Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 33 (1959)

Artikel: Uber die Aquivalenz der geometrischen und der analytischen Definition
guasikonformer Abbildungen.

Autor: Pfluger, Albert

DOl: https://doi.org/10.5169/seals-26004

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-26004
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber die Aquivalenz
der geometrischen und der analytischen Definition
quasikonformer Abbildungen’)

von ALBERT PFLUGER, Ziirich

Meinem verehrten Lehrer, G. PéLya, zu seinem siebzigsten Qeburtstag

Es wird im folgenden der Satz von A. Mori und L. Bers ([7],[2])2) von
der Aquivalenz einer geometrischen und einer analytischen Definition quasi-
konformer Abbildungen neu bewiesen, und zwar unter Vermeidung des RADE-
MACHER-STEPANOFFschen Theorems von der totalen Differenzierbarkeit, das
in dem Beweis von MoRI eine wesentliche Rolle spielt. Wir beschrinken uns
auf eineindeutige Abbildungen.

§ 1. Das zu beweisende Theorem

1.1. H. GroTzscH hat eine (eineindeutige) quasikonforme Abbildung fol-
gendermaflen definiert. Es sei {(z) eine topologische Abbildung eines Gebietes
D in die {-Ebene, die stetig differenzierbar ist und iiberall in D eine positive
Funktionaldeterminante besitzt. Einem infinitesimalen Kreis in D mit dem
Radius ¢ und dem Mittelpunkt z entspricht dann in der {-Ebene eine infini-
tesimale Ellipse mit den Halbachsen ae und be, @ > b > 0. Das Verhiltnis
a/b = 8(z) ist die Dilatation der Abbildung ¢ im Punkte 2. Gibt es eine Kon-
stante K mit

Supd(z) <K, (1.1)
z€eD
so ist {(z) eine K-quasikonforme Abbildung im Sinne von GROTzZSCH. Die Be-
dingung (1.1) ist &quivalent damit, daB iiberall in D die Ungleichung

max | {,-co80 4 {,-sinb |2 < K-J, J=§&7n,—§&n,, (1.2)
)
erfiillt ist.

1.2. Fir solche Abbildungen gilt die fundamentale Ungleichung von
Grorzscr [6]: Ein «orientiertes Viereck» £2,p0p ist eine Figur, bestehend
aus einem Jordangebiet 2 und vier verschiedenen Randpunkten 4, B, C, D

1) This research was sponsered by the Office of Naval Research and performed during the
authors stay at Stanford University.
*) Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis am Schlusse der Arbeit.
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(seinen Ecken), deren Anordnung dem positiven Umlaufssinn der Randkurve
entspricht.Man kann £ konform auf ein Rechteck {w|0<Rw<M,0<Jw<1}
abbilden, so dal die Punkte A, B, C, D entsprechend in die Ecken 0, M,
M + ¢ und ¢ iibergehen. Die eindeutig bestimmte Zahl M ist der Modul von
Q 8op- Zwischen dem Modul M irgend eines Viereckes £,p., in D und
dem Modul M’ des entsprechenden Viereckes {(£2,zop) unter der Abbildung
{(2) in Nr. 1.1 besteht die Ungleichung (von GROTZSCH)

K'M<M <KM. (1.3)

1.3 Diese Ungleichung ist fundamental insofern, als aus ihr sozusagen alle
Eigenschaften der Abbildung {(2) (in Nr. 1.1) hergeleitet werden koénnen,
ohne auf die speziellen Differenzierbarkeits-Voraussetzungen iiber {(z) zu-
riickgreifen zu miissen. Man konnte deshalb die von GROTZSCH betrachteten
Abbildungen ohne Verlust durch die wesentlich allgemeineren K-quasikon-
formen Abbildungen gemif der folgenden geometrischen Definition ersetzen
([1], [7] und [9]).

Ein orientierungstreuer Homdbomorphismus ((z) eines Gebietes D in die
{-Ebene heift K-quasikonform gemdf der geometrischen Definition, wenn fiir
den Modul M der Vierecke 2 4gop tn D und den Modul M' der entsprechenden
Vierecke (2 ,450p) unter der Abbildung (z) die Ungleichung (1.3) giltig ist.

Abgesehen von der grofleren Allgemeinheit haben diese K-quasikonformen
Abbildungen gegeniiber denjenigen in Nr. 1.1 den folgenden Vorteil: Konver-
giert eine Folge von K-quasikonformen Abbildungen ¢, (2) (K fest!) des Ge-
bietes D lokal gleichmifBig gegen eine topologische Abbildung {(z), so ist
auch {(2) K-quasikonform.

