=E,— Q,, G-—UIG
ein. Es ist
ffexp {h(2) + v;,9(2, Z)}dzdy = 1+ Jfetdxdy + (V_2_+ 1) ffetrdxdy .
G Okl Eq vV G (2 45)

Zum Beweise integriert man zunéchst getrennt iiber £, und G,. Das erste
Integral wird wie in (2.43) abgeschitzt. Beim zweiten wird lediglich beniitzt,

daB in @, die Ungleichung g = log - erfiillt ist.

2
V2 —
Anderseits gilt

V2 +1\n 2
.’(;f exp {h(z) + o,9(z, Z)}dady = ( V§__}: 1) l pp— Gluj@ge"dwdy
V2 + 1 o V2 4+ 1\= . ,
+<V2—— ) g‘f dx dyé(Vi-l) 2“_ [j‘_fe dxdy—}—j'je dxdy]
V2 4 1\= (2.46)
é(V§— 1) [2 — ”ehdxdy—}— (1 4+ «p) j‘j'ehdxdy]

IA

V24 1\ 2 2Ma, . (V§+1az .
(Vé"._l) (2—a,+ m );Qe dwdy + V§_1> jetdwdy .

Der Beweis der ersten Ungleichung ist ganz analog zu demjenigen von (2.44).
Der zweite Schritt ist klar. Beim dritten wurde davon Gebrauch gemacht, daf3
o; < 1. SchlieBlich wurde noch die unmittelbar aus (2.35) flieBende Unglei-
chung

2M
h h
g‘lj'e dady < ge dxdy
verwendet.

c) L(Z) liege auPerhalb E,. Die Ungleichung (2.43) ist offenbar auch in
diesem Falle giiltig. Anderseits ist
V2 +1
e
Nun wihlen wir I gro genug, so daf}
(V§+ 1)az( 2 n 2 M a,
V2 —1

2 — q m

K(Z) < ( ) é:j'ehdxdy (2.47)

)<(1+77)% . (2.48)
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AnschlieBend verfiigen wir iiber k& derart, dai

Coa< (1 + ) (2.49)

ist. Aus (2.48) und (2.49) folgt, daB — je nach dem Fall, in dem man sich be-
findet — (2.43) und (2.44), (2.45) und (2.46) oder (2.43) und (2.47) einander
widersprechen. Damit ist (2.30) bewiesen. Lemma 3 folgt aus (2.27) bis (2.31).

3. Beweis von Satz A

Wir zeigen vorerst, dafl die durch den Satz von RESCHETNJAK eingefiihrten
Parameterbereiche eine Riemannsche Fliche R definieren. Sei D ein Gebiet
auf M, dem zwei solche Bereiche @ (in einer z-Ebene, Metrik e*@|dz|) und
G* (in einer w-Ebene, Metrik e**®)|dw|) zugeordnet sind. Es entsprechen
ihnen die Abbildungen @(D — @) und @*(D — G@*). Wir beweisen:
w = f(z) = @*(DP~1(z)) ist entweder konform oder antikonform. Ist M orien-
tierbar, so kann eine Klasse von konform zusammenhéingenden Parameter-
bereichen ausgezeichnet werden. Diese definiert R [10, S. 53].

Lemma 4. Zu vorgegebenen zye G (— } < pu(zy) =a<}) und ¢>0 gibt
es ein A(z,, €) mit folgender Eigenschaft: Ist 6 < A wund liegen die Punkte
Zdundz"in |z — 25| <6, sogilt

| 0o (7', 2") — A(zy, d)o (2", 2") | < edtt>. (3.1)

Dabei bezeichnet o, die Distanz beziiglich der Metrik |z — 2o |*|dz|. A ust
eine positive Zahl.

Beweis. In den Gebieten
G, = U[z| (20 + t(2 — 2,)) € G]
definieren wir die Metriken
0:(21, 25) = it;flj: exp {u(zy +t(z —2,))}|dz| (¢>0).

Dabei variiere L iiber alle von z;, nach z, fiihrenden Polygone in G,.
Wir beweisen vorerst: Zu vorgegebenem ¢ > 0 gibt esein 4(¢) > 0 derart,
daB fiir 0 <t < 4 die Ungleichung

l Qa(zlﬁ zz) - z(z(): t)@t(zla 22) l <é (3'2)

fir jedes Punktepaar z,, 2, in |2 —z,| <1 erfiillt ist. Dabei bedeutet 1
eine positive Zahl.
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Es bezeichne u, die der Funktion u (2, + t(2 — z,)) zugeordnete Massen-
verteilung. Wir definieren

piler) =ple,n[l & —2|<5)),
Pialey) = pelegn [1&—2]| =5]),
01:(21, 25) = HLlfI.f exp {flog |z — | d/uti(e{)} ldz| ,

wobei L simtliche z, mit 2z, verbindenden Polygone durchlaufen soll.

