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On the Principle of Harmonic Measure

by MAuRrIicE HEINS

1. The principle of harmonic measure of R. NEVANLINNA [5] plays the im-
portant role of stating limitations which are imposed upon an analytic function
which maps a plane region into a plane region and is subject to certain boundary
conditions. It is assumed that the regions in question have a simple character
(e.g. that they are JORDAN regions of finite connectivity). In the theory of the
conformal mapping of RIEMANN surfaces we encounter the problem of finding
a natural replacement for the NEVANLINNA principle of harmonic measure. The
core of the question is, of course, to find a reasonable substitute for the classical
harmonic measure of the NEVANLINNA theorem. In the present note we pro-
pose to show that the generalized harmonic measure which we have studied in
[2] serves as a base for a principle of harmonic measure. We recall that a har-
monic function % on a RIEMANN surface F satisfying 0 <<« <1 is said to be
a generalized harmonic measure (on F') provided that

G.HM.min {u,1 —u} =0. (1.1)

Here “G.H.M.” stands for “greatest harmonic minorant.”” Among the re-
sults, established in the present paper is:

Theorem 1: Let ¢ denote a conformal map (not necessarily univalent) of a
Riemann surface F into a Riemanwn surface G. Suppose that w and v are non-
constant generalized harmonic measures on F and G respectively. Let

() = inf {v(p(p)) | u(p) >«}, O<a<l.
Then vop > (lim u(x)) w .

a—>1

It is to be observed that from the hypothesis of the NEVANLINNA principle
and Theorem 1 the conclusion of the NEVANLINNA principle follows. (This is
not to say most elegantly.) Thus Theorem 1 is as effective as the original prin-
ciple of harmonic measure in the classical case.

We shall discern in the foreground of the present study an extremal principle
which holds for pairs consisting of a conformal map and a generalized harmonic
measure (Theorem 2).

2. In this section we give an account of properties of generalized harmonic
measure which will be of use in the present paper. The exposition will be
independent of the summary indications of § 20 of [2].

Generalized harmonic measure in {|z] < 1} . Let E denote a measurable
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subset of {|z]| = 1}. Let X, denote the characteristic function of £. Let o E
be defined by

o
¢ +z]do¢, lz| < 1. (2.1)

2n
wE(z) = (2zrz)"1fXE(e‘°‘)‘R ["é—ia—:———*
0
We have

(i) E — wgp maps the family of admitted E onto the set of general-
ized harmomic measures (on {|z| <1}). Further wp = wg, if and only if
| Eyn By | = | E,| = | E,|. This result is easily established and we omit
the details.

Another important preliminary result is the following. Let F denote a Rik-
MANN surface whose conformal universal coverings have hyperbolic domains.
Let 6 denote a conformal universal covering of F with domain {|z] <1}.
We have

ii) A harmonic function w on F 1is a generalized harmonic measure on F if
and only if u o0 s a generalized harmonic measure on {|z| < 1}1).

To establish this result, we first suppose that » o 6 is a generalized harmonic
measure on {|z|<1}. Let v = G.H.M.min {%,1 — «}. From
0<<vol <uol, (1 —u)ol, we conclude that vo 6 = 0 and thereupon
that v = 0. To proceed in the opposite direction, we consider
V=GHM.min {#o0,1 —uo0} and note that for each conformal auto-
morphism 7' of {|z] < 1} which leaves 0 invariant we have Vo7 < V. It
follows that V o7 = V for each such 7'. Hence V = v o0 where v is har-
monic on F. From 0 <<vol0 Cuol,(l —u)of, we have 0 < v < u,
1 — u, sothat v = 0. We conclude that V = 0.

A third property of generalized harmonic measure is

(iii) Let (u,); denote a monotone sequence of generalized harmonic measures
on F with limit w. Then u 18 also a generalized harmonic measure on F .

It suffices to consider only non-decreasing sequences for, if v is a generalized
harmonic measure, so is 1 —v. Let w=G.H.M.min {%,1 — «}. From
w<u,+ (u—w, and w <1 —u, we conclude with the aid of KJgLL-
BERG'S Lemma [4, 2] that w <« — u, and thereupon that w = 0.

Another useful property is:

(iv) If wuy,...,u, are generalized harmonic measures on F, then so are
G.H.M.min {u,}; and L.H.M.max {u,};.

