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Paths of Rapid Growth of Entire Functions

by WILFRED KAPLAN, Ann Arbor, Mich. (USA)

In 1957 A. HuBeR published a paper in which he deduced the following
theorem ([1], p. 52):

Theorem. Let f(z) be an entire function, not a polynomial. Let A > 0. Then
there exists a locally rectifiable path C\ tending to infinity, such that

Cflf(z)l“AIdZI<°°- (1)
A

HuBEer’s proof depends on a deep study of subharmonic functions and is
quite involved. Because of the simplicity of the result, I have been seeking a
simple proof. This I have succeeded in obtaining only for special values of 4 :
Az=z1or A=1—(l/n), n=2,3,... In this note I present the proof for
these values of 4.

Asremarked by HUBER, there is no difficulty if f(z) has only a finite number
of zeros, so that f(z) = P(z)exp[g(z)], where P is a polynomial and ¢ is
entire. The function .

w= @) = [ eMad;
0

is then entire and without critical points. If the inverse function @-1(w) has
no singular points, then it is also entire, so that @(z) has form az + b and
f(z) is a polynomial; hence &—!(w) must have singularities. In particular
there must be a functional element of @-!(w) which can be continued from
w = 0 along a finite segment ending at a singularity w,. The segment is
mapped by @-!(w) on a path C) in the z-plane, on which z - co as w — w,.

Then
dw
jwol = [| e 1821 = [renai2jaz)
C, Cy

Thus C, is the desired path if P(z) = 1; by removing a finite portion of C,,
one can ensure that | P(z) | = 1 on the remaining portion C}, so that C; is
the desired path.

Now let us suppose that f has infinitely many zeros and let 4 have form
1 —(1/n),n = 2,3,... We can then assume without loss of generality that
f(z) is expressible as 2z2"G(z), where G(z) is entire and G(0) % 0. For
moving a zero of f from 2, to the origin, or from the origin to z,, is equivalent
to multiplying f by z/(z — 2,), or by (z — #)/2, a factor which approaches 1
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as z approaches infinity and which has therefore no effect on the integral in
(1). We select k£ such that f(k) % 0 and introduce

w = P(2) =,f [f ()] dz = ,{z*"’“”“w(z>]?“dz . (2)

This equation defines @(z) as a multiple-valued function of z. However, we
remark that one branch (in fact, every branch) has a pole of order 2n — 3
at 2 = 0. The inverse function @-1(w) can be considered as the solution of
the differential equation

1

S I (®)
such that 2z =kt when w = 0. We consider the solution along rays arg w =
const., starting with a given analytic branch at w = 0. By the theory of dif-
ferential equations, the solution continues to exist as long as the value of 2
remains within the domain of analyticity of the right-hand member of (3).
Trouble can arise as w — w, (w, # oo) only if, as w — w,, z approaches a
zero of G or z approaches infinity. If z —2z,, G(z,) = 0, then 2z, must be a
zero of first order of G, for by (2) at a multiple zero w — oo as z —z,. Near
a first order zero we obtain series expansions

w— wy = (2 — 20)"[by + by(z — 2o) + ...], by # O,
2 — 2o=0by"(w —we)*+ ... ;

that is, @1(w) is a single-valued analytic function in a neighborhood of w,.
[An illustration is provided by z = sinw as a solution of the differential
equation dz/dw = (1 — 22)3].

Therefore continuation of @-1(w) can be interrupted at a finite value w,
only if, as w — w,, # = co. If indefinite continuation were possible along all
rays, then @-1(w) would be an entire function of w. But we know that one
branch of @-1(w) approaches 0 as w — oo, because of the pole of @(z) at
z = 0. Therefore @ 1(w) >0 as w — oco. Accordingly, &-1(w) =0, and
there is a contradiction. Hence continuation must be interrupted at at least
one value w,, and we obtain the path C, as in the first part of the proof.

For 4 =1 we consider two cases: A rational, equal to m/n; 4 irrational.
In the rational case the proof for the case 4 =1 — (1/n) can be repeated
with the simplification that, at each zero of G(z), w — oo as z —z,.

If 2 is irrational, we do not need to normalize f at z = 0. The previous
argument can be repeated with slight modification ; the differential equation
(3) is replaced by the equation dz/dw = [f(z)]* and a solution z(w) can be
continued along a ray arg w = const. unless z approaches the boundary of
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the domain of analyticity of [f(z)]}, a RIEMANN surface over the z-plane.
Since | f(z) |* has the same value on all sheets of this surface, we conclude
that continuation can be interrupted for finite w, only if, as w — w,, z ap-
proaches oo or a zero of f. But since 4> 1, w — oo as z approaches a zero
of f. Hence, if @'(w) has no singularity at which z — co, then @-1(w)
is single-valued, an entire function y(w), and

‘o%o’ = % =[P = [f(p@)] = [gw)]*,

where g(w) is entire. Therefore [g(w)]* is also entire. This is possible with 2
irrational only if ¢g(w) has no zeros—hence only if f(z) has at most one zero.
Again we have a contradiction. Therefore HUBER's theorem is proved for
A=1andfor Ai=1—(1/n) n=2,3,...).

Remark 1. The theorem can be strengthened for functions having no zeros.
For then log f(z) can be defined as an entire function; if log f(z) is not a
polynomial, there exists a path C), on which

fllogf(z)|t|dz| < oo.
0,

Remark 2. In his paper ([1], p. 52) HUBER raises the question: Suppose
{(2) is entire and that there exists A > 0 such that

oo

§ 1 F(rei®) |Adr = oo

1
for all 6, 0 < 6 < 2x; does this imply that f(z) is a polynomial? In other
words, in the preceding theorem, can C, be chosen to be a ray?

This question we answer negatively as follows. A theorem of KELDYS and
MERGELYAN ([2], p. 37) implies that, if g(z) is continuous on a closed set E
and analytic on the interior of £, then for each ¢ > 0 there exists an entire
function f(z) such that |f(z) —g(2) | <e on H, provided the complement
E' of E is locally connected at infinity. In particular, £ can be chosen to be
the closure of a domain bounded by a simple path y which approaches infinity
in both directions. On such a set £ we can easily construct g(z), not identically
constant, such that |g(z)|<3 on E (for example, g(z) can be obtained with
the aid of conformal mapping from the function }e® in the left half-plane).
Let g(zy) =@, g(z) =b#a. We choose ¢=|b—a|/2 and f(z) entire,
so that |f — g| <e on E. Then f is not identically constant and |f| <1 on
E. Since f is bounded on such a set, f cannot be a polynomial. By proper
choice of y, we can force every ray Cp : § = const. to meet K in a set of
infinite length; for example, y can be formed of two spirals which approach
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each other as |2| — oo, and B’ as the set between the spirals. Then
flf@ [ dz] =2 | |dz|=oo.
Co CgnE
For such a function f(2) it is clear that the path C, of HuBER’s theorem
must either lie between the spirals (that is, in E’) or be asymptotic to £’ in

the sense that the length of the part of C) outside of £’ must be finite ; hence
effectively there is only one path.

Remark 3. Although the paths arg z = const. are not generally allowable
as a choice of C,, it appears reasonable that the paths arg w = const. can
serve. For on such a path, not passing through a zero of f, |f(z) | grows
steadily in one direction. I conjecture that, for each f(z), a path arg f(z) = ¢
can serve as () for almost all values of ¢. For a similar reason, it appears
probable that the paths Re[f(z)] = ¢, Im[f(z)] = ¢ can also serve as C, for
almost all c.
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