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An arithmetical property of quadratic forms

By WALTER LEDERMANN, Manchester

In their paper [1] F. HimrzeBrucH and H. Hopr have encountered an
interesting arithmetical property possessed by certain symmetric bilinear
forms

n
f,y)= 2 a,2y, (1)
$,i=1
that arise in algebraic topology. In the forms which they consider, the coeffi-
cients a;; and the variables are integers and det a,; = 4 1; and it is known
that there exists an integral vector w such that

f(z,z) = f(z, w) (mod 2) (2)

for all . If v is the signature of f, then it is a corollary of their topological
investigations that
T = f (w, w) (mod 4). (3)

It is desirable to give a purely algebraic proof of (3), and I am greatly
indebted to Professor HopF for having drawn my attention to this question,
which will be discussed in this note.

In fact, it will be shown that (3) is a special case of a result concerning
forms (1) in which the coefficients and variables are rational numbers with
odd denominators. This subset, Q, of all rationals forms a ring, whose elements
may be grouped into residue classes modulo any power of 2 by stipulating that

72— = 7;32- (mod 2%)
whenever ¢, d, —d;c, = 0 (mod 2*) ; since only odd denominators are
allowed, this definition evidently does not depend on the representation of the
fractions involved. In particular, a fraction is termed even or odd according
as its numerator is even or odd; and we note that, if r is odd, 72 = 1 (mod 4).

The set, V, of n-tuples or ‘row-vectors” =z = (2,, z,,..., 2,) (%, Q)
is a Q-module. A change of basis of ¥ amounts to replacing x by the n-tuple
z = xP, where P is a fixed n-rowed matrix in Q with odd determinant.

Let f be a symmetric bilinear form which relative to the original basis
is expressed as x4y’ , where 4 = (a;). After the change of basis, f becomes
x By', where

B = PAP'. (4)
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We write 4 = A, = det4 , and throughout this paper we restrict ourselves
to forms with odd determinants, a property which is clearly preserved by the
transformation (4).

For a given form f we can in many ways determine a constant vector w

such that (2) holds for all z in Q. Indeed, w may be taken as the solution
of the vector equation

wA = (a1, Qgg, -+ -, py)
this solution being in Q, because detd is odd. For since
f(z, z) = Za,;;2? = Ya,;z; (mod 2),
we have that . A
flx, w) = wAx' = Xa,x,,

and (2) is satisfied. If w is another vector satisfying (2), then f(z, w — w) =0
(mod 2) for all x, so that (w — w)A4 = 0 (mod 2). It follows that

w=w-+ 2z, (5)

where 2z is a suitable vector in Q. Conversely, any vector of the form (5)
satisfies (2). We have that

f(w, w) = f(w, w) + 4f(w, 2) + 4f(2, 2) .
Thus
f(w, w) = f(w, w) (mod. 4),

that is, f(w,w) (though not w itself) is an invariant modulo 4 of f.
Our aim is to prove the following

Theorem. Let f be a quadratic form in n variables in Q with odd determinant
A and with signature v. Then?)

flw,w) —7 =4 —sgnd (mod 4), (6)

where w 18 a solution of (2).

We remark that, whilst 4 is not an invariant of f, both sgn4 and 4 are
invariants mod 4. For in a transformation of the type (4), 4 is multiplied by
(det P)2, which is congruent with 1 mod 4, since det P is odd.

In particular, when f is unimodular, whether integral or not, we have
that A4 = sgn4, so that (6) reduces to (3).

The theorem is proved by an induction with respect to n which is based
on the following simple matrix formula. Consider a partitioning of 4, say

KL
AZ(LM)’

1) As usual, we define sgn A to be 41 or — 1 accordingas 4 > Oor 4 < 0.
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where K is non-singular and of dimension less than »n. Put

I 0
P= (—LK—1 I)

where the identity matrices on the diagonal are of dimensions (in general
distinct) equal to those of K and M respectively. Then
K 0

O M — LK L’)
When det K is odd, this transformation is admissible, since P then lies in Q.
Now if not all diagonal elements of 4 are even, we may, without loss of
generality, assume that a,, is odd and then put K = (a,;). If, on the other
hand, all diagonal elements are even, then each row of A must contain at least
one odd element, or else det A could not be odd. We may then assume that
a,, is odd and that K is the leading 2-rowed submatrix; for in that case
det K = a,,a,, — a2, = —1 (mod 4), which is certainly odd. Thus, when
n > 2, we can always apply a transformation of the type (7), in which the

dimension of K is either 1 or 2.
When V is referred to the new basis, f splits and we write

f(x, x) p— g(x(l), x(l)) + h(x(2), x(2)) ,

PAP' = ( (7)

where z = (2, ) and the dimensions of the vectors z") and = are those
of K and M respectively?). Evidently

4, =4,4,, 1, =7, + 78,
where suffixes are used to distinguish quantities corresponding to different

forms. Also, if w®@ and w'® are such that

g(x(l), x(l)) == g(x(l), w(l)) (mod 2)
for all zV and
h(x(z), x(?-)) = h(x(ﬂ, w(z)) (mod 2)

for all z®, then w = (w, w®) satisfies (2).
Leaving aside for the present the cases in which » = 1 or » = 2, we may
assume, by induction, that the theorem holds for the forms g and . Then, since

flw, w) — 7, = (g(wW, w) —7,) + (h(w®, w®) —1,),

we have that
flw,w) —7,=4,—sgnd, + 4, —sgnd, , (8)

2) A somewhat similar method of reduction, but in a different context, has been employed
by Minkowskr ([2], 16-20).
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with the convention that henceforth all congruences are mod 4. Now, if r and s
are odd, (1 — r) (1 — 8) is divisible by 4, so that

r+8=1+4rs.
Hence, in particular,
4, +4,=1+4,4,=1+ 4,
and
sgnd, 4 sgnd, =1 + sgn(4,4,) = 1 4 sgn4a, .

Substituting in (8) we immediately obtain (6).

It only remains to verify the theorem for the two lowest dimensions. When
n =1, f = a,,23, where a,, is odd. We may then put w, = 1 to satisfy (2).
Thus f(w,w) =a,, =4 . Since 7 = sgna,,; = sgnd, the relation (6) is
certainly true. When = = 2, that is when f= a,,2} 4 a,,22 + 2a,,7,%,,
we have to distinguish two cases.

(1) Assume that a,, and a,, are not both even, so that we may assume that
@, is odd. The transformation (7) can then be applied with K = (a,,), and f
splits into two unary forms. The induction argument is therefore available
as before.

(ii) If @y, and a,, are both even, a,, is necessarily odd and 4 = a,,a,, — a3,
= —1. Evidently, f(z, z) is even for all z, so that the vector w = 0 satisfies
(2). We have therefore to show that

—t=—1—sgnd. (9)
When sgnd4 = —1, the form is indefinite, that is T = 0, and (9) is true.
On the other hand, when sgnA4 = 1, then v = 2 or 7 = — 2 according as
a,,>0o0r a,<0. But 2 =—2, and again (9) holds in each case.
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