1.4. Aufler diesem ziemlich impliziten Begriff ist die folgende analytische
Definition K-quasikonformer Abbildungen betrachtet worden, die eine un-
mittelbare Verallgemeinerung der in Nr. 1.1 gegebenen Definition darstellt
(181, [4], [3)).

Ein Homéomorphismus {(z) des Gebietes D in die (-Ebene heifst K-quasi-
konform (gemdif der analytischen Definition), wenn
1. (2) vm Gebiet D absolut stetig im Sinne von Tonerr (AST) ist,

2. die (gemdf 1.) fast wberall in D existierenden und mefbaren partiellen Ab-
leitungen ¢, und , lokal quadratisch-integrierbar sind und
3. die Ungleichung (1.2) fast iberall in D erfiillt vst.

Es ist leicht zu zeigen, daf3 diese Abbildungen auch K-quasikonform geméaf
der geometrischen Definition sind (vgl. Nr. 3.1). Dal auch das Umgekehrte
gilt, daB also die beiden Definitionen, die geometrische und die analytische,
einander dquivalent sind, ist von A. Mogi [7] gezeigt worden. Diese Aquivalenz
ist gleichwertig mit dem folgenden
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Theorem A: Ein Homdéomorphismus £(z) eines Gebietes D in die {-Ebene st
K-quasikonform gemdif der geometrischen Definition dann und nur dann, wenn
L (z) dre folgenden zwei Bedingungen erfillt:

1. () ist AST wn D,

2. die Ungleichung (1.2) gilt fast itherall in D.

Da die Funktionaldeterminante J eines 4 S7T-Homodomorphismus lokal
integrierbar ist (vgl. Lemma 5), folgt aus der 2. Bedingung die lokale quadra-
tische Integrierbarkeit von {, und ¢,.

Wie schon erwihnt, soll Theorem A im folgenden neu bewiesen werden.
Wirklich neu diirfte Theorem B (vgl. §2) sein, das an Stelle des RADEMACHER-
StEpPANOFFschen Satzes steht. Der in § 3 ausgefithrte Beweis von Theorem A
wiederholt zum Teil schon Bekanntes.

§ 2. AST-Funktionen

Definition: Eine komplexwertige Funktion w(z) der komplexen Variabeln
z heillt AST (absolut stetig im Sinne von ToNELLI) auf dem Rechteck

R= fe=x4iyla, <z <a,, b <y<by},

wenn sie

1. auf R stetig,

2. als Funktion von x absolut stetig ist im Intervall [a,, a,] fiir fast alle
y in [b,, by], und als Funktion von y absolut stetig ist im Intervall [b,, b,]
fiir fast alle z in [a,, a,], und wenn schlie8lich

3. die totale Variation V _ (y,w,[a,,as]) von w(z) als einer Funktion von
z im Intervall [a,, a,] eine in [b,, b,] integrierbare Funktion von y ist und
entsprechend die totale Variation V,(z,w, [b,, b,]) eine in [a,, a,] integrier-
bare Funktion von z ist.

Die Funktion w(z) heiBt AST in einem Gebiet D, wenn sie auf jedem ab-

geschlossenen Rechteck Rin D AST ist.

Bemerkung: Wie man leicht sieht, kann man in der obigen Definition die
Bedingung 3 durch die folgende ersetzen: _
3’. die auf Grund der Bedingungen 1 und 2 fast iiberall in R existierenden

und mefBbaren partiellen Ableitungen w, und w, auf R integrierbar sind.

Bezeichnung: Qo(z) bezeichnet das Quadrat mit dem Mittelpunkt 2z und
achsenparallelen Seiten von der Linge 2p,

Qez) ="' =2'"+iy' ||z’ —z|<o,|y —y|<e}.
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e*Q.(z) entsteht aus Q,(z) durch Drehung um den Winkel o um den Mittel-
punkt z; e**§,(2) bezeichnet den Rand von e*@Q,(z) und fiir o« = 0 schrei-
ben wir einfach S,(z).

Theorem B: Es sei w(z) esne A ST- Funktion in dem Gebiet D. Dann gibt es in
D eine Menge E vom Maf 0 mit folgender Eigenschaft: Zu jedem zye D — E
und z2u jedem Winkel a gibt es zwer Folgen {o,} und {c,}, 0,1 0, ¢, { 0, mat

| w(z) — w(z) — wa(20)- (X — %o) — wy(20)- (¥ — Yo) | < £r0n (2.1)
fir  zee™S,, (2) . 3)

Der Beweis ergibt sich unmittelbar aus den folgenden 4 Lemma.

Lemma 1: Es seir w(z) esne AST-Funktion in dem Gebiet D und z({) eine
etneindeutige und stetig differenzierbare Abbildung des Gebietes A auf D mait
positiver Funktionaldeterminante. Dann ist () = w(z({)) eine AST-
Funktion in A und es gilt fast dberall in A

Wg = Wy Tg + Wy Y
W, = W T, + Wy-Y, .

Dieses Lemma ist bekannt (vgl. [5], S. 282).
Wir setzen

w(z) — w(zg) — A(x — %) — By — yo) = H (2,2, w)
und bezeichnen mit L(p, z,, w) die Oszillation von H(z, z,, w) auf 8,(z,):
L(Q’ zo,’w)= max IH(zl’zO) w)"“H(zz’zo, w)' . (22)
zl,zgeSe(z)

Lemma 2: Es seien A und B zwei komplexe Zahlen und w(z) eine AST -
Funktion tn einer Umgebung des Nullpunktes z = 0 mit der Higenschaft, daf
J (lwa(2) — 4|+ | w,(2) — B|)dzdy = o(e?)

Qe(0)
ist fiir € — 0. Dann gibt es eine Folge {o,}, 0, { 0, mit L(p,, 0, w) = o(p,),

n — oo.

Beweis: w(2) ist in einem @, (0) als Funktion von z 48 (absolut stetig)
fiir fast alle ¥ und als Funktion von y AS fiir fast alle . Daraus folgt
L(g,0,w) < Sf(o)(l wy(2) — A || dx | + | w,(2) — Bl dy]) (2.3)
e
fiir fast alle p, 0 < p < gy-

3) Fir a = 0 ist die Behauptung des Satzes dasselbe, was Rap6 und REICHELDERFER ([10],
S. 324) als «schwache totale Differenzierbarkeit fast vuiberall» bezeichnen, Letzteres gilt aber schon,
wenn w(z) stetig ist und die partiellen Ableitungen w, und w,, fast iiberall existieren ([10], S.412).
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Nun ist fiir 0<p <e<p,
J lw,() —Allde| < [ |wy(2) —Al|ldx].

UE
Durch Integration nach g bzw. y folgt

Jdo( § |we(z) —A|ldz]|) < § |wy(z) — 4 |dzdy  (2.4)
0 8o (0) Qe(0)

und auf entsprechende Weise

Jdo( § |wy(2) — Blldy|) < [ |wy(2) — Bldzdy. (2.5)

0 SQ (0) Qe(0)
(2.3),(2.4) und (2.5) ergeben zusammen mit der Voraussetzung von Lemma 2
€
fL(p,0,w)dp =o0(e?), &—0,
0
und dies gibt die Behauptung.

Lemma 3: Es sei w(z) esne AST-Funktion in der Umgebung des Nullpunktes
z = 0 mat folgenden zwer Eigenschaften:

1. die partiellen Ableitungen w, und w, existieren fir z = 0,

2. far jedes « gilt filr ¢ — 0

J o (lwg(2) —w,(0) | + [wy(2) — w,(0) |) dedy = o(e?).

4% Q¢ (0)
Dann gibt es zu jedem o zwei Folgen {o,}, {¢.}, 0,1 0, ¢, 0, so daB mit
4 =w,(0) und B=w,(0) gilt |H(z,0,w)|<e,0,, zee®S, (0).

Beweis: Fiir ein beliebiges, aber festes o setzen wir
w(f) = w(e™z) . (2.8)
GemiB Lemma 1 ist w(¢) AST und
Wg = W, COS o0 — W, -SiN a
®, = W, Sin a + W, Cos o
fast tiberall, aber nicht notwendig fiir { = 0. Wir setzen
A =w,(0)cos a« —w,(0)sina, B =w,(0)sina -+ w,(0)cos «

und erhalten

Qj"()(lwg~A|+lw,,—Bl)d§dn_<_2 § (g (2)-w, (0)|+|wy (2)-w, (0))dwdy=0(c?).
(0 eiaQe(O)

w({) ist AST in Q.(0). Also gibt es nach Lemma 2 eine Folge {o,}, 0, { O
mit L(g,, 0, w) = o(p,). Daraus folgt zusammen mit der Existenz von w,(0)
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die Behauptung in Lemma 3; denn es ist w(p,) — w(0) — w,(0)-0, = 0(0,)
und somit nach (2.2) und (2.6)

| H(z,0,w) | <|H(z,0,w) — H(g,, 0, w) | + | w(e,) — w(0) — w,(0)o, |

< L(Qn’ 0, w) + O(Qn) = O(Qn)
fir 2 e eS8, (0).

Lemma 4: Es sei w(z) etne AST - Funktion in D. Dann gibt es eine Menge
E vom MapB null, so daf fiir jedes zpe D — E und ¢ — 0 gilt

JooUwe(2) — wy(zg) | + | wy(2) — wy(2) |) dedy = o(e?) .

et Qg (20)

Beweis: Dies ist wohl bekannt. Da die Funktion

falag(z) = | w,(2) — ‘ + | Wy(2) — oy |

fiir jedes «, und o, lokal integrierbar ist, existiert nach einem Satz von
LrBESGUE eine Menge £, , vom Maf null, so daf} fiir jedes 2pe D — E

a1xg

. 1
lim— [ f@)dady = /e
E~>0 emQS(zO)
ist. Wenn («,, o) eine abzidhlbare und in C x C dichte Menge M durch-
lauft, so ist auch K = }l} E,, vom Ma null und man kann f(z) durch

geeignete Wahl von («,, a) beliebig klein machen. Dies ergibt dann leicht
die Behauptung des Lemmas.

Aus Lemma 2, 3 und 4 ergibt sich unmittelbar Theorem B.

Wir benotigen fiir das Folgende noch

Lemma b: Es set ((z) ein orientierungstreuer AST -Homéomorphismus
etnes Qebietes D auf ein beschrinktes Gebiet A. Dann ist die Funktionaldeter-
minante J = E,m, — E,m, >0 fast iberall, L-integrierbar auf D wund
fJdxdy <| 4|, das ist das Flichenmaf von A.

D

Beweis: Wir bezeichnen mit ¢ (R) den Fldcheninhalt des Bildgebietes {(R)
eines beliebigen Rechteckes R in D unter der Abbildung {(2). ¢(R) ist in D
eine nichtnegative und subadditive « Rechteckfunktion». Nach einem Theorem
von LEBESGUE existiert die Derivierte

Az, 9) = lim - p(eQ,(2)

&—»0 *E

fast iiberall in D und ist integrierbar mit

fd, ) -dedy <|4].
D
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Gemédf Theorem B und der Orientierungstreue ist aber J(z) = d(z, ¢) fast
iiberall in D, woraus die Behauptung des Lemma 5 folgt4).

§ 3. Beweis von Theorem A

3.1. Es ist leicht zu zeigen (vgl. [2]), daf die Bedingungen 1 und 2 in Theo-
rem A hinreichend sind. Es kénnen die partiellen Ableitungen £, und £, nicht
fast iiberall verschwinden, da {(z) ein A ST -Homoéomorphismus ist. Gemif
Bedingung 2 ist dann J > 0 auf einer Menge von positivem Mafl und daraus
folgt in Verbindung mit Theorem B die Orientierungstreue der Abbildung
{(z). Es sei nun 2 , 5. p irgendein orientiertes Viereck in D, Q' ,, 5.0 p das
Bildviereck (£ ,p0p) unter der Abbildung ((z), sowie M und M’ die ent-
sprechenden Moduln. Wir bezeichnen mit @ die Abbildung von Q auf ',
definiert durch die Funktion {(z), I" sei die konforme Abbildung von 2 ,z0p
auf ein Rechteck R mit den Ecken O, M, M -+ ¢ und ¢, die in dieser Reihen-
folge den «Ecken» 4, B, C, D entsprechen, sowie I" die entsprechende kon-
forme Abbildung von £',. g/ ¢-p, auf das Rechteck R’ mit den Ecken O,
M', M'+ ¢ und +. Nach Lemma 1 erfiillt die zusammengesetzte Abbildung

Ii®,-': R - R' die beiden Bedingungen in Theorem 4, mit D = R, und
ist stetig auf R. Auf Grund von Lemma 5, der Ungleichung (1.2) und FuBINIs

Theorem, der ScHwaRzschen Ungleichung, und auf Grund der absoluten Stetig-
keit von ((z) als einer Funktion von z fiir fast alle y folgt

1 M
K-M' > [ KJdzdy ZI(JI £,12 da)dy
R

(M)

|Cm]d7c2dy> T

1 1
Z'M';,f

dies ist die Ungleichung von GROTZSCH.

Ob;

3.2. Wir zeigen nun, daf3 die Bedingung 1 in Theorem A notwendig ist:
Eine K-quasikonforme Abbildung (gemiB der geometrischen Definition) 1st
eine AST -Funktion?).

Es sei

R={Zzﬁ3+iyla1_<_x§a2a blgygb2}

%) Nach dem in Anmerkung 3 angegebenen Satz von Rap6 und REICHELDERFER bleibt die
Behauptung von Lemma 5 auch unter der viel schwicheren Voraussetzung richtig, da8 ¢ (2)
ein orientierungstreuer Homdomorphismus von D auf A (beschréinkt) mit fast iiberall existie-
renden partiellen Ableitungen ist.

5) K. STrREBEL [12] hat gezeigt, daB ((z) auf fast allen Geraden y = az + b absolut stetig
ist,
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irgendein Rechteck in D und

—

BRy={z=za+4+1y|a, <x<a, b <y <y},

b, <y <b,. Das Flichenmall A4 (y) des Bildgebietes C(E,,) unter der Ab-
bildung {(z) ist fast iiberall differenzierbar in [b,, b,]. Es sei y eine solche
Stelle, und es seien in dem Intervall [a,, a,] irgend endlichviele, nicht iiber-
lappende Teilintervalle j,,...,jy von der Gesamtlinge ¢ gegeben,

Jr =% 23], &y <% <@y <@ <ap <ay, k=1,...,N.
Wir wihlen ein y, > y und bezeichnen die Rechtecke
=2 +iy|e<e <z, y<y <y} mit R,

ihre Eckensind x, + iy = 2, o5 + iy =25, @} + 1y, = 2} und 2+ 1y;= 2,
k=1,...,N. Wir setzen P, = {(R,), das sind die Bilder der Rechtecke
R, unter der Abbildung {(z), und es seien {,, C’,';, ka und {;, die Bilder der
Ecken z,, 2y, z; und z,, k=1,..., N. Die den vertikalen Seiten z, 2,
und 2}, z}; von R, entsprechenden Bogen auf der Randkurve von P, bezeich-
nen wir mit 8, und g}, I, sei der (euklidische) Abstand von f, und g3, und 4,
der Flicheninhalt von P,, k= 1,...,N. Sind M, und M} dic Moduln der
Vierecke R, bzw. P, in bezug auf die Eckpunktreihenfolge z,, 2}, 2% Z1x

bzw. &, (3, &, G, so git M, = a;; — ®k und nach einem bekannten
2 1

Lemma von RENGEL [11] M) > -:35— Nach Voraussetzung ist KM, > M,
k

k=1,..., N. Daraus folgt durch Summation und Anwendung der SCHWARz-

schen Ungleichung:

) iy > 2, > 2 g GW G
K- = K- > > >
©i—y ok T A EA = A(y) — A(y)
oder

Ay, — 4
(Elk)z _<- KS (yl) (y) .
k Y1—Y
Nun wihlen wir 7 so klein, daB 2N#% < X'|{} — ;| ist, und dann y, so nahe
k

bei y, daB die §, und ﬂ’,'; je in einer 5-Umgebung von [, bzw. &y liegen,
k=1,...,N. Dannist |} — ¢ | < Zl, + 2N7, und somit
k k

A(y,) — A(y)
Yp.—Y .

(flC}'Z-—CkI — 2N < Ke-
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fir alle y, > v und deshalb
dA
*x b 3.1
fle CkISVKS dy (3.1)

Daraus folgt, daB {(z) als Funktion von z im Intervall [a,, a,] absolut

stetig ist fiir jedes y in [b,, b,], wofiir % existiert und das ist fast iiberall.

Ebenso folgt aus (3.1), dafl die totale Variation von {(z) als Funktion von z
auf dem Intervall [a,, a,], dasist V (y, {,[a,, a;]), der Ungleichung

Vo9, £ @, a5) SV(az — K- G <VE@ —aymex|1, 52| 6.2

geniigt. Andererseits ist V_(y, {, [a,, @;]) von unten halbstetig, wegen der
Stetigkeit von {(z), und somit mef3bar. Dies ergibt zusammen mit (3.2) die
Integrierbarkeit von V,(y, ¢, (a,, a,]) auf dem Intervall [b,, b,].

Indem man dasselbe mit vertauschten Rollen von x und y wiederholt, er-

kennt man, dal {(z) AST ist auf einem beliebigen R c D und somit in
D selbst.

3.3. Nun beweisen wir, daB} auch die zweite Bedingung in Theorem A not-
wendig ist, ganz analog iibrigens, wie dies Mori ([7], S. 62) auf Grund der
totalen Differenzierbarkeit getan hat (vgl. auch [1], S. 14). Hierfiir verwenden
wir das folgende Lemma

Lemma 6: Es bezeichne R das Rechteck mit den Ecken oM, M+,
(M >0) und den Seiten S;, =0, M, S5=M, M+, S3=M + 1,1 und
~~
Sy=1,0, dasim Falle M = 0 in eine Strecke ausartet. Es sev Q, (27,25 ,25,2})
eine Folge wvon «orientierten Vierecken», die im folgenden Sinn gegen

p—

RO, M, M+ t,1) konvergieren: Fir jedes ¢ > 0 liegen die «Seiten»
——

0% = 2%,24,, von R, bei hinreichend groPem m in einer e-Umgebung wvon
8y, k=1,2,3,4, 2" =2". Dann gilt*)

* n n n ny _
lim mod 2, (27, 23, 23, 23) = M.
n—>

Nun verwenden wir Theorem B. Wir wihlen einen Punkt z, der Menge
D — E, setzen

L(2) = L, (2) (x — o) + Cu(20) (¥ — %)

®) Vgl. [1] und [7]. Obwohl der ausgeartete Fall M = 0 dort nicht ausdriicklich erwihnt ist,
léBt sich die Methode darauf anwenden.
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und nehmen an, daBl {,(2,) oder {,(2,) von null verschieden ist, da andern-
falls die Ungleichung (1.2) trivial wéire. Dann findet man zwei Winkel « und
B, eine positive Zahl a und eine reelle Zahl b, | b| < a, so daB

A(R') = eBL(zy + e*.2') = ax' 4 iby' (3.3)

ist. Aus Theorem B und der Orientierungstreue der Abbildung ¢{(z) folgt
dann b = 0. Wir setzen

etx . 2/

) =82+ L) iy, mmr

Nach Theorem B konvergieren die ¢, auf dem Rand S,(0) des Quadra-
tes @, (0) gleichmiBig gegen A. Sie bilden @, (0) mit der Eckpunktreihenfolge
(—1—2, 1 —4, 14+4¢, — 1+ 1) K-quasikonform auf orientierte Vier-
ecke Q, (Y, 3, ¢y, ;) ab, mit Moduln M, < K gemidB Definition in
Nr.1.3. Die Q,({7, 3, &3, £;) konvergieren im Sinne des Lemma 6 gegen
das Rechteck mit den Ecken — a — ¢b, a — b, a 4+ tb, —a + 1b. Ge-
mif diesem Lemma gilt deshalb lim M, = a/b und somit e < Kb. Dar-
aus folgt e

max |acos 0 4+ bsin 0|2 <a2< K.ab.
6

Dies ist aber in Verbindung mit (3.3) gleichbedeutend mit der Ungleichung
(1.2)7).
Damit ist Theorem A bewiesen.

3.4. Eine allgemeine (das ist nicht notwendig eineindeutige) K-quasikon-
forme Abbildung w(z), gemdB der geometrischen Definition, eines Gebietes
D in die w-Ebene ist die Zusammensetzung eines K-quasikonformen Homéo-
morphismus {(z) von D auf A und einer analytischen Abbildung w = f({)
von A in die w-Ebene: w(z) = f({(2)). Daraus folgt in Verbindung mit
Theorem A, dafl w(z) auch geméfl der analytischen Definition K-quasikon-
form ist.

Anderseits ist eine Abbildung w(z): D — w-Ebene, die den Bedingungen
1, 2 und 3 in Nr. 1.4 geniigt, die Zusammensetzung eines Homdomorphismus
{(): D — A, der diesen drei Bedingungen geniigt, und einer analytischen
Abbildung von 4 in die w-Ebene (vgl. [8], [3], [2]). Eine allgemeine (das ist
nicht notwendig eineindeutige) quasikonforme Abbildung gem#f3 der analyti-
schen Definition ist daher auch quasikonform gemd der geometrischen De-
finition.

7) Man beachte, da8 die partiellen Ableitungen von {, fiir 2/ = 0 nicht existieren miissen.
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