REsCHETNJAK hat folgendes Resultat bewiesen (Lemma 2 in [13]): Seien
pa(e), ua(e), pgle), ... wn der ganzen Ebene definierte, vollstindig additive Men-
genfunktionen, welche auferhalb eines festen, beschrinkten Bereiches identisch
verschwinden. Es konvergiere {u,(e)} schwach gegen u,(e), die Folge der Varia-
tionen {u} (€) + u, (e)} schwach gegen v(e). Es bezeichne

u,(2) = flog|z — {|du.ley) (n=0,1,2,...),

und es werde g, wie in Formel (1.2) definiert, wobei nun aber L itber simtliche
z, mit 24 verbindenden Polygone variiere. Dann streben die Metriken o, mit
wachsendem n gleichmdfig gegen o, auf jeder kompakten Menge F, welche
ketne Punkte L mit v({) = 1 enthdlt.

Da pu,, fiir jede Nullfolge von t-Werten schwach gegen die in z, liegende
Einzelmasse o konvergiert, existiert somit eine Zahl 4,(¢) > 0 derart, daBl

&
| 04:(21, 22) — 04(21, 22) | <"§‘ (3.3)

fiir 0 <t < 4, und alle Punktepaare z,, 2,in |z — 2, | < 4.
Zu vorgegebenem 7 > 0 - iiber welches wir spiter verfiigen werden — gibt
es ein A,(n) > 0 derart, daB fiir 0 <?¢ < 4, Folgendes gilt:

1. [|[z—2,] =4] c Gy; 2. die Ungleichung
| (B (20 + t(z — 2)) + flog |2 — £ | dusa(ep))
— (h(20) + Jlog | & | dusaler)) | <n

ist fir |2 —2,| < 4 erfiillt. Letzteres folgt unmittelbar daraus, dal — wie
man leicht nachpriift —

(3.4)

lim max |grad,(h(z% + t(z —2,)) + flog | 2 — ¢ | dusaley)) | = 0

t—>0 |z—2zp|54

ist. Wir fithren die Abkiirzung ein

Az, t) = exp { —h(z,) — flog | { | dusa(er)} - (3.5)
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Seien 2z, und 2, beliebige Punkte in [z —z,| <1, L' deren geradlinige
Verbindungsstrecke, L” irgendein von 2z; nach z, fiihrendes Polygon, das
nicht ganz in |z — 2| <4 liegt. Aus (3.3), (3.4) und (3.5) folgt fiir
0<t<min[4,, 4,]

S exp {u(z + tz — 7))} | dz|

2e—7 -1 P> ) 2e—" €
= = - —=].
— Az, ¢ (j‘x de = l(ZOa t) (2 2)
Es bezeichne f(t) die negative Totalmasse der Verteilung u,; unter

Ausschlufl der (eventuell negativen) konzentrierten Masse « in z,. Es ist

lim B(t) =0. Fir 0 <a <} folgt aus (3.4) und (3.5) unter Anwendung
t—>0

der HoLDERschen Ungleichung, daB

(3.6)

fexp {u(zo + t(z — 2,))} | dz | S-——?ﬂ————j}x—ﬂdx- 2" (3.7)

PR o =220, 0) 3 U VT R

Fir — } <o <0 ergibt dieselbe SchluBweise

jexp {u(zo + t(z — 20))} |d2| = 1(26 j'x“—ﬁdx < (3.8)
0;

(2 — ﬁ)l 20,1)

Fir £< 0,14 folgt aus (3.6), (3.7) und (3.8): Sei A4; so klein, dafl
B(4;3) <0,1. Ist 0<n<0,1 und 0<t<min[4,(g), 45(n), 44], so ist
fiir jede Wahl von z,, 2, und L” das Integral lings L” stets groBer als das-
jenige lings L'. Dann diirfen in der Definition von g,(z,, 2,) diejenigen Poly-
gone L von der Konkurrenz ausgeschlossen werden, welche nicht ganz in
|z —2,| <4 liegen. Also ist

Q¢ €XP {I mj?ga!:h (20 +t(z —2)) + flog|z— (]| dpa(er)]}

= 0¢ S 0yt ©XP {| maé‘i[h (2o +t(z — %)) + flog |z — | Apta (€)1}

woraus sich mit (3.4) und (3.5)
0ue™" = A2, 8) 0y = 04"
ergibt. Nun wihlen wir (0 <7 < 0, 1) so klein, daf}
&
| 04(%1, 23) — A(20,t) 04(21) 23) | <3 (3.9)

fir 0<t< A4 = min [4,(¢g), 45(n), 45] und beliebige 2z,, 2, in |2 — 2z, | < 1
ist. (3.2) folgt nun aus (3.3) und (3.9).

%) Wir nehmen an, daB das vorgegebene ¢ diese Bedingung erfiille.
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"

I s R
Setzt man z, = z, 4+ — ; “  und 2y = 2 + = . %0 soist
1 ! n
Q(z1322)=TQ(z ) % ) (310)
und
1
0u(?1, 22) = WQ“(ZI’ 2") . (3.11)

Aus (3.2), (3.10) und (3.11) folgt fir 0 <¢< 4 und z,,2,in |z —2,| <1
(das heiBlt ', 2" in |z — z,| <), daB
| 0a(2', 2") — %A (20, D)2, 2") | < et+e.

