Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 34 (1960)

Artikel: Uber ein vollstandiges System konformer Invarianten von dreifach-
zusammenhangenden Gebieten

Autor: Schnyder, Adolf Theophil

DOl: https://doi.org/10.5169/seals-26626

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-26626
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber ein vollstindiges System konformer Invarianten
von dreifach-zusammenhiingenden Gebieten

von ApoLF THEOPHIL, SCHNYDER, Basel

§ 1. Problemstellung und Ergebnisse

1.1. Unter einem numerierten Gebiet verstehen wir im folgenden ein drei-
fach-zusammenhidngendes Gebiet der komplexen Ebene, dessen nicht punkt-
formige Randkomponenten mit den Nummern 1, 2, 3 versehen sind. Zwei
numerierte Gebiete G und G* sollen konform dquivalent heilen, wenn es eine
konforme Abbildung von G auf G* gibt, welche jede Randkomponente von
¢ in die Randkomponente mit gleicher Nummer von G* iiberfiihrt. In der
vorliegenden Arbeit stellen wir uns die Aufgabe, die Aquivalenzklassen nume-
rierter Gebiete durch ein vollstindiges System von Invarianten zu charak-
terisieren. Dazu verwenden wir den von AHLFORS und BEURLING!) eingefiihr-
ten Begriff der Extremalldinge von Kurvenscharen.

1.2. Es sei G ein numeriertes Gebiet und I'; (+ = 1, 2, 3) die Schar der
rektifizierbaren geschlossenen Jorpankurven in G, welche die Randkompo-
nenten mit den Nummern % und ! voneinander trennen. Wir bezeichnen die
Extremalldnge der Schar I'; in bezug auf G mit A[I;, G] und nennen die
drei Zahlen

pe(@) = A7, G (=1,2,3) (1)

die Moduln des numerierten Gebietes G?). Es wird sich zeigen, daf diese

Moduln ein vollstindiges System konformer Invarianten bilden; wir beweisen
némlich

Satz 1. Zwer numerierte Qebiete @ und @* sind dann und nur dann konform
dquivalent, wenn p;(G) = p,(G*) gqilt fur + =1, 2, 3.

Ein solches Aquivalenzkriterium wurde frither von J. A. JENKINS3) bewie-
sen unter Zugrundelegung eines Modulsystems, das aus unserem System (1)
hervorgeht, wenn darin die Kurvenschar I'; ersetzt wird durch die Schar 0,
derjenigen Kurven in G, welche zur i-ten Randkomponente homotop sind.
Das Modulsystem (1) hat nun aber die schone Eigenschaft, dal sich der Varia-
bilitdtsbereich des Punktes (uy (@), uz(@), u3(@)) im dreidimensionalen Raum
vollsténdig und sehr einfach charakterisieren la8t. Wir beweisen nédmlich

1) Siehe Literaturverzeichnis Seite 16: AELFORS und BEURLING [1].
%) Vgl. die ausfiihrliche Definition in 2.1.
3) Siehe JENKINS (3], [4], [5].
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86 Aporr THEOPHIL SCHNYDER
Satz 2. Fur jede Permutation (i,k,l) der Ziffern 1,2,3 gilt
0 < i (G) < pr (@) + 10, (@)

Satz 3. Sind uy, uy, us drei positive Zahlen und gilt u; < py + p; fir
jede Permutation (i, k,l) der Ziffern 1,2, 3, so gibt es ein numeriertes Gebiet
Q mit p,(G) =pu; fir 1 =1,2,3.

Der Verfasser mochte Herrn Prof. HEINz HUBER, unter dessen Leitung
diese Arbeit entstanden ist, fiir die vielen guten Ratschlige herzlich danken.

§ 2. Moduln von Ringsehlitzgebieten

2.1. Definition von Modul und Extremalmetrik¢). Es sei @ ein Gebiet der
z = + ty-Ebene und I'= {y} eine Schar rektifizierbarer JornDANkurven
yin G. Essei M = M[I", @] die Menge aller in @ nichtnegativen und stetigen
Funktionen ¢(2), fiir die 1 < fo(2) | dz| fiir alle y e I' gilt. M[I", @] heiBit

L4
die Menge der beziiglich I" und G zulédssigen Funktionen oder Metriken. Das
Integral [o(2)]dz| ist die Linge der Kurve y in der Metrik ds = g(2) | dz |

v
und A[l', @] = [fe%(2)dxdy der Flicheninhalt von @ in dieser Metrik. Man
@
nennt inf Afp,G]= u[l', @] den Modul von I"' und G und A[l',G] =

eEMI[T, G]
u~ [, @] die Extremallinge von I" und G. Gibt es eine Metrik g,4(2), fiir

die A[p,, G] = p[I', G] ist, so heillt sie Extremalmetrik beziiglich I" und G.

2.2%). I sei eine Schar rektifizierbarer Kurven y im Gebiet @G, I'* eine
Schar im Gebiet G*. Es sei ¢ eine eineindeutige und konforme Abbildung
von G* auf G und es sei I' = ¢ (I'*). Definieren wir

*(z) =e(p() - 19'() |, o) e M[I,q], (1)
so gilt offenbar
fe@d] = o@|del, y*el™.

Daher (und wegen |¢'(z)| % 0 in @) ist die durch (1) definierte Zuord-
nung o —> ¢® eine umkehrbar eindeutige Abbildung von M[I', @] auf
M([I'*,G*], und es gilt A[p, G] = A[o?, G*]. Daraus ergibt sich
- u[l*,G¥]= inf Alp,@*]= inf A[e®, G*]= inf A[p, G] = u[l', G].

eEM[I*, Q%] e€EM(I', G} eEM[I,G]
Gibt es ferner genau eine Extremalmetrik g, zu I" und @, so gibt es auch
genau eine Extremalmetrik zu 1™ und G*, ndmlich gf.

1) Vgl. dazu: ABLFORS und BEURLING [1].
8) Vgl. dazu: JENKINS [6].
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2.3. Unter einem normierten Ringschlitzgebiet
S[r,R,a], 1<r<R, O0<a<2n

in der z = z + 1y-Ebene verstehen wir das Gebiet, das entsteht, wenn aus
dem Kreisringgebiet {z|1 < |z| < R} der Schlitz {re?? |0 < ¢ < a} ent-
fernt wird.

2.4. I sei die Schar aller rektifizierbaren geschlossenen Jorpankurven in
S[r, R, a], Welche den innern Randkreis vom &uBlern trennen. Dann gilt

ull’, 8] = — log R und es gibt genau eine Extremalmetrik, ndmlich

1
00(2) = W

2.5. Beweis: a). Offensichtlich gilt fiir jedes y ¢ I"

Jesrasi= [airr2 5] [Z ]

4

daher ist g,(2) e M[I", S]. Ferner ergibt sich sofort
dedy 1
A[QO,S]—ff432Ile =5—-log R .
S

b). Sei y, eine Kreislinie vom Radius v um den Ursprung. Wegen y, eI’
fir 1<t< R, v #r, gilt fir jedes ge M[I', S]

2n
1 <fo()|dz]| = fo(re®)rdp, 1<T<R, 7TH#Tr,
Yt 0
und folglich

ff@o(z)e(z dxdy—mf—-—feuewndw > —————A[eo,S],

somit ist
0 éfg (e(2) — 0o(2))*dxdy = Ao, 8] — 2f§feo(z)e(z)dxdy + Aleo, 8] =
< Alo, 81— Aleo, 81
Also ist in der Tat A[p, 8] = A[g,, S] = —2—17—z—log R firr alle pe M[I", 8],
und das Gleichheitszeichen gilt nur fiir g (z) = g4(2).

2.6. Jedes dreifach-zusammenhingende Gebiet kann bekanntlich auf ein
normiertes Ringschlitzgebiet konform so abgebildet werden, dafl irgend zwei
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vorgeschriebene Randkomponenten in die Randkreise iibergehen. Daher folgt
aus 2.4 und 2.2:

2.7. Ist G ein beliebiges dreifach-zusammenhingendes Gebiet und I" die
Schar aller rektifizierbaren geschlossenen JorpanNkurven in @, die irgend zwei
vorgeschriebene Randkomponenten voneinander trennen, so existiert zu I'
und G genau eine Extremalmetrik, und diese ist stetig in G.

2.8. Ist S* ein normiertes Ringschlitzgebiet und I'™ die Schar der rekti-
fizierbaren geschlossenen Jorpankurven in 8*, die den Schlitz vom &duflern
Randkreis trennen, so strebt die zu I'* und 8* gehorige Extremalmetrik gegen
unendlich, wenn z e 8* gegen einen der Endpunkte des Schlitzes strebt.

2.9. Beweis: Es gibt eine umkehrbar-eindeutige und konforme Abbildung
@ von S8* auf ein normiertes Ringschlitzgebiet S, welche den Schlitz von 8*
in den innern Randkreis von S und den duBern Randkreis von S* in den
duBern Randkreis von 8§ iiberfiihrt. Dann ist ¢ (/™) = I" die Schar der rekti-
fizierbaren geschlossenen Jorpankurven in 8, welche die Randkreise von §
voneinander trennen. Daher ist nach 2.2 und 2.4

oy 19 (@) ]
B =2 To0]

die zu I'* und S* gehorige Extremalmetrik. Ist z, einer der beiden Endpunkte
des Schlitzes von S*, so liegt sein Bildpunkt ¢(z,) auf dem innern Randkreis
von §, also ist | ¢(29) | = 1. Da durch die Abbildung ¢ der Schlitz von S*
in den Endpunkten auseinander gebogen wird, ist | ¢'(2) | ~¢ |z — 2z, |}
mit ¢ %0 fir z >z, und zeS*. Daraus folgt pJ(z) > oo fiir z —» 2,
und z e S*.

§ 3. Zusammenhang zwischen den Moduln und den harmonischen Maien
bei Gebieten mit stiickweise analytischen Randkomponenten

3.1. Es sei G* ein numeriertes Gebiet mit den stiickweise analytischen
Randzyklen C; (¢ = 1, 2, 3). Diese seien so orientiert, da C, + C, + C,
das Gebiet G* positiv berandet. Es sei w,(2) das harmonische Mafl von C,
beziiglich G*, das ist diejenige in G* harmonische Funktion, welche auf C,
die Randwerte 1 hat, und deren iibrige Randwerte 0 sind. Dann ist

.g'w,-(z)E 1. (1)

Taxl
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Es sei ferner

dw; dw,;
3 dx + I d

*do, = —

das zu dw, konjugierte Differential. Die Matrix (a,,) der Periodizitdtsmoduln
dw,; dw aw- ow
* k i k

@ —f dw, = ff{ 52 5z 63/ e dxdy (2)

ist symmetrisch und wegen (1) gilt

3
k=1

Um die Schreibweise zu vereinfachen setzen wir
p,=a; fir 1=1,2,3, (4)

dann folgt aus (2)
p;,>0 fir ¢=1,2,3. (5)

Ferner setzen wir, unter (¢, k,!) irgendeine Permutation der Ziffern 1, 2, 3
verstanden,

Ty = Qg = Q- (6)
Dann folgt aus (3)
pi=— (2 +x;) und x,=§(p, — pr — P) - (7)
Hieraus ergibt sich zunéchst
PrPr — % = D(py, P2, Ds) (8)
wobei
D = D(p;, Py, Ps) = 2[(p1 + D2+ P)? — 2(03 + P} + 13)] (9)

ist. Als zweireihige Unterdeterminante der Periodenmatrix (a,,) ist aber be-
kanntlich p,p, — 2} # 0, somit ist

D = D(p,, ps, ps) 0. (10)
3.2. In

Qi = Cigg 0y, + Ay o, (11)

bestimmen wir die Konstanten c¢;;,, und d,;, derart, dag

Ck Cy
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wird. Das gibt wegen (2), (4), (6) das System der linearen Gleichungen

PrCiry + Ty = 0
TiCixy + Py = 27 .
Hieraus findet man unter Beriicksichtigung von (8), (10) und (7)

— 27 4

ci - xi —_ —
kl D(pl’pz,pa) D(pl’pz, pa) (pk = Y4 yz ) (13)
d _ 2n
e D(pla p2a pa) pk )

Aus (11), (12) und (13) folgt®): Die Funktion

fii (2) = exp (2,3 + ¢f*dQ2y,)
bildet das Gebiet G* eineindeutig und konform auf einen geschlitzten Kreis-
ring ab, und zwar geht dabei iiber:

C, in den #uBern Randkreis des Ringes mit dem Radius e%#,
C, in den Schlitz mit dem Radius e’** und
C; in den innern Randkreis mit dem Radius 1.

1

Folglich mufl gelten 0 < c¢;;,; < d,;,;. Hieraus folgt unter Beniitzung von (5),
(10), (13):

3.3. (a) Es gilt D(p,, ps, ps) >0 und p,; < p, + p, fir jede Permutation
(¢, %k,1) der Ziffern 1, 2, 3.

(b) Das numerierte Gebiet G* 143t sich auf ein normiertes Ringschlitzgebiet

SialTirr> Bigrs tini]

. 7
mit 7, = exp( D(Pys Py Pa) (pr + P, — Pi))

Ry = exp( 27 P )
it D(p,,pas ps) ©"

so abbilden, dafl C, in den innern Randkreis, C,, in den Schlitz und C, in den
duBern Randkreis iibergeht.

3.4. Aus 3.3 (b) folgt jetzt nach 2.2 und 2.4

log Bz, Pr ..
* i
Ui (G*) = 5%~ D(p., pa. 7 fir k=1,2,3. (14)

Daraus und aus 3.3 folgt endlich:

3.b6. Es sei G* ein numeriertes Gebiet mit stiickweise analytischen Rand-
komponenten und es sei u,(G*) = u, gesetzt.

%) Vgl. etwa: AHLFORS [2].
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(a) Es gilt u; < u, + u, fir jede Permutation (¢, k, I) der Ziffern 1, 2, 3.

(b) @* 1dBt sich auf ein normiertes Ringschlitzgebiet S[e™#etrs—r) o2 ]
so abbilden, dal die erste Randkomponente von G* in den innern Randkreis
von S, die zweite Randkomponente von @* in den Schlitz von S und die
dritte in den duBern Randkreis von 8 iibergeht.

§ 4. Beweis von Satz 1 und 2

4.1. Erste Hilfte von Satz 1: Die numerierten Gebiete G und G* seien
konform dquivalent. Dann ist u,(G) = u,(G*) fir + =1, 2, 3.

4.2. Beweis: Es sei ¢ die Funktion, welche das numerierte Gebiet G* kon-
form auf das numerierte Gebiet G abbildet. I'; bzw. I'; sei die Schar der rekti-
fizierbaren geschlossenen JorRDANkurven in G bzw. @*, welche die Randkom-
ponenten mit den Nummern &k und ! voneinander trennen. Dann gilt offen-
sichtlich I'; = ¢(I';) und daher nach 2.2 u[l}, G]= u[l;,G*], also
u;(G) = p,; (G*) fir 1 =1, 2, 3.

4.3. Es sei @ ein beliebiges numeriertes Gebiet und es sei u,;(G) = y;
gesetzt.

(a) Dann ist u; < u, + y, fir jede Permutation (¢, k£, I) der Ziffern 1,2,3.
(b) @ 14Bt sich auf ein normiertes Ringschlitzgebiet S[e™(#2t#a—#) g2 ]
konform so abbilden, daf die Randkomponenten 1, 2,3 von @ der Reihe

nach iibergehen in den innern Randkreis, den Schlitz und den duBern Rand-
kreis von §.

4.4. Beweis: Es gibt immer ein numeriertes Gebiet G* mit analytischen
Randkomponenten, das zum numerierten Gebiet G konform &dquivalent ist.
Daraus und aus 4.1 und 3.5 folgt aber die Behauptung. Mit 4.3 (a) ist Satz 2
bewiesen.

4.5. Zweite Hilfte von Satz 1: Es seien @G und @* numerierte Gebiete und
es sei u;(@) = u,(G*) = pu; fir + = 1,2,3. Dann sind die numerierten Ge-
biete G und G* konform dquivalent.

4.6. Beweis: Nach 4.3 (b) gibt es konforme Abbildungen
p: G—>8[r,R,a]=8
p*: G* - 8[r, R, o*] = §*

mit r = ™t~ m) ynd R = e***, welche die Randkomponenten 1,2, 3
von G bzw. G* der Reihe nach iiberfiihren in den innern Randkreis, den
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Schlitz und den d&uBlern Randkreis von 8 bzw. S*. Die Behauptung 4.5 wird
also bewiesen sein, wenn gezeigt ist, dal « = o* gilt.

Es sei I bzw. I'* die Schar der in 8 bzw. 8* verlaufenden rektifizierbaren
geschlossenen JorDANkurven, welche die Schlitze von den duBlern Randkreisen
trennen. Dann ist nach 2.2 u,(Q) = pu[I', 8], u(G*) = u[l™*, 8*], also nach

Voraussetzun
8 ull', 8] = u[I*, 8%]. (1)
Nehmen wir an, es wire etwa o < o*. Dann wire
S*c S und I'*c I'. (2)

Es sei gy(2) e M[I', S] die nach 2.7 eindeutig existierende Extremalmetrik,
welche zu I" und 8 gehort:

Aloo, 8] = ulI', 8]. (3)

Es sei 0,(2) die Restriktion von g,(z) auf S* c §. Wegen (2) gilt dann
fir jede Kurve y e I'*

J@o(z) |dz | = [po(2) |dz| =1, alsoist
4 Y

Qo(2) e M[I™*, 8*]. (4)

Ferner ist offensichtlich A[p,, S*]= A4[g,,S], also wegen (3) und (1)
A[0,, 8¥] = u[I'*, 8*]. Daraus, aus (4) und 2.7 folgt aber, da} 7,(z) die
Extremalmetrik zu I'* und S* ist. Daher ist nach 2.8 lim 9,(z) = + oo,

Z€S*
z—>reto® «
oder was dasselbe ist, lim g,(2) = 4 oco. Das kann aber nicht sein, da re
2€8*
z—>reto®

ein innerer Punkt von § ist, in welchem die Extremalmetrik g,(z) zu I" und
S nach 2.7 stetig ist.

§ 6. Beweis von Satz 3

5.1. Es seien drei positive Zahlen u;, u,, us gegeben und fiir jede Per-
mutation (¢, k, I) der Ziffern 1, 2, 3 gelte

He <px+ p . (1)
b.2. Definieren wir
D(uy, pys p3) = (s + 3 + 45)2 — 2(u}" + p3* + M1, (2)

so folgt aus (1)
D(uy, g5 115) > 0. (3)
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Definieren wir weiter

oM
Y D(uy, ps, H3)

fir 1=1,2,3, (4)
so ergibt sich
pi >0 und P <p+p; (5)

fir jede Permutation (i, k,1) der Ziffern 1, 2, 3. Weil D(u}, us, u3) ein
homogenes Polynom 2. Grades ist, erhdlt man

1

D*:—-".D(p:,p;,p;): ——->0. (6)
Dy 5 py s u3)
Daraus und aus (4) folgt
=P g i—1,2,3 (7)
(3 .D* M b] '
Definieren wir ferner
v =3p; —pp—m) fir i=1,2,3, (8)
so folgt
P = — (2 + 27) (9)
fiir jede Permutation (¢, k, 1) der Ziffern 1, 2, 3,
D* = xjx; + 2,23 + 2, 2, (10)
und aus (5)
xr; <0 fir 1=1,2,3. (11)
SchlieBlich setzen wir
_ eﬂ(u’g‘ +u3 —p7 )
12
R= & e
Aus (1) folgt
l<r<R. (13)

5.3. Wir betrachten nun das Ringschlitzgebiet S, = S[r, B, «] mit
0 < « < 2x und bezeichnen den innern Randkreis von S, mit C,, den dulern
mit Cy und den Schlitz mit C,(«). Diese Randkurven seien so orientiert, daf
C, + Cy(a) + Oy das Gebiet S, positiv berandet. Da S, stiickweise analyti-
sche Randzyklen besitzt, existieren in S, die harmonischen MaBe w,(z, «)
und die Periodizitdtsmoduln p,(x) und z,(x) gemiB 3.1. Es sei u,;(S,) =
p;(o) gesetzt. Satz 3 ist bewiesen, wenn gezeigt ist, daBl es einen Winkel «
mit 0 < a < 27 gibt, so daB gilt u;(x) = u; fir ¢ =1,2,3.
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Wir zeigen zunéchst:

b.4. Ist p,(x)=p; fiir ein gewisses o mit 0 <o < 27, so folgt u;(x)=pu;
fir =1, 2,3.

b.5. Beweis: Da log | z | in S, harmonisch und auf den Rédndern konstant
3

ist, muB} eine lineare Relation X a;w;(z, o) = log | z| mit konstanten Koef-

i=1
fizienten a; bestehen. Man findet unter Beriicksichtigung von (12), (7) und (8)
D* H
w3(z,0) = s log | 2| + S wy(z, a) .
7 Py P

Daraus ergibt sich

b 3 *
Zy(a) = f*dws(z, @) = 2§p* f*d log|z]| + ad! f*dwz(z, a)
1

*
J ) & P2
das heif3t
D*  a* — D* + 2t 2. (o
Za() = — o+ L () = e 1/ (14)
2 y 2 D2

% *
2, (o) = f*dwa(z, a) = 2];?* f*d log | 2 | —{——:—v—i— f*dwz(z, )

Cs(s) 2 05a) Pr e

das heif3t
w*
2y (@) = ——pi Pa(@) . (15)

2

Ist nun p,(x) = p,, so folgt aus (15) z,(x) = x;. Durch Vergleich von
(9) mit Formel (7) in 3.1 erhilt man x4(x) = x; . Daraus und aus (14) ergibt
sich unter Beniitzung von (10) und (9)

Zg(a) =

Dt _d(d—a)
Pi B Pi o

Also folgt wegen (9) auch p,(x) = p; und p,(x) = p;. Somit bekommt

man nach Formel (14) von 3.4 unter Beriicksichtigung von (7) schlieflich

p‘(“) p:; L 3 s o
(o) = = ——=pu; fir i=1,2,3.
(= @, p@, @) D)

5.6. Nach (5) ist 0 < p, < p; + p;. Wegen 5.4 folgt offensichtlich Satz 3
nun aus dem folgenden

Hilfssatz: p,(x) = [*dw,(z, ) ist fiir 0 <a < 2x eine stetige Funktion
Os(x)
von o und es gilt liin py(x) = 0 und lim inf py(x) > p; + p; -
ay0 w12n
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§ 6. Beweis des Hilfssatzes 5.6
6.1. Wir setzen S, =1lmS, = {z|1<|2| <R, z #r} und w,(z, a) =

xy0
w(z,a). Dann gilt w(z,a)=> 0 fir a | 0 auf jeder kompakten Teilmenge
von 8.

6.2. Beweis: Sei 0 <o’ <a<2x. Dann nimmt die in S, harmonische
Funktion w(z,«) — w(z, a') iiberall auf dem Rande von S, nichtnegative
Werte an. Somit gilt

I<wiE,d) 2w, o)<l fir zeS,, 0<d' <a<2x:. (1)

Daraus folgt aber nach dem Satze von HArRNACK: Es gibt eine in S, defi-
nierte Funktion w,(z) mit folgenden Eigenschaften:

wy(2) harmonisch in S, (2)
0= we() =1 ing,, (3)
w(z, o) => wy(z) fir « | 0 auf jeder kompakten Teilmenge von S,. (4)

Da w(z,a) auf den Kreisen |[z| =1 und |[z|= R die Randwerte 0
besitzt, folgt aus (1), daB auch wy(z) auf diesen Kreisen die Randwerte 0
annimmt. Wegen (2) und (3) kann aber wq(2) zu einer im ganzen Kreisring
1< |z| <R harmonischen Funktion fortgesetzt werden. Folglich ist
wo(2) =0 in §,. Wegen (4) ist damit die Behauptung bewiesen.

6.2. Essei 0 <a<2n. Danngilt w(z,a — ) = w(z,«) fir § | 0 auf
jeder kompakten Teilmenge von S, .

6.3. Beweis: Es sei 6>0 und o« — 6> 0. Die in S, harmonischen
Funktionen u(2) =w(z,0) —w(z,a—08) und v(2) = w(e-ia-dz, §)
— w(z,a) + w(2,« — §) nehmen auf dem Rande von S, iiberall nicht-
negative Werte an. Somit ist #(z), v(2) = 0 in §,, das heil}t

0=w@E, o) —oE,a—0) <w(eiedz §) fir ze8,. (5)

Sei nun K eine kompakte Teilmenge von S,. Dann gibt es offenbar ein
d, > 0 und ein Kompaktum K, c S, derart, daB3

e~ie-dK « K,c 8, fir 0<d<d,.
Daher folgt aus (5) nach 6.1
w(E,a—d)=>w(E,a) auf K fir 6 0.

6.4. Es sei 0<a<2n. Dann git w(@,a+ ) =>w(z,a) fir 60
auf jeder kompakten Teilmenge von S,,.
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6.5. Beweis: Der Beweis konnte analog wie in 6.3 gefiihrt werden ; es geht
aber sogar noch einfacher: Es sei 6 >0 und « + 6 < 2x. Durch Anwen-
dung des Maximumprinzips auf die in S,,5 harmonische Funktion
w(z,a + 8) — w(z, a) ergibt sich

0=wiE,a+0d) —w(E,a < Max {1 — w(re?,a)} = M(J)
a<p<a+s

fir zeS,, 5, weil aber w(z,a) im Punkte re*® den Randwert 1 annimmt,
ist M(8) - 0 fir 6 | 0, woraus die Behauptung offensichtlich folgt.

6.6. Wir setzen S,,=1lmS,={|1<|2|<r}U{z|r<|z|<R}.
al2n
(8,, zerfillt also in zwei Kreisringe.) Wir definieren
log|z] fir 1<|z|<r
log r
w(z) = (6)

log|z| —log R .
fog r — Iog R fir r<|z|<R.

(Die Funktion w(z) ist also harmonisch in §,, und nimmt auf den Kreisen
|2] =1 und | 2| = R die Randwerte 0, auf |z | =~ die Randwerte 1 an.)
Dann gilt w(z, 27 — ) = w(z) fir 6 | 0 auf jeder kompakten Teilmenge
von S,,.

6.7. Beweis: Sei 0< d<2n. Die in 8,, harmonischen Funktionen
u(Z) = 0@ — w(#, 20— 38) und v(2) = w(z, §) — w(z) + w(z, 2n — 6)
nehmen iiberall auf dem Rande von §,, nichtnegative Werte an, somit gilt

0 S w(i) — w2, 2n—0) <w(z,d). (7)

Sei nun K eine kompakte Teilmenge von S,,. Dann ist offenbar K eine
kompakte Teilmenge von S,. Daher folgt aus (7) nach 6.1

w(z,27 —0) = w(z) auf K fir § | 0.

6.8. (a) lim p,(a + 8) = py(a) fir O0<a< 2x
8—>0

(b) liin Palw) = 0.

6.9. Beweis: Es sei C, ein ganz in S, liegender Zyklus derart, daBl C,
homolog — C, — Cymod 8, ist. Dann gilt fiir ein gewisses d,>0: C,
homolog — C; — C3mod 8,,s fiir alle | § | < 8, und daher

Ca
Da nun C, eine kompakte Teilmenge von §, ist, folgt aus 6.2 und 6.4
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*do (2, « + 0) = *dw(z, «) auf C, fiir § - 0 und somit
P2 (o + 0) —*Cf ¥do(z, o) = py(a) .
In derselben Weise beweist man Z‘b) unter Beniitzung von 6.1.
6.10. 161?; inf p, (27 — 8) > p; + p; .

6.11. Beweis: Sei K eine kompakte Teilmenge von S,,. Dann gilt fiir ein
gewisses d,>0: K c 8,,_, fir 0 < 6 < §, und daher

Ps(2n—0)={ [ |grad w(z, 2x — §) |*dedy = “‘|grad w(z,2n — ) |*dzdy
Son_s
fir 0 <6< §,, somit
lim inf p,(27x — §) = lim mf” | grad w(z, 2z — é) |2dxdy . (8)

840 80
Nach 6.6 gilt aber grad w(z, 22 — ) => grad w(z) auf K fir 6 | 0, daher
folgt aus (8)
lim inf p, (27 — 8) = ” | grad w(z) |2dxdy .

540

Da dies fiir jede kompakte Teilmenge K c §,, gilt, folgt
lim inf p, (27 — 8) >j'j' | grad w(2) |2dedy = J .

840 Son

Aus Definition (6) von (z2) berechnet man leicht

2n 27

J = log r +logR——Iogr '

Aus den Formeln (12), (7) und (8) in 5.2 ergibt sich

2
log r = -—%—Z-x’f und log R — log r = ———,7”*—:1:; :
Unter Beniitzung von Formel (10) in 5.2 erhiilt man
py D* SN
J""xalt—m* —"p1+p3— xk at

und mit (11) aus 5.2 folgt
J>p +p; -
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