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tlber ein vollstândiges System konformer Invarianten
von dreifach-zusammenhângenden Gebieten

von Adolf Theophil Schnyder, Basel

§ 1. Problemstellung und Ergebnisse

1.1. Unter einem numerierten Gebiet verstehen wir im folgenden ein drei-
fach-zusammenhàngendes Gebiet der komplexen Ebene, dessen nicht punkt-
fôrmige Randkomponenten mit den Nummern 1, 2, 3 versehen sind. Zwei
numerierte Gebiete G und 6?* sollen konform équivalent heiBen, wenn es eine
konforme Abbildung von G auf 6?* gibt, welche jede Randkomponente von
G in die Randkomponente mit gleicher Nummer von G* ûberfuhrt. In der
vorliegenden Arbeit stellen wir uns die Aufgabe, die Âquivalenzklassen nume-
rierter Gebiete durch ein vollstândiges System von Invarianten zu charak-
terisieren. Dazu verwenden wir den von Ahlfors und Beurling1) eingefuhr-
ten BegriflE der Extremallange von Kurvenscharen.

1.2. Es sei G ein numeriertes Gebiet und 7^ (i 1, 2, 3) die Schar der
rektifizierbaren geschlossenen JoRDANkurven in G, welche die Randkomponenten

mit den Nummern k und l voneinander trennen. Wir bezeichnen die
Extremallange der Schar Ft in bezug auf G mit A [7^, G] und nennen die
drei Zahlen

MG)-*.-1^^] (t=l,2,3) (1)

die Moduln des numerierten Gebietes G2). Es wird sich zeigen, daB dièse
Moduln ein vollstândiges System konformer Invarianten bilden ; wir beweisen
nàmlich

Satz 1. Zwei numerierte Gebiete G und G* sind dann und nur dann konform
équivalent, wenn ^(G) ^((?*) gilt fur i 1,2,3.

Ein solches Âquivalenzkriterium wurde fruher von J. A. Jenkins3) bewie-
sen unter Zugrundelegung eines Modulsystems, das aus unserem System (1)
hervorgeht, wenn darin die Kurvenschar Ft ersetzt wird durch die Schar dt

derjenigen Kurven in G, welche zur i-ten Randkomponente homotop sind.
Das Modulsystem (1) hat nun aber die schône Eigenschaft, daB sich der Varia-
bilitâtsbereich des Punktes (ju± (G), ju2 (G), /u3 (G)) im dreidimensionalen Raum
vollstàndig und sehr einfach charakterisieren lâBt. Wir beweisen namlich

1) Siehe Literaturverzeichnis Seite 16: Ahlfobs und Beurling [1].
2) Vgl. die ausfûhrliche Définition in 2.1.
3) Siehe Jbnkins [3], [4], [5].
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Satz 2. Fur jede Permutation (i,k,l) der Ziffern 1,2,3 gilt
0 <pt(G)<pk(Q)

Satz 3. Sind /**, /4 > ^3 ^m positive Zahlen und gilt fi* < jul + /** /ftr
?ede Permutation (i,k,l) der Ziffern 1,2,3, so gibt es ein numeriertes Gebiet
G mit pt(G) /** fur i 1, 2, 3.

Der Verfasser môehte Herrn Prof. Heinz Huber, unter dessen Leitung
dièse Arbeit entstanden ist, fur die vielen guten Ratschlage herzlich danken.

§ 2. Moduln von Ringschlitzgebieten

2.1. Définition von Modul und Extremalmetrik4). Es sei G ein Gebiet der
z x + iy-Ebene und F {y} eine Schar rektifizierbarer JoRDANkurven

y in Es sei M M [F, G] die Menge aller in G nichtnegativen und stetigen
Funktionen q(z), fur die 1 ^ $q(z) \ dz \ fur aUe y € F gilt. Jf [J1, G] heifit

y
die Menge der bezûglich F und zulassigen Funktionen oder Metriken. Das

Intégral §ç(z)\dz\ ist die Lange der Kurve y in der Metrik ds — g(z)\ dz\
Y

und A [F, G] $$Q*(z)dxdy der Flâcheninhalt von G in dieser Metrik. Man
G

nennt inf .4[g, G] fi[F, G] den Modul von F und » und Â[F, G]
Q€M[r, G]

fr~x[F, G] die Extremallânge von F und G. Gibt es eine Metrik £0(2)» fôr
die -4[e0, G] //[/\ G] ist, so heiBt sie Extremalmetrik bezûglich .Tund G.