Damit ist Lemma 4 bewiesen.

Lemma 8. Zu vorgegebenen zoe G (— < pu(z)) =a<}) und ¢>0 gibt
es etn A(zy, €) >0 mit folgender Higenschaft: Ist 6§ < A wund liegen die
Punkte 2’ und 2" in |z — 2z, | < &, so st

| 0u (2, 2") — K (25, 8) 05 (f(2'), f(2")) | < e+ (3.12)
Dabei bezeichnen g, und o) die Distanzen beziiglich der Metriken |z — z, |*|dz|
und | w — f(2,) |*]| dw|. K 18t etne positive Zahl.

Beweis. Wir definieren

@(d) = max |f(z) — f(z) |

und le—2z| =2
p(6) = min |f(z) — f(z) | -

lz—2z| =8

Sei z, ein Punkt auf |z —z,| = & derart, daB | f(z) — f(2,) | = @(d) ist.
Sei ¢> 0 vorgegeben. Nach Lemma 4 gilt fiir geniigend kleine Werte von é

olt+o
| 14+ «

Lemma 4 darf auch auf &* angewandt werden, und da ¢(J) mit § gegen 0
strebt, ist fiir geniigend kleine §

[p(d)]+
1+ «

wobei w, = f(2,), wy = f(2;). Aus (3.13) und (3. 14) folgt

— A (24, 0)0 (24, 21) | << €1+ . (3.13)

— A% (wo, (9)) e (wo, wy) | < & [@(9)J*+*, (3.14)

. 0(2q, 21) A(z, 6) R T o (wy, wl)A*(WOa‘P(‘”)_ 1
R e T 10)) R R
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und, da 0 (2, 21) = e(wp, W) ,

Az, 8) [p(8)]+
0 T (wy, 9 (8)) 6552

—1. (3.15)
Setzt man

A(zy, 0)
A*(w,, 9(9)) °

so gilt fiir geniigend kleine Werte von 6 und jedes Punktepaar z', z” in
|z — 2| < 6

K(zo’ 6) -

| 0u(2',2") — K (2o, 0) 05 (', w") | | 0a(2',2") — Az, 8)e (', 2") |

(3.16)
+ e D | ! ') — A% (n, p (8D o' )

wobei w' = f(2') und w" = f(z"), somit p(z',2") = p(w', w"). Fir genii-
gend kleine 4 ist der erste Summand auf der rechten Seite von (3.16) nach

Lemma 4 < —g— o1+*  der linke Faktor des zweiten Summanden wegen (3.15)
< 26M*/[p(8)]**+*, der rechte Faktor des zweiten Summanden nach Lemma 4
< % [p(8)]**+*, somit der ganze Ausdruck < eé'+*. Q.E.D.

Lemma 6. Es existiert eine nach unten halbstetige ®), lokal quadratisch summsier-
bare Funktion H (z) mit folgender Eigenschaft: Jedem Punkt

ZoeG(— 1 <p(z) =a<})
kann eine Zahl A(z,) > 0 derart zugeordnet werden, daff aus | { — z,| < A(z,)
wtets F(8) — f(z0)

£ —2

< min H (z) (3.17)
l2—2| <18 — 20l

folgt.
Beweis. Mit 2z’ = 2z, und 2" = 2, %) lautet (3.12)

s [p )T+
l 1 + - K( 03 6) 1 + o
Sei z, ein Punkt auf |z —z,| = 6 derart, daB | f(z,) — f(z,) | = 9 () ist.
Mit 2’ = 2z, und 2" = z, wird (3.12) zu
Ji+o 6)]1+a
1 4+ « 1 4 «

%) Der Funktionswert H = -+ oo wird zugelassen.
%) Bezeichnungen des vorhergehenden Beweises.

< gt (3.18)

K( 0, 6) [‘!p(

< edt+e (3.19)
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Aus (3.18) und (3.19) folgt

lim K (z,, 6) (‘P(‘”) — lim Kz, 9) (%‘”)’”: 1.

8—->0
Somit
¢ (9)
lim ——=—=1. 3.20
o p @) e
Das dem Parameterbereich |w — w,| < ¢(8) entsprechende Stiick von

M ist enthalten in demjenigen, das |z — 25| < 6 entspricht. Ein Fldchen-
vergleich liefert 7)

ff  exwdidy < [f e@dxdy (3.21)
[0 —wo | < ¥(3) lz—2l<8 (w=¢&-+1in).
Aus (3.20) und (3.21) schlieBen wir, daB (3.22)
1
2 5t §§ erdady
lim sup (2_(_6_)_) =]jmsup(w( )) < lim sup ln 2=z 59 .
8—>0 0 3—>0 8—>0 e*dEdn

7Y |y —ws[<p(®

Wir machen die (lokal stets zulidssige) Annahme, daf3 die in den Darstellun-
gen = u, — u, und u* = u} — u; auftretenden subharmonischen Funk-
tionen nicht positiv seien. Wir betrachten eine in einer Umgebung U von z,
giiltige RiEszsche Zerlegung [14]

Ug(2) = hy(2) + flog |z — | dus(ey) (3.23)
und definieren u,;(¢;) = ua(e, N [| { — 2| < 34]) und
Mza(eg) = paleg N [l —2] =34)]) .

