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Zum potentîaltheoretischen Âspekt der ÂLEXANDROWschen

Flâchentheorie

von Alfred Huber, Zurich

1. Einleitung

Bekanntlich kônnen auf jeder geniigend regulàren Flàche im kleinen
isotherme Parameter eingefûhrt werden. In neuerer Zeit haben mehrere Autoren

- wir erwâhnen A. Wintner [15, 16], S. S. Chern, P. Hartman und A.
Wintner [4], I. G. Reschetnjak [13] - sieh zum Ziel gesetzt, die Existenz
eines solchen Koordinatensystems unter môglichst schwachen Voraussetzun-

gen herzuleiten. Insbesondere hat Reschetnjak folgendes Résultat gefun-
den1):

Sei M eine Mannigfaltigkeit beschrânkter Krûmmung im Sinne von A. D.
âlexandrow [1, S. 493], und sei D ein kreishomoomorpher Bereich in M,
dessen Berandung eine Schwenkung von beschrânkter Variation [1, S. 358] 6e-

sitzt. Dann existieren ein Gebiet 0 in der komplexen z-Ebene, eine in G défi-
nierte, reellwertige Funktion u(z) sowie eine topologische Abbildung 0 von G

auf D derart, da/S folgendes erfilllt ist:
1. Es gilt die Darstellung

u(z) h(z) + Jlog | z - f | dfz(e^) (1.1)
o

wobei h eine in G harmonische Funktion, p eine daselbst definierte vollstàndig
additive Mengenfunktion darstellt.

2. 0 ist eine Isometrie, falls wir in D die durch M induzierte und in G die
Metrik

)|^| (1.2)
L L

betrachten, wobei ûber aile zx mit z2 verbindenden Polygone L in G variiert wird.
3. Die Mengenfunktion /u entspricht bis auf einen konstanten Faktor der

ALEXANDRowschen Krûmmung o>. Es ist nâmlich

e)) (1.3)

fur jede BoREimenge e in G.

*) Fur Begriffe und Resultate der ALEXANDBOWSchen Flâchentheorie sei der Léser auf [1]
verwiesen. Dort (Seite 503 ff.) befindet sich auch eine kurze Orientierung ûber das Resohbtnjak-
sche Ergebnis.
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Umgekehrt erweist sich jede Metrik der Form (1.2), wobei u(z) als Differenz
subharmonischer Funktionen - also lokal in der Form (1.1) ~ darstellbar ist,
als Metrik beschrânkter Krilmmung.

Da jeder Punkt von M als innerer Punkt eines solchen Bereiches D aufge-
fa8t werden darf, und da dann ferner in einer genûgend kleinen Umgebung
dièses Punktes die Metrik von M mit der durch M in D induzierten iiberein-
stimmt [1, S. 80], siehert dièses Résultat die Existenz lokaler isothermer Para-
meter auf M. Von diesem Ergebnis ausgehend beweisen wir in der vorliegen-
den Arbeit den folgenden globalen Darstellungssatz :

Satz A. Jede (offerte oder geschlossene) orientierbare Mannigfaltigkeit
beschrânkter Krîlmmung ist isometrisch einem Raum von folgender Art:

Auf einer RiEMANNSchen Floche R sei ein konform invariantes Linienelement

ds eu{z) \dz\ (z Ortsuniformisierende) (1.4)

definiert, wobei u sich als Differenz subharmonischer Funktionen darstellen lasse.

Zwei béliebigen Punkten p und q auf R werde sodann der Abstand

g(p,q) inf fe"<*) \ dz \ (1.5)
L L

zugeordnet. Dabei durchlaufe L die Gesamtheit aller stûckweise analytischen
Kurven, welche p mit q verbinden.

Umgekehrt stellt jeder derartige Raum eine Mannigfaltigkeit beschrânkter

Krûmmung dar.
Verzichtet man darauf, die Orientierbarkeit von M vorauszusetzen, so bleibt

dieser Satz trotzdem richtig, falls man unter R eine «verallgemeinerte Rie-
MANKsche Flâche» versteht, in deren Définition neben den konformen Nach-
barrelationen [10, S. 53] auch antikonforme zugelassen sind.

AuBer dem Beweis von Satz A enthâlt die vorliegende Arbeit die Herleitung
einer rein potentialtheoretischen Définition der Kurvenlânge (Satz B). Wir
beginnen mit einigen Lemmata uber subharmonische Funktionen, welche - wie
sich nachtrâglich herausgestellt hat - zwar nicht aile zum Beweis der beiden
Sàtze benôtigt werden, die aber fur sich von Interesse sind.

2. Hilfssâtze ûber subharmonische Funktionen

Lemma 1. In einem einfach zusammenhangenden Oebiet 0 der z-Ebene sei
eine als Differenz subharmonischer Funktionen darstellbare Funktion u(z)
ux(z) — u2(z) definiert. Wir setzen voraus, dafi die kleinsten harmonischen Majo-
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ranten*) hx von ux und h2 von u% in G existieren, ferner dafi <xt, a2 < 2, wobei

<*i iWi(^) und a2 f*z(&) die ui und u2 zugeordneten Totalmassen bezeich-

nen. Dann ist

max[~^~> 2-a )mUehdxdy (2-*)
(z ~~~ i>* I ifj\

wobei h(z) hx(z) — A2(z).

Beweis. Es gelten die Darstellungen von F. Riesz [14]

% (^) *i (s) — f (s, f dfAx (eç) (2.2)
und G

^«(2) At(«) — $g(z, C)dju2(ec) (2.3)
G

wobei g die GRBENsche Funktion von G, fix und (i2 die t*! und u2 zugeordneten
Massenverteilungen bezeichnen. In [6] wurde die Ungleichung

(2.4)

bewiesen fur G [|z| < 1]. (Sie folgt dort aus den Beziehungen (2.4), (2.5)
und (2.11), wobei aber die dortigen Funktionen u und h durch uj2 und A/2
zu ersetzen sind.) Die Gtiltigkeit dieser Abschâtzung fur beliebige einfach zu-
sammenhângende Gebiete G folgt daraus durch konforme Abbildung3). Somit
ist

(jf exp

exp i Wp^vI dxdy) -
Jjexp {h(z) +$g(z, Qdf*x(eç)}dxdy • JJexp {h(z)
G 0 0

Daraus folgt

- $$ehdxdy ^ - —^eHxdy (2.5)

Aus (2.4) und (2.5) ergibt sich die Behauptung.

*) Wir verwenden Begriffe und Sâtze der Théorie der subharmonischen Funktionen, wie sie
©twa im Bûche von T. Radô [11] dargelegt sind.

8) Damit ist gleichzeitig bewiesen, dafî die Existenz des rechten Intégrais in (2.4) diejenige
des linken zur Folge hat.

8 CMH vol. 34
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Lemma 2. Lafit sich die in einem Gebiete G der z-Ebene definierte Funktion u
als Differenz subharmonischer Funktionen u(z) ux(z) — u2(z) darstellen, so

gilt

lim —- ff eudxdy ew<z<>> (2.6)

fur jeden Punkt z0 von G, in dem (ux(z^, u2(zQ)) # (— oo, — oo) ist.

