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liber die Xquivalenz
der geometrischen und der analytischen Définition

quasikonformer Abbildungen1)

von Albert Pfluger, Zurich

Meinem verehrten Lehrer, G. Pôlya, zu seinem siebzigsten Geburtstag

Es wird im folgenden der Satz von A. Mori und L. Bers ([7], [2])2) von
der Âquivalenz einer geometrischen und einer analytischen Définition
quasikonformer Abbildungen neu bewiesen, und zwar unter Vermeidung des Rade-
MACHER-STEPANOFFschen Theorems von der totalen Differenzierbarkeit, das

in dem Beweis von Mori eine wesentliche Rolle spielt. Wir beschrànken uns
auf eineindeutige Abbildungen.

§ 1. Das zu beweisende Theorem

1.1. H. Grotzsch hat eine (eineindeutige) quasikonforme Abbildung fol-
gendermaBen definiert. Es sei £ (z) eine topologische Abbildung eines Gebietes
D in die £-Ebene, die stetig differenzierbar ist und uberall in D eine positive
Funktionaldeterminante besitzt. Einem infinitesimalen Kreis in D mit dem
Radius e und dem Mittelpunkt z entspricht dann in der £-Ebene eine
infinitésimale Ellipse mit den Halbachsen ae und 6e, a > b > 0. Das Verhâltnis
ajb à (z) ist die Dilatation der Abbildung £ im Punkte z. Gibt es eine Kon-
stante K mit

Sup<5(z) <K, (1.1)

so ist Ç(z) eine K-quasikonforme Abbildung im Sinne von Grotzsch. Die Be-
dingung (1.1) ist âquivalent damit, daB uberall in D die Ungleichung

max | fx.cos d + £y-sin d |2 < K-J, J èxVv ~ f*»?., (1.2)
(0)

erfullt ist.

1.2. Fur solche Abbildungen gilt die fundamentale Ungleichung von
Grotzsch [6]: Ein «orientiertes Viereck» &abcd ^ e^ne Figur, bestehend
aus einem Jordangebiet Q und vier verschiedenen Randpunkten A, B, C, D

x) This research was sponsered by the Office of Naval Research and performed during the
authors stay at Stanford XJniversity.

2) Ziffern in eckigen Klammern verweisen auf das Literaturverzeichnis am Schlusse der Arbeit.
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(seinen Ecken), deren Anordnung dem positiven Umlaufssinn der Randkurve
entspricht.MankannQkonformaufeinRechteck {w\0<3iw<M, 0 < 3 w < 1}
abbilden, so da8 die Punkte A, B, C, D entsprechend in die Ecken 0, M,
M + * und i ùbergehen. Die eindeutig bestimmte Zahl M ist der Modvl von
£2abcd- Zwischen dem Modul M irgend eines Viereckes OABCD in D und
dem Modul M1 des entsprechenden Viereckes ^(Q^bcd) unter der Abbildung
£ (z) in Nr. 1.1 besteht die Ungleichung (von Grotzsch)

K^M <Mf <KM (1.3)

1.3 Dièse Ungleichung ist fundamental insofern, als aus ihr sozusagen aile
Eigenschaften der Abbildung £(z) (in Nr. 1.1) hergeleitet werden kônnen,
ohne auf die speziellen Differenzierbarkeits-Voraussetzungen ùber f (z) zu-
rûckgreifen zu mûssen. Man kônnte deshalb die von Gkôtzsch betrachteten
Abbildungen ohne Verlust durch die wesentlich allgemeineren iT-quasikon-
formen Abbildungen gemàfi der folgenden geometrischen Définition ersetzen
([1], [7] und [9]).

Ein orientierungstreuer Homoomor'phismua £(z) eines Gebietes D in die
Ç-Ebene heifit K-quasikonform gema/3 der geometrischen Définition, wenn fur
den Modul M der Vierecke OABCD in D und den Modul M1 der entsprechenden
Vierecke C(^abcd) v>nter der Abbildung £(z) die Ungleichung (1.3) gûltig ist.

Abgesehen von der grôBeren Allgemeinheit haben dièse i^-quasikonformen
Abbildungen gegenuber denjenigen in Nr. 1.1 den folgenden Vorteil : Konver-
giert eine Folge von Jf-quasikonformen Abbildungen Çn(z) (K fest!) des
Gebietes D lokal gleichmaBig gegen eine topologische Abbildung £(#), so ist
auch Ç(z) JT-quasikonform.