Es sei U so klein gewihlt, daB die Gesamtmasse der Belegung u, kleiner
als 4 ist ; ferner sei d so klein, daBl [|z —2,| =d6]c U,

B=pu(]l—2|<3d)<?

und
max hy(z) — min hy(z) <-282
lz—z|<0 2 — 20| < 2
ist. Es bezeichne a einen Punkt auf |z — 2,| = 8, in dem %, sein Maximum
beziiglich |z — 2, | < 8 annimmt. Aus (3.23) folgt
ws(a) S hy(a) + flog | a — ¢ | duse(eg) + Blog (40).  (3.24)

7) Bei geniigend reguléren Metriken ist es klar, daB diese Integrale den Flécheninhalt dar
stellen; durch Approximation geht man auf aligemeine Metriken iiber.
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Aus [ — 20| =230, |a—=2,| =0 und |[z—2z,| < folgt |a —C|=2|z—C].
Daraus und aus obigen Annahmen schliefen wir von (3.23) auf

ff ededy < [ e ™dady

[z—20|<8 lz—20|<8
< 4exp {— 2hy(a) — 2 [log | & — ¢ | duaale)}- (3.25)
| ”;gaexp {—2flog|z— (]| dﬂzi(eg)}dxd?/

Mit Hilfe der HoLpERschen Ungleichung zeigt man, dafl das letzte Integral
dann seinen groten Wert annimmt, wenn die Masse B in z, konzentriert ist;

228
er betragt 7;6_“ B Wir erhalten damit aus (3.24) und (3.25)
1
2u —2uz(a)
oy 'z_};{‘gae dxdy < 10e : (3.26)
Sei b ein Punkt auf |w — wy| = @(8), in dem u}(w) sein Maximum be-

ziiglich |w — w, | < ¢(8) annimmt. Wir wiederholen die obige Uberlegung
in der w-Ebene, wobei wir u,(z) durch u%(w) und in den vor Formel (3.25)
stehenden Betrachtungen ¢ durch ¢(d) ersetzen. In der (3.25) entsprechen-
den Beziehung integrieren wir hingegen nur iiber |w — w,| < 9 (d). Unter
Beniitzung von (3.20) erhalten wir fiir geniigend kleine ¢ die Abschéitzung

1
we[p(6)]? jw— w{{g v(3)

Mit Anwendung der ScEwARrzschen Ungleichung

@ly@)Pe < [ emtdedy [f e ™tdedy
jw —wo | < v (8) | w— wo | < (8)

e~ W dEdy < 10e~2f O,

folgt daraus
1

1
e whdEdy = ————— et dEdy = — ef ®
APOT 10— i< v’ T Z ZFGIT oo il <y’ T 2600 = 7541
(3.27)
Definiert man
H(z) =1+ 10 exp {— uy(2) — uy (f(2))} , (3.28)

so folgt aus (3.22), (3.26), (3.27) und (3.28), dafl (3.17) fiir ein geniigend
kleines A4 (z,) > 0 erfiillt ist. H ist nach unten halbstetig.

Sei K eine abgeschlossene Kreisscheibe vom Mittelpunkt z, derart, dafl
i (K) + py(K) < 1. uy(2), uy(2), u;(w) und uj(w) sind Grenzfunktionen
monoton fallender Folgen von stetigen Funktionen: {uy,}{ %, wund
{ug,} V uy auf K; {ul} | uf und {u};} | u; auf f(K). Durch Anwendung

9 CMH vol. 34
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der ScawaRrzschen Ungleichung erhilt man
(i‘;f exp {— 2uy,(2) — 24y (f(2) }dwdy)?
= Q exp {— 2, (2) — 2u,,(2)}dady

’ _geXp {21, (2) — 2uy,(2)}-exp {— 4u>1kk (/(2)) }dzdy .

Lafit man nun n» — oo streben und beriicksichtigt, daB fiir jede Borelmenge
ec K

ffedxdy = [fer*d&dn

e f(e)

ist — beide Integrale stellen denselben Flicheninhalt dar -, so folgt
(If exp {— 2us(2) — 2u3; (/ (2) Ydwdy)®

< [fe T dady Jf exp (2ul ) — 20} (w) — 4uly (w)}dédy

Also, mit £k — oo,
(g exp {— 2u,(2) — 2u; (f(2)) }dwdy)®

< “‘e—zul —2"2dxdy . j‘j‘ e—-zui(-—zug' dfd?? )
K 1(K)

Nach Lemma 1 in [8]ist [ e *“1 7" |dz| < oo.
Rand K
Bezeichnet I einen abgeschlossenen, stiickweise analytisch berandeten Be-
reich derart, daf K c I wund pu,(I)+ p,(I)<1 ist, so gilt ebenso

f e |dw| < co. Aus (2.2) in [6] folgt, daB die rechte Seite der letz-
Rand 1

ten Ungleichung endlich ist. Somit ist A2 summierbar. Q.E.D.