1) Actually this result is a special case of a more general theorem stated in § 20 of [2]. However
use will not be made of this more general result. The present special case is easily established as
we shall now see.
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Here “L.H.M.” stands for ‘“least harmonic majorant.” To see this let
v=G.H.M.min {u;} and let v = G.H.M.min {«, 1 — »}. For each £,

v U, U S(D—owy) (U — ).
By KJELLBERG’S Lemma we have
v = o) 4 o k=1,...,2),
where v{¥’ and v{¥) are non-negative harmonic functions on F satisfying
<l —u,, P <up—u.

Since v{¥ also satisfies ¥{¥'<{ u,, we conclude that »¥= 0. From v + u < u,,
k=1,2,...,n, we have v+ v <% and consequently » = 0. That
L.H.M.max {u,}7 is also a generalized harmonic measure on F may be
established in a similar manner.

We shall also want to make use of:

(v) Let w be a generalized harmonic measure and let o« denote a real constant
satisfying 0 <o« < 1. Then

] — o

L.H.M.(u_a)+=u. (2.2)

The proof may be carried out as follows. We may dismiss the trivial cases
u=0,u=1. If F= {|z] <1} then (2.2) is an easy consequence of (i).
The general case may be reduced to this one. If  is a non-constant generalized
harmonic measure on F and 6 is a conformal universal covering of F with
domain {|z| < 1}, on setting

w — o\t
v=(1=2)

L.H.M.(Uo6) <(L.H.M.U)o6.

we have

Further L..H.M. (U o 6) = w00 since u o 0 is a generalized harmonic meas-
urein {|z| < 1}. The assertion (2.2) follows from

u <LHM.U<Lu.

Theorem 1 is an immediate consequence of (v). In fact it suffices to observe
that

o

vop > u) (15 -
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3. Although we shall not require an answer to the question for the principal
results of this paper, it is of interest to inquire what surfaces admit non-
constant generalized harmonic measures. Obviously a surface admitting non-
constant generalized harmonic measures admits non-constant bounded har-
monic functions. The converse is also true. To see this, suppose that F is a
RiemManN surface admitting a non-constant bounded harmonic function b.
We may assume that 0 < b < 1. Let 6 denote a conformal universal covering
of F with domain {|z| < 1}. For some x, 0 <& < 1, the measure of the set

E={n|lnl=1, limb(0(rn) <a«}

r—>1
lies strictly between 0 and 2x. The harmonic measure wg is automorphic
with respect to the group of conformal automorphisms of {|z| < 1} which
leave 6 invariant. Hence by (ii) of § 2 ¥ admits a non-constant generalized
harmonic measure.
(This result may also be established directly on F without the aid of uni-
formization methods. The present argument is shorter.)

4. We now turn to the study of our principal problem. We suppose that we
have given a conformal map ¢ of a RIEMANN surface F' admitting non-constant
generalized harmonic measures into a hyperbolic RrEMany surface G and a
non-constant generalized harmonic measure % on F. Consider the class of the
positive superharmonic functions P on G which satisfy » << P o g, the class
of the harmonic functions 2 on G which satisfy 0 <k <1 and w <hog,
and finally the class of the generalized harmonic measures v on G which satisfy
u < vogp. As a first step in our study we show

Theorem 2: Each of the introduced classes has a least member. That 1s, there
exist a least P, a least h and a least v.

We first establish the existence of a least P. To that end, for each « satis-
fying 0 <« < 1, we introduce on @, the least positive superharmonic function
which dominates 1 on ¢ {p|u(p) > «} and denote it by P,. We observe that
P, is non-increasing in «. Also from

— +
(u a) <P,og,

l —«

we conclude that % < P, o¢@. Hence with P the lower limit function of

lim P,, not only is P superharmonic on G but also u < P o 9. We assert that

a—>1

P is the least positive superharmonic function P on @ satisfying u < Po ¢

and that P = lim P,. In fact, if we consider an arbitrary admitted P, we
oa—>1
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have P > &P, so that P >1lim P, > P. Hence P is the least admitted P.
a—>1
Setting P = P, we conclude that P = lim P,.

a—>1
We now establish the existence of a least v. We note that we are presented

with two alternatives. First, the only admitted v is 1. This case is trivial and
we put it aside. Second, there exists v, 0 <v < 1. From % << vo¢p, we con-
clude that for «, 0 <« < 1, sufficiently near one, ¢ {p|u(p)>«} lies in the
complement of a given compact subset of G. Hence it is easy to conclude that
P is harmonic on G'. This has important consequences, as we shall now see.
For suppose that v,,...,v, are generalized harmonic measures on G satis-
fying u < v, oo, Ic_.l ,n. Then if V = G.H.M.min {v,};, since P
is harmonic and satisfies P < min {v;}?, P << V. Further by (iv) of §2
V is a generalized harmonic measure on G. Hence V is an admitted v.

It now follows by the standard reasoning of the PERRON method that the
lower envelope v of the family of admitted v also belongs to the family. In
fact, it suffices to fix a point ¢ ¢ G and to select a sequence (v,);® of admitted
v satisfying lim v,(q) = v(q). Then lim G.H.M.min {v,}; is an admitted

k—>o0 n-—>oo
v, the value of which at g is v(¢q). Given ¢'( # q) ¢ G, there exists a sequence

(vp)y of admitted v satisfying limvz(¢') = v(¢’). We now see that
k—>oo

lim G.H.M.min {v,, v}}} is an admitted v the values of which at q and ¢’

fnN—>o0

are v(q) and v(q'). Also
lim G.H.M.min {v,, v3}? <lim G.H.M.min {v,}}.
fl—>oo f—> 00 i
By the maximum principle equality must hold throughout. We conclude
that » = lim G.H.M.min {v,}. It follows that v is an admitted v.

n—>o0
We now consider the family of admitted 4 and let & denote its lowerenvelope.

Clearly h << 1. We put aside the trivial case where h = 1. Hence there
exists an admitted h < 1. Again we see that P is harmonic and we infer
that h = P.

We shall see later (§ 7) that h = v and that, if P is harmonic, then P = v.
We also remark that Theorem 2 holds for » = 1: h=v=1and P is the
least positive superharmonic function on G whmh dominates 1 on qo(F)

Suppose that u, and u, are given non-vanishing generalized harmonic
measures on F and that v = L.H.M.max {u,, u,}. Let P, and v, denote
the least P and the least v associated with %, (k = 1, 2) in the sense of Theo-
rem 2. Then P is the least superharmonic functzon on G which dominates
max {P,, P,} “and v = L.H.M.max {v,, v,}. Here P and v pertain to «.

To establish the first assertion, suppose that Q is a superharmonic function
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on G satisfying @ > max {P,, P,}. Then from

%, < min {P,Q}op, k=1,2,
we conclude that
v <min {P,Q}op.

Hence P < min {P,Q} <

To estabhsh the second assertion we note that since v > v, (k = 1, 2), we
have v > L.H.M.max {v,, v,}. Furthersince u, < L.H.M.max {vl,'vz} op,
k=1,2, wehave v < L.H.M.max {v,, v,} o ¢, whence v << L.H.M.max
{v1, v,}. The equality follows.

5. We now examine the influence of boundary conditions on the extremal P.
The first situation which we consider is that where F = {|z| < 1}. Let E
denote a measurable subset of {|z| = 1}. The pair (¢, £) will be said to
satisfy the boundary condition I, provided that for each 7 e E, ¢(rn) tends
to the ideal boundary of G as r tends to 1 or, in other words, for each 7 ¢ E
and each compact subset K c— G, there exists r,, 0 <r,<1, such that
p(rn) e G — K for ry<r < 1. The following theorem holds.

Theorem 3: If (¢, E) satisfies I, then with P and v denoting respectively
the minimal P and v for (¢, wg), P = v.

We restrict our attention to the case: 0<|F| < 2n. The case where
| £ | = 2z follows by an obvious limit argument. The method of proof will
involve the factorization of ¢ into a conformal universal covering and an
analytic function of modulus less than one. Before we turn to the details, it
will be convenient to have available the following lemma.

Lemma 1: Let f denote an analytic function in {|z| <1} of modulus less
than 1. Let E, denote a measurable subset of {|z| = 1} which has the property
that for each 7 e E,, lim f(rn) exists and is of modulus 1. Let E, denote a G

r—>1

subset of {|z| = 1} which contains f*(E,), the image of E, with respect to the
Farou radial limit function f* of f, and has measure equal to the outer measure
of f*(#,). Then

wEléwE'o]‘.

The lemma is easily established on observing that for each open subset O
of {|z| =1} which contains f*(E;), wgof — wyz >0 as is readily seen
on examining the radial limits.

It is also in order to observe that the FaTou theorem holds for ¢ (and in
fact for an arbitrary LinDELOFIAN conformal map with domain {|z] < 1},
cf. [3]) in the sense that for almost all n of {|z]| = 1}, ¢(2) tends to a point
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of G as z tends sectorially to 7 or else @ (z) tends to the ideal boundary of G as z
tends sectorially to 7.