1.4. AuBer diesem ziemlich impliziten Begriff ist die folgende analytische
Définition iT-quasikonformer Abbildungen betrachtet worden, die eine un-
mittelbare Verallgemeinerung der in Nr. 1.1 gegebenen Définition darstellt
<[8],_[4], [3]).

Ein Homoomorphismus £(z) des Gebietes D in die Ç-Ebene heifit K-quasikonform

(gema/î der analytischen Définition), wenn
1. f (z) im Gebiet D absolut stetig im Sinne von Tonelli (AST) ist,
2. die (gemâ($ 1.) fast ûberall in D existierenden und mefibaren partiellen Ab-

leitungen Çx und Çy lokal quadratisch-integrierbar sind und
3. die Ungleichung (1.2) fast libérait in D erfûllt ist.

Es ist leicht zu zeigen, daB dièse Abbildungen auch i£-quasikonform gemâB
der geometrischen Définition sind (vgl. Nr. 3.1). DaB auch das Umgekehrte
gilt, daB also die beiden Definitionen, die geometrische und die analytische,
einander âquivalent sind, ist von A. Mori [1] gezeigt worden. Dièse Âquivalenz
ist gleichwertig mit dem folgenden
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Theorem A: Ein Homôomorphismus £(z) eines Oebietes D in die Ç-Ebene ist
K-quasikonform gemâfi der geometrischen Définition dann und nur dann, wenn
Ç(z) die folgenden zwei Bedingungen erfûllt:

1. f(z) ist AST inD,
2. die Ungleichung (1.2) gilt fast ûberall in D.
Da die Funktionaldeterminante J eines ^$T-Homôomorphismus lokal

integrierbar ist (vgl. Lemma 5), folgt aus der 2. Bedingung die lokale quadra-
tische Integrierbarkeit von Çx und Çy.

Wie schon erwâhnt, soll Theorem A im folgenden neu bewiesen werden.
Wirklich neu durfte Theorem B (vgl. § 2) sein, das an Stelle des Rademacheb-
STEPANOFFschen Satzes steht. Der in § 3 ausgefûhrte Beweis von Theorem A
wiederholt zum Teil schon Bekanntes.

§2. ^l/ST-Funktionen

Définition: Eine komplexwertige Funktion w(z) der komplexen Variabeln
z heiBt AST (absolut stetig im Sinne von Tonelli) auf dem Rechteck

jR [z x + iy | ax < x < a2, bx < y < 62}

wenn sie
1. auf B stetig,
2. als Funktion von x absolut stetig ist im Intervall [al3 a2] fur fast aile

y in [61} 62], und als Funktion von y absolut stetig ist im Intervall [bl9 b2]

fiir fast aile x in [al9 a2], und wenn schlieBlich
3. die totale Variation Vx(y, w, [al9 a2]) von w(z) als einer Funktion von

x im Intervall \ax, a2] eine in [b1, 62] integrierbare Funktion von y ist und
entsprechend die totale Variation Vy(x, w, [bl9 b2]) eine in [al9 a2] integrierbare

Funktion von x ist.
Die Funktion w{z) heiBt AST in einem Gebiet D, wenn sie auf jedem ab-

geschlossenen Rechteck B in D AST ist.

Bemerkung: Wie man leicht sieht, kann man in der obigen Définition die
Bedingung 3 durch die folgende ersetzen :

3'. die auf Grund der Bedingungen 1 und 2 fast iiberall in B existierenden
und meBbaren partiellen Ableitungen wx und wy auf B integrierbar sind.

Bezeichnung: QQ(z) bezeichnet das Quadrat mit dem Mittelpunkt z und
achsenparallelen Seiten von der Lange 2g,

QQ(z) {z' xr + iyf || x' - x | < q, | y' - y \ < q}
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eiaQQ(z) entsteht aus Qe(z) durch Drehung um den Winkel oc um den Mittel-
punkt z; ei(XSe(z) bezeichnet den Rand von ei0CQQ(z) und fur oc 0 schrei-
ben wir einfach 8Q(z).