Lemma 7. Auf jedem Rechteck R[a, < x < a,, b, <y < b,], das keine
Einzelmassen vom Betrag = } enthdlt, besitzt w = f(2) = &(z, y) + in(x, y)
folgende Eigenschaften :

(A) f ist absolut stetig tm Sinne von TONELLI,
(B) die (gemdf (A)) fast tiberall auf R existierenden und mefBbaren partiellen
Ableitungen f, und f, sind quadratisch summsierbar,

(C) entweder gilt &, =1n, und &, = — 1, fast dberall auf R, oder es ist
£, = —mn, und &, =1, fast iberall auf R.
Beweis. Sei oy < x <y, a3 <2 <f,,... ein System zueinander fremder

Teilintervalle von [a,, a,]. Aus Lemma 6 schlieBen wir, daf3
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Bk
flf(ﬂm@/) — How» y) | éffkﬂ(way)dx- (3.29)

Daraus folgt fiir die totale Variation von f als einer Funktion von x im Inter-
vall [a,, a,]

Valy, s, a5)) < H(z, y)da . (3.30)

as

Da H auf R summierbar ist, folgt aus dem Satz von FusInt, da} {H (z,y)dx
31

fiir fast alle y aus [b,, b,] existiert und eine summierbare Funktion von y

darstellt. Damit fithren (3.29) und (3.30) zu folgenden Aussagen: (1) f ist
absolut stetig als Funktion von z auf [a,, a,] fiir fast alle y aus [b,, b,]; (2) V,
ist eine summierbare ®) Funktion von y auf [b,, b,].

Entsprechende Aussagen gelten, wenn x mit y vertauscht wird. f ist stetig
auf R. Damit ist (A) bewiesen.

Aus Lemma 6 schliefen wir ferner, daB | &,|% [#,|% ] &, ]2 und |9, |2
(soweit sie existieren) nicht grofler als H2 sind. Daraus folgt (B).

Sei f zum Beispiel orientierungstreu. Wir betrachten einen Punkt z,, in
dem ¢&,,7n,,&,,n, existieren und u(z)) = « = 0 ist; fast iiberall auf R ist
dies erfiillt. Aus

p(h) = | fzo+ k) — f(20) |, | f(20 + ¢R) — f(20) | = @(R) (h > 0)
folgt
lim sup (M>2§ &+, £ 4 72 < liminf (M>2 (3.31)
h—>0 h h—>0 h
Aus (3.20) und (3.31) erhilt man
() (@) _
,}l_’fo(T> — :1_130(7—) —E =t (3.32)

Ist &, =9, = &, =%, =0, so sind die CAuCHY-RIEMANNschen Differential-
gleichungen trivialerweise erfiillt. Andernfalls ist der Grenzwert (3.32) — von
nun an mit o% bezeichnet — positiv und es gilt wegen (3.15)

lim K (z,, h) =L. (3.33)
h—>0 o
Sei f(2o) = wy, [(20 + h) = wo + re®, f(zy + th) = w, + 0€*®. Aus (3.32)
folgt
lim— —lm £ —=¢. (3.34)

>0l nsoh

8) Die MeBbarkeit von Va folgt aus der Stetigkeit von f [12, Seite 426).
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Mit 2’ =2z, -+ A& und 2" = 2z, + th ergeben Lemma 5 und (3.33)

V2h — (—i—-—{— 0(1)) - ¥Vr2 4 o2 — 2rp cos ( — @) = o(h) . (3.35)

Aus (3.34) und (3.35) schlieBt man unter Beniitzung der Orientierungstreue,
dafl

lim (& — ¢) = —, (3.36)
h—>0 2
und aus (3.34) und (3.36)

Ea: — lim E(zo + h) - 5(20) — lim rcos g
h—>0 h h—>0 h

esing _ . n(z + k) —n(z) _

el lim .
hs>o b h—>0 h s
Analog beweist man &, = — 7,. Ist f nicht orientierungstreu, so kann man

zum Beispiel obige Betrachtung auf ?z & — in anwenden. In jedem Fall
ist (C) erfiillt.

Aus Lemma 7 folgt nach einem Resultat von C. B. MorreYy [9, S. 141,
Lemma 4], daB3 — abgesehen von einer aus isolierten Punkten bestehenden Aus-

nahmemenge — entweder f oder f_ konform ist. Da f topologisch ist, sind iso-
lierte Singularititen hebbar: G wird durch f konform oder antikonform auf
G* abgebildet.

