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Regulire Modifikation komplexer Mannigfaltigkeiten
Reguliir verzweigte Uberlagerungen

von ALFRED AEPPLI, Ithaca, N.Y. (USA)

Einleitung

H. Hopr hat in [1] den folgenden Satz bewiesen: Ist U(® eine komplex
zweidimensionale Koordinatenzelle, versehen mit einem komplexen Koordi-
natensystem, und ist p ein Punkt in U®, so ist jede lokale komplexe Modi-

fikation @: (l:._/' @ S0y » (U@, p), bei welcher p durch die kompakte kom-

plex eindimensionale Fliche SV (singularitdtenfrei eingelagert in U®) ersetzt
wird, der o-Proze3!) in p e U®. Das erste Ziel der vorliegenden Arbeit be-
steht darin, diesen Satz fiir hohere Dimensionen zu beweisen. Dazu werden
zundchst in § 1 zwei Hilfsséitze hergeleitet, welche ihren Ursprung in [1] be-
sitzen: Hilfssatz 1 ist die Verallgemeinerung der Tatsache, daBl bei einer lokalen
Modifikation @: (U,S) - (U, p) mit der Abbildung ¢: U—>U @ voll-
stindig ist fir kompaktes S ([1], p. 134), und Hilfssatz 2 handelt von der
Fortsetzbarkeit einer gewissen analytischen Abbildung y, welche der mero-
morphen Funktion ¢ in [1] entspricht (vgl. das Lemma in [1], p. 147). Auch
die Beweise zu den beiden Hilfsséitzen werden dhnlich den entsprechenden in
[1] gefiihrt, bei Hilfssatz 2 kommt jedoch die Koopmansche Darstellung (5)
neu hinzu. In § 2 wird dann der Einzigkeitssatz iiber den o-ProzeB behandelt

(Satz 1): Jede lokale komplexe Modifikation @: (ﬁ(“’, Sn-1) » (U™ p),
Sn-1) kompakte komplexe Mannigfaltigkeit, ist der o-Prozel in pe U™,

Die Voraussetzung der singularititenfreien Einbettung S®1 c U™ wird
wesentlich benutzt. Es ist zu hoffen, dal auch in allgemeineren Fillen, fiir

nicht singularitdtenfreie komplex analytische Einlagerung § < U, Hilfs-
satz 2 in gewisser Form gilt. Dies ist richtig fiir » = 2: Man gelangt dann
unter anderem zu den «Sphidrenbdumen» und zu deren Einzigkeit (bei kom-
paktem 8S; Satz 111’ in [1]).

Nachdem in § 2 die lokale Modifikation untersucht wurde, kommt in § 3
allgemeiner die «regulidre» Modifikation zur Sprache. Eine reguldre Modifika-
tion @: (V,8) - (W, A) ist eine komplexe Modifikation mit (komplex ana-
lytischer) Abbildung ¢: ¥V — W, in welcher die auftretenden Riume V, W,

1) Zu den Begriffsbildungen «Modifikation », «lokale Modifikation », «komplexe Modifikation »
siche [2]. Die Bezeichnungen werden soweit als moglich aus [2] tibernommen. Zur Definition

des o-Prozesses sowie des ¢™’?-Prozesses siehe [1], [2], [4]-
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S, A kompakte komplexe Mannigfaltigkeiten sind (mit reguliren Einlagerun-
gen Sc V und 4 c W?)). Es gilt Satz 2': Jede nicht triviale regulire
Modifikation ist dquivalent einem ¢"'?-Prozef3 1). Dieser Satz enthélt den obigen
Einzigkeitssatz iiber den o-Prozel. Er wurde in [2] angekiindigt ?) (siehe auch
[3], p. 7). Sein Beweis beruht auf den Hilfsséitzen 1 und 5 (in § 1). Dabei wird
ein etwas stidrkerer Satz, Satz 2, hergeleitet unter Benutzung der beiden wei-
teren Hilfssitze 3 und 4 (ebenfalls in § 1). — Im Anschlufl an den Einzigkeits-
satz iiber den ¢™?2-Proze wird in § 3 noch eine Anwendung gegeben: Die
Dilatation (oder die monoidale Transformation) der algebraischen Mannig-
faltigkeit W lings A ist der o™%-Prozell lings 4 in W. Daher ist die ¢™9-
transformierte Mannigfaltigkeit einer algebraischen Mannigfaltigkeit wieder
algebraisch. Weiter ist auch die o¢™9¢-transformierte Mannigfaltigkeit einer
Kinrerschen Mannigfaltigkeit wieder KAHLERsch (Satz von BLANCHARD),
was am Ende von § 3 kurz bewiesen wird.