Theorem B: Es sei w(z) eine AST-Funktion in dem Gebiet D. Dann gibt es in
D eine Menge E vom Mafl 0 mit folgender Eigenschaft: Zu jedem zoe D — E
und zu jedem Winkel oc gibt es zwei Folgen {qn} und {en}, gn | 0, en j 0, mit

| w(z) - w(z0) - wx(z0)-(x - x0) - wy(z0)-(y - y0) \ < enQn (2.1)

fur z€e^SQn(zQ)^)

Der Beweis ergibt sich unmittelbar aus den folgenden 4 Lemma.

Lemma 1: Es sei w(z) eine ABT-Funktion in dem Gebiet D und z(Ç) eine

eineindeutige und stetig differenzierbare Abbildung des Gebietes A auf D mit
positiver Funkticmaldeterminante. Dann ist co(C) — w(z(C)) eine AST-
Funktion in A und es gilt fast ilberall in A

Dièses Lemma ist bekannt (vgl. [5], S. 282).
Wir setzen

w(z) — w(z0) — A(x — x0) - B(y - y0) H{z, z0, w)

und bezeichnen mit L(q,zo,w) die Oszillation von H(z,zo,w) auf SQ(z0):

L(q,zo,w)= max \ H(zlyz0,w) — H(z2,z0,w) \ (2.2)

Lemma 2: Es seien A und B zwei komplexe Zahlen und w(z) eine AST-
Funktion in einer Umgebung des Nullpunktes 2 0 mit der Eigenschaft, da/S

J (| wx(z) - A | + | wv(z) - B\)dxdy o(e2)

ist fur s -> 0. Dann gibt es eine Folge {gn}, qn j 0, mit L(QniQ,w) o(Qn),

n -> cx>.

Beweis: w(z) ist in einem Qq9(0) als Funktion von x AS (absolut stetig)
fur fast aile y und als Funktion von y AS fur fast aile x. Daraus folgt

£te,0,w)< J (\wx(z)-~A\\dx\ + \wy(z)-B\\dy\) (2.3)
SQ(0)

fur fast aile g, 0 < q < g0.

8) Fur a « 0 ist die Behauptung des Satzes dasselbe, was Radô und Reichelderfer ([10],
S. 324) als «schwache totale Differenzierbarkeit fast ûberall» bezeichnen. Letzteres gilt aber schon,
wenn w(z) stetig ist und die partiellen Ableitungen wx und wy fast ûberall existieren ([10], S. 412).
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Nun ist fur 0 < q < e < q0

J \wx(z)~A\\dx\ < J \wx(z)-A\\dx\.
SQ(0) |î/| <?

Durch Intégration nach q bzw. y folgt

$dg( J | wx(z) -A\\dx\) < J | wx(z) - ^ | <**# (2.4)
0 SQ(0) Qe(0)

und auf entsprechende Weise

$dQ( J \wy(z)~ B\\dy\) < J | «;,(«)-Blda:^. (2.5)
0 SQ(0) Qs(0)

(2.3), (2.4) und (2.5) ergeben zusammen mit der Voraussetzung von Lemma 2

e

o

und dies gibt die Behauptung.

Lemma 3: Es sei w(z) eine AST-Funktion in der Umgebung des Nullpunktes
z 0 mit folgenden zwei Eigenschaften:

1. die partiellen Ableitungen wx und wy existieren fur z 0,
2. fier jedes a gilt fur e -> 0

J (| «;„(*) - wM | + | u>,(z) - u;,(0) |

i

ri6^ es zu jedem a zwei Folgen {Qn}, {en}, qn \ 0, en | 0, 50 dajï mit
A wx(0) und B wy(0) gilt \ H(z, 0,w)\< ençn9 z

Beweis: Fur ein beliebiges, aber festes oc setzen wir

co(C) w(ei(*z) (2.6)

GemâB Lemma 1 ist co(Ç) AST und

y-

wx • sin a + wy • cos a

fast tiberall, aber nicht notwendig fur £ 0. Wir setzen

A wx(0) cos a — wy(0) sin a, 2? ^(0) sin a + wy(0) cos a

und erhalten

J {\a>rA\ + \œn-B\)dtdri<2 J (\wx(zy \

QeM ei(*Qe(0)

co(£) ist AST in Qe(0). Also gibt es nach Lemma 2 eine Folge {gn}, Qn J, 0

mit L(^w, 0, co) o(^n). Daraus folgt zusammen mit der Existenz von ^(0)
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die Behauptung in Lemma 3; denn es ist w(gn) — w(0) — wx(O)-Qn o(Qn)

und somit nach (2.2) und (2.6)

I H(z, Q,w)\<\ H(z, 0, w) - H(Qn, 0,w)\ + \ w(Qn) - w(0) - wx(0)Qn \

fiir z€ei(*SQn(O).