Wir beweisen ferner, daB der Wert von g unveréndert bleibt, falls L in (1.2)
iiber alle stiickweise analytischen Verbindungskurven in @ — statt nur iiber
die Polygone — variiert. Wiirde dies nicht zutreffen, so gibe es ein Punktepaar
2., 23 € @ und eine stiickweise analytische Verbindungskurve y derart, dal

Jer|dz| < o(z1,2) . (3.37)
Y
Seien I,,I,, Iy JorDANkurven (Innengebiete @,,G,, G,) derart, daB

yc Gy,(GLUT) c Gy, (G UT,) c Gy und (G3 UTL) c G. Sei u=u, —u,
eine Darstellung von u als Differenz von subharmonischen Funktionen. Es
bezeichne u, diejenige in G, subharmonische Funktion, welche auf G,U I

mit %; und in Q3 — (G4 U I'}) mit der besten harmonischen Majorante A,

von %, in diesem Gebiet iibereinstimmt. Sei v»,, die nach dreimaliger Mitte-
. . . . 1

lung iiber eine Kreisscheibe vom Radius — (mn=1,2,3,...) aus wu, ent-

stehende Funktion. Analog werde v,, definiert. v, = vy, — v,, ist definiert

und zweimal stetig differenzierbar in einem Gebiete 2,, welches fiir n — co
4
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gegen @, strebt. Da v,, | 4; und v,, | 4, in G,, gibt es Zahlen C und D
derart, daB in G,

Ce* e <De ™ (n—1,2,3,...). (3.38)

Wir diirfen annehmen, daf3 sich auf y kein Punkt ¢ mit u,() + us(f) =1
befindet ; denn y enthilt jedenfalls einen Teilbogen, auf dem diese Voraus-
setzung erfiillt ist und fiir den (3.37) immer noch gilt. Dann ist nach dem
LEBESGUEschen Grenzwertsatz

lim j’et”|dz|—j'e“|dz| (3.39)

n—>o0 y

denn De™" ist lings ¥ summierbar (Lemma 1 in [8]).
Fiir geniigend grofle Werte von n ist v, auf G; — G, harmonisch. Dann
gelten in @, die Rieszschen Darstellungen

urp(2) = hi(2) + flog|z— ¢|duz(ey),
”kn(z) kn(z + flog |z — { | dvinley)
up(2) = hy( ) —J9(, L) dpi (er)

vkn(z) = h’,';(z — §9(z, O)dvraley)

(3.40)

wobei g die GrREENsche Funktion des Gebietes G, und %; die Losung des
DiricHLETSChen Problems fiir @, mit den Randwerten I~zk auf I'y bezeichnen
(k=1,2). Mit den Abkiirzungen h'=h, —h;, u' =u; —uy, hy="rhy, —hs,,
Vp = Vi, — Yy, gilt:

(A) {v,(e)} konvergiert schwach gegen u'(e);
B) {h,(2)} konvergiert in G, gleichmdifig gegen h'(2).

(A) ist bekannt (F. Riesz [14]). Aus (3.40) folgt

I hn(z) - h,(Z) I ——£~ II(P(Z, C)dll',(eg) - §¢(29 C)d”n(eg) I ’ (3°41)

wobei ¢(z,%) =g¢(2,¢) + log|z — ¢|. Wird 2z als Parameter — der in G,
variieren darf — aufgefaBt, so ist die Funktionenschar ¢(z,{) auf jedem
kompakten Teilbereich von @, gleichgradig stetig beziiglich ¢. (Dies folgt aus
der HarnAckschen Ungleichung, da die Funktionen ¢ gleichméBig beschrinkt
sind.) Unter Beniitzung von (A) schlieen wir, dafl die rechte Seite von (3.41)
fiir n — oo gleichmiBig in 2 gegen 0 strebt.
Wir definieren
Qn(zl: zz) = inffe”n I dz I ’
LL
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wobei alle z; mit z, verbindenden Polygone L in 2, zugelassen werden. Fer-
ner sei

we) = flog|z—¢|du'ey)
w,(2) = flog|z— [dv,(e),
r(z',2") =inf fe¥ |dz |,

LI

r,(2',2") = inf fe*" | dz |,
LL
wobei nun L die Menge aller von 2’ nach 2” fiihrenden Polygone der Ebene
durchlaufe. Aus (A) und dem oben erwihnten Lemma von RESCHETNJIAK folgt
lim r,(z',2") =r(2',2") (3.42)
Nn—> 00
fiir alle Punktepaare z', 2".

Sei z* ein beliebiger Punkt in G, , welcher die Bedingung u, (2*) + u,(2*)< 1
erfiillt, und sei K eine in G, liegende Kreisscheibe vom Mittelpunkt z*, so
klein, daB3 u,(K) + us(K) < 1. Es gibt eine Umgebung U, von z* mit fol-
gender Eigenschaft: Fiir jedes Punktepaar z', 2" ¢ U; diirfen in der Defini-
tion von p,(2', 2") diejenigen Polygone L von der Konkurrenz ausgeschlossen
werden, welche nicht ganz in K liegen. Zum Beispiel kann U, durch die Ge-
samtheit aller Punkte definiert werden, deren dreifacher Abstand von z* in
der Metrik De "2 |dz| Kkleiner ist als der Abstand zwischen 2* und dem
Rande von K in der Metrik Ce* | dz|.) Wegen (3.42) existiert eine entspre-
chende Nachbarschaft U, fiir die Gesamtheit der Metriken 7, ?). Fiir einzelne
Metriken ist die Existenz solcher Umgebungen trivial; wir bezeichnen die p

4
und r zugeordneten mit U, und U,. Fiir jedes Punktepaar z',2" e U = N U,

. -=1
gilt ’
Mnrn(z,> 2”) = Qn(z” Z”) = Mnrn(z,’ Z”)
und
mr(z’, Z”) < Q(Z,, z//) < MT(Z,, Z”) :
wobei
m, = min e M, = max ¢
z€K 2€K
m =mine?® und M = maxe¥’®@ .
z€eK 2€K
Daraus folgt
m, Ta(@,2") _ ea2,2") _ M, 1.(z,2") (3.43)

M ri,2") T p(',2") T m r(z,z2")

Wegen (B) kann bei vorgegebenem ¢ der Radius von K so klein gewihlt wer-

9 {rp(2’, 2")} konvergiert gleichmiBig fiirr 2, 2" € K.
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den, daB 71’:; >1—-2 und JZ" <1 +—;— fiir alle ». Aus (3.42) und

2
(3.43) folgt dann

(I —e)o(2',2") =¢,(2',2") = (1 + ¢)e(@',2") (3.44)

fiir geniigend grofe » und beliebige z', 2" ¢ U. Durch Anwendung des BoREL-
LeBEscuEschen Uberdeckungssatzes schlieBt man: Zu vorgegebenem &> 0
gibt es ein A(e) >0 und ein N(¢) < oo derart, dafl aus z', 2" ey und
|2 —2" | < 4 fir n > N stets (3.44) folgt. Daraus und aus der Definition
der Kurvenlinge [1, S. 69] folgt, daBl (1 — &)l <1, < (1 + &)I, wobei [ und
[, die Lingen von y in den Metriken ¢ und g, bezeichnen. Da ¢ beliebig klein
gewihlt werden kann, ist somit

| =1lim [, =lim fe’|dz]|. (3.45)
n—> oo n—> 00 y
Aus (3.39) und (3.45) ersieht man, dafl die linke Seite von (3.37) I darstellt.
Da aber [ = p(z,,2,) ist [1,8S. 32], erhilt man damit einen Widerspruch.
Q.E.D.

Es existieren somit eine RieMaNNsche Fliche R und eine Metrik (1.5) auf
R derart, dafl die so definierte Mannigfaltigkeit M' zu M lokal isometrisch
ist. Da aber beide Metriken innere sind, zieht die Isometrie im Kleinen die
Isometrie im Groflen nach sich [1, S. 33, Fullnote 3]. Damit ist der erste Teil
von Satz A bewiesen. Der zweite Teil folgt unmittelbar aus dem entsprechen-
den lokalen Resultat von RESCHETNJAK.

4. Potentialtheoretische Definition der Kurvenlinge

In einem Gebiete G der z-Ebene sei eine Metrik (1.2) definiert, wobei u(z)
sich als Differenz von subharmonischen Funktionen % = u, — u, darstellen
lasse. Sei I" eine JorDANkurve, welche samt ihrem Innengebiet 2 zu G gehort.
Seien k, und h, die besten harmonischen Majoranten von %, und %, in ,
h = h, — h,. Wir wihlen einen Punkt z,eQ. Sei z = ¢({) eine konforme
Abbildung von || <1 auf 2, welche { =0 in z =z, tberfiihrt. Es be-
zeichne y, das Bild des Kreises || =7r (0 <7 < 1).

Satz B. Der (stets existierende®) und von der Wahl von z, unabhdngige)
Grenzwert

i =1lim [et@ |dz]| (4.1)

r—>1 yp

10) Der Wert + oo kann angenommen werden.
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18t gleich der Linge l von I' in der Metrik (1.2) nach der ALexanprowschen De-
finition [1, S. 69].

Beweis. Mit Anwendung von Lemma 3 ist

hmmffe“""!dZI“hmmf J exp {u(gp()) +1log| ¢’ ()1} dL]|

r—>1 9y —1 [il=r (4.2)
=lim | exp {h(p({)) +1log|¢'({) [} |dl|=1lm [e® |dz],
r—>1|l]|=r r—>1 yy

woraus sich zundchst die Existenz von A ergibt. Die links in (4.2) stehenden
Integrale stellen — wie in Abschnitt 3 fiir beliebige analytische Kurven y, be-
wiesen wurde — die Lingen [, der Kurven y, in der Metrik (1.2) dar. Da
lim infl, =1 ist [1, S. 70, Satz 5], folgt aus (4.2)

r—>1
Ax=1. (4.3)

Es existiert eine Folge {£2,} von einfach zusammenhingenden Gebieten in
der z-Ebene mit folgenden Eigenschaften: (1) z,e2, (n=1,2,3,...);
(2) im 2, = 2; (3) der Rand I, von 2, ist ein Polygon und es gilt

n—>

ferlds| <l+— (n=1,2,3,...). (4.4)
Iy

Sei z=¢,({) eine konforme Abbildung von |{|<1 auf Q,, welche
{ = 0 in z = 2, iberfiihrt, und es bezeichne y, das Bild des Kreises || = 7
(m=1,2,3,...). Seien h,, und h,, die besten harmonischen Majoranten
von u, und %, in Q,, h, = h,, — h,,. Esist [6, S. 241]

feh"]dzISj'e“Idz| O<r<l; n=1,2,3,...). (4.5)
rm
Wir behaupten ferner, da8 fiir eine Teilfolge {n,} von {n}
lim je"nkldzl——jehldzi (4.8)

nf—> 0 Ypny,

(0 < r < 1) ist. Zunéchst zeigen wir, daf3
lim &,(z) = A(2) (4.7)
n—>

ist, wobei die Konvergenz auf jedem kompakten Teilbereich K, von 2 gleich-
miBig erfolgt. Aus den Darstellungen

%(2) = h(2) -fg §)du(ey) (2 9)
und

%(2) = h,(?) '—b"gn(z’ C)dﬂ(eg) (ze,),
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in denen ¢ und ¢, die GREENschen Funktionen von £ und £, bezeichnen,
folgt
Brein (4.8)
+ |n fg 9(z, O)duler) | + Igf gn (2, O)duley) |

n—Q

Fiir n — oo streben — gleichméBig fiir z ¢ K, — die auf der rechten Seite von
(4. 8) stehenden Terme gegen 0. Daraus folgt (4.7).

Aus bekannten Sitzen iiber normale Familien und konforme Abbildung
(vgl. etwa [3, S. 177, 180, 182] und [2, S. 66]) schliet man, daf} fiir eine Teil-
folge {n,} von {n}

lim @, () = ¢({) (4.9)

und > o
lim g1, () = ¢/ (2) (4.10)

Ngp—> 00

ist, wobei die Konvergenz auf jedem kompakten Teilbereich K, von |[{| <1
gleichméBig erfolgt. Da ¢’ () # 0 ist, folgt aus (4.10)
lim log | ¢, (0) | =log | ¢'({) |, (4.11)

ng—> o

gleichmifig auf K,. Unter Beniitzung der Ungleichung

| ong, (@ (8)) — BA@ (D) | = 1Py (@ (0)) — B (@ (D) | + [ 2 (@ (8)) — B (9 (0)) |
schlieBt man aus (4.7) und (4.9), daBl - gleichmiBig auf K, -

lim hnk ((pnk(C)) = h(‘P(C)) . (4.12)

ng—»> oo

Aus (4.11) und (4.12) folgt
Hm  f exp {hn, (pn;(0)) + log | @p, (0) [} [ dC |

ng—>ow |{|=r

= [ exp {h(p(0)) + log|¢'(0) [} dl].

[él=r
Dies ist d&quivalent mit (4.6). (4.4), (4.5) und (4.6) ergeben

A=s1. (4.13)
Satz B folgt aus (4.3) und (4.13).

Von der Annahme, daf3 das Innengebiet 2 von I" zu G gehért, kann man
sich befreien, indem man an Stelle von 2 ein in @ liegendes Ringgebiet be-
trachtet, dessen eine Randkomponente von I” gebildet wird. Die y, sind dann
durch diejenigen Kurven zu ersetzen, die bei einer konformen Abbildung auf
R <|¢|<1 indie Kreise | {| == r iibergehen.
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Ist I' nicht geschlossen, so ergdnzt man zunichst I" zu einer geschlossenen
Kurve, integriert dann aber nur iiber die I" entsprechenden Teilbogen der y,.

Satz B gibt die natiirliche potentialtheoretische Definition der Kurvenlinge
auf Mannigfaltigkeiten beschrinkter Kriimmung. Mit ihrer Hilfe ist es nun
zum Beispiel moglich, den funktionentheoretischen Beweis der isoperimetri-
schen Ungleichung auf gekriimmten Flichen [6, 7] so auszubauen, daf3 das
Resultat dem entsprechenden — mit ganz andern Mitteln hergeleiteten — Satz
von ALEXANDROW [1, S. 416] dquivalent wird.

Herrn Professor PrLuGER verdanken wir folgenden Hinweis: Die Winkel-
treue der Abbildung w = f(z) folgt direkt aus (3.20) durch Anwendung eines
Satzes von D. MENCHOFF (Sur une généralisation d’un théoreme de M. H. BoHR,
Mat. Sbornik 44 (1937) 339-354, p. 340), der von F. W. Genring (The defini-
tions and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn.,
im Druck) kiirzlich neu bewiesen, verschirft und auf quasikonforme Abbil-
dungen verallgemeinert wurde.
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