2.25). F sei eine Schar rektifizierbarer Kurven y im Gebiet G, F* eine
Schar im Gebiet (?*. Es sei 9? eine eineindeutige und konforme Abbildung
von 6?* auf G und es sei F <p(F*). Definieren wir

Jf [/\ G] (1)
so gilt ofifenbar

J
y*

Daher (und wegen | <pf(z) \ =£ 0 in ist die durch (1) definierte Zuord-

nung Q-+Q9 eine umkehrbar eindeutige Abbildung von M [F, G] auf
M[T*, G*], und es gilt A[q, G] A[qv, G*]. Daraus ergibt sich

^ inf A[q,G*]= w£ Ate*,G*]= inf A[q,G]

Gibt es ferner genau eine Extremalmetrik g0 zu F und G, so gibt es auch

genau eine Extremalmetrik zu J1* und G*, nâmlich q%.

4) Vgl. dazu: Ahlfors xxnà Beublïng [1],
6) Vgl. dazu: Jbnkins [6].
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2.3. Unter einem normierten Ringschlitzgebiet

8[r,R,a], l<r<R, 0<oc<2tz
in der z x + iy-Ebene verstehen wir das Gebiet, das entsteht, wenn aus
dem Kreisringgebiet {z | 1 < | z | < R} der Schlitz {rei(p | 0 ^ <p ^ a} ent-
fernt wird.

2.4. F sei die Schar aller rektifizierbaren geschlossenen JoRDANkurven in
8[r,R,où], welche den innern Randkreis vom àuBern trennen. Dann gilt

,S] ——logjR und es gibt genau eine Extremalmetrik, nàmlich

{Z)
271 | 2 |

*

2.5. Beweis: a). OfiFensichtlieh gilt fur jedes y € F

daher ist qo(z) e M [F, S]. Ferner ergibt sich sofort

b). Sei yT eine Kreislinie vom Radius x um den Ursprung. Wegen yT€ F
fur 1<t<J?, r^r, gilt fur jedes Q€M[F,S]

1 ^ J Q(z) \dz\= fQ(reifP)xd(p 1< r < i?, r ^ r

und folglich

J^ A[Qo, 8]

somit ist

0 <g JJ(g(«) - qQ{z))Hxdy

Also ist in der Tat A[q, S) ^ 4[o0) «] ^- log iî fur aile q e M[r, 8],
und das Gleichheitszeichen gilt nur fiir q(z) qo(z).

2.6. Jedes dreifach-zusammenhângende Gebiet kann bekanntlich auf ein
normiertes Ringschlitzgebiet konform so abgebildet werden, daB irgend zwei
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vorgeschriebene Randkomponenten in die Randkreise iibergehen. Daher folgt
aus 2.4 und 2.2:

2.7. Ist G ein beliebiges dreifach-zusammenhângendes Gebiet und F die
Schar aller rektifizierbaren geschlossenen JoRDANkurven in G, die irgend zwei
vorgeschriebene Randkomponenten voneinander trennen, so existiert zu F
und G genau eine Extremalmetrik, und dièse ist stetig in G.

2.8. Ist 8* ein normiertes Ringschlitzgebiet und F* die Schar der
rektifizierbaren geschlossenen JoRDANkurven in $*, die den Schlitz vom âufiern
Randkreis trennen, so strebt die zu F* und 8* gehôrige Extremalmetrik gegen
unendlich, wenn z € S* gegen einen der Endpunkte des Schlitzes strebt.