Lemma 4: Es sei w(z) eine AST-Funktion in D. Dann gibt es eine Menge
E vom Ma/3 null, so da/3 fur jedes z0 c D — E und e -> 0 gilt

J (I ™ÀZ) — Wx(zo) I + | wy{z) — wy(z0) |) dxdy o(e2)

Beweis: Dies ist wohl bekannt. Da die Funktion

fiir jedes ax und oc2 lokal integrierbar ist, existiert nach einem Satz von
Lebesgue eine Menge E^^ vom MaB null, so daB fur jedes zo€D — E^^

1 r
]im~j J f(z)dxdy f(zo)

ist. Wenn (a1? a2) eine abzâhlbare und in G x 0 dichte Menge Jf durch-
lauft, so ist auch E U i?aia2 vom MaB null und man kann / (z0) durch

geeignete Wahl von (<xl9 oc2) beliebig klein machen. Dies ergibt dann leicht
die Behauptung des Lemmas.

Aus Lemma 2, 3 und 4 ergibt sich unmittelbar Theorem B.
Wir benôtigen fur das Folgende noch

Lemma 5: Es sei f(z) ein orientierungstreuer AST-Homôomorphisnms
eines Oebietes D auf ein beschrànktes Oebiet A. Dann ist die Funktionaldeter-
minante J Çxrjy — %yr\x > 0 fast iiberall, L-integrierbar auf D und
J Jdxdy < | A |, das ist das Flâchenmafi von A.

D
Beweis: Wir bezeichnen mit q>(R) den Flâcheninhalt des Bildgebietes £(i?)

eines beliebigen Rechteckes B in D unter der Abbildung f (z). <p(B) ist in D
eine nichtnegative und subadditive «Rechteckfunktion». Nach einem Theorem

von Lebesgue existiert die Derivierte

fast tiberall in D und ist integrierbar mit

J d(z, q>)-dxdy < \ A
D
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GemâB Theorem B tind der Orientierungstreue ist aber J(z) d(z, q>) fast
ûberall in D, woraus die Behauptung des Lemma 5 folgt4).

§ 3. Beweis von Theorem A

3.1. Es ist leieht zu zeigen (vgl. [2]), daB die Bedingungen 1 und 2 in Theorem

A hinreichend sind. Es kônnen die partiellen Ableitungen Çx und Çy nicht
fast ûberall verschwinden, da f (z) ein ^$T-Homôomorphismus ist. GemâB

Bedingung 2 ist dann J > 0 auf einer Menge von positivem MaB und daraus
folgt in Verbindung mit Theorem B die Orientierungstreue der Abbildung
£(z). Es sei nun OABCD irgendein orientiertes Viereek in D, QrA>B'C'D' ^as
Bildviereck C(^abcd) un*er der Abbildung £(z), sowie M und M' die ent-
sprechenden Moduln. Wir bezeichnen mit 0 die Abbildung von D auf Q',
definiert durch die Funktion Ç(z), jTsei die konforme Abbildung von Hj^bcd
auf ein Rechteck B mit den Ecken 0, M, M + i und i, die in dieser Reihen-
folge den « Ecken » A, B, C, D entsprechen, sowie F' die entspreehende
konforme Abbildung von &a'B'CD'i au^ das Rechteck Bf mit den Ecken 0,
M', M' + i und i. Nach Lemma 1 erfullt die zusammengesetzte Abbildung
F^qF-1: B -> B1 die beiden Bedingungen in Theorem A, mit D B, und
ist stetig auf B. Auf Grund von Lemma 5, der Ungleichung (1.2) und Fubinis
Theorem, der ScHWABZschen Ungleichung, und auf Grund der absoluten Stetig-
keit von £ (z) als einer Funktion von x fur fast aile y folgt

KM' > J KJdxdy > J (J | CJ2 dx)dy
R 0 0

JXL 0 0 1H

dies ist die Ungleichung von Gbotzsch.