Beweis. Zuerst beweisen wir

lim inf—!— $$ eudxdy ^ ew<2<>) (2.7)nrz \z-z0\<r

Dièse Ungleichung ist trivial, wenn u^Zq) — oo (u2(z0) endlich), also
eu(z0) 0 istï

Ist u2(z0) — oo(ut(z0) endlich, also eM(*o) oo), so gibt es zu jeder
vorgegebenen Zahl N einen Radius qn > 0 mit der Eigenschaft, daB in
| z — z0 | < qn die Ungleichung u2(z) < — N erfûllt ist. eUl+N ist subhar-
monisch. Fur 0 < r < qn gilt somit

^^2 |iJ|
Da iV^ beliebig grofi gewâhlt werden darf, folgt daraus (2.7).

Seien nun %(30) und %(2o) beide endlich. Mit Alr und h2r bezeichnen
wir die besten harmonischen Majoranten von ux und u2 fur | z — z0 \ < r.
Sei hr hlr — h2r. ehr ist subharmonisch. Somit gilt

eu(z0) lim eM«o) ^ lim inf —- $$ ehr dxdy (2.8)

Da u^Zq) und %(20) endlich sind, erfûllen die ux und w2 zugeordneten Mas-
senbelegungen [xt und fjt2 die Beziehungen

lim ^(l z — z0 | < r) lim /ia(| 2 — 2;0 | < r) 0
r->0 r—>0

Unter Anwendung von Lemma 1 erhâlt man

lim inf —- f f ehr dxdy lim inf —- f f eudxdy (2.9)

(Es ist zunâchst denkbar, daB dièse Beziehung die Form + oo + oo an-
nehmen kann ; nachtrâglich stellt sich allerdings heraus, daB dieser Fall nicht
auftritt.) (2.7) folgt aus (2.8) und (2.9).
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Wir haben noch

lim sup —- f f eudxdy <> ett<*«> (2.10)

zu beweisen. Im Falle u2(z0) — oo (ux(Zq) endlich) sagt dièse Ungleichung
nichts aus.

Sei also u2(z0) endlich. Wir zeigen: Zu vorgegebenem e> 0 gibt es ein
Qo(e)> 0 derart, daB fur aile r < gQ(s)

(2.11)
m~ \z-zl\<r

ist. Zu diesem Zweck betrachten wir die RiESZsche Zerlegung [14]

u2(z) h2(z) + J log | z - f | dp%(eç) (2.12)
K

fur eine in 0 liegende Kreisscheibe K vom Zentrum z0 und einem Radius

< 1. Es ist dann

y h2(z0) — u2(z0) — — J l°g I f I ^2(eç) ^ 0 (2.13)

Da h2(z) harmonisch ist, gibt es ein g1(e) > 0 derart, daB fïir | z — z0 | < çx

M*)>M*o)-y (2.14)

ist. Ferner behaupten wir die Existenz einer Zahl Q2(e) > 0 mit der Eigen-
schaft, daB fur | z — z0 \ < q2i IJ eXp{-nog|3-C|^2(e£)Ha;%<ey+^ (2.15)

ist. Zum Beweise betrachten wir zunâchst den Spezialfall, da ju2 (e^) aus einer
einzigen Punktmasse m in einem Punkte C07^z0 besteht. (Wegen u2(z0)> — oo

kann in z0 keine Masse liegen.) Dann ist m — y/log | z0 — £o | und es wird

r. --.
— lOg|2—. s JJ 1

^' \z-zo\<r
(2.16)

Aus einer elementaren Betrachtung ersieht man, daB dieser Mittelwert stets
kleiner ist als

2e?

(2.17)
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Aus (2.17) schlieBen wir, da8 es eine Zahl <5(e, y) > 0 gibt mit folgender
Eigenschaft: Fur aile £0 in | z — z0 \ < ô ist der Mittelwert (2.17) - und da-
mit a fortiori (2.16), und zwar letzterer fur aile in Frage kommenden Werte
von r - kleiner als ey+e/2. Fur f0 € [| z — zQ | ^> ô] n K sind aber die mit-

y
telnden Funktionen | z — £0 |log'z°~Co' im Punkte z0 gleichgradig stetig. Da sie
ferner fur z z0 aile den Wert e? annehmen, folgt : Es gibt eine nicht von f0

abhângige Zahl ç>2(y, e) > 0 derart, daB der Mittelwert (2.16) fur aile Werte
r < q2 kleiner als ev+el2 ist. Damit ist (2.15) fur den Spezialfall einer Einzel-
masse bewiesen. (Dieser Beweis wâre wesentlich einfacher ausgefallen, falls man
sich mit einem von f0 abhângigen g2 begnûgt hâtte. Damit lieBe sich jedoch
der nun folgende Ûbergang auf allgemeine Massenverteilungen nicht durch-
fûhren.)

Nun nehmen wir an, daB fx2 aus endlich vielen Einzelmassen

_ Pi? in f - V%y in t - Pmy in t

bestehe, wobei pk > 0 (k 1, 2,..., m), (2.13) ist âquivalent mit
m

Epk 1. Eine Anwendung der HoLDEEschen Ungleichung [5, S. 140] fûhrt

uns auf den bereits behandelten Spezialfall zuruck. Fur r < Q2(y, e) ist nâm-
lich

—2 SS exP {--j log I z ~ CI d/i%(ec)}dxdy
**' \z—zo\<r K

%( i$ | z C

Die Tatsache, daB #2 nur von V und e abhângt, ermôglicht es, die
Einzelmassen zu verschmieren und (2.15) fur beliebige Verteilungen fx2 zu beweisen.
Dies sei dem Léser iiberlassen. Setzen wir g0 min [q%, q2], so folgt (2.11)
aus (2.12) bis (2.15).

Ist %(z0) endlich, so gibt es zu vorgegebenem e>0 ein ç%(e)>0 derart,
daB fur | z — z0 \ < q*

u1(z)<u1(z0) + e (2.18)

ist. (2.10) ergibt sich aus (2.11) und (2.18).
Ist %(z0) — oo, so gibt es zu jeder vorgegebenen Zahl N ein qn > 0
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derart, dafi fur | z — z0 \ < qn
ux(z)< -N (2.19)

ist. Dann folgt (2.10) aus (2.11) und (2.19). Q.E.D.

Lemma 3. Im Binggebiet Q [R < \z\ < 1], 0 < R < 1, sei eine dis Dif-
ferenz subharmonischer Funktionen darstellbare Funktion u(z) ux(z) — u2(z)
definiert. Wir setzen voraus, dafi die kleinsten harmonischen Majoranten hx von

ut und h2 von u2 in Q existieren und dafi die Totalmasse ju2(O) endlich sei.
Dann gilt Mminf J ew | dZ | Um J e* | dz \ (2.20)

|z|-f ||
wobei h(z) ht(z) — h2(z).