§ 4 handelt von holomorphen Uberlagerungsabbildungen ¢: (V, S) — (W, 4)
mit regulirer Verzweigung (zur Definition siehe § 4a)). Das Hauptergebnis
wird in Satz 3’ (und etwas allgemeiner in Satz 3) ausgesprochen: Jede regulér
verzweigte Uberlagerung wird erhalten entweder durch Zusammensetzen einer
«Windung » mit einer reguliren Uberlagerungsabbildung oder einer reguliren
Uberlagerungsabbildung mit einem o™2-ProzeB. Eine nicht triviale Windung
(laings S) kann also nicht mit einem ¢™2-ProzeB (II: (V,S) — (W, A)) zu-
sammengesetzt werden. Dies beruht auf einem Lemma (in § 4c)) iiber die
Windungsmoglichkeiten lings S§®-1 in V) : Es existiert dann und nur dann
eine r-fache Windung lings § in ¥V, wenn die charakteristische Klasse des
Normalenbiindels von S in V durch r teilbar ist.

Herrn Prof. H. HopF bin ich fiir Anregung zu Dank verpflichtet. Ebenso
danke ich Herrn Prof. B. ECckMANN fiir das Interesse, das er dieser Arbeit
entgegengebracht hat.

§1. Hilfssitze

a) Hilfssatz 1. Die Modifikation?®)
é: (V», 8) - (W, A)

?) ¥V und y™ (bzw. V™) bezeichnen zugleich eine komplexe (bzw. reelle) Mannigfaltigkeit der
komplexen (bzw. reellen) Dimension n: dimg V =n (bzw. dimp V = n). — Mannigfaltigkei-
ten sollen zusammenhéngend sein, wenn nichts anderes gesagt wird.

3) Als Anwendung des Einzigkeitssatzes iiber den ¢™*?-Proze8 wird in [2] auf die Untersuchung
der DoLBEAULTschen Gruppen bei regulérer Modifikation hingewiesen. Dariiber ist eine separate
Arbeit in Vorbereitung.

4) Hier handelt es sich um «allgemeine » Modifikation. Vgl. [2], § 1a).
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werde durch die Abbildung o: Vi W

induziert. V™ seir eine n-dimensionale Mannigfaltigkeit; W liege in etner Man-

nigfaltigkest Wn: W c Wr. A und S seien echte Teilrdume in W bzw. in Vo,
und S sei kompakt. Dann liegt eine Umgebung U’ von A, die Umgebung U’ in

Wn genommen, in W .

Korollar. Unter den Voraussetzungen des Hilfssatzes 1 ist W eine Mannig-
faltigkeit W™.

Beweis: U = U (S) sei eine solche (offene) Umgebung von § in V, daB U

kompakt ist. Dann ist auch U™ = U—U kompakt. ¢ U’ ist abgeschlossen,
und es ist A~ @U = 0. Es folgt: 4 besitzt eine Umgebung U’ = U(4) in
W, derart, daB U’ ~ U =0. Es git U ~pU=U"~¢U, und
B={U —A)rnpU=U"—4)~ (U —8).

