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Systémes différentiels du type de Fucas
en théorie des distributions

par PIERRE-DENIS METHEE, Lausanne

1. Introduction. Considérons un systéme de n équations différentielles (n-
systéme différentiel, en abrégé), du premier ordre, linéaires, sans second mem-
bre, pour n distributions inconnues 7',,...,7T, de la variable réelle z, les
coefficients étant de classe C* (fonctions indéfiniment dérivables).

Si ce systéme est régulier, c’est-a-dire résoluble, pour tout z, par rapport
aux dérivées T';, les distributions solutions sont les fonctions C* solutions
usuelles (S, I, 130).

Si ce systéme n’est pas régulier, il n’a, en général, pas de distribution solu-
tion. Cependant: «dans des cas ol les conditions du théoréme de FucHS sont
réalisées, le systéme a des solutions dépendant de plus de = constantes»
(S, I, 132).

Nous nous proposons ici d’étudier le cas général ol le systéme est du type
de Fucss a l'origine, c’est-a-dire de la forme

D,T,=xT.+ 2 Au(2)T, =0 (=1,...,n). (1.1)
k=1

Nous supposons les A4, fonctions C* et, de plus, analytiques au voisinage de
Porigine.

Ce systéme peut s’écrire sous la forme d’une équation différentielle matri-
cielle (S, I, 128) ‘dT

A désignant la matrice des 4, et T' la distribution vectorielle {T',,...,T,}.
Nous désirons essentiellement établir que la solution générale de (1.2) dé-

pend de 27 constantes arbitraires. :
Bien entendu, ce résultat vaudra, en particulier, pour une équation diffé-
rentielle linéaire ordinaire, d’ordre n, du type de FucHs a 'origine

any™ 4 gn-lyn-lg  (2) + ... + 2y a,(x) 4 ae(z) =0,

dont les coefficients satisfont aux mémes conditions que les A4, une telle
équation se ramenant aisément & un systeme (1.1).

Notation. Dans la suite, 7' représentera toujours une distribution vectorielle,
T, la ©*™ «composante» de 7. Si I'on considére une famille de distributions
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vectorielles, on distinguera celles-ci entre elles par un indice supérieur: 71,
T2, ...

2. Distributions de type (O, m). On appellera distribution de type (0, m)

toute distribution ayant pour support l'origine O, et d’ordre m, c’est-a-dire
m

de la forme X' «;0'? avec «,, # 0, et ou 6" est la dérivée d’ordre ; de la
j=0
distribution de DirAc relative & O.

Une distribution vectorielle 7' sera dite de support O si toutes ses com-

m
posantes T; sont de support O; T sera dite de type (O, m)si T, = X «,,61"
(¢=1,...,n), l'un au moins des «;,, étant non nul. 7=0

3. Condition nécessaire pour que I’équation D7 = 0 admette pour solution
une distribution vectorielle de type (O, m — 1). On établit facilement les for-
mules

!
2P 8@ — (— 1)p_._?_'____' 3 s p<Lq, P8P =0 si p>gq,
(@ —p)!
p et q étant des entiers > 0.
Par hypothése, on peut poser, pour x assez petit:

oo
Aik - 2 A‘kpxp ’

d’olr 'on déduit p=0
A, 80 = E‘Aik,,xpé‘f’ — zj;Am _(_:_lf_z_'_ -1 |
»=0 P=0 (G — !
Si DT = 0 admet une solution 7' de type (O, m — 1), chacune des com-
m—1
posantes T, = X «,;6" vérifie D,T,= 0, ce qui méne, par un calcul
j=0
simple, au systéme d’égalités (¢ = 1,...,n)
m—1 n m—j—1 ) |
E o | oy + 1+ D e e B
j=0 k=1 p=0 J!

Les ¢ étant lindairement indépendantes, leurs coefficients doivent &tre nuls.
On obtient ainsi, pour chaque valeur de j de 0 & m — 1, un systéme de n

équations (¢ = 1,...,n) qui s’écrit, avec le symbole §,, de KRONECKER:

: . it G+ p)!

L O ildigo — G+ D0yl = — 2 2 oy 554 0,(— 1)? T . (3.2)
k=1 k=1 p=1 )

En particulier, pour j = m — 1, on a les n équations

n
2 ogme1[Aigo —moy] =0, (3.3)
k=1
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satisfaites par des «,, , non tous nuls par hypothése. Le déterminant de
la matrice A4(0) — mI doit donc étre nul, 4(0) désignant la matrice des
Ao et I la matrice unité. Or, si 'on pose F(r) = dét. (— A(0) —rI),
P’équation F(r) = 0 est (K, 58) 1’équation caractéristique du systéme (1.1).
D’ou le

Lemme I. Une condition nécessarre pour que Uéquation DT = 0 admette
pour solution une distribution vectorielle de type (O, m — 1) est que — m
801t solution de U'équation caractéristique.

Cette condition n’est, en général, pas suffisante. Cependant, on a le

Lemme II. 8¢ — m (m entier > 1) est la plus grande racine entiére néga-
tive de Uéquation caractéristique, Uéquation DT = 0 admet une solution de
type (O, m — 1), unique (& une constante multiplicative prés). Il n’y a pas
de solution de type (O, 8) pour s <m — 1.

En effet, par hypothése, dét. (4(0) — mI) = 0: on peut trouver des
&% m—1 Don tous nuls vérifiant le systéme (3.3), et déterminés & un méme fac-
teur prés. Pour chaque valeur j=m — 2, m — 3,...,0, le systéme (3.2)
est linéaire, non homogene, & déterminant non nul puisque —m +1,...,
— 1 ne sont pas racines de I’équation caractéristique. Les inconnues «, ;
s’obtiennent dounc par résolution d’un systéme de CRAMER, et sont des fonc-
tions linéaires bien déterminées des oy 4.;,...,%; m_y. La derniére affirma-
tion du lemme II résulte du lemme I.

Lemme III. St — m (m entier > 2) est la plus grande racine entiére néga-
tive de Uéquation caractéristique, et si U est une distribution vectorielle donnée
de type (0,8) avec s <m — 2, Véquation DT = U admet toujours une
solution de type (0, s), qui est Uunique solution de support O et d’ordre < s.

En effet, soient gt =1,...,n; j=0,...,8) les coefficients interve-
nant dans la définition de U. On a & résoudre des systémes analogues & (3.2),
mais ol m — 1 est remplacé par s, et o le second membre contient en addi-
tion le terme f,;. Pour j=¢, s —1,...,0, on a donc des systémes liné-
aires non homogénes, & déterminant non nul (puisque —m + 1, —m + 2,

.., — 1 ne sont pas racines de I’équation caractéristique), qui fournissent
de facon unique les valeurs des oy (k= 1,...,n; §=0,...,8). D’autre
part, il ne peut y avoir de solution de support O et d’ordre < s, parce que

(k) n
dd + 2 A, 6% est toujours d’ordre k& au plus.

x
dx k=1

4. Solution de DT = 0 dans le cas ou I’équation caractéristique n’admet
aucune racine entiére négative. Pour x = 0, le systéme (1.1) est régulier:
il n’a pas d’autres solutions que les solutions usuelles, fonctions C* puisque
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les A, le sont. Soit +y! (¢,j=1,...,n) un systéme fondamental de ces
solutions pour z > 0 (pour chaque valeur de j, les n fonctions +y! représen-
tent une solution particuliére usuelle de (1.1), linéairement indépendante des
autres). Soit, de méme, ~y! un tel systéme pour z < 0.

En vertu de I’analyticité des A4,,, chaque fonction y!, pour x assez voisin
de 0, sera une somme de termes du type | z|"log? | x| f(x), avec r racine
de I'équation caractéristique, p entier > 0, f(x) analytique (K, 58 et 59,
82 et 83).

Les y! ne sont, en général, pas intégrables au voisinage de 0, mais les dis-
tributions qu’elles définissent pour x # 0 peuvent étre prolongées au moyen
des parties finies (M, 253). Nous noterons +7"7 (resp. ~7T") la distribution vec-
torielle de composantes Pfy ty! (vesp. Pf(1 — y_,)~¥}), y, désignant la
fonction de HEAVISIDE égale & 1 pour z > ¢, & 0 pour z < ¢.

Il est alors clair que toute distribution solution de DT = 0 doit étre de
la forme

n

T =X (4,+T + p,~T') + Z v, Uk, (4.1)
j=1 k

ou les U* désignent des distributions vectorielles de support O linéairement

indépendantes. Il reste & déterminer les relations liant les constantes 4,, u;, v,

pour que 7' soit effectivement solution.

Lemme IV. S¢ l’équation caractéristique n’admet aucune racine entiére néga-
tive, la solution générale de DT = 0 dépend de 2n constantes arbitraires.
a) Montrons que *+7" est solution de 1’équation. Comme on a D+77 = 0

pour x # 0, il suffit de vérifier que les termes A +7"7 et x%+T" ne donnent

aucune contribution & Porigine. Cela est évident pour le premier. On obtient
celle du second en déterminant celle de chacun des termes de la forme

x—(%—P fy.a"logPzf(x). Et cette contribution est nulle, car un calcul facile

(cf. par exemple, M 255) montre qu’elle s’écrit Pfe™+1log®ef(e)d,, ol 4,
est la distribution de DirAc relative au point d’abscisse ¢; cette expression
ne fournit aucun terme non nul si 7 n’est pas entier négatif.

b) On vérifie de la méme fagon que D-TY = 0.

¢) Considérons (4.1). Le lemme I montre que D U* est toujours # 0. La
condition DT = 0 entraine donc %, = 0 pour tout k, les 4; et u; restant
arbitraires, d’ou1 le lemme IV.

Si ’équation caractéristique a des racines entieres négatives, il n’en va plus
de méme. Mais le calcul effectif de la distribution de support O égale & DT
(T' défini par (4.1)) est impraticable dans le cas général ou I'ordre = du sys-
téme (1.1) équivalent & DT = 0 est quelconque. En revanche, il est aisé
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pour n = 1. Nous nous raménerons alors & ce cas par abaissement successif
de I'ordre, en nous inspirant de la méthode classique pour un systéme diffé-
rentiel linéaire usuel.

On notera que, I’équation DT = 0 étant réguliére en dehors de I'origine,
la recherche du nombre de constantes arbitraires figurant dans la solution
générale de cette équation peut se faire dans n’importe quel voisinage ouvert
contenant 1’origine, si petit soit-il.

b. Abaissement de 1’ordre d’un systéme de Fucus dans le cas ou 1’équation
caractéristique admet une ou plusieurs racines entiéres négatives. Considérons
un p-systéme du type de FucHs a l'origine (p entier > 1 quelconque)

¥4
DT, =aT;+Z AT, =0, (=1,...,p), (5.1)
k=1
et notons DT = 0 D’équation différentielle matricielle équivalente.
Soit —m (m > 1) la plus grande racine entiére négative (qui peut étre

multiple) de ’équation caractéristique. On pourra trouver, dans un voisinage
ouvert V de l'origine, un systéme de solutions usuelles de la forme 2—™f (),
les f,(x) étant analytiques, et, pour fixer les idées, f,(x) non nulle.

Nous nous plagons, pour toute la suite du paragraphe, dans V.

Pour alléger 1’écriture, nous admettons implicitement- que l'indice + varie
de 1 & p, 'indice x de 2 & p.

Par hypothése, pour z # 0, on a:

u~mr%mwrwwmu»ﬁéAMmrwww=m

donc la relation »
xfz/ —mf, +kz Aupfe=0 (6.2)
=1

est vérifie pour x £ 0; elle ’est aussi pour « = 0 par continuité.

Lemme V. Soient deux familles de distributions T'; et U, lies par les relations

m—1
U,f, = a»T,, mn=%;m%~mnu (6.3)

les f, satisfaisant & Uégquation différentielle (5.2). Alors les opérateurs D, définis
par (5.1) et E; définis ci-dessous

E,U, = U, +£’2Aw Uv.,, EU,==zU, —|—k.§'2Bm,c U,, (5.4)

— les B, étant certaines fonctions analytiques dans V — sont liés par les relations
™D, T, = f,B,U, , (5.5)

a»1D.T, = LE U, + f E,U; . (5.86)
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On peut écrire, d’apres (5.3):

P P
am1D\ Ty = a™ YTy + X 4, Ty) = (U, ) — mam1T, + 24y 1Ty,

k=1 k=1

? x‘m"‘l , y
zfl(U{+2A1kUk) + T(xfy —mfy + X At
k=2 f1 k=1

d’ou (5.5), la derniére parenthése étant nulle en vertu de (5.2).
La seconde relation (5.3) donne

anfl = mea - Ulfa ’ d’Ol‘l me; = ((L' Uafl + Ulfm)l i mxm‘lTa ’
et un calcul simple montre alors que

D
1D, Ty = foUs + f(@ UL + Z Ay Uy)
k=2

m—1

h

Le coefficient du dernier terme est nul en vertu de (5.2). On est alors conduit
a (5.6), avec des fonctions B,,, de définition immédiate, qui sont analytiques
dans V.

Le (p — 1)-systéme E, U, = 0 est encore du type de FucHs & l'origine. On
notera EU = 0 l’équation différentielle matricielle équivalente.

+ Ua(xﬁ —mf, + f) + Tl(xf; — mfy +k21Aakfk) .

Lemme VI. S la solution générale de EU = 0 dépend de 2p — 2 constan-
tes arbitraires, celle de DT = 0 dépend de 2p constantes arbitraires.

En vertu du lemme V, & chaque solution 7' = {7';} de DT = 0 les for-
mules (5.3) font correspondre de facon unique un systéme U, vérifiant
E,U, = 0, donc, en particulier, une solution U = {U,} de EU = 0, que
nous appellerons 'image de 7'. Nous allons chercher 'image réciproque d’une
solution quelconque U, c’est-a-dire ’ensemble des solutions 7' d’image U.

a) Cousidérons d’abord le systéme U, =0, U, =0, et choisissons un
systéme 7', bien déterminé vérifiant (5.3), par exemple 7T, = 6™V,
T,=T,f{*f,; T = {T,} est une distribution vectorielle de type (0, m — 1).
Comme E,U; = 0, T est solution, d’apres (5.5) et (5.6), de 2™ DT = 0,
done DT est de type (0, s) avec s <m — 2. En vertu du lemme ITI, on
peut trouver 7' de méme type (O, s) telleque DT = DT. Ainsi, T* =T — T
est une solution, de type (O, m — 1), de DT = 0. D’aprés le lemme II,
tout autre systéme 7', vérifiant (5.3) meéne & une distribution proportionnelle
aT,. :

b) Soit maintenant U, = 0, U, = 1, et prenons un systeme 7'; bien dé-
terming vérifiant (5.3), soit 7, = Pf(y, + 1 —y_)x™f,, T,=fJi'T,.
On a toujours E,U; = 0, et, en raisonnant comme ci-dessus, on voit que
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T = {T,}, augmentée éventuellement d’'une distribution vectorielle de type
(0, 8) avec 8 < m — 2 convenablement choisie, satisfait 4 DT = 0. No-
tons 7'? cette solution.

Si T est une autre solution obtenue 3 partir des mémes U,, & T2 _ T2
correspond le systéme U; = 0, donc T — T est proportionnel & 7',.

¢) L’'image réciproque de U = 0 est une combinaison linéaire arbitraire
de 7' et T2. En effet, si 1" est une solution de DT = 0 ayant U = 0 pour
image, on a D,T;,=0 et E ,U,= 0, ce qui entraine E,U, = 0 d’apres
(5.5) et (5.8), donc U, = constante, d’apres (5.4), et I'affirmation résulte de
a) et b).

d) Soit alors U = {U,} une solution quelconque de EU = 0. On a
E, U, = 0; prenons pour U, une solution de E,U, = 0. En choisissant un
systéme 7T'; bien déterminé vérifiant (5.3), on peut construire (cfa)) une
solution 7' de DT = 0, d’image U. D’apres c), 'image réciproque de U est
T + AT* + uT?(A et u constantes arbitraires).

Démontrons le lemme. Supposons que la solution générale de EU = 0
soit une combinaison linéaire de 2p — 2 distributions vectorielles U7 (j = 3,
..., 2p) linéairement indépendantes. Soit 77 une solution de DT =0
d’image U7, et considérons ’ensemble des 2p distributions 7, 72, T3, ..., T'?».
Alors:

1. elles sont linéairement indépendantes,

2. toute solution de DT = 0 en est une combinaison linéaire.

2p 2p
1. Larelation X ;7= 0 entraine X a,U/ =0, donc a;= ... =@a,,=0
j=1 j=3
par hypothése. Cette relation se réduit, par conséquent, & a,7* 4 a,7% = 0,
qui implique @, = a, = 0, T et T2 étant elles-mémes linéairement indé-
pendantes (7" est de support O, non 7'%). Ainsi, tous les a, doivent étre nuls,
d’ol Paffirmation.

2. Soit T une solution quelconque de DT = 0. Son image U est néces-

2p
sairement une certaine combinaison linéaire des Ui: U = X 2,U?. Consi-
— 2p — =3
dérons la distribution 7' = X A,77. La différence T — 7' a pour image
j=3
U* = 0 par construction méme, donc, d’aprés c), c’est une combinaison liné-
aire de T et 7.

6. Solution du probléme. Prenons d’abord le cas ol I’équation différentielle
matricielle DT = 0 équivalente au n-systéme (1.1) se réduit & une équation
différentielle ordinaire (n = 1):

T
DT =z + A@)T =0 .
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Lemme VII. La solution générale de DT = 0, pour n =1, dépend de
deux constantes arbitraires?).

En effet, I’équation caractéristique s’écrit » + A(0) = 0. Si 4(0) n’est
pas un entier > 1, le résultat n’est qu'un cas particulier de ce qui a été dé-
montré au paragraphe 4.

Soit alors A(0) = m (m entier > 1). La solution usuelle, y, pourra s’écrire
x~™f(x) au voisinage de 0, avec f(r) analytique. Posons 7'+ = Pfy.,y,
T-=Pf(l —y_)y.

a) On a DT+ = — DT- =8, 8 étant une certaine distribution de type

(O, m — 1), car on peut écrire (§ 4):
m—1

DT+ = Pfemt1f(e)d, = X a,; 6%
j=0 m—1
DT- = Pf — (— 8)—m+1f(-—-— 8)6—5 = 3 — a’,a(i) ,

j=0
avec des coefficients a; faciles & expliciter.

b) En vertu du lemme II, il existe une solution 7’* de DT = 0 de type
(O, m — 1), et c’est 'unique solution (& un facteur prés) de support O.
c) L’équation DT = U, avec U de type (O, m — 1), n’admet aucune

solution 7' de support O. En effet, xa% 0% + A4 (x)6% est de type (O, k),

avec A(0) — (k + 1) comme coefficient de 6'¥. T devrait donc étre d’ordre
=m — 1.

m—1 m—1+k )
Posons U =X g,6), T = 2 «;00.
j=0 j=0

Si k£ = 0, on doit avoir, d’aprés ce qui précede, «,, ,(4(0) —m) = B,_;,
ce qui est impossible puisque 4 (0) = m.
Si k>0, onaura «,_, (4(0) —m —k) =0, dot «,_;,, =0, et on
sera ramené, de proche en proche, au cas ot k = 0.
d) Soit alors 7' une solution quelconque de DT = 0. Elle est de la forme
(cf. (4.1))
T=AT*+uT-+ 7V,

avec V de support O. La condition DT = 0 entraine, d’aprés a),
DV = (u — A)S. D’aprés c), il faut que 4 = u, et alors V est proportion-
nelle & 7'* en vertu de b). D’olr

T — AT+ 4+ T-) +»T*,

A et » étant arbitraires, ce qui achéve de démontrer le lemme.
Considérons maintenant I’équation différentielle matricielle DT = 0 dans
le cas général (n quelconque).

1) Cf. 8, 1, 132 (cas ot A(x) est une constante ).
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Théorédme. L’équation différentielle matricielle DT = 0, équivalente au n-
systéme différentiel (1.1), linéaire et du type de Fucrs & Uorigine, a pour solution
générale une combinaison linéaire de 2n distributions vectorielles linéairement
indépendantes.

En effet, si ’équation caractéristique n’a pas de racines entiéres négatives,
c’est 1’énoncé du lemme IV. S’1l en existe, soit — m la plus grande ; on utilise
le procédé d’abaissement exposé dans le paragraphe précédent, autant de fois
qu’il le faut. Deux cas sont alors possibles.

Ou Pon est ramené & une équation différentielle matricielle équivalente &
un p-systéme (p > 1) dont ’équation caractéristique n’a plus de racine en-
tiére négative. On applique les lemmes IV et VI, et le théoréme en résulte.

Ou P’on est ramené & une équation différentielle ordinaire du premier ordre.
L’affirmation du théoréme se déduit des lemmes VII et VI.
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