Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 34 (1960)

Artikel: Slowly Growing Integral and Subharmonic functions.
Autor: Hayman, W.K.

DOl: https://doi.org/10.5169/seals-26625

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 11.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-26625
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Slowly Growing Integral and Subharmonic Functions

by W. K. HaymaN, London

1. G. PiraniaN [3] recently proved the following

Theorem A. There exists a sequence {t,,r,} Such that the integral function

) 2 \» tn
= -()]
n=1 rn
has the property that each half-line contains infinitely many disjoint segments
of length 1, on which | f(z) | < 1. Corresponding to each real-valued function
h(r) satisfying the condition
h(r)

TogF ™ (1.1)

the sequence {t,,r,} can be so chosen that the inequality
log | f(re®) | <h(r)

holds for r > r, and all real 0.
ErDOs conjectured that if on the other hand

log | f(re®) | < A(log r)?

as r — oo, uniformly in 0, then | f(z) | > K outside a set of bounded regions
subtending angles at the origin whose sum is finite. It would follow that for
almost every fixed 0, | f(re®) | - co as r — oo.

In this paper the above conjecture will be proved and a little more.

We shall call an &-set any countable set of circles not containing the origin,
and subtending angles at the origin whose sum s is finite. The number s will
be called the (angular) extent of the Cset.

We make the following remarks

(i) For almost all fized 0 and r > ry(0), 2 = re® lies outside the C-set.

In fact this is the case unless the ray z = re‘®, 0 <r < co meets infinitely
many circles of the &set. We can write &= &' v ", where &' contains
only a finite number of circles and &” has extent less than ¢. If the ray
z = re'® meets infinitely many circles of &, then this ray meets &” and the
set of such 6 has measure at most ¢, i. e. measure zero.

(i) The set E, of r for which the circle |z | = r meets the circles of an C-set
has finite logarithmic measure and & fortiors, zero density.

Let a circle C, of an &-set have radius r, and centre distant d, from the
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origin. Then the logarithmic measure I, of the set of r corresponding to

circles | z| = r which C, meets is given by
i d, +
r n+ Ta 7, .
ln—- T-——-IO m<3dn, if Tn<"}dn'
dn—1n
The extent ¢, of C, is 2 sin“lgl;”; >%Q'—. Thus for all but a finite number

n n

of values of n, I, < 3c,, and so Xl, < + oco. If c¢(t) is the characteristic
function of the set & and

5 di

e 5

1
converges then , , dt
fe@)dt < [j‘c(t)T ftdel < ebr

if r>7y(¢), so that E has zero linear density, but the converse is false.
Let u(z) be subharmonic and not constant in the plane and write

B(r) = B(r, u) = sup u(z) .
lz|=7
Then B(r) is a convex increasing function of logr and so tends to infinity
with 7. In the applications we may think of u(z) = log|f(z)| where f(z)
is an integral function, but the more general case has some interest. We then
have the following

Theorem 1. With the above hypotheses suppose that

B(r,u) =0O(logr)? as 7r— oo; (1.2)

then u(re®) ~ B(r) (1.3)

untformly as re®® — oo outside an CE-set.

Corollary. The relation (1.3) holds as r — oo for almost every fixed 0. It
holds uniformly in 6 as r— oo outside a set of finite logarithmic measure.

The special case u(2) = log | f(z) | where f(2) is regular yields ERDOS’ con-
jecture and rather more, since ERDOS only conjectured that u(z) > 0 outside
an C-wset. In this case VALIRON [4, p. 134] showed that (1.3) holds outside
a set of linear density 0. As we have just noted an &-set has linear density 0,
but the converse is false, so that our result is stronger than that of VALIRON.

We prove a further result generalizing the case u(z) = log | f(2)|, when
f(z) is a polynomial.
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Theorem 2. Suppose that w(z) is subharmonic and not constant in the plane
and that

B(r,u) =0(ogr), as r— oco.
Then w(re®®) = B(r,u) + o(1), uniformly as re® - oo outside an &-set.
Finally we note that if e*® is continuous it is not difficult to prove by
means of the HEINE-BOREL theorem that we may select a subsystem &’
from our &-set such that only a finite number of the circles of & meet any
bounded set. In the general case this is not possible since %(z) = — oo may
take place for a set of z which is dense in the plane.