Bemerkungen. Die Voraussetzung fi2(Q) < oo darf nicht weggelassen wer-
den. Dies erhellt aus folgendem Beispiel: Sei

u(z) | log | z - 1 | + ]g{*, t){\ - «)** (2.21)
o

wobei g die GREENsche Funktion fur das Innere des Einheitskreises bezeich-
net. Dann ist

*(*)= — * log | « — 1 | (2.22)

Mit den Bezeichnungen z reiip, g 1 — r und t 1 — t gilt fur t ^ r

v - 1 — 2rt cos w + r2t2
9(z>t) h log r2 _ 2r< cos 4-12

l « • îuO 1

1

r2 - 2rt cos ^ + «2J "" 4 | « — 1 |2 '

Man verifiziert leicht, daB fur \ ^ r ^ 1 und — ?r ^ ç? ^ + n

^T- ^ | « — 1 | ^\cp\+ g (2.24)

ist. Aus (2.22) und der linken Ungleichung (2.24) schlieBen wir, daB

lim J eh\dz\< oo (2.25)

ist. Aus (2.21), (2.23) und der rechten Ungleichung (2.24) folgt

lim inf J eu \ dz \ ^ lim inf J [e?lS9(z> 0 (^ ~" 0 dt] | rf« |

=I» «n _'!' 'Z|=r °
(2-26)

Aus (2.25) und (2.26) ersehen wir, daB in diesem Fall (2.20) nicht erfûllt ist.
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Beweis. Da h(z) harmonisch ist, ist \z\ eh{z) subharmonisch, somit das
auf der rechten Seite von (2.20) stehende Intégral (als Mittelwert zu inter-
pretieren) eine konvexe Funktion von logr. Daraus folgt die Existenz des

Limes, dessen Wert endlich oder -f- oo sein kann. Es gelten die RiESZschen

Zerlegungen
ut(z) ht(z) - $g(z, f)rfft(6c) (2.27)

und Q

u2(z) h2(z) - $g(z, Ç)dpÈ(ec) (2.28)

wobei nun g die GREENsche Funktion von Q bezeichnet. Wir beweisen zunâchst

lim J exp{h(z) — §g{z, C)^i(^)} \dz\ lim J eh \ dz | (2.29)

Die Existenz des linken Grenzwerts verifiziert man auf dieselbe Weise wie die-
jenige des rechten. Wir fûhren die Abkûrzung

v(z) h(z) — $g(z, Qd/iiieç)
ein und definieren Q

v(z), faUs 1 - — ^ | z | < 1

beste harmonische Majorante von v fur das Gebiet

R < | z | < 1 - —, falls R < | z | < 1 - —,n n

n= 1,2,3,.... vn ist subharmonisch in J2 < | 2 | < 1. Daraus folgt das-
selbe fur | z \ eVn. Also ist J eVn \ dz | eine konvexe Funktion von log r

1*1-'
(n 1,2,3,...). Trivialerweise ist

lim J e*n | cfe | lim J" e*\dz\
r—ï-l |z|=*r r—>-l|z|=«r

Fur festes r gilt
lim J eVn \dz\ J e* | cfe |

Aus diesen Aussagen schliefien wir, da6

lim f eh I dz I <, lim f ev \ dz\

Da anderseits h ^v ist, kommt nur die Gleichheit in Frage. Damit ist (2.29)
bewiesen.

Der letzte und wichtigste Schritt im Beweis von Lemma 3 besteht in der
Verifikation von

lim inf J ew \ dz \ ^ lim J eh \ dz \ (2.30)
r->l |2|-r f->l|*|-r
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wobei zur Abkiirzung
w(z) h(z) + $g(z, C)^2(eç) (2.31)

gesetzt wurde. Natûrlich ist nur der Fall zu betrachten, da der rechte Grenz-
wert endlich ist.

Wàre (2.30) nicht erfullt, so gâbe es zwei Zahlen r\ > 0 und 2?* < 1 der-
art, daB

$$ ewdxdy ^ (l + rj) JJ ehdxdy (2.32)
C<I»I<1 ç<|z|<l

fur R* <* q < 1. Dies wird uns auf einen Widerspruch fûhren.
Zunâchst definieren wir

m inf J eh \dz\
Und R*<:r<l |f|-r

M sup J eh | dz |

beides positive, endliche Zahlen.

Die G^bietsfolge con |^1 - ^< | z \ < 1 - ^-j n= 1,2,3,...,
besitzt folgende Eigenschaft : Jede Niveaulinie

y2 4-1
g(z,Ç) log ^3j (f fest) (2.33)

schneidet hôchstens zwei dieser Bereiche. Zum Beweis betrachten wir die-
jenige Halbebene jET^, welche Q enthàlt und begrenzt wird durch die
Tangente an den Einheitskreis im Punkte C/| C| • Durch direkte Rechnung weist
man nach, daB die Niveaulinie

g(z,C) log ^+| (C fest) (2.34)

wobei g die GBEENsche Funktion von Hç bedeutet, hôchstens zwei Gebiete
con schneidet, woraus sich dieselbe Eigenschaft fur die innerhalb (2.34) ver-
laufende Kurve (2.33) a fortiori ergibt. Ferner sieht man leicht ein, daB das

Innengebiet von (2.33) fur | C | > | stets einfach zusammenhângend ist.
Aus den bisherigen Definitionen schlieBen wir noch, daB fur n > 1/(1 — i?*)

$$ ehdxdy ^ -^H&àxdy (2.35)

Seien nun k und l zwei natûrliche Zahlen, tiber die spâter verfûgt werden
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wird. Vorlâufig werde nur vorausgesetzt, daB h > l > 1/(1 — iï*) sei. Wir
zerlegen û in die Bereiche

"F ^ Iz

0}k= A — "Sfc"

und ftihren die Bezeichnungen

E E1UE2\J cok

ein. Von nun an setzen wir noch voraus, dafi l so grofi sei, daB ^ < 1 ist.
Esgilt

H exp {»(*)
E% D

wobei (7&l exp {a- sup g(z, t)}
Z€E2,t€D

Es existiert ein Punkt Z € J& mit der Eigensehaft, daB fur aile f e E

K(Q JJexp {*(«) + «lflr(«, C)}dxdy (2.37)

^ JJexP {*(«) + «i^t*» Z)}dxdy
E%

K(C) ist stetig auf -E. Die Existenz von Z ist gesichert, falls wir nun noch
zeigen, daB fur jede gegen einen Punkt des Einheitskreises konvergierende

Hm K(Cn) H&dxdy (2.38)
«->oo E%

ist. Offenbar gilt
Km inf K (fJ ^ $$ehdxdy (2.39)

n->oo JBa

Sei e > 0 vorgegeben. Es gibt einen Index N(e) derart, daB fur aile n> N
die Niveaulinie g(z, £n) e einfach geschlossen und in E2 enthalten ist. Es
bezeichne / deren Innengebiet, A das Komplement von / bezûglich E2. Fur
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n> N gelten die Abschâtzungen

JJexp {h(z) + cLtg(z, U}dxdy ^ e«l< tfeHxdy (2.40)
und A A

JJexp {h(z) + oLtfiz, Çn)}dxdy e*1*JJexp {h(z) + «^(z, Çn)}dxdy
i i

(2.41)

wobei gt die GBEENsche Funktion von / bedeutet. (2.40) ist évident. In (2.41)
wurde zuerst die Beziehung g(z, £n) e + gt(z, £n) verwendet, dann Un-
gleichung (2.4). Durch Wahl erst eines geniigend kleinen e, dann eines genû-
gend groBen N, kônnen wir erreichen, daB sich die rechte Seite von (2.40)
beliebig wenig von $$ehdxdy unterscheidet, wàhrend diejenige von (2.41)

gleichzeitig beliebig klein wird. Zusammen mit (2.39) ergibt dies (2.38).
Aus (2.36) und (2.37) folgt unter Anwendung der HoLDEBschen Ungleichung

$$ewdxdy ^ CklK(Z) (2.42)
EZ

Nun unterscheiden wir drei Fàlle je nach der Lage der - fortan mit L(Z)
bezeichneten - Niveaulinie

a) L(Z) liège ganz in E2. Aus (2.32) und (2.42) folgt

X(Z) ^ ^- Me™dxdy ^ l£ V
[$e>hdxdy (2.43)

Anderseits gilt

Dabei bezeichnet / das Innengebiet von L(Z), A das Komplement von /
beztiglich E2. Zum Beweise von (2.44) zerlegt man K(Z) in die beiden Teil-
integrale uber A und / und wendet auf dièse die in (2.40) und (2.41) beniitz-
ten Abschâtzungsmethoden an.

b) L(Z) liège teilweise in E%. Auf Grund der oben erwâhnten Eigenschaft
der Gebietsfolge {ct)n} schlieBen wir, daB L(Z) in E2 U œk enthalten ist.
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Wir fuhren die Bezeichnungen

O1 In (ok G2 I(]
Gz E2 - G2 G =U

ein. Es ist

{h(z) + <xig(z, Z)}dxdy ^^-A^eHxdy {^J^
Zum Beweise integriert man zunâchst getrennt iiber E2 und Qx. Das erste
Intégral wird wie in (2.43) abgeschàtzt. Beim zweiten wird lediglich beniitzt,

V2+ 1
da6 in Gt die Ungleichung g ^ log ~y= erfûllt ist.

Anderseits gilt

(V%
A- 1 W 2

\«ir o 1 (2.46)

*

Der Beweis der ersten Ungleichung ist ganz analog zu demjenigen von (2.44).
Der zweite Schritt ist klar. Beim dritten wurde davon Gebrauch gemacht, daB

oùt < 1. SchlieBlich wurde noch die unmittelbar aus (2.35) flieBende Ungleichung

$$ehdxdy ^ $$ehdxdy

verwendet.

c) L(Z) liège aufierhalb E2. Die Ungleichung (2.43) ist offenbar auch in
diesem Falle gûltig. Anderseits ist

K{Z) ^(v~+ ]TH^àxdy (2.47)

Nun wàhlen wir l groB genug, so daB

y2 — 1 / \ 2 — a, m ' v " v
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Anschliefiend verfugen wir liber k derart, daB

Cw<(l + i7)* (2.49)

ist. Aus (2.48) und (2.49) folgt, daB - je nach dem Fall, in dem man sich be-
findet - (2.43) und (2.44), (2.45) und (2.46) oder (2.43) und (2.47) einander
widersprechen. Damit ist (2.30) bewiesen. Lemma 3 folgt aus (2.27) bis (2.31).

3. Beweis von Satz A

Wir zeigen vorerst, daB die durch den Satz von Reschetnjak eingefuhrten
Parameterbereiche eine RiEMANNsehe Flâehe R definieren. Sei D ein Gebiet
auf M, dem zwei solche Bereiche G (in einer z-Ebene, Metrik euiz)\dz\) und
G* (in einer w-Ebene, Metrik eu*iw)\dw\) zugeordnet sind. Es entsprechen
ihnen die Abbildungen &(D->G) und &*(D ->(?*). Wir beweisen:
w f(z) 0* (0~1(z)) ist entweder konform oder antikonform. Ist M orien-
tierbar, so kann eine Klasse von konform zusammenhângenden Parameter-
bereichen ausgezeichnet werden. Dièse definiert R [10, S. 53].

Lemma 4. Zu vorgegebenen zoeG (— J < [t(z0) a < J) und e > 0 gibt
es ein A (z0, e) mit folgender Eigenschaft : Ist à < A und liegen die Punlcte
z' und z" in \ z — z0 | < ô, so gilt

| Qa(z',z') - A(z0, ô)q(z',z") I < ed*** (3.1)

Dabei bezeichnet ça die Distanz bezûglich der Metrik | z — z0 |a | dz |. A ist
eine positive Zahl.

Beweis. In den Gebieten

definieren wir die Metriken

gt(zl9 z2) inf J exp {u(z0 + t(z - z0))} \dz\ (t>0).
L L

Dabei variiere L ûber aile von zx nach z2 fuhrenden Polygone in Gt.
Wir beweisen vorerst : Zu vorgegebenem e>0 gibt es ein zl(e)>0 derart,

daB fur 0 < t < A die Ungleichung

fur jedes Punktepaar zx, z2 in | z — z0 \ < 1 erfûllt ist. Dabei bedeutet A

eine positive Zahl.
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Es bezeichne pt die der Funktion u(z0 + t(z — z0)) zugeordnete Massen-

verteilung. Wir definieren

n [|C - 201 < 5]),
fi [|C - Z0 I ^ S]) »

{Jlog | z -
wobei £ sâmtliche zx mit 22 verbindenden Polygone durchlaufen soll.

Reschetnjak hat folgendes Résultat bewiesen (Lemma 2 in [13]): Seien

f*x(e) P%(e) 9 t*z(e)5 • • • *** ^ef ganzen Ebene definierte, vollstândig additive Men-
genfunktionen, welche aufierhalb eines festen, beschrânkten Bereiches identisch
verschwinden. Es konvergiere {f*>n{e)} schwachgegen juo(e)9 die Folge der Varia-
tionen {pt (e) + f*n (e)} schwach gegen v{e). Es bezeichne

w«W Jlog \z - C 1 dftn(ec) (n 0, 1, 2,...),
und es werde gn me in Formel (1.2) definiert, wobei nun aber L ûber sâmtliche

zx mit z2 verbindenden Polygone variiere. Dann streben die Metriken Qn mit
wachsendem n gleichmâfiig gegen g0 auf jeder kompakten Menge F, welche

keine Punkte Ç mit v(Ç) ^ 1 enihalt.
Da fiti fur jede Nullfolge von f-Werten schwach gegen die in z0 liegende

Einzelmasse a konvergiert, existiert somit eine Zahl A^e) > 0 derart, daB

I £«(%> H) ~ Qa(*i> z*) I < Y (3-3)

fur 0 < t < At und aile Punktepaare zt, z2 in | z — z0 \ ^4.
Zu vorgegebenem rj > 0 - iiber welches wir spàter verfûgen werden - gibt

es ein A2{t])> 0 derart, daB fur 0 < t < A2 Folgendes gilt:
1. [| z — z0 | ^ 4] c Gt; 2. die Ungleichung

I (h(z0 + t(z - z0)) + Jlog | z - Ci <fo.(ec))

ist fur | z — z0 | <£ 4 erfûllt. Letzteres folgt unmittelbar daraus, daB - wie
man leicht nachpriift -

lim max | grad,(A(z0 + i(z - z0)) + J log | z -
ist. Wir fuhren die Abkiirzung ein

Hz0, t) exp { -h(z0) - J log | : | dfitta(e()} (3.5)
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Seien zx und z2 beliebige Punkte in | z — z0 | < 1, L' deren geradlinige
Verbindungsstrecke, L" irgendein von zx nach z2 fûhrendes Polygon, das
nicht ganz in z — z0 | <: 4 liegt. Aus (3.3), (3.4) und (3.5) folgt fur
0< t< min [A

J exp {u{z0 + t(z - z0))} | dz |

L" (3.6)

Es bezeichne P(t) die négative Totalmasse der Verteilung fj,u unter
AusschluB der (eventuell negativen) konzentrierten Masse a in z0. Es ist
lim p(t) 0. Fur 0 ^ a ^ J folgt aus (3.4) und (3.5) unter Anwendung
e~>o

der HoLDERschen Ungleiehung, da6

exp {«(2o + *(«!- 2o))} \dz\g T7—7r Jar^rfa; T (3.7)

Ftir — J <J a ^ 0 ergibt dieselbe SchluBweise

2 ^^

t) ¦ 0.8)

Fur e<0,l4) folgt aus (3.6), (3.7) und (3.8): Sei AZ so klein, daB
Ist 0<^<0,l und 0<^<min[Zl1(fi), Zl2(^), J8], so ist

fur jede Wahl von zl9 z2 und L" das Intégral langs L" stets grôBer als das-

jenige langs Lf. Dann diirfen in der Définition von Qt(zt, z2) diejenigen Polygone

L von der Konkurrenz ausgeschlossen werden, welche nicht ganz in
| z — z0 | ^4 liegen. Also ist

min [h(z0 + t(z - z0)) + J log | z - C | dfita
l

(z0 + t(z - z0)) + J log | z -
woraus sich mit (3.4) und (3.5)

ergibt. Nun wàhlen wir 7/ (0 < rj < 0, 1) so klein, daB

fur 0 < t < A min [^i(e), ^2(»?)> ^3] un(i beliebige zl9 z2 in | z — z0 | < 1

ist. (3.2) folgt nun aus (3.3) und (3.9).

4) Wir nehmen an, dafi das vorgegebene e dièse Bedingung erfûlle.
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Setzt man zx zQ -\ —- und z2 z0 -\ —- so ist

g(zl9z2) ye(z',z//) (3.10)

und
1

*» (m » \ _ >-» (**' <y \ ^^i 1 1 \(fa\zlj Z2J — fi+ot Q<x\z > z i ' \o' Ll)

Aus (3.2), (3.10) und (3.11) folgt fur 0 < t < A und zl9 z2 in | z — zQ \ < 1

(das heiBt zf, z" in | z — z0 \ < t),

Damit ist Lemma 4 bewiesen.

Lemma 6. Zu vorgegebenen zoçG (— J < /*(z0) a < J) tmd e > 0

e« em A(z0, e) > 0 mit folgender Eigenschaft: Ist ô < A und liegen die
Punhte z' und z" in | z — z0 | < ô, so ist

| Qa(z', z") - K(z0, ô)Q*Af(z'),f(z")) | < «*+« (3.12)

Dàbei bezeichnen g^ und g* die Distanzen bezûglich der Metriken \ z — z0 |a \dz |

w — f(zQ) |a | dw |. if i^ eine positive Zahl.

Beweis. Wir definieren

<p(ô)= max |/(*)-/(«o)|
und l«-^l-«

min |/(«)-/(«0)|.

Sei zx ein Punkt auf | z — z0 \ ô derart, daB | f(zx) — f(z0) \ <p(ô) ist.
Sei e > 0 vorgegeben. Nach Lemma 4 gilt fur genugend kleine Werte von ô

Âl+oc
ov ' v - ""- (3.13)

Lemma 4 darf auch auf 0* angewandt werden, und da <p(ô) mit ô gegen 0

strebt, ist fur genugend kleine ô

a
A* (w0, q> (ô)) g (w0, wt)

wobei w0 f(zQ), wt /(zj. Aus (3.13) und (3.14) folgt
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und, da q(z0, z,) q(w0, wt)

A(zo,ô)[<p{ô)Y+« "

115

}

Setzt man
A{zo,ô)

A*(wo,<p(â)) '

so gilt fur genûgend kleine Werte von ô und jedes Punktepaar z', z" in
I z - z0 | < ô

IqJz',z") -K(zo,ô)e*a(w',w")\ ^\Qa(z',z") -A(zo,ô)q(z',z")\
Alz ô) *

(3'16)

wobei w' f(z') und wn f(z"), somit g(zr, z;/) ^(w;', w"). Fiir genti-
gend kleine ô ist der erste Summand auf der rechten Seite von (3.16) nach

Lemma 4 <~5-d1+a, der linke Faktor des zweiten Summanden wegen (3.15)
3

< 2ô1+OLl[(p(ô)]1+oc9 der rechte Faktor des zweiten Summanden nach Lemma 4

< -|- [tp (ô)]1+oc, somit der ganze Ausdruck < e ô1+ct. Q. E. D.
o

Lemma 6. Es existiert einenach unten halbstetige5), lokalquadratischsummier-
bare Funhtion H(z) mit folgender Eigenschaft : Jedem PunJct

Icann eine Zahl A (z0) > 0 derart zugeordnet werden, dafi aus \ £ — z0 | < A (z0)

stets

folgt.

/(C) - f(z0) ^ min H(z) (3.17)

Beweis. Mit z' z0 und z/; «j6) lautet (3.12)

11+a

¦-^(«o,*) < (3.18)

Sei z2 ein Punkt auf | z — z0 | ô derart, da8 | f(z2) — f(z0) \ ip(ô) ist.
Mit zf z0 und z" z2 wird (3.12) zu

ll+a
-K(zo,ô) l + a

<sô1+a. (3.19)

8) Der Funktionswert H + oo wird zugelassen.
•) Bezeichnungen des vorhergehenden Beweises.
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Aus (3.18) und (3.19) folgt

lim K(z0, à) (-^tpM lim K(z0, ô)
Ô->0

Somit

1. (3.20)

Das dem Parameterbereieh | w — w0 \ ^>y>(ô) entsprechende Stiick von
M ist enthalten in demjenigen, das | z — z0 \ ^ ô entspricht. Ein Flâchen-
vergleich liefert7)

(3.21)
(w= S + irj).

Aus (3.20) und (3.21) schlieBen wir, daB (3.22)

Um sup (^-) Um sup (-^)^ lim sup ^.
Wir machen die (lokal stets zulâssige) Annahme, daB die in den DarsteUun-

gen u % — u2 und u* u* — u* auftretenden subharmonischen Funk-
tionen nicht positiv seien. Wir betraehten eine in einer Umgebung U von z0

gûltige RiESZsche Zerlegung [14]

u2(z) ht(z) + J log | z - f | d^2(ec) (3.23)

und definieren ju2i(e^) /*2(e£ H [| C — ^o I < 3^]

A«ia(ec) /M2(eç n [| f - «o I ^
Es sei U so klein gewâhlt, daB die Gesamtmasse der Belegung ^2 kleiner

als \ ist ; femer sei à so klein, daB [| z — z0 | ^ ô] c 17

und

max A2(z) — min

ist. Es bezeichne a einen Punkt auf | z — z0 | ô, in dem w2 sein Maximum
bezûglich | z — z0 | ^ d annimmt. Aus (3.23) folgt

uz(a) ^ h2(a) + J log | a - C | <*/«la(ec) + /8 log (4(5) (3.24)

7) Bei genùgend regulâren Metriken ist es klar, daû dièse Intégrale den Flacheninhalt dar*
stellen; durch Approximation geht man auf allgemeine Metriken ùber.
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Aus | f -zo\ ^3<5, \a-zo\ ô und |z-zo|^<5 folgt |a —f|^2|z—
Daraus und aus obigen Annahmen schlieBen wir von (3.23) auf

