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Paths of Rapid Growth of Entire Functions

by Wilfbed Kaplan, Ann Arbor, Mich. (USA)

In 1957 A. Huber published a paper in which he deduced the following
theorem ([1], p. 52):

Theorem. Let f(z) be an entire function, not a polynomial. Let A>0. Then
there existe a locally rectifiable path C\ tending to infinity, such that

J|/(s)|-A|«fe|<oo. (1)

Httber's proof dépends on a deep study of subharmonic functions and is
quite involved. Because of the simplicity of the resuit, I hâve been seeking a
simple proof. This I hâve succeeded in obtaining only for spécial values of A :

A ^ 1 or A 1 — (1/w), n 2, 3,... In this note I présent the proof for
thèse values of A.

As remarked by Huber, there is no difficulty if f(z) has only a finite number
of zéros, so that f(z) P(z) exp [<7(z)], where P is a polynomial and g is
entire. The function 2

is then entire and without critical points. If the inverse function 0~1(w) has

no singular points, then it is also entire, so that &(z) has form az + 6 and
f(z) is a polynomial; hence &~x(w) must hâve singularities. In particular
there must be a functional élément of 0~1(w) which can be continued from
w 0 along a finite segment ending at a singularity w0. The segment is

mapped by 0~l (w) on a path C^ in the z-plane, on which z -> oo as w -> w0.
Then

Thus C\ is the desired path if P(z) 1 ; by removing a finite portion of C^,
one can ensure that | P(z) \ ^1 on the remaining portion C^, so that Gfx is
the desired path.

Now let us suppose that / has infinitely many zéros and let X hâve form
1 — (1/ft), n 2, 3,... We can then assume without loss of generality that
f(z) is expressible as z2nO(z), where O(z) is entire and (?(0) ^0. For
moving a zéro of / from z1 to the origin, or from the origin to z1, is équivalent
to multiplying / by zj(z — %), or by (z — zj/z, a factor which approaches 1



72 WiumED Kaplan

as z approaehes infinity and which has therefore no effect on the intégral in
(1). We sélect k such that f(k) ^ 0 and introduce

z z \
w 0{z) J [f(z)]~xdz J z2-2n[G(z)]~*~ dz (2)

k k

This équation defines 0(z) as a multiple-valued function of z, However, we
remark that one branch (in fact, every branch) has a pôle of order 2n — 3

at z 0. The inverse function 0"1 (w) can be considered as the solution of
the differential équation

^*^ o<*» or xv / \ -î ~IT /O\

such that z k when w 0. We consider the solution along rays arg w
const., starting with a given analytic branch at w 0. By the theory of
differential équations, the solution continues to exist as long as the value of z

remains within the domain of analyticity of the right-hand member of (3).
Trouble can arise as w ->w0 (w0 ^ oo) only if, as w ~> w0, z approaehes a
zéro of G or z approaehes infinity. If z -> z0, G(z0) 0, then z0 must be a

zéro of first order of G, for by (2) at a multiple zéro w -> oo as z ~>zQ. Near
a first order zéro we obtain séries expansions

W - W0 (Z - Z0y'n[b0 + bx{z - Z0) + .] b0 # 0

that is, <P~1(w) is a single-valued analytic function in a neighborhood of w0.
[An illustration is provided by z sin w as a solution of the differential
équation dz/dw (1 — z2)^].

Therefore continuation of 0~1(w) can be interrupted at a finite value w0

only if, as w -> w0, 2 -> 00. If indefinite continuation were possible along ail
rays, then 0~x (w) would be an entire function of w. But we know that one
branch of 0~~1(w) approaehes 0 as w -> 00, because of the pôle of 0{z) at
z 0. Therefore 0~x(w) -> 0 as w -> 00. Accordingly, 0~1(w) 0, and
there is a contradiction. Hence continuation must be interrupted at at least
one value w0, and we obtain the path Cx as in the first part of the proof.

For 1^1 we consider two cases: X rational, equal to m/n; A irrational.
In the rational case the proof for the case A 1 — (1/n) can be repeated
with the simplification that, at each zéro of G(z), w -> 00 as z ~> z0.

If A is irrational, we do not need to normalize / at z 0. The previous
argument can be repeated with slight modification ; the differential équation
(3) is replaced by the équation dzjdw [f(z)]* and a solution z(w) can be
continued along a ray arg w const. unless z approaehes the boundary of
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the domain of analyticity of [/(z)]A> a Ribmann surface over the z-plane.
Since | f(z) |A has the same value on ail sheets of this surface, we conclude
that continuation can be interrupted for finite w0 only if, as w -> w0, z ap-
proaches ooor a zéro of /. But since A > 1, w -> oo as z approaches a zéro
of /. Hence, if 0~1(w) has no singularity at which z -> oo, then 0~1(w)
m single-valued, an entire function y)(w), and

£ % t/(z)]A

where <7(w) is entire. Therefore [<7(w)]A is also entire. This is possible with A

irrational only if g(w) has no zéros—hence only if f(z) has at most one zéro.
Again we hâve a contradiction. Therefore Htjber's theorem is proved for
A â 1 and for A 1 — (1/ra) (n 2, 3,...

Remark 1. The theorem can be strengthened for functions having no zéros.
For then log/(2) can be defined as an entire function; if log/(z) is not a
polynomial, there exists a path C\ on which

Remark 2. In his paper ([1], p. 52) Htjber raises the question: Suppose
f(z) is entire and that there exists A > 0 such that

f | /(re")
1

for ail 6, 0 ^ 6 < 2n\ does this imply that f(z) is a polynomial? In other
words, in the preceding theorem, can C\ be chosen to be a ray?

This question we answer negatively as follows. A theorem of Keldys and
Mebgelyan ([2], p. 37) implies that, if g(z) is continuous on a closed set E
and analytic on the interior of E, then for each e > 0 there exists an entire
function f(z) such that | f(z) — g(z) | < e on E, provided the complément
E' of E is locally connected at infinity. In particular, E can be chosen to be
the closure of a domain bounded by a simple path y which approaches infinity
in both directions. On such a set E we can easily construct g(z), not identically
constant, such that |</(z)|<| on E (for example, g(z) can be obtained with
the aid of conformai mapping from the function \ez in the left half-plane).
Let 0(Zo) «» £(%) b ^ a We choose € |6 — a |/2 and f(z) entire,
so that |/ — g | < e on E. Then / is not identically constant and |/| < 1 on
E. Since / is bounded on such a set, / cannot be a polynomial. By proper
choice of y, we can force every ray (7e : 0 const. to meet E in a set of
infinité length; for example, y can be formed of two spirals which approach
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each other as | z | -> oo and E' as the set between the spirals. Then

J | f(z) |-> | <fc | è / I dz | oo

For such a function f(z) it is clear that the path C\ of Htjber's theorem
must either lie between the spirals (that is, in E1) or be asymptotic to E' in
the sensé that the length of the part of C\ outside of E' must be finite ; hence

effectively there is only one path.

Remark 3. Although the paths arg z const. are not generally allowable
as a choiee of C\, it appears reasonable that the paths arg w const. can
serve. For on sueh a path, not passing through a zéro of /, | f(z) \ grows
steadily in one direction. I conjecture that, for each f(z), a path arg f(z) c

can serve as C% for almost ail values of c. For a similar reason, it appears
probable that the paths Re[/(z)] c, Im[/(z)] c can also serve as C\ for
almost ail c.
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