2. Let u(2) be a subharmonic function satisfying «(0) = 0. If this con-
dition is not satisfied we replace u(z) inside | z| < 1 by the Poisson integral
of its values on |z | = 1 and leave u(z) unchanged for |z | > 1. The modi-
fied function is still subharmonic and is harmonic near z = 0, so that % (0)
is finite. By subtracting a constant we may suppose that «(0) = 0.

It now follows (Heins [2]) that if the order

— log B(r, u)

- 1
= e logr =

then % can be represented as

duey (2.1)

u(z) = [ log l——--z—

where dyu is a positive measure in the plane for which compact sets have
finite measure, and the integral extends over the { plane. In our applications
o = 0, so that the above conditions are satisfied. The formula (2.1) reduces
to the WEIERSTRASS product expansion

2

Cn

when u(z) = log | f(2) | and f(z) is an integral function of order less than 1.
Further let n(t) = u[|z| <],

n(t)dt
N(r) = f T

0

1 —

log | f(2) | = ?bg

(2.1

Then JENnsEN’s formula gives ([1], Lemma 1, p. 473 and (1.7) p. 474).

1 2 . B
2—n~6fu(re )d6 = N (r)

so that in particular
N(r) < B(r). (2.2)
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It follows from (2.1) that

w(z) < [ log(1 +|Z|) due, = flog 1+ 120 dny | (2.3)
¢ ¢ 0 t
We suppose in all cases that

B(r)y<C(logr)?, r>r,. (2.4)
Using (2.2) we deduce

r2

n(r)logr < J n(t) —dt—t— < N(@r?)<4C(logr)2, r>r,

1.e.

n(r)<4Clogr, r>r,. (2.5)
Let lim () = n . (2.6)
t—> o0

If »n=0, u(2) =0 which is contrary to our hypotheses. If 0 <n < oo

N(r)~mnlogr, as r—> + oco. (2.7)
If n=+ o

N(r)

logr—->-{—oo, as r—> 4+ oo. (2.8)

In the case (2.1’), (2.7) corresponds to the case when f(z) is a polynomial
and (2.8) to the case when f(z) is transcendental. In this case VALIRON
[4, p. 132] noted that if (2.4) is satisfied then

B(r) ~ N (r) (2.9)

as r — oo, and his argument extends at once to subharmonic functions. In
fact from (2.3) we obtain

oo

J () dt
B(r) < log(l +—r—)dn(t) — g [ YT
of : oft(t +7)

Suppose now first that = is finite in (2.6). Let 5 be a fixed small positive
number and choose r so large that n(t) >n — 5 for ¢t > nr. Then

rn(t)dt nrdt r -+ nr
ft(t ft(t-w) SN )+ mlog—, 5

~—N(m')+nlog( )+nlog(1 + n)
< Nrr) +f(n(t) +0) % 4 nlog (1 + 1)

1
=N(r)+n10g—,}-+nlog(1 + 7).
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Since 7 may be chosen as small as we please, we deduce in this case that
B(r) < N(r)+o0(l), as r— oo.
In the case (2.8), when (2.4) holds we deduce from (2.5)

B(r) < N(r) +rf-q—(—li(:itldt<N(r)+0(logr)~N(r).

Since (2.2) holds in all cases we deduce (2.9) and in the case (2.7) the stronger
result

B(r)=N(r) +o0(l), as r—> oco. (2.10)

3. In order to prove our results we note that (2.1) and (2.3) give

| & — 2] _
C|+|z|dﬂe§“‘11+l2+13 (31)

say, where I, is taken over the range |(| <<1|z2|, I, over the range
1lz|<|¢|<2|z]|, and I; over the range | (| >2|z].

u(z) — B(r) = [ log |

We note that log lt <3z, for 0<x <}, sothat for |z| =7
¢
L< f 1 il i PP [ (¢ due =2 tan@.
— = og — = adue Ty =
P Sdpe C ] S Ty AU
z
Similarly

I < 3rf—tl——dn(t)
2r

In case n is finite in (2.6), suppose that n(t)>n —e, ¢t>1t,. Then if
r > 2t,, we have

ir
| tdn(t j tdn (t) + j tdn(t) <ton + 3re,
0

so that
I,—-0, as 7r— oo.