JJ e*udxdy ^ $$

^ 4 exp {- 2h2(a) — 2 J log | a — CI ^2«(^)}' (3.25)

JJ exp {— 2 J log | z — C | d/u2i(e^)}dxdy

Mit Hilfe der HôLDERschen Ungleichung zeigt man, da8 das letzte Intégral
dann seinen grôBten Wert annimmt, wenn die Masse /? in z0 konzentriert ist ;

er betràgt —. Wir erhalten damit aus (3.24) und (3.25)

JJ e2udxdy ^ l0e-2u*(*K (3.26)

Sei b ein Punkt auf | w — w0 \ <p(ô), in dem u*(w) sein Maximum be-
zuglich | w — w0 | ?^(p(ô) annimmt. Wir wiederholen die obige Ûberlegung
in der t^-Ebene, wobei wir u2{z) durch u\(w) und in den vor Formel (3.25)
stehenden Betrachtungen à durch <p(ô) ersetzen. In der (3.25) entsprechen-
den Beziehung integrieren wir hingegen nur ûber \w — wo\ ^>y)(ô). Unter
Benutzung von (3.20) erhalten wir fur genûgend kleine ô die Abschàtzung

Mit Anwendung der ScHWAitzschen Ungleichung

(^M<5)]2)2 ^ JJ

folgt daraus

(3.27)
Definiert man

H(Z) 1 + 10 exp {- u2(z) - uî(f(z))} (3.28)

so folgt aus (3.22), (3.26), (3.27) und (3.28), daB (3.17) fur ein genûgend
kleines A (zQ) > 0 erfullt ist. H ist nach unten halbstetig.

Sei K eine abgeschlossene Kreisscheibe vom Mittelpunkt z0 derart, daB

^(K)-\-fx2(K) < \. %(z), u2(z), u*(w) und u*(w) sind Grenzfunktionen
monoton fallender Folgen von stetigen Funktionen: {uln} | ux und
{u2n} l u2 auf K; {u*k} i u* und {u2k} | u* auf f{K). Durch Anwendung

» CMH vol. 34



118 Alfred Htjbeb

der ScHWARZschen Ungleichung erhàlt man

(JJexp {- 2u2n(z) - 2u*lk(f(z))}dxdy)2
K

^ JJexp {- 2Um(z) — 2u2n(z)}dxdy
K

• JJexp {2uln(z) - 2î*2n(z)}.exp {- éu*k(f{z))}dxdy
K

LàBt man nun n -> oo streben und berùcksiehtigt, daB fur jede Borelmenge
e c K

$$e2udxdy JJe2«*d|cfy
e /(e)

ist - beide Intégrale stellen denselben Flâcheninhalt dar -, so folgt

(JJexp {- 2u2(z) - 2uîk(f(z))}dxdy)*
E

^ He~2Ul -2u*dxdy.ffexp {2uX{w) - 2u*(w) ~ 4u*k(w)}dÇdr}
K HE)

Also, mit k -> co?

(JJexp {- 2^2(z) - 2^(/

^ ller^-^dxdy • JJ e-2

Nach Lemma 1 in [8] ist J e""Ul " u%
\ dz \ < oo

Eand K

Bezeichnet / einen abgeschlossenen, stûekweise analytisch berandeten Be-
reich derart, daB K c / und fix (I) + A*2 {I) < 1 ^> so gilt ebenso

J 6~ttf ~M? | dw | < oo. Aus (2.2) in [6] folgt, daB die rechteSeite der letz-
Bandl
ten Ungleichung endlich ist. Somit ist H2 summierbar. Q.E.D.

Lemma 7. Auf jedem Bechteck R[at 5j x ^ a2, bx ^ y ^ b2], das keine
Einzelmassen vom Betrag ^ \ enthâlt, besitzt w f(z) £(x,y) -\- ir}(x,y)
folgende Eigenschaften :

(A) / ist absolut stetig im Sinne von Tonelli,
(B) die {gemâp (A)) fast libérait auf B existierenden und mefïbaren partiellen

Ableitungen fx und fy sind quadratisch summierbar,
(C) entweder gilt Çx rjy und £y= — rjx fast ilberall auf B, oder es ist

Sx ~" Vv und $y Vx fm^ ftherall auf B.

Beweis. Sei olx < x < fix, a2 < « < j^2 • • • ein System zueinander fremder
Teilintervalle von [al9 a2]. Aus Lemma 6 schlieBen wir, daB
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Z | /(/?*, y) - /(«», y) | ^ z{h(x, y)dx (3.29)

Daraus folgt fur die totale Variation von / als einer Funktion von x im Inter-
vall [ax, a2]

Vm(y,f,[ai,*i]) ^ÏH{x,y)dx. (3.30)

a2
Da H auf R summierbar ist, folgt aus dem Satz von Ftjbini, da8 $H(x,y)dx

fur fast aile y aus [b1, b2] existiert und eine summierbare Funktion von y
darstellt. Damit fuhren (3.29) und (3.30) zu folgenden Aussagen: (1) / ist
absolut stetig als Funktion von x auf [ax, a2] fur fast aile y aus [b1, b2] ; (2) Vx
ist eine summierbare8) Funktion von y auf [6l5 62].

Entsprechende Aussagen gelten, wenn x mit y vertauscht wird. / ist stetig
auf R. Damit ist (A) bewiesen.

Aus Lemma 6 schlieBen wir ferner, da8 | Çx |2, | rjx |2, | f„ |2 und | rjy |2

(soweit sie existieren) nicht grôfier als H2 sind. Daraus folgt (B).
Sei / zum Beispiel orientierungstreu. Wir betrachten einen Punkt z0, in

dem Sx9rjx, Çy, Tjy existieren und fi(z0) a 0 ist; fast ûberall auf R ist
dies erfullt. Aus

V(h) £ | f(z0 + h)~ f(z0) | | f(z0 + ih) ~ f(zQ) | ^ <p(h) (h > 0)
folgt

liminf (^X (3.31)
\ n I

lixn lim= M (-^-)= H + Vl H + n\ • (3.32)

Aus (3.20) und (3.31) erhalt man

Ist Çx rjx=t;y rjy O, so sind die CAUCHY-RiEMANNschen Differential-
gleichungen trivialerweise erfullt. Andernfalls ist der Grenzwert (3.32) - von
nun an mit a2 bezeichnet - positiv und es gilt wegen (3.15)

KmJC(20,fc)= —. (3.33)

Sei f(z0) w0, f(zQ + h) wo + re», f(z0 + ih) w0 + Qé&. Aus (3.32)
folgt

^-=limf-=^. (3.34)

8) Die MeBbarkeit von Vx folgt aus der Stetigkeit von / [12, Seite 426].
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Mit zf zQ + h und zn z0 + ih ergeben Lemma 5 und (3.33)

V2h — h o(l) • Vr2 + q2 — 2rg cos (0 — <p) o(h) (3.35)

Aus (3.34) und (3.35) schlieBt man unter Benùtzung der Orientierungstreue,
daB

lim (0 - ç>) =-£-, (3.36)

und aus (3.34) und (3.36)

lim 1™» lim

Analog beweist man £y — rjx. Ist / nicht orientierungstreu, so kann man

zum Beispiel obige Betrachtung auf f £ — irj anwenden. In jedem Fall
ist (C) erfûllt.