2.9. Beweis: Es gibt eine umkehrbar-eindeutige und konforme Abbildung
<p von S* auf ein normiertes Ringschlitzgebiet 8, welche den Schlitz von $*
in den innern Randkreis von 8 und den âuBern Randkreis von $* in den
âuBern Randkreis von 8 uberfuhrt. Dann ist <p(F*) F die Schar der
rektifizierbaren geschlossenen JoRDANkurven in S, welche die Randkreise von 8
voneinander trennen. Daher ist nach 2.2 und 2.4

2n\9(z)\

die zu F* und /S* gehôrige Extremalmetrik. Ist z0 einer der beiden Endpunkte
des Schlitzes von 8*, so liegt sein Bildpunkt ç> (z0) auf dem innern Randkreis
von S, also ist | <p(z0) | 1. Da durch die Abbildung cp der Schlitz von /S*

in den Endpunkten auseinander gebogen wird, ist | <pf(z) \ ~c | z — z0 |~i
mit c ^ 0 fur z -> z0 und z € S*. Daraus folgt q$ (z) -> cx> fur z -> z0

und z € 8*.

§ 3. Zusammenhang zwischen den Moduln und den harmonischen Malien
bei Gebieten mit stûckweise analytischen Bandkomponenten

3.1. Es sei (?* ein numeriertes Gebiet mit den stiickweise analytischen
Randzyklen C{ (i 1,2,3). Dièse seien so orientiert, daB Cx + (72 + Cz

das Gebiet (?* positiv berandet. Es sei co^z) das harmonische MaB von C{

bezûglich G*9 das ist diejenige in G* harmonische Funktion, welche auf Ct
die Randwerte 1 hat, und deren ûbrige Randwerte 0 sind. Dann ist

27 (»,(*) =5 1. (1)
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Es sei ferner

*~ ~~~W ~T~d^ y '

das zu dcûi konjugierte Differential. Die Matrix (aik) der Periodizitâtsmoduln

do)k doii 3cofc|

G

ist symmetrisch und wegen (1) gilt

/. f rida);
dWfc J J bf

C G

3

Eaik 0 fur i 1,2, 3 (3)

Um die Schreibweise zu vereinfaehen setzen wir

pi aii fur t= 1,2,3, (4)
dann folgt aus (2)

Pi>0 fur i= 1,2, 3 (5)

Ferner setzen wir, unter (i, &, ï) irgendeine Permutation der Ziffern 1,2,3
verstanden,

*< a/bï «lfc • («)
Dann folgt aus (3)

Pi =—(** + «i) und *< 1(P< ~ Pk ~ Pi) • (7)

Hieraus ergibt sich zunâchst

PkPi ~ A D(Pi> P2> Ps) > (8)
wobei

D D(Pi, P*> Pz) i[(Pi + P2 + Ps)2 ~ 2(pî + ^22 + rf)] (9)

ist. Als zweireihige Unterdeterminante der Periodenmatrix (aifc) ist aber be-
kanntlich pkPi — x\ ^ 0, somit ist

p%,Vi)^0. (10)
3.2. In

bestimmen wir die Konstanten cikl und dm derart, daB

J *dûin 0 und J *dQm 2jï (12)
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wird. Das gibt wegen (2), (4), (6) das System der linearen Gleichungen

xidihi 0

Hieraus findet man unter Beriieksiehtigung von (8), (10) und (7)

— 2n n
** + >

dikl~

Aus (11), (12) und (13) folgt6): Die Funktion

bildet das Gebiet (?* eineindeutig und konform auf einen geschlitzten Kreis-
ring ab, und zwar geht dabei uber:

Ct in den âuBern Randkreis des Binges mit dem Radius edikl,
Ch in den Schlitz mit dem Radius eCikl und
Ci in den innern Randkreis mit dem Radius 1.

Folglieh muB gelten 0 < cikl < dihl. Hieraus folgt unter Benutzung von (5),
(10), (13):

3.3. (a) Es gilt D(pt, p2, pz) > 0 und p{ <pk + pt fur jede Permutation
(i,k,l) derZifFern 1,2,3.

(b) Das numerierte Gebiet G* lâBt sich auf ein normiertes Ringschlitzgebiet

ikl y ™ikl > ^ik il

so abbilden, daB G{ in den innern Randkreis, Gk in den Schlitz und Ct in den
âuBern Randkreis iibergeht.

3.4. Aus 3.3 (b) folgt jetzt nach 2.2 und 2.4

Daraus und aus 3.3 folgt endlich:

3.6. Es sei G* ein numeriertes Gebiet mit stûckweise analytischen Rand-
komponenten und es sei juk(G*) fAk gesetzt.

«) Vgl. etwa: Ahlfobs [2].
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(a) Es gilt fti < fik + [ii fur jede Permutation (i, k, l) der Ziffern 1,2,3.
(b) G* lâBt sich auf ein normiertes Ringschlitzgebiet 8[e*'t*+'t*-'*), e2*"», <x]

so abbilden, da8 die erste Randkomponente von G* in den innern Randkreis
von S y die zweite Randkomponente von G* in den Schlitz von S und die
dritte in den âuBern Randkreis von S ubergeht.

§ 4. Beweis von Satz 1 und 2

4.1. Erste Halfte von Satz 1: Die numerierten Gebiete G und G* seien
konform âquivalent. Dann ist ^(G) ^t(G*) fur i 1,2,3.

4.2. Beweis: Es sei <p die Funktion, welche das numerierte Gebiet G*
konform auf das numerierte Gebiet G abbildet. Ft bzw. F* sei die Schar der rekti-
fizierbaren geschlossenen JoBDANkurven in G bzw. G*, welche die Randkom-
ponenten mit den Nummern k und l voneinander trennen. Dann gilt offen-
sichtlich r{ (p(r*) und daher nach 2.2 p[r4, G] /*[F*, G*], also
/*<(<*) Pi(Q*) ^r i= 1,2,3.

4.3. Es sei G ein beliebiges numeriertes Gebiet und es sei iwf(G)=//t.
gesetzt.

(a) Dann ist /*t. < fik + fit fur jede Permutation (i, k, l) der Ziffern 1,2,3.
(b) G lâBt sich auf ein normiertes Ringschlitzgebiet i8f[cw(#**"h#i*"#il>, e2nfi*, <x\

konform so abbilden, da6 die Randkomponenten 1,2,3 von G der Reihe
nach iibergehen in den innern Randkreis, den Schlitz und den âuBern Randkreis

von 8.

4.4. Beweis: Es gibt immer ein numeriertes Gebiet G* mit analytischen
Randkomponenten, das zum numerierten Gebiet G konform àquivalent ist.
Daraus und aus 4.1 und 3.5 folgt aber die Behauptung. Mit 4.3 (a) ist Satz 2

bewiesen.

4.5. Zweite Halfte von Satz 1 : Es seien G und G* numerierte Gebiete und
es sei /^(G) /*»(G*) ^ fur i 1,2,3. Dann sind die numerierten
Gebiete G und G* konform àquivalent.

4.6. Beweis: Nach 4.3 (b) gibt es konforme Abbildungen

mit r en(fii+fi*-fil) und R e2nMi, welche die Randkomponenten 1,2,3
von G bzw. G* der Reihe nach ûberfuhren in den innern Randkreis, den
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Schlitz und den âuBern Randkreis von 8 bzw. S*. Die Behauptung 4.5 wird
also bewiesen sein, wenn gezeigt ist, daB a a* gilt.

Es sei F bzw. jP* die Schar der in 8 bzw. $* verlaufenden rektifizierbaren
geschlossenen JoBDANkurven, welche die Schlitze von den àuBern Randkreisen
trennen. Dann ist nach 2.2 ^(0) fi[F, 8], ju^G*) //[-T*, /S*], also nach
Voraussetzung

B] M[r*, B*}. (1)

Nehmen wir an, es ware etwa a < a*. Dann wâre

S*cS und r* c r. (2)

Es sei ^0(2) c M[F, S] die nach 2.7 eindeutig existierende Extremalmetrik,
welche zu F und S gehôrt :

]. (3)

Es sei ^Qoiz) die Restriktion von ^0(^) auf 8* c: 8. Wegen (2) gilt dann
fur jede Kurve y c F*

J£o(z) \dz\ $qo(z) \dz\ ^ 1 also ist
Y Y

îo(z)eM[r*,S*]. (4)

Perner ist offensichtlich Afâç, S*] A[q0, 8], also wegen (3) und (1)
-4[^0jâf*] iU[r*,/Sf*]. Daraus, aus (4) und 2.7 folgt aber, daB go(z) die
Extremalmetrik zu JT* und /S* ist. Daher ist nach 2.8 lim£0(z) + °o,

oder was dasselbe ist, lim qo(z) + oo. Das kann aber nicht sein, da reta*

ein innerer Punkt von 8 ist, in welchem die Extremalmetrik qo(z) zu F und
5 nach 2.7 stetig ist.

§ 5. Beweis von Satz 3

5.1. Es seien drei positive Zahlen ^*, /*J> /4 gegeben und fur jede
Permutation (i, k,l) der Ziffern 1,2,3 gelte

/4</4 + /4. (1)
5.2. Definieren wir

+fi +14)2 - 2</*r + mv+

so folgt aus (1)
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Definieren wir weiter

Pi^nt**** *\ ftir i==l>2>*> (4)

so ergibt sich

pï>0 und V*<vl + V* (5)

fur jede Permutation (i,k,l) der Ziffern 1, 2, 3. Weil £)(//*, fc, fa) ein
homogènes Polynom 2. Grades ist, erhâlt man

m ^ ..>(>. (6)

Daraus und aus (4) folgt

/4=|| fur » 1,2,S. (7)

Definieren wir ferner

Î - PÎ) *ûr » 1,2,3, (8)
so folgt

pî - (4 + *î)

fur jede Permutation (i, k, l) der Ziffern 1,2,3,

und aus (5)

SchlieBlich setzen wir
<

*

0

* t

fur

r*x* 4-x2x3 -t

i 1,

[+4-4

* *
xs xx

2,3.

(10)

(11)

r ——

Aus (1) folgt
Kr<R. (13)

5.3. Wir betrachten nun das Ringschlitzgebiet 8a S[r, B, a] mit
0 < a < 2:rc und bezeichnen den innern Randkreis von Sa mit Cl9 den ëuBern
mit CB und den Schlitz mit C2(oc). Dièse Randkurven seien so orientiert, daB

Ct + Cf2(a) + C3 das Grebiet Sa positiv berandet. Da $a stûckweise analyti-
sche Randzyklen besitzt, existieren in $a die harmonischen MaBe œ^z^ot)
und die Periodizitâtsmoduln p^oc) und ^(a) gemâB 3.1. Es sei /^(/SJ
fii((x) gesetzt. Satz 3 ist bewiesen, wenn gezeigt ist, daB es einen Winkel a
mit 0 < a < 2n gibt, so daB gilt ^(a) p* fur i 1, 2, 3.
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Wir zeigen zunâchst :

5.4. Ist p2(oc)~pl fur ein gewisses a mit 0<a<2?r, so folgt jui(oc) fx*

fur i= 1,2,3.
6.5. Beweis: Da log \z\ in Sa harmonisch und auf den Rândern konstant

3

ist, mufi eine lineare Relation S'a{co{(2, oc) log | z | mit konstanten Koef-

fizienten a4 bestehen. Man findet unter Berûcksichtigung von (12), (7) und (8)

D* xi
co3(z, oc) * log | z | + —r ù)2(z, a)

2np p2

Daraus ergibt sich

X2(oc) f*dœt(z, oc) -^V [H log I « I + -4" [*da>È(z, oc)

J 2jzp2 J p% J
Ci

2
Ct ™ Cx

das heifit

x2(oc) *- + —*-»•(«) * »