Similarly we have for r > ¢,

3r %
13<—%—2!'.dn(t)<%8.

Thus in this case
I,-0, I,~>0, as 7r—oco. (3.2)
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Consider next the case when (2.4) and hence (2.5) holds. In this case we
have for r > r,,

.1 g
I, < 3f" fdn(t)geologr,

-}

1 n(2r) . [ n(t)dt " log tdt
IS<3rf—t—~dn(t)=3r[—~-2—;—-+f»——t?~—~]<12Crf P
2r 2r

= 6C[log(2r) 4+ 1].

Thus in case (2.4) holds we have, uniformly as z — oo,
I,=0(og|z]), I =0(og|z]). (3.3)

4. It remains to estimate I, and this estimation is the crux of the paper.
We need a form (Lemma 2) of the BouTROUX-CARTAN Lemma applicable to
subharmonic functions.

In order to prove this we use the following result ([1], Lemma 4, p. 482).

Lemma 1. Suppose that u[|z| <h]=n >0, and that 0 <d < }h. Then
there exists a set of circles S the sum of whose radii is at most d and such that
for |z| <3h, and z outside S we have

16h

lo 3

lz—Cl<$h

h

We deduce
Lemma 2. Suppose that u is a positive measure in the plane vanishing out-

stde a compact set'), and such that the measure n of the whole plane satisfies
0 <n < oco. Then we have

flog|z — ¢|due; >nloge

outside a set of circles the sum of whose radiv is at most 32¢.
Suppose that u[| {|> R]= 0. In this case we have for |2| >R+ ¢

flog|z — | due; > flog (| z| — R)due; =mnlog (| 2| — R) = nloge.

Thus we may confine ourselves to points in the circle |z| <R + 9. In
Lemma 1 choose & = 4(R + ¢). Then we have for |z| <}k and z lying
outside the set § of circles, the sum of whose radii is at most d

16%
lo + lo due, < mnlo ,
Wﬂqhgz ST —zy) &7

1) This condition is not essential but simplifies the proof.
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provided d < 1h. The result holds also if d > 4k since we can choose for
8 the single circle |z | < 1A. Since the circle |z — {| < 1A includes the

circle | | < R, the integral on the left-hand side may be taken over the
whole plane. We deduce

f]og z_l_

for |2z| < R + g, outside the set of circles S the sum of whose radii is at
most d, and setting d = 32p Lemma 2 follows.

32
R ld,ueg <n log—a——

Lemma 3. Suppose that u is a positive measure in the plane such that the
measure of the whole plane outside the origin is n, where 0 <n < oco. Suppose
also that K > 7. Then we have

| £ — 2|
&|z|<f£|<z|z| | ¢+ | 2]

when z £ 0 and z lies outside an E-set S of angular extent at most 4000e~ X
Set R,=2", v= — oo toooandlet yu,=u[l|R,_;<|{| <R,,.]

I4(%) = due, > — nK

v+1

Then X u, = 3n. Also we have by Lemma 2 for B, < |2 | <
log | £ — 2| dueg > p, log o,
R,_1<|C|<R,+2
outside a set S, of circles the sum of whose radii is at most 32g,. We assume
320, < }R,. In this case each circle either lies entirely in |z | < R,, in

which case we ignore it, or in |z | > {R,, in which case if 4 is its radius, the

2h 2nh
R < — i3 Hence the

extent of all the circles of Sv which meet the range R <|z| <R, isat

Since also |z| 4+ | {| < 6R, in the

angle it subtends at the origin is at most 2 sin~! —-

most 0, =

7o, R,
R, 128
range we have outside these circles

log L& ==

Rv»l\';|<Ry+2 I CI + I

1
e > 1ty [log o, 1 log & Rv] .