Da (pl7 abgeschlossen ist, ist B abgeschlossen in U’ — 4. Da U — 8§
offen ist und ¢ topologisch in U — §, ist ¢(U — 8) offen, und daher ist B
offen in U’ — 4. In jeder Zusammenhangskomponente von U’ — A be-
findet sich mindestens ein Punkt von B (, da 4 und S echte Teilmengen sind
von W bzw. von V5)); daher folgt aus der Abgeschlossenheit und Offenheit
von Bin U —A: B=U'"—A4 oder U — 4 co(U—-8)coelV)=W,
das heit A besitzt eine volle Mannigfaltigkeitsumgebung U’ (beziiglich W)
in W, W ist Mannigfaltigkeit der Dimension »n, und 4 liegt im Innern von W.

b) Nun betrachten wir lokale komplexe Modifikationen

b (ﬁ(n), 8) - (U™, p) ,

in welchen U™ eine komplexe Koordinatenzelle ist, U™ eine komplexe
Mannigfaltigkeit ¢), und bei denen S an Stelle des Punktes p in U™ eingesetzt
wird. Jede lokale komplexe Modifikation wird durch eine stetige Abbildung

g: U™ > Um

induziert, die in U™ — topologisch und komplex analytisch ist, und fiir
welche ¢(S) = p gilt. Nach einem Satz von RADG- BEHNKE-STEIN-CAR-

TAN?) ist dann ¢ in ganz U komplex analytisch, also ist auch die Funk-
tionaldeterminante A(p) komplex analytisch, so daBl S mit der Nullstellen-

§) Falls bei einer Modifikation eine der Inklusionen 4 C W, S < V echt ist, sind es beide.

$) Der Querstrich in U™ bedeutet hier Modifikation von U™ (und nicht Ubergang zur ab-
geschlossenen Hiille wie in a)).

) Fiir n = 1 handelt es sich um den Satz von Rapé [5]. Die Ubertragung auf hshere Dimen-

sionen stammt von BEENKE und STEIN [6] und von CARTAN [7]. HEINz lieferte in [8] einen
«elementaren » Beweis des Satzes.
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menge von A (p) zusammenfillt, wenn ¢ nicht in ganz ﬁeineindeutig ist, was
wir annehmen : S ist eine komplexe Menge in U, das heiflt die Nullstellenmenge

lokaler komplex analytischer Gleichungen in U, und die komplexe Dimension
von 8 betrigt n — 1. § ist zusammenhingend. Weiter nehmen wir an: S

ist als komplexe Menge in U regulir eingebettet, das heiflt § ist eine kom-
plexe Mannigfaltigkeit S»-V in US$).
¢) Wir wollen also im folgenden lokale komplexe Modifikationen

@: (U™, S@-D) > (U™, p) (1)
mit der komplex analytischen Abbildung
g: U™ — gm (2)

untersuchen. U™ ist eine komplexe Mannigfaltigkeit, S®~1 eine in U regulir
eingelagerte komplexe Mannigfaltigkeit, U™ eine komplexe Koordinaten-

zelle mit den Koordinaten y,,y,, ...,¥,, und p sei der Ursprung des Ko-
ordinatensystems. Die Abbildung ¢ in (2) wird durch die n-Funktionen
¥: = f:(z), i=1,2,...,n, xe UM, (3)

gegeben. Esist f;(x) =0 fiir zeS. Neben ¢ werde die Abbildung y: U™ — pn=1)
durch
?/)(ﬁ) = (fl(x)’ f2(x), L fn(x))

definiert, wo P"-1 den komplex (n — 1)-dimensionalen komplex projek-

tiven Raum bedeutet und (y,, y,, ..., ¥,) den Punkt mit den homogenen
Koordinaten y,,¥;, ...,y, in P® 1V,  yist in U — 8 eindeutig und ana-
lytisch (nach Wahl eines festen Koordinatensystems {y,, ., ..., ¥,}). DaB

y auf § fortgesetzt werden kann, ist der Inhalt des folgenden Hilfssatzes:

Hilfssatz 2. Liegt die lokale Modifikation (1) vor, so kann die Abbildung v
auf S™-1 analytisch fortgesetzt werden.
Hilfssatz 2 ist dquivalent dem folgenden

Hilfssatz 2. Wird die M odifikationsabbildung ¢ in (2) in einer Koordinaten-
umgebung von o € S gegeben durch die n-Funktionen
Yi="[fi(@1, oo, @) =82y, oo, ) 94 (B, -0, ) (4)

J1sGas - -+, Gn relativ prim (im Ring der holomorphen Funktionskeime in o),
so wird g;(0) # 0 fir mindestens ein 1.

8) Wenn in der Situation § c U verlangt wird, daB3 S eine topologische bzw. reelle bzw.
komplexe Mannigfaltigkeit ