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Systèmes différentiels du type de Fuchs

en théorie des distributions

par Piebbe-Denis Methée, Lausanne

1. Introduction. Considérons un système de n équations différentielles (n-
système différentiel, en abrégé), du premier ordre, linéaires, sans second membre,

pour n distributions inconnues Tx,..., Tn de la variable réelle x, les
coefficients étant de classe (7°° (fonctions indéfiniment dérivables).

Si ce système est régulier, c'est-à-dire résoluble, pour tout x, par rapport
aux dérivées T\, les distributions solutions sont les fonctions C00 solutions
usuelles (S, I, 130).

Si ce système n'est pas régulier, il n'a, en général, pas de distribution
solution. Cependant: «dans des cas où les conditions du théorème de Fuchs sont
réalisées, le système a des solutions dépendant de plus de n constantes»
(S, I, 132).

Nous nous proposons ici d'étudier le cas général où le système est du type
de Fuchs à l'origine, c'est-à-dire de la forme

D,5P,= xT[+ Z Aik(x)Tk=0 (i l,...,n). (1.1)

Nous supposons les Aik fonctions C°° et, de plus, analytiques au voisinage de

l'origine.
Ce système peut s'écrire sous la forme d'une équation différentielle matricielle

(S, I, 128) dqi
DT x-~- + AT 0 (1.2)

ax

A désignant la matrice des Aik, et T la distribution vectorielle {Tlf..., Tn}.
Nous désirons essentiellement établir que la solution générale de (1.2)

dépend de 2n constantes arbitraires.
Bien entendu, ce résultat vaudra, en particulier, pour une équation

différentielle linéaire ordinaire, d'ordre n, du type de Fuchs à l'origine

xny(n) + ap-iyif-Va^x) + +xy'ax{x) + ao(x) 0

dont les coefficients satisfont aux mêmes conditions que les Aiki une telle
équation se ramenant aisément à un système (1.1).

Notation. Dans la suite, T représentera toujours une distribution vectorielle,
T{ la ième «composante» de T. Si Ton considère une famille de distributions
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vectorielles, on distinguera celles-ci entre elles par un indice supérieur: T1,
TV..

2. Distributions de type (0,m). On appellera distribution de type (0,m)
toute distribution ayant pour support l'origine O, et d'ordre m, c'est-à-dire

m
de la forme Z ocjô^) avec <xm ^ 0, et où ô{i) est la dérivée d'ordre j de la

distribution de Dirac relative à 0.
Une distribution vectorielle T sera dite de support O si toutes ses com-

971

posantes T% sont de support 0 ; T sera dite de type (O, m) si T% Z #^<50)

(i 1,..., n), l'un au moins des <xtm étant non nul. ?=s°

3. Condition nécessaire pour que l'équation DT 0 admette pour solution
une distribution vectorielle de type (O, m — 1). On établit facilement les
formules

q\
0 si p>g,— 1)*

p et q étant des entiers > 0.
Par hypothèse, on peut poser, pour x assez petit :

Atk Z Atkpx»
d'où l'on déduit pœ0

Si DT 0 admet une solution T de type (O, m — 1), chacune des com-
m-l

posantes Tx= Z &tJô{i) vérifie DtT% 0, ce qui mène, par un calcul

simple, au système d'égalités (i 1,..., n)

!,»,(-1)»., =Q>
J

13.1)

Les <5^> étant linéairement indépendantes, leurs coefficients doivent être nuls.
On obtient ainsi, pour chaque valeur de j de 0 à m — 1, un système de n
équations (i 1,... n) qui s'écrit, avec le symbole ôik de Kronecker:

i«fc,[4tfc0-(,-+l)y=- Sm~z\k^Alk,{~ l)*i±^l. (3.2)

En particulier, pour j m — 1, on a les n équations
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satisfaites par des (xktm_t non tous nuls par hypothèse. Le déterminant de
la matrice -4(0) -— ml doit donc être nul, -4(0) désignant la matrice des

-4<*o et / la matrice unité. Or, si l'on pose F(r) dét. (-— .4(0) — ri),
l'équation F(r) 0 est (K, 58) l'équation caractéristique du système (1.1).
D'où le

Lemme I. Une condition nécessaire pour que Véquation DT 0 admette

pour solution une distribution vectorielle de type (O,m — 1) est que — m
soit solution de Véquation caractéristique.