Hence & fortiori
£~z
lo
&|z|<t{|<2|z| 11+ 12

| dﬂec>y,log 6R = —nK
R, oy . . :

158 ° which is certainly satisfied if

K >log 768 = 6.64, since u, <X n. In this case

nK
My

say. We have supposed g, <

0, = 64x 1"; — 384n exp(-—

1 4

) < 384:1,-%"— e—K

6 Commentarii Mathematici Helvetici
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1 .
since for z>1, and y > 1, e* —e*. Thus we have in the whole
plane Y

log ¢ — %

due, > — nK
§|z|<|£|<2xz| S P

outside an &-set of extent at most

2 6, < 3.384ne K < 4000e~E .

y=—00

This proves Lemma 3.

5. Proof of Theorem 2. We can now prove our results. We start with
the simpler Theorem 2. Suppose then that =» is finite in (2.6) and that

n(t) >n — —;—é for r>r,. Then it follows from Lemma 3 that for p > 7

and |z|> 2r,, we have

l C — R I d 1 1
6> ——= —— -
T+ T=1"%" "~ " ¢'?
outside an C-set &, of extent at most 4000e-?. For in Lemma 3 we set
due, = 0 for | {| <r,, and the total measure of the remainder of the plane

is then at most p—2. Thus we may take n = p=2, K = p in Lemma 3.

I, = lo
: %IZI<I’£|<2Izl

If &= tjé’,,, then we have if z is outside Cand |z | > 27,,
p=7
1

Q>~?.

In view of (2.10), (3.1) and (3.2) we deduce that
u(z) = B(r) 4+ o(1) = N(r) + o(1)

as z—> oo outside &, and this proves Theorem 2, since the extent of £ is at
most

0 —6
3 4000e~? — },9_996__ .

6. Proof of Theorem 1. In view of Theorem 2, we may assume without loss
of generality that n(r) > oo, as r— oco.

Let 7, be the upper bound of all numbers ¢ such that =»(t) < p. Then 7,
is nondecreasing with increasing p and 7,— o0 as p—> oco. In Lemma 3

take for du the mass distribution due, of (2.1) for | (| < 275,,, and set
du = 0 otherwise. By (2.5), the total measure of the plane is then at most

4C log (272 ,,) = 8Clog r,,, + O(1)
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when p is large. Hence it follows from Lemma 3 that for large p, we have
for |z|<rh,q,

I,(z) = log & —2]

d — 8CVpl 6.1
pei<ti<a B TE[F T2 Hee> — 8CVplogr,,  (6.1)

outside an &-set of extent e-1l»,
We now distinguish two cases
(i) Suppose that r,,, < 275.

: 2 2
In this case we have for r; <r <73 |,

r2

N() = "“’dt > [2O% > pogr, > plog( 52 )* 2 llog rpys + O(1)]
0

Tp

Thus in this case we have for r} <|z|<r3,,, when p is large,

110
Vs
outside an &-set of extent at most e—3/».

(ii) Suppose next that r,., > 2r5.
Then

I,(z) > N(z]), (6.2)

p{ll 3, <|ll<ra} <
if 3¢5 >r,, i.e. r,> 2 and so by Lemma 3 we have

| & — 2|
§|z|<l£|<z|z| 1|+ | 2]

for 75 <|z|<37pp1s outside an Eset of extent at most 4000e— ¥ p. Also
in this range

Iy(2) =

due, > — Vp, (6.3)

= p(log r,) .
Thus (6.3) implies
L) > — "V?%Jé? N(zl). (6.4
Also for }r,,, <|z|<r},,, we have
%f“ > plog 22 plog( ”“)%— 5 {log 1,4y + O(1)}.

Hence in view of (6.1) we deduce that for large p and }r,,, <|z| <7},
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we have
— 17C
Vp
outside an &-set of extent at most e-3/». In view of (6.2) and (6.4) we see
that in all cases we have for p > p, and 73 < |z | <73,

17C

I,(z) > N(lz])

2(2) Vs (lz1)
provided z lies outside an C-set &, of extent at most 2e-3/». If &= E &p-
then the extent of & is finite and as z — co outside & Pt

Iy(z) = o{N(|2])} = o{B(| 2 ])}

in view of (2.9). Using (2.8), (3.1) and (3.3) we deduce Theorem 1.
I am greatly indebted to Professor PIRANIAN for letting me see the M. S.
of his paper and to Dr. ErRDOs for suggesting the problem to me.
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