Aus Lemma 7 folgt nach einem Résultat von C. B. Morrey [9, S. 141,
Lemma 4], daB - abgesehen von einer aus isolierten Punkten bestehenden Aus-

nahmemenge - entweder / oder / konform ist. Da / topologisch ist, sind iso-
lierte Singularitâten hebbar: G wird durch / konform oder antikonform auf
G* abgebildet.

Wir beweisen ferner, daB der Wert von q unverândert bleibt, falls L in (1.2)
uber aile stiickweise analytischen Verbindungskurven in G - statt nur ûber
die Polygone — variiert. Wûrde dies nicht zutrefîen, so gâbe es ein Punktepaar
zx, z2 c G und eine stûckweise analytische Verbindungskurve y derart, daB

Jew | dz | < q(zx,z2) (3.37)
Y

Seien Fx, F2, Fz JoRDANkurven (Innengebiete GX,G2,G3) derart, daB

y c Gl9 (Gx U Fx) c G2, {G2 U F2) c G3 und (G3 U Fz) c G. Sei u ux - u2
eine Darstellung von u als Differenz von subharmonischen Funktionen. Es
bezeichne u[ diejenige in G3 subharmonische Funktion, welche auf Gx U Fx

mit ux und in G3 — (Gx U Fx) mit der besten harmonischen Majorante hx

von ux in diesem Gebiet ûbereinstimmt. Sei vXn die nach dreimaliger Mitte-

lung ûber eine Kreisscheibe vom Radius — (n 1,2,3,...) aus u[ ent-
71

stehende Funktion. Analog werde v2n definiert. vn vXn — v2n ist definiert
und zweimal stetig differenzierbar in einem Gebiete Qn, welches fur n -> oo
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gegen Gz strebt. Da vln | ux und v2n I n2 in 0l9 gibt es Zahlen C und D
derart, daB in Gt

Ceu* ^eVn ^De~u* (n - 1, 2, 3,...) - (3.38)

Wir durfen annehmen, daB sich auf y kein Punkt f mit ju^Ç) + ^2(0 ^ 1

befindet ; denn y enthâlt jedenfalls einen Teilbogen, auf dem dièse Voraus-
setzung erfûllt ist und fur den (3.37) immer noch gilt. Dann ist nach dem
LEBESGUEschen Grenzwertsatz

lim $eVn\dz\ Je«|«fe| (3.39)
n—>oo y y

denn De~U2 ist lângs y summierbar (Lemma 1 in [8]).
Fur genugend groBe Werte von n ist vn auf Gz — G2 harmonisch. Dann

gelten in 6?2 die RiESZschen Darstellungen

J log | ^ -

wobei g die GREENsche Funktion des Gebietes G2 und h% die Lôsung des

DiRiCHLETschen Problems fur G2 mit den Randwerten hk auf /^ bezeichnen

(4=1,2). Mit den Abkurzungen h' h[ — h'2, // ^[ — /u2, hn hln ~ h2n,

(A) {vn (e)} konvergiert schwach gegen \i! (e) ;

(B) {hn(z)} konvergiert in Gx gleichmâflig gegen hf (z).

(A) ist bekannt (F. Riesz [14]). Aus (3.40) folgt

| hn(z) - h'{z) | <£ | fo(z, 0rf^(cc) - J y (a, 0rfvn(cc) | (3.41)

wobei <p(z, C) g(z, C) + log | z — f |. Wird z als Parameter - der in Gx

variieren darf - aufgefaBt, so ist die Funktionenschar q>(z, f) auf jedem
kompakten Teilbereich von G2 gleichgradig stetig bezûglich C - (Dies folgt aus
der HARKACKschen Ungleichung, da die Funktionen (p gleichmâBig beschrânkt
sind.) Unter Benûtzung von (A) schlieBen wir, daB die rechte Seite von (3.41)
fur n -> oo gleichmâBig in z gegen 0 strebt.

Wir definieren

L L
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wobei aile zx mit z2 verbindenden Polygone L in Ûn zugelassen werden. Fer-
ner sei

w(z) J log | z — f | d[Al{eç)

« — C|CÏVB(€C)

wobei nun L die Menge aller von zr nach z" fûhrenden Polygone der Ebene
durehlaufe. Aus (A) und dem oben erwàhnten Lemma von Reschetnjak folgt

lim rn(zr,z") r(z',z") (3.42)
n—>oo

fur aile Punktepaare zr, z".
Sei 2* ein beliebiger Punkt in Gt, welcher die Bedingung fxx (z*) -f~ ju2 (z*) < 1

erfullt, und sei K eine in Ox liegende Kreisscheibe vom Mittelpunkt z*, so

klein, daB ^(K) + fa(K) < 1. Es gibt eine Umgebung U1 von z* mit fol-
gender Eigenschaft: Fur jedes Punktepaar z', z" €ÏJ1 dûrfen in der Définition

von qn(z', z") diejenigen Polygone L von der Konkurrenz ausgesehlossen
werden, welche nicht ganz in K liegen. Zum Beispiel kann Ux durch die Ge-
samtheit aller Punkte definiert werden, deren dreifacher Abstand von z* in
der Metrik De~U2 \ dz | kleiner ist als der Abstand zwischen z* und dem
Rande von K in der Metrik CeUl \ dz |.) Wegen (3.42) existiert eine entspre-
ehende Nachbarschaft U2 fur die Gesamtheit der Metriken rn9). Fur einzelne
Metriken ist die Existenz solcher Umgebungen trivial; wir bezeichnen die g

4

und r zugeordneten mit Uz und Î74. Fiir jedes Punktepaar zr, z" e U D Ut

mnrn{zf, z") ^ Qn(z',z") ^ Mnrn(z', z")
und

mr{zr,z") ^ q(z'9 z") ^ Mr(zf, z")
wobei

mn min ehn{z) Mn max ehn{z)

z€K z€K

m min eh^z) und M max eh'(z)
zeK zeK

Daraus folgt
m r (?' z"\ n (z1 ?n\ M r i?1 z"\
M r{z',z") - q(z',z") ^ m r(z'9z") ' v '

Wegen (B) kann bei vorgegebenem e der Radius von K so klein gewàhlt wer-

9) irn(z'» z")} konvergiert gleichmâÛig fur z',z" e K.
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den, daB -^ ^ 1 - A und -^- ^1+4" fur aile n. Aus (3.42) und

(3.43) folgtdann

(1 - s)q{z',z") ^ Qn(zf,z") ^ (1 + e)Q(z', z") (3.44)

fur geniigend groBe n und beliebige z', z" e U. Durch Anwendung des Borel-
LEBESGUEschen Ûberdeekungssatzes schlieBt man : Zu vorgegebenem e > 0

gibt es ein Zl(e)>0 und ein N(e)< oo derart, da8 aus z', z" ey und
\z' — z" | < â fur n > N stets (3.44) folgt. Daraus und aus der Définition
der Kurvenlange [1, S. 69] folgt, daB (1 — e)l ^ ln ^ (1 + e)l, wobei l und
ln die Langen von y in den Metriken q und @n bezeichnen. Da s beliebig klein
gewâhlt werden kann, ist somit

l Km ln lim $eVn \dz\ (3.45)
n—> oo n—>¦ oo y

Aus (3.39) und (3.45) ersieht man, daB die linke Seite von (3.37) l darstellt.
Da aber l ^q(z1,z2) ist [1, S. 32], erhâlt man damit einen Widerspruch.
Q.E.D.