Cette condition n'est, en général, pas suffisante. Cependant, on a le

Lemme II. Si — m (m entier J^ 1) est la plus grande racine entière négative

de Véquation caractéristique, Véquation DT 0 admet une solution de

type (O,m — 1), unique (à une constante multiplicative près). Il n'y a pas
de solution de type (O, s) pour s <m — 1.

En effet, par hypothèse, dét. (.4(0) — ml) 0: on peut trouver des

*fc,*»-i non *ous nills vérifiant le système (3.3), et déterminés à un même
facteur près. Pour chaque valeur j m — 2, m — 3,...,0, le système (3.2)
est linéaire, non homogène, à déterminant non nul puisque — m -f- 1,...,
— 1 ne sont pas racines de l'équation caractéristique. Les inconnues aki
s'obtiennent donc par résolution d'un système de Cramer, et sont des fonctions

linéaires bien déterminées des ockff+l,..., ocktfn_1. La dernière affirmation

du lemme II résulte du lemme I.

Lemme III. Si — m (m entier ^2) est la plus grande racine entière négative

de Véquation caractéristique, et si U est une distribution vectorielle donnée
de type (O, s) avec s ^ m •— 2, Véquation DT U admet toujours une
solution de type (O,s), qui est Vunique solution de support O et d'ordre ^ s.

En effet, soient pu(i 1,..., n ; j 0,..., s) les coefficients intervenant

dans la définition de U. On a à résoudre des systèmes analogues à (3.2),
mais où m — 1 est remplacé par s, et où le second membre contient en addition

le terme (tti. Pour j s, s — 1,..., 0, on a donc des systèmes
linéaires non homogènes, à déterminant non nul (puisque — m + 1, — m + 2,

— 1 ne sont pas racines de l'équation caractéristique), qui fournissent
de façon unique les valeurs des ockj(k 1,..., n ; j 0,... ,s). D'autre
part, il ne peut y avoir de solution de support O et d'ordre < $, parce que

dàm n
x — (- % -4**^(fc) 68* toujours d'ordre k au plus.

dx iœi

4. Solution de DT 0 dans le cas où l'équation caractéristique n'admet
aucune racine entière négative. Pour x ^ 0, le système (1.1) est régulier:
il n'a pas d'autres solutions que les solutions usuelles, fonctions C00 puisque
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les Aik le sont. Soit +y{ (i, j 1,..., n) un système fondamental de ces

solutions pour x > 0 (pour chaque valeur de j, les n fonctions +y\ représentent

une solution particulière usuelle de (1.1), linéairement indépendante des

autres). Soit, de même, ~y\ un tel système pour x < 0.
En vertu de l'analyticité des Aik, chaque fonction y{, pour x assez voisin

de 0, sera une somme de termes du type | x \ r log# \ x\ f(x), avec r racine
de l'équation caractéristique, p entier ^ 0, f(x) analytique (K, 58 et 59,
82 et 83).

Les y\ ne sont, en général, pas intégrables au voisinage de 0, mais les
distributions qu'elles définissent pour x ^ 0 peuvent être prolongées au moyen
des parties finies (M, 253). Nous noterons +Tj (resp. ~T*) la distribution
vectorielle de composantes Pfye+y{ (resp. P/(l ~y-e)~yi), ye désignant la
fonction de Heaviside égale à 1 pour x > e, à 0 pour x < e.

Il est alors clair que toute distribution solution de DT 0 doit être de
la forme n

T E (*,+!* + nr?1) + ZvkU*, (4.1)

où les Uk désignent des distributions vectorielles de support 0 linéairement
indépendantes. Il reste à déterminer les relations liant les constantes Xs, /li^ vk

pour que T soit effectivement solution.

Lemme IV. Si Véquation caractéristique n'admet aucune racine entière négative,

la solution générale de DT 0 dépend de 2n constantes arbitraires.
a) Montrons que +T* est solution de l'équation. Comme on a D+T* 0

pour x ^ 0, il suffit de vérifier que les termes A+Tj et X-J-+T* ne donnent
CLX

aucune contribution à l'origine. Cela est évident pour le premier. On obtient
celle du second en déterminant celle de chacun des termes de la forme

x-=—Pfyexrlogpxf(x). Et cette contribution est nulle, car un calcul facile
dx

(cf. par exemple, M 255) montre qu'elle s'écrit Pfer+1logpsf(s)ôe, où ôe

est la distribution de Dirac relative au point d'abscisse s ; cette expression
ne fournit aucun terme non nul si r n'est pas entier négatif.

b) On vérifie de la même façon que D~Tj 0.
c) Considérons (4.1). Le lemme I montre que DUk est toujours ^ 0. La

condition DT 0 entraîne donc vk 0 pour tout k, les 'ki et [x5 restant
arbitraires, d'où le lemme IV.

Si l'équation caractéristique a des racines entières négatives, il n'en va plus
de même. Mais le calcul effectif de la distribution de support 0 égale k DT
(T défini par (4.1)) est impraticable dans le cas général où l'ordre n du
système (1.1) équivalent à DT 0 est quelconque. En revanche, il est aisé



42 Pibbbb-Denis Methêb

pour n 1. Nous nous ramènerons alors à ce cas par abaissement successif
de Tordre, en nous inspirant de la méthode classique pour un système
différentiel linéaire usuel.

On notera que, l'équation DT 0 étant régulière en dehors de l'origine,
la recherche du nombre de constantes arbitraires figurant dans la solution
générale de cette équation peut se faire dans n'importe quel voisinage ouvert
contenant l'origine, si petit soit-il.

5. Abaissement de l'ordre d'un système de Fuchs dans le cas où l'équation
caractéristique admet une ou plusieurs racines entières négatives. Considérons

un ^-système du type de Fttchs à l'origine (p entier > 1 quelconque)

DtTt xT\ + E AtkTk 0, (i 1,..., p) (5.1)

et notons DT 0 l'équation différentielle matricielle équivalente.
Soit — m (m ^ 1) la plus grande racine entière négative (qui peut être

multiple) de l'équation caractéristique. On pourra trouver, dans un voisinage
ouvert F de l'origine, un système de solutions usuelles de la forme x"mfi(x)i
les ft(x) étant analytiques, et, pour fixer les idées, fx(x) non nulle.

Nous nous plaçons, pour toute la suite du paragraphe, dans V.
Pour alléger l'écriture, nous admettons implicitement que l'indice i varie

de 1 à p, l'indice » de 2 à p.
Par hypothèse, pour x ^ 0, on a:

+lAtk(x)x-™fk(x) 0

donc la relation p

*/i'-m/, + 2M,»/i 0 (5.2)
k=l

est vérifiée pour x ^ 0 ; elle l'est aussi pour x 0 par continuité.

Lemme V. Soient deux familles de distributions T{ et Ut liées par les relations

CTi/i **Tt, UJX ~^-{hTa - UTX) (5.3)

les fx satisfaisant à Véquation différentielle (5.2). Alors les opérateurs £>* définis

par (5.1) et Et définis ci-dessous

E&^Ui + Z AlkUk E.U. xU'0L + ZB0LkUk, (5.4)

- les Bak étant certaines fonctions analytiques dans V - sont liés par les relations

1 f1E1U1 (5.5)

ftSa Ua + faEt Ut. (5.6)
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On peut écrire, d'après (5.3):

xm~1DlT1 xm-x(xT[ + ZAlkTk) {UJJ - mxm~1T1

p xm1 p

U(V[ + ZAlhUh)+——T1(xf1 - m\x + EAlkfk)

d'où (5.5), la dernière parenthèse étant nulle en vertu de (5.2).
La seconde relation (5.3) donne

xUJ1 x™Ta - UJ, d'où x™T'a (s UJ, + UJJ -
et un calcul simple montre alors que

+ Ua(xf[ - mfx + h) +^- TAxfc - mfa + Z Aakfk)
/i t»i

Le coefficient du dernier terme est nul en vertu de (5.2). On est alors conduit
à (5.6), avec des fonctions Bak, de définition immédiate, qui sont analytiques
dans F.

Le (p — l)-système EaUa 0 est encore du type de Ftjchs à l'origine. On
notera EU — 0 Féquation différentielle matricielle équivalente.

Lemme VI. Si la solution générale de EU 0 dépend de 2p — 2 constantes

arbitraires, celle de DT 0 dépend de 2p constantes arbitraires.
En vertu du lemme V, à chaque solution T {TJ de DT 0 les

formules (5.3) font correspondre de façon unique un système U{ vérifiant
E{U€ 0, donc, en particulier, une solution U {Ua} de EU 0, que
nous appellerons l'image de T. Nous allons chercher l'image réciproque d'une
solution quelconque J7, c'est-à-dire l'ensemble des solutions T d'image U.

a) Considérons d'abord le système Î7a 0, Ux 0, et choisissons un
système T{ bien déterminé vérifiant (5.3), par exemple T1=ô{m~1),
Ta Tx/f1/a; T {T4} est une distribution vectorielle de type (0, m — 1).
Comme EiUi 0, T est solution, d'après (5.5) et (5.6), de xm~1DT 0,
donc DT est de type (O, s) avec s < m — 2. En vertu du lemme III, on

peut trouver T de même type (0, s) telle que DT DT. Ainsi, T1 T — T
est une solution, de type (0, m — 1), de Dî7 0. D'après le lemme II,
tout autre système T{ vérifiant (5.3) mène à une distribution proportionnelle
à 2V

b) Soit maintenant Ua 0, Ux 1, et prenons un système Tt bien
déterminé vérifiant (5.3), soit Tx Pf(ye + 1 - y-e)x~™flf Ta /«/f1^-
On a toujours J5|î7t. 0, et, en raisonnant comme ci-dessus, on voit que



44 Pibbbb-Denis Mktkéb

T — {T{}, augmentée éventuellement d'une distribution vectorielle de type
(0, 8) avec s < m — 2 convenablement choisie, satisfait à DT 0.
Notons T2 cette solution.

Si T2 est une autre solution obtenue à partir des mêmes £7*, à T2 —- T2

correspond le système £7* 0, donc T2 — T2 est proportionnel à Tx.
c) L'image réciproque de £7 0 est une combinaison linéaire arbitraire

de T1 et T2. En effet, si T est une solution de DT 0 ayant U 0 pour
image, on a Dt2\- 0 et EOLUot== 0, ce qui entraîne E1U1 0 d'après
(5.5) et (5.6), donc U1 constante, d'après (5.4), et l'affirmation résulte de

a) et b).
d) Soit alors £7 {£7a} une solution quelconque de EU 0. On a

EaUa 0; prenons pour Ut une solution de E1U1 0. En choisissant un
système Ti bien déterminé vérifiant (5.3), on peut construire (cf a)) une
solution T de DT 0, d'image U. D'après c), l'image réciproque de U est
î7 + XT1 + fiT2(X et /* constantes arbitraires).

Démontrons le lemme. Supposons que la solution générale de EU Q

soit une combinaison linéaire de 2p — 2 distributions vectorielles Uj (j 3,
...,2^) linéairement indépendantes. Soit Tj une solution de DT — 0

d'image £7*, et considérons l'ensemble des 2p distributions T1, T2, T3,..., T2p.

Alors:
1. elles sont linéairement indépendantes,
2. toute solution de DT 0 en est une combinaison linéaire.

1. La relation Z1 aéTj 0 entraîne 27 a^U* 0, donc a3 a2j> 0

par hypothèse. Cette relation se réduit, par conséquent, à axTx + a^T2 — 0,
qui implique ax a2 0, T1 et î72 étant elles-mêmes linéairement
indépendantes (T1 est de support O, non î72). Ainsi, tous les aj doivent être nuls,
d'où l'affirmation.

2. Soit T une solution quelconque de DT 0. Son image U est néces-
2p

sairement une certaine combinaison linéaire des U1 : U E X^UK Consi-
— 2p _ ;=3

dérons la distribution T Z À^T*. La différence T — T a pour image

U* 0 par construction même, donc, d'après c), c'est une combinaison linéaire

de T1 et T2.

6. Solution du problème. Prenons d'abord le cas où l'équation différentielle
matricielle DT 0 équivalente au n-système (1.1) se réduit à une équation
différentielle ordinaire (n 1):
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Lemme VIL La solution générale de DT 0, pour n 1, dépend de

deux constantes arbitraires1).
En effet, l'équation caractéristique s'écrit r -}- A(0) 0. Si -4(0) n'est

pas un entier ^ 1, le résultat n'est qu'un cas particulier de ce qui a été
démontré au paragraphe 4.

Soit alors A(0) m (m entier ^ 1). La solution usuelle, y, pourra s'écrire
x~mf(x) au voisinage de 0, avec f(x) analytique. Posons T+ PfyBy,
T~ Pf(l-y_e)y.

a) On a DT+ — DT~ S, S étant une certaine distribution de type
(0, m — 1), car on peut écrire (§ 4) :

DT+ - Pfe~m+If(e)ôe J*Z a^»
DT- Pf - (- e)-m+ïf(- s)ô_e ^Z - a,àW

avec des coefficients aj faciles à expliciter.
b) En vertu du lemme II, il existe une solution T* de DT 0 de type

(0, m — 1), et c'est l'unique solution (à un facteur près) de support 0.
c) L'équation DT U, avec U de type (0, m — 1), n'admet aucune

solution T de support 0. En effet, x-j- ô{k) + A(x)ôik) est de type (O,k),ax
avec A(0) — (k -\- l) comme coefficient de ô{k). T devrait donc être d'ordre
>m — 1.

w-l m-l+k
Posons U Z^Ô^, T= Z «,«<*>.

Si k 0, on doit avoir, d'après ce qui précède, ocm_1(A(O) — m) /3m_i,
ce qui est impossible puisque A (0) m.

Si k > 0, on aura #TO_1+fc(^4(0) — m — &) =0, d'où <xm_1+k 0, et on
sera ramené, de proche en proche, au cas où k 0.

d) Soit alors T une solution quelconque de DT 0. Elle est de la forme
(cf. (4.1))

T ÀT+ + \iT- + F,
avec F de support O. La condition DT 0 entraîne, d'après a),

1)7=^- A)#. D'après c), il faut que A jbt, et alors F est proportionnelle

à T* en vertu de b). D'où

T l(T+ + T~)+vT*
A et v étant arbitraires, ce qui achève de démontrer le lemme.

Considérons maintenant l'équation différentielle matricielle DT 0 dans
le cas général (n quelconque).

x) Cf. S, I, 132 (cas où A(x) est une constante A).
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Théorème. L'équation différentielle matricielle DT 0, équivalente au n-
système différentiel (1.1), linéaire et du type de Fuchs à Vorigine, a pour solution
générale une combinaison linéaire de 2n distributions vectorielles linéairement
indépendantes.

En effet, si l'équation caractéristique n'a pas de racines entières négatives,
c'est l'énoncé du lemme IV. S'il en existe, soit — m la plus grande ; on utilise
le procédé d'abaissement exposé dans le paragraphe précédent, autant de fois
qu'il le faut. Deux cas sont alors possibles.

Ou l'on est ramené à une équation différentielle matricielle équivalente à

un p-sjstème (p > 1) dont l'équation caractéristique n'a plus de racine
entière négative. On applique les lemmes IV et VI, et le théorème en résulte.

Ou l'on est ramené à une équation différentielle ordinaire du premier ordre.
L'affirmation du théorème se déduit des lemmes VII et VI.
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