3.2. Wir zeigen nun, daB die Bedingung 1 in Theorem A notwendig ist :

Eine if-quasikonforme Abbildung (gemàB der geometrischen Définition) ist
eine AS T - Funktion5).

Es sei
_B {z x + iy | ax < x < a2, bx < y < b2}

4) Nach dem in Anmerkung 3 angegebenen Satz von Radô und Reicheldebfer bleibt die
Behauptung von Lemma 5 auch unter der viel schw&cheren Voraussetzung richtig, dafî f (z)
ein orientierungstreuer Homôomorphismus von D auf A (beschrânkt) mit fast ûberall existie-
renden partiellen Ableitungen ist.

5) K. Stbebel [12] hat gezeigt, daû f (z) auf fast allen Geraden y — ax -\-b absolut stetig
ist.
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irgendein Rechteck in D und

Ey {z x + iy' | ax < x < a2, bx<y' <

bi <y < &2- Das FlàchenmaB A (y) des Bildgebietes Ç(By) unter der Ab-
bildung Ç(z) ist fast iiberall differenzierbar in [bl9b2]. Es sei y eine solche

Stelle, tind es seien in dem Intervall fa!, a2] irgend endlichviele, nicht iiber-
lappende Teilintervalle jx,..., jN von der Gesamtlànge e gegeben,

jk Ofc, ^ifc], «1 < «l < ^fc-1 < Xjc < A < a2, k 1 N

Wir wâhlen ein yt> y und bezeichnen die Rechtecke

{2r x1 + iyf | ^< a;' <x*k, y <yr <yt} mit Bk,

ihreEckensind xk + iî/ zk, x% + it/ =: ^*» ^î + *^i ^ ^î

i 1,..., N. Wir setzen Pk= Ç (Bk), das sind die Bilder der Rechtecke

Rk unter der Abbildung C(z)> und es seien Cfc» f£> CÎi und Cife die Bilder der
Ecken zk9 z%> z*k und zlk, Je 1,..., N. Die den vertikalen Seiten zk, zlk

und z\, 2*^ von Rk entsprechenden Bogen auf der Randkurve von Pk bezeichnen

wir mit fik und $£, lk sei der (euklidische) Abstand von (}k und /3^, und Ak
der Flâcheninhalt von Pk, k 1,..., N. Sind Mk und -3fJ. die Moduln der
Vierecke Rk bzw. Pk in bezug auf die Eckpunktreihenfolge zk, z^, z*k, zlk

bzw. ffc, CÎ, fît, Cifc, so gilt Mk= und nach einem bekannten

Lemma von Rengel [11] Mk >~j-. Nach Voraussetzung ist KMk > Mk,

k== 1,..., N. Daraus folgt durch Summation und Anwendung der Schwabz-
schen Ungleichung :

(Zlkf
K- f =^4 k

- A(yi) - A{y)
oder *

W < Ke
yi - y

Nun wâhlen wir rj so klein, dafi 2Nrj < U \ fj — Çk \ ist, und dann yx so nahe
k

bei y, da8 die pk und fâ je in einer 7/-Umgebung von ffc bzw. C^ Hegen,
k l,...,N. Dann ist E \ Ct — f* I < -27^ + 2-^^ und somit

k k
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fur aile yx> y und deshalb

Daraus folgt, da6 f(z) als Funktion von x im Intervall [alfa2] absolut

stetig ist fur jedes y in [bl9 b2], wofûr -=— existiert und das ist fast ùberall.
dy

Ebenso folgt aus (3.1), daB die totale Variation von J(z) als Funktion von x
auf dem Intervall [al9 a2], das ist Vx(y, £, [&i, o>%\)-> der Ungleichung

Vx{y, Ç, [alf a,]) <"[/(«, - aJZ ¦ ^ < VK{a^-ax) max [l, -^j (3.2)

genugt. Andererseits ist Vx(y, £, [«1,^2]) von unten halbstetig, wegen der
Stetigkeit von f (z), und somit meBbar. Dies ergibt zusammen mit (3.2) die

Integrierbarkeit von Vx(y, f, (al9 a2]) auf dem Intervall [61? 62],

Indem man dasselbe mit vertauschten Rollen von x und y wiederholt, er-
kennt man, daB £(z) AST ist auf einem beliebigen R c D und somit in
D selbst.