Es existieren somit eine RiEMANNsche Flâche R und eine Metrik (1.5) auf
R derart, daB die so definierte Mannigfaltigkeit M' zu M lokal isometriseh
ist. Da aber beide Metriken innere sind, zieht die Isometrie im Kleinen die
Isometrie im GroBen nach sich [1, S. 33, FuBnote 3]. Damit ist der erste Teil
von Satz A bewiesen. Der zweite Teil folgt unmittelbar aus dem entsprechen-
den lokalen Résultat von Reschetnjak.

4, Potentialtheoretische Définition der Kurvenlange

In einem Gebiete 0 der z-Ebene sei eine Metrik (1.2) definiert, wobei u(z)
sich als Differenz von subharmonisehen Funktionen u % — u% darstellen
lasse. Sei F eine JoRDANkurve, welche samt ihrem Innengebiet Q zu G gehôrt.
Seien hx und h2 die besten harmonischen Majoranten von ux und u2 in Q,
h hx — A2. Wir wahlen einen Punkt z0 e Q. Sei z q>(Ç) eine konforme
Abbildung von | f | < 1 auf Q, welche £ 0 in z z0 ûberfuhrt. Es be-
zeichne yr das Bild des Kreises |f|=r(O<r<l).

Satz B. Der (stets existierende10) und von der Wahl von z0 unabhângige)
Orenzwert

A lim $ehw\dz\ (4.1)
f_>lyf

10) Der Wert -f- oo kann angenommen werden.
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ist gleich der Lange l von F in der Metrih (1.2) nach der ÀLEXAKDRowschen De-
finition [1, S. 69].

Beweis. Mit Anwendung von Lemma 3 ist

fjew<s> \dz\ =liminf J exp {u(<p(Ç)) + log | <p'(Ç) |} | dÇ \

r->l yr r->l |C| r (4.2)
lim J exp {h(V(C)) + log | <p'(Ç) \}\dÇ\= lim Je*<*> \dz\,

woraus sich zunâchst die Existenz von X ergibt. Die links in (4.2) stehenden
Intégrale stellen — wie in Abschnitt 3 fur beliebige analytische Kurven yr be-
wiesen wurde - die Làngen lr der Kurven yr in der Metrik (1.2) dar. Da
lim inf lr ^ l ist [1, S. 70, Satz 5], folgt aus (4.2)
r->l

X^l. (4.3)

Es existiert eine Folge {Qn} von einfach zusammenhângenden Gebieten in
der 2;-Ebene mit folgenden Eigenschaften : (1) z0 c Qn (n 1, 2, 3,... ;

(2) lim Qn Q ; (3) der Rand Fn von Qn ist ein Polygon und es gilt
n—>oo

$eu\dz\<l+— (n= 1,2,3,...). (4.4)

Sei z ç>n(C) eine konforme Abbildung von | Ç \ < 1 auf Qn, welche
Ç 0 in z z0 uberfûhrt, und es bezeichne yfn das Bild des Kreises | Ç \ r
(n 1, 2, 3,...). Seien hln und h2n die besten harmonischen Majoranten
von % und u2 in Ûn, hn hln — h2n. Es ist [6, S. 241]

§ehn\dz\ ^$eu\dz\ (0<r<l; n 1, 2, 3,...) (4.5)
Yrn A»

Wir behaupten ferner, da8 fur eine Teilfolge {nk} von {n}

Um J eA»* |ds| Je*|dz| (4.6)
Yr

(0 <r < 1) ist. Zunâchst zeigen wir, daB

lim hn(z) h(z) (4.7)
n—>oo

ist, wobei die Konvergenz auf jedem kompakten Teilbereich Kz von i3 gleich-
mâBig erfolgt. Aus den Darstellungen

t) (zcQ)
und °

u{z) hn(z) - $gn(z,
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in denen g und gn aie GREENschen Funktionen von Q und Qn bezeichnen,
folgt

\h(z)~hn(z)\ ^| J \g(z,t)-gH(z,

Fur n -> ex? streben - gleichmâBig fur z e Kz - die auf der rechten Seite von
(4.8) stehenden Terme gegen 0. Daraus folgt (4.7).

Aus bekannten Sâtzen uber normale Familien und konforme Abbildung
(vgl. etwa [3, S. 177, 180, 182] und [2, S. 66]) sehlieBt man, daB fur eine Teil-
folge {nk} von {n}

und nJc~* °°

lim (p'nk(Ç) (pf(C) (4.10)

ist, wobei die Konvergenz auf jedem kompakten Teilbereich K^ von | f | < 1

gleichmâBig erfolgt. Da (pf(Ç) ^ 0 ist, folgt aus (4.10)

lim log 1^(0 |=log| 9/(C)|, (4.11)

gleichmâBig auf K^. Unter Benûtzung der Ungleichung

\Kk(<Pnk(0) -h(vtf)) I ^\hnh(<pnk(O)-h(<Pnh(O) I +
sehlieBt man aus (4.7) und (4.9), daB - gleichmâBig auf

(4.12)

Aus (4.11) und (4.12) folgt

lim J exp {hnk (<pnh (0) + log | V'nh (f

J exp {/*(?(£))+log |ç>'(C)|}|rfC|.
|C|-f

Dies ist âquivalent mit (4.6). (4.4), (4.5) und (4.6) ergeben

A^Z. (4.13)
Satz B folgt aus (4.3) und (4.13).

Von der Annahme, daB das Innengebiet Q von F zu 0 gehôrt, kann man
sich befreien, indem man an Stelle von Û ein in G liegendes Binggebiet be-
trachtet, dessen eine Randkomponente von J'gebildet wird. Die yr sind dann
durch diejenigen Kurven zu ersetzen, die bei einer konformen Abbildung auf
¦R < | f | < 1 in die Kreise | f | ~ r ûbergehen.
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Ist F nicht geschlossen, so ergànzt man zunâchst F zu einer geschlossenen
Kurve, integriert dann aber nur uber die F entsprechenden Teilbogen der yr.

Satz B gibt die natûrliche potentialtheoretische Définition der Kurvenlànge
auf Mannigfaltigkeiten beschrànkter Krummung. Mit ihrer Hilfe ist es nun
zum Beispiel môglich, den funktionentheoretischen Beweis der isoperimetri-
schen Ungleichung auf gekrummten Flâchen [6, 7] so auszubauen, da8 das
Résultat dem entsprechenden - mit ganz andern Mitteln hergeleiteten - Satz
von Alexandrow [1, S. 416] âquivalent wird.

Herrn Professor Pfluger verdanken wir folgenden Hinweis: Die Winkel-
treue der Abbildung w f(z) folgt direkt aus (3.20) durch Anwendung eines
Satzes von D. Menchoff (Sur une généralisation d'un théorème de M. H.Bokr,
Mat. Sbornik 44 (1937) 339-354, p. 340), der von F. W. Gehring (The définitions

and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn.,
im Druck) kurzlich neu bewiesen, verschârft und auf quasikonforme Abbil-
dungen verallgemeinert wurde.
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