We now turn to the proof of Theorem 3. By an argument of the EGOROFF
type we conclude that for each ¢, 0 <c <1, there exists a closed subset
E (c) of E satisfying: (i)| E(c) | >c| E |, (ii) wE(m) — 1 uniformly as r -1,
neH(c), (ili) @(rn) tends to the ideal boundary of G uniformly as r — 1,
n e E(c), i.e. for each compact K c @, there exists r,, 0 <r, <1, such
that ¢@(rn)eG@ — K for ro<r<1, neE(c). Let Pg,  denote the
least positive superharmonic function on G which dominates one on
plon|r<e<1l, nekl(c)}. Let Py, = lim Py, .. Now P, is harmonic
on G and from r—>1

wE(c) < PE(c),r °Q,
it follows that

W E(c) <P Ec)° P -

From wz < Pog, it follows by (ii) that P > Pg, . We take an increasing
sequence of ¢, say (c,)7 with limit 1, such that Pg,,, converges pointwise
on G. Let k denote lim P ,,,. Then wz <hogp. Also b <P since P > PE(C),
and & > P by Theorem 2. Hence boundary condition I lmphes that P is
harmonic. If P =1, then Theorem 3 is trivial. We suppose therefore that
P #1.

To continue we introduce a conformal universal covering y of G with domain
{|z] < 1} and note that ¢ admits a factorization of the form yob where b
is an analytic function in {|z| < 1} of modulus less than one. Let b* denote
the Fatou radial limit function of 6. Let W denote an analytic fanction in
{|z| < 1} satisfying RW = P oy andlet W, = W ob, sothat RW,=Pogp.
There exists a subset X of E which is an F, and satisfies: (i) | X|=|E]|,
(ii) W, possesses a finite sectorial limit with real part 1 at each point of X,
(iii)) Y = b*(X) is an F,. It is to be observed that b possesses a sectorial
limit of modulus one at each point of X and that consequently by virtue of
a classical function-theoretic lemma [4; p. 70] W possesses a finite sectorial
limit with real part 1 at each point of Y.

Now let Z = E@T(Y)’ where ® is the group of conformal automor-

phisms of {|z| << 1} whose restrictions to {|z| < 1} leave yp invariant. We
have

m Poy(ry) =1, ne.

r—>1
Further since w, is invariant with respect to the automorphisms belonging
to ®, w, =voy where v is a generalized harmonic measure on G'. From
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Poy > w; = voy, it follows that P > v. On the other hand, using Lemma

1, we infer that
Vop=wz0b > wyob>= wg.

Hence v > v. The equality of P and v follows.

Applications of Theorem 3. Suppose that Z is a measurable subset of an
open arc « of the unit circumference and that | E | = |« |. Suppose further
that » < 1. What can be said about ¢ under these circumstances? In case
G = {|z| < 1}, it is immediate that ¢ possesses a limit of modulus one at
each point of x. Thus ¢ is the restriction to {|z| < 1} of a function analytic
at each point of x. We may also draw conclusions in the general case. Here
we have

vVop = (Voy)ob = w,

and it follows that b possesses a limit of modulus one at each point of x. It
follows that ® is properly discontinuous at each point of b*(«x). Hence @G is
continuable and in fact has a free boundary arc I' with the property that
¢(z) tends continuously to a point of I" as z tends to'a point of . Of course,
reference is made to an embedding of G.

The second application which we have in mind is the following. Let £ now
denote the set of 5, |y| = 1, for which ¢(rn) tends to the ideal boundary
of @ as r - 1. Let g denote the GREEN’s function for @ with pole at q ¢ G.
Then lim g (p(rn)) =0 p.p.on K.

r—>1
Suppose that this were not the case. Then there would exist a measurable

subset E, of K, |E,| > 0, such that wp < fgo¢ where §is a positive con-
stant. By Theorem 3, v associated with (¢, E,) satisfies v <C Bg. This implies
v = 0 which is impossible.

6. It is now possible to correlate the boundary behavior of a conformal map
@ of {]z| < 1} into a hyperbolic RIEMANN surface G with the behavior of the
P associated with ¢ and a generalized harmonic measure in {|z| < 1}. Spe-
cifically suppose that E is a measurable subset of {|z| = 1}. Let X denote
a measurable subset of E of positive measure and let P* denote the P associated
with (¢, wg). Then we have

Theorem 4: A necessary and sufficient condition that ¢(rm) tends to the ideal
boundary of G as r — 1 for almost all 7 « E is that for each X, PX be harmonic.
The necessity is immediate. Suppose that the stated condition were not
sufficient. Then there would exist an X, say X, with | X, | > 0 enjoying the
following properties: (i) X, is closed, (ii) ¢*() = lim ¢(rn) exists (e @) for

r—>1
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each 7eX, and ¢*(X,) is compact. It follows that P¥¢ would not be har-
monic. This is contrary to the stated condition.

7. We now turn to conformal maps of RIEMANN surfaces. Here we prove

Theorem b: Let ¢ denote a conformal map of a Riemann surface F into a
hyperbolic Riemann surface G'. Suppose that u is a non-trivial generalized har-
monic measure on F which has the property that ¢ (p) tends to the ideal boundary
of G as u(p) > 1 in the sense that for each compact K c @ there exists o,
0<a<1, such that

p{u>a} c G—K.
Then P =v.

We show that we may conclude this theorem from Theorem 3. We put

aside the trivial case: P = 1. It is to be observed that the imposed boundary

condition assures the harmomczty of P (cf. § 4. lim P, is harmonic here).
a—>1
Let 6 denote as above a conformal universal covering of ¥ with domain

{lz] <1}. It is to be observed that P and v are also respectively the least
P and v associated with (po 0, uo 0) We have: uo0 = wg where £ is a

measurable subset of {|z| = 1} for which lim wgz(rn) =1, neE. Hence
r—>1

@ o O0(rn) tends to the ideal boundary of G as r -1, neE. Theorem 3 is
applicable and we conclude that P = v .

It is an immediate corollary of Theorem 5 that in the unrestricted situation
of Theorem 2, h = v and that the harmonicity of P implies that P = v.

8. A question pertaining to Theorem 2 which merits attention is the following.
Given a generalized harmonic measure %(>0) on F, does the class of gener-
alized harmonic measures A(<{ u) on F which satisfy:

(*) For each generalized harmonic measure w on F satisfying 0 < w < A,
the least P associated with w in the sense of Theorem 2 is harmonic,

have a largest member? We shall see that this is indeed the case and that with
b denoting this largest h, if the generalized harmonic measure w — h > 0, then
the least P associated with w — h in the sense of Theorem 2 is the limit of a
non-decreasing sequence of equilibrium GREEN’s potentials?) on G associated
with compact sets of positive capacity.

2) Specifically, we define this notion as follows (we put aside unicity questions which are not
essential for our purposes (cf.[1]). Let K denote a compact subset of G. Let Qo denote the least
positive superharmonic function on G which dominates 1 on the open set O(# @)c G. By Ilg,
the equilibrium GREEN’g polential associated with K, we shall understand the lower limit function

of inf Qo .
KCco



b6 MavrIicE HEINS

Further, if w =1, then h = 1 if and only if @ is of type-Bl3).

It will be convenient to establish the above assertions for the case where
F = {]z| < 1} and thereupon to reduce the general case to this one.

We start then with v = w, and let B, denote the set of points 7 e E
such that ¢(z) tends to the ideal boundary of G as z tends radially to n. We
claim that & = wg, - Clearly h = wy, satisfies (*). For if w is a generalized
harmonic measure satisfying 0 < w < wg,, then by Theorem 3 the least P
associated with w is harmonic.

On the other hand, if w is a generalized harmonic measure satisfying
U >w> wg, then w= wp, where B, c B, c ¥ and |E, — E,|> 0.
There exists a closed subset C of E, — E, where | C | > 0 and the restriction
of pto {ry| 0 <<r <1, neC} is continuous, ¢(n) being taken as the radial
limit of ¢ at 9. For each 05 ¢(C), wc<Qpo ¢. It follows that we <1, 00 @.
Clearly the least P associated with wg is not harmonic.

Suppose now that A(< u) is a generalized harmonic measure satisfying (*).
If w is a positive generalized harmonic measure satisfying w <L.H.M.max
{h, wg }, then w = w' 4 w", where w' and w" are generalized harmonic
measures satisfying G.H.M.min {w',w"} =0 and w' <k, " < vy . We
may put aside the case where either w’' = 0 or w” = 0. Since the least P
associated with w’ and w” are harmonic and w = L. H.M.max {w', w"}, it
follows from the concluding remarks of § 4 that the least P associated with
w is harmonic. Hence by the preceding paragraph wgz =L.H.M.max {h, wg }.
It follows that wgz = k.

We now show that, if A* = u — h > 0, then the least P associated with
h* is the limit of a non-decreasing sequence of equilibrium GREEN’s potentials.
The proof is quite simple. It suffices to note that there exists a non-decreasing
sequence (C,);° of closed subsets of E — E, satisfying: (i) lim|C,| = |E — E,],
(ii) for each k, the restriction of p to {rn |0 <r <1, neC,} is continuous,
the conventions indicated above prevailing, (iii) for each k£, A*(rn) = 1 uni-
formly as r - 1, € C,.

As above, we have for each &,

0oy < Hyopy 0@ - (8.1)

Further I, <P, where P is the least P associated with A*. In fact, for
each , 0 <& < 1, each point of ¢(C,) either belongs to ¢ {h* > «} or is

3) cf. [2]. We recall that g is of type-Bl, provided that for each ¢ € G, Gg(p(p), g) does not
dominate a positive bounded harmonic function on F. Here (¢ ist the GREEN’s function for Q.
We shall make use later of the following theorem: Let ¢, denote a conformal map of a hyperbolic
RiemANN surface F; into a hyperbolic RieMaNN surface F, and let @, denote a conformal map
of F, into a hyperbolic RIEMANN surface F,. Then ¢, ° ¢, is a map of type-Bl if and only if ¢,
and @, are maps of type-Bl.
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an accessible boundary point of a component of ¢ {h* > x}. It follows from
the CARLEMAN-MILLOUX-BEURLING inequality that «—'P(q) > 1, qe@(C,).
We conclude that «='P > I ¢, and consequently that P > I q,,-

From lim II ¢, < P and »&* < (lim IT,,) o ¢, it follows that
im Il ¢, = P.

Suppose that v = 1. If ¢ is of type-Bl, then from the fact that for almost
all  of {|z| = 1}, Ggu(p(?), 9,) tends to zero as z tends to 7 sectorially, g,
being a point of G, we conclude that 7 = 1. If ¢ is not of type-Bl, then on
considering the factorization of § 5, ¢ = y o b, we see that b is not of type-Bl
relative to the unit disk by virtue of the cited theorem concerning maps of
type-Bl and we conclude that 5 < 1.

There now remains the problem of reducing the general case to the one
just treated. With 6 having the same meaning as above, let H and H* denote
the counterparts of A and h* respectively relative to the generalized harmonic
measure % o 0 and the conformal map @ o0 of {|z| <1} into G. It is to
be observed that H and H* are automorphic with respect to the group of
conformal automorphisms of {|z| < 1} leaving 0 invariant. Hence H = u, o 0
and H* = u, 0 0 where %, and u, are generalized harmonic measures on F.
We assert that u, is the desired & and that wu, = h*.

To see this, we note that, condition (*) is fulfilled by u, replacing k, for if
w is a generalized harmonic measure on F satisfying 0 < w << wu,, the least

P for (¢, w) is harmonic since the least P for (p o0, wo 0) and for (¢, w)
are the same.

Suppose that h satisfies (*). We wish to show that A <{u,. We consider
h o 0 relative to ¢ o 6. Suppose that W is a generalized harmonic measure
in {|z| < 1} satisfying 0 < W << h o 0. Let P denote the least Plassociated
with (¢ o 0, W). It suffices to show that P is harmonic, for then %o 0 < u, o 0
and consequently b < u,. The case where F is simply-connected is immediate.
In the remaining case let (t,);° denote a univalent enumeration of the
conformal automorphisms of {|z| <1} which leave 6 invariant. Let
W =lm L.H.M.max {W o 7,}*. From Won1, K Pogol, k=1,2,...,

N—>0

it follows that W < Pogo 6. Onthe other hand, Wot, =W,k =1,2,...
This follows from Wot;ot, < Wot,, j=1,2,... which implies W<Wo 1,.
Further W <ho0. Hence W = w o0, where wis a generalized harmonic
measure on F satisfying w <<h. Now P is the least P associated with
(o8, W) and hence is the least P associated with (p, w). Consequently
P is harmonic since h satisfies (*).

It is immediate now that the second assertion holds.

Finally, suppose that w = 1. If A =1, then H =1 and ¢o0 is a map
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of type-Bl of {|z| < 1} into G. Hence by the cited composition theorem, ¢
is a map of type-Bl of F into G. Conversely, if ¢ is a map of type-Bl of F
into G, @o 0 is a map of type-Bl of {|z| <1} into G and H = 1. Hence
h=1.
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