«i(«)= r*d<o3(z,a)=-^V /"*rflo8l*l+"4- f*da>2(z,oc)
J 27tp2 J P% J

C,<«> C«(«) C2(«)
das heiBt

Ist nun p2(a) pi, so folgt aus (15) ^(a) x^. Durch Vergleich von
(9) mit Formel (7) in 3.1 erhàlt man xB(oc) x%. Daraus und aus (14) ergibt
sich unter Beniitzung von (10) und (9)

-O -j- xxxz x2( Xi #3 *x2(oc) ï2V ; ptpt pl 2

Also folgt wegen (9) auch ^i(a) P* un(i P3(a) P3 • Somit bekommt
man nach Formel (14) von 3.4 unter Berûcksichtigung von (7) schliefilich

»M- ^l °": *'-»*»
5.6. Nach (5) ist 0 < pi < p* + pi. Wegen 5.4 folgt offensichtlich Satz 3

nun aus dem folgenden

Hilfssatz: p2(oc) J *da)2(z> oc) ist fur 0 < oc < 2n eine stetige Funktion

von a und es gilt lim p2(oc) 0 und liminf p2(oc) > pt + pt-
*\0 a\tn
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§ 6. Beweis des Hilfssatzes 5.6

6.1. Wir setzen 80 lim 8a {z | 1 < | z \ < R, z =£ r} und co2(z, oc)

a) (z, a). Dann gilt m (z, a) => 0 fur a | 0 auf jeder kompakten Teilmenge
von So.

6.2. Beweis: Sei 0<<x'<a<2:rc. Dann nimmt die in $a harmonische
Funktion ct>(2, a) — co(z, a') uberall auf dem Rande von #a nichtnegative
Werte an. Somit gilt

0< o)(z, ocf) ^ co(z, a) < 1 fur z € 8a, 0 < oc' < a < 2n (1)

Daraus folgt aber nach dem Satze von Harnack: Es gibt eine in 80 defi-
nierte Funktion co0 (z) mit folgenden Eigenschaften :

co0(z) harmonisch in So (2)

0 ^ o)0(z) ^1 in So (3)

a>(z, a) => ù)0(z) fur a ^ 0 auf jeder kompakten Teilmenge von 80 (4)

Da ça (z, a) auf den Kreisen | z | 1 und | z \ R die Randwerte 0

besitzt, folgt aus (1), da8 auch a)0(z) auf diesen Kreisen die Randwerte 0

annimmt. Wegen (2) und (3) kann aber a)0(z) zu einer im ganzen Kreisring
1 < | z | < R harmonischen Funktion fortgesetzt werden. Folglich ist
o)0(z) 0 in 80. Wegen (4) ist damit die Behauptung bewiesen.

6.2. Es sei 0 < a < 2jr. Dann gilt co{z, oc — ô) =>co(zi oc) fur ô | 0 auf
jeder kompakten Teilmenge von Sa.

6.3. Beweis: Es sei <5 > 0 und a — ô>0. Die in Sa harmonischen
Funktionen u(z) oo(z, oc) — oo(z, oc — ô) und v(z) co(e-i(a-S)z, ô)
— co(z, oc) + o)(z, oc — ô) nehmen auf dem Rande von #a uberall
nichtnegative Werte an. Somit ist u(z), v(z) ^> 0 in 8^, das heiBt

0 ^ co(z, oc) — co(z, oc- ô) ^ a>(e-t(a-8>z5 ô) fur z €/Sa (5)

Sei nun K eine kompakte Teilmenge von #a. Dann gibt es offenbar ein
d0 > 0 und ein Kompaktum if0 c $0 derart, daB

Œ Koœ So fur 0 < <5 < ô0

Daher folgt aus (5) nach 6.1

(o(z,oc — ô)=>û)(z,oc) auf K fur ô | 0.

6.4. Es sei 0 < a < 2w. Dann gilt o>(z, a + d) =>o>(z, a) fur ô | 0
auf jeder kompakten Teilmenge von 5a.
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6.5. Beweis: Der Beweis kônnte analog wie in 6.3 gefuhrt werden; es geht
aber sogar noch einfacher: Es sei ô > 0 und a + à < 2n. Durch Anwen-
dung des Maximumprinzips auf die in $a+§ harmonische Funktion
a>(z, oc + à) — ù)(z, a) ergibt sich

0 ^ o)(z, a + ô) — œ(z, <x) ^ Max {1 - œ(re**, a)} M (à)

fur 2c/Sa+8, weil a^er û>(z,a) im Punkte reioc den Randwert 1 annimmt,
ist M (à) -> 0 fur <5 \ 0, woraus die Behauptung offensichtlich folgt.