3.3. Nun beweisen wir, daB auch die zweite Bedingung in Theorem A not-
wendig ist, ganz analog tibrigens, wie dies Mori([7], S. 62) auf Grund der
totalen Difïerenzierbarkeit getan hat (vgl. auch [1], S. 14). Hierfûr verwenden
wir das folgende Lemma

Lemina 6: Es bezeichne R das Rechteck mit den Ecken 0, M, M + i, i

(M > 0) und den Seiten Sx 0, M, S2 M, M + i, #3 M + i,i und

$4 i, 0, das im Faile M 0 in eine Strecke ausartet. Es sei Dn (2* ,z2,z^9 zj)
eine Folge von «orientierten Vierecken», die im folgenden Sinn gegen

R(0, M, M + i, i) konvergieren: Fur jedes e > 0 liegen die a Seiten»

Glc ==: z%> zt+i von &n bei hinreichend grofiem n in einer e- Umgebung von
8k, k 1, 2, 3, 4, z\ 2^.

lim mod i3n (^, s?, a£, «?) if.
Nun verwenden wir Theorem B. Wir wâhlen einen Punkt z0 der Menge

D — E, setzen

L(z) Çx(z0) (x - x0) + Çy(z0) (y - y0)

•) Vgl. [1] und [7]. Obwohl der ausgeartete Fall M 0 dort nicht ausdrûcklich erwâhnt ist,
lâfît sich die Méthode darauf anwenden.
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und nehmen an, daB Çx(z0) oder Cv(z0) von nl*U verschieden ist, da andern-
falls die Ungleichung (1.2) trivial wâre. Dann findet man zwei Winkel a und
/?, eine positive Zahl a und eine réelle Zahl 6, | b | < a, so daB

A(z') e*PL{zQ + el«-zr) aa;' + i&j/' (3.3)

ist. Aus Theorem B und der Orientierungstreue der Abbildung £(z) folgt
dann 6^0. Wir setzen

Çn(z') ^^L+^—^~] - e^f («b), n 1, 2,...

Nach Theorem B konvergieren die £w auf dem Rand /S1(0) des Quadra-
tes Qi(0) gleichmâBig gegen A. Sie bilden Qt(0) mit der Eckpunktreihenfolge
(— 1 — i, 1 — i, 1-f i, — 1 + i) JT-quasikonform auf orientierte Vier-
ecke Qn(Ç%, Ç£, Q, fj) ab, mit Moduln Mn<K gemâB Définition in
Nr. 1.3. Die fiw(£J, CJ, C3, Cî) konvergieren im Sinne des Lemma 6 gegen
das Rechteck mit den Ecken — a — ib, a — ib, a + ib, — a + i6.
GemâB diesem Lemma gilt deshalb lim Mn a/b und somit a < Kb. Dar-
aus folgt a->0°

max | a cos 6 -f i& sin 6 |2 < a2 < K • 06

Dies ist aber in Verbindung mit (3.3) gleichbedeutend mit der Ungleichung
(1.2)7).

Damit ist Theorem A bewiesen.

3.4. Eine allgemeine (das ist nicht notwendig eineindeutige) JT-quasikon-
forme Abbildung w(z), gemâB der geometrischen Définition, eines Gebietes
D in die w-Ebene ist die Zusammensetzung eines if-quasikonformen Homôo-
morphismus f (z) von D auf A und einer analytischen Abbildung w /(£)
von A in die w-Ebene: w(z) /(f (z)). Daraus folgt in Verbindung mit
Theorem A, daB w(z) aueh gemâB der analytischen Définition iT-quasikon-
form ist.

Anderseits ist eine Abbildung w(z) : D ->w-Ebene, die den Bedingungen
1, 2 und 3 in Nr. 1.4 genxigt, die Zusammensetzung eines Homôomorphismus
C(z):D ->A, der diesen drei Bedingungen genûgt, und einer analytischen
Abbildung von A in die w-Ebene (vgl. [8], [3], [2]). Eine allgemeine (das ist
nicht notwendig eineindeutige) quasikonforme Abbildung gemâB der analytischen

Définition ist daher auch quasikonform gemâB der geometrischen
Définition.

7) Man beachte, dafi die partiellen Ableitungen von fn fur z* 0 nicht existieren mùssen.
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