6.6. Wir setzen 82n lim8a= {z\ l < \ z\ < r} U {z \ r < \ z\ < B}.
(S2n zerfâllt also in zwei Kreisringe.) Wir definieren

a>(z)
log r

fur K|*|<r
log i z I — log B r.. ™-#-!—!—=—V- fur r<\z\<R.

(6)

log r — log B

(Die Funktion co(z) ist also harmonisch in S2n und nimmt auf den Kreisen
| z | 1 und | z | B die Randwerte 0, auf | z \ r die Randwerte 1 an.)
Dann gilt co(z, 2n — <5)=>co(z) fur 5 | 0 auf jeder kompakten Teilmenge
von S2n.

6.7. Beweis: Sei 0<<5<2?r. Die in S2n harmonischen Funktionen
u(z) a)(z) — co(z, 2tz — ô) und v(z) œ(z, ô) — co(z) + co(z, 2n — ô)

nehmen ûberall auf dem Rande von S2n nichtnegative Werte an, somit gilt
0 ^ o)(z) ~ a)(z, 27t — ô)^ co(5, ô) (7)

Sei nun K eine kompakte Teilmenge von $2,,. Dann ist ofifenbar K eine

kompakte Teilmenge von 80. Daher folgt aus (7) nach 6.1

œ(z, 2n - ô) => co(z) auf K fur ô \0
6.8. (a) ]imp2(a + ô) p2(<x) fur 0<a<2^
(b) lim p2(où) 0

6.9. Beweis: Es sei Ca ein ganz in #a liegender Zyklus derart, da8 Ca

homolog — Cx — C3 mod Sa ist. Dann gilt fur ein gewisses ^0 > 0 : Ca

homolog — Cx — Gz mod #a+$ fiir aile | à \ < <50 und daher

p2(*+ ô) J*dco(z,a+ ô) fiir \ô\<ô0.
Da nun Ca eine kompakte Teilmenge von Sa ist, folgt aus 6.2 und 6.4
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*dco(z, a + ô) => *dco(z, oc) auf Ca fur ô -> 0 und somit

p2(oc + ô) -+$*d(o(z, a) p2(<x)

In derselben Weise beweist man (b) unter Benùtzung von 6.1.

6.10. ]immîp2(27i-ô)>pl + pl.

6.11. Beweis: Sei K eine kompakte Teilmenge von 82n. Dann gilt fur ein
gewisses ô0 > 0 : K c S2n__d fur 0 ^ ô < ô0 und daher

292(2^ — ô)=$ J | grad co(2, 2tt — ô) \2dxdy ^ JJ | grad co(^, 2^ — ô)\2dxdy
S2n-d K

fiir 0 ^ ^ < <30, somit

lim inf p2(2n — à) ^ lim inf JJ | grad œ(z, 2n — à) \2dxdy (8)

Nach 6.6 gilt aber grad co(z, 2n — ô) => grad co(z) auf Z fùr à | 0, daher
folgt aus (8)

lim inf 2>2(2tï — (5) â JJ | grad co(z
\ k

Da dies fur jede kompakte Teilmenge K c S2n gilt, folgt

lim inf p2{2n - 5) > J* J | grad o>(«) \2dxdy J
«|o s2n

Aus Définition (6) von co(z) berechnet man leicht

2nr 2n
log r log R — log r

Aus den Formeln (12), (7) und (8) in 5.2 ergibt sich

2ti * ^ 2tt *log r - -^ ^ und log 12 - log r - -^ xz

Unter Benùtzung von Formel (10) in 5.2 erhàlt man

j
und mit (11) aus 5.2 folgt

J > VX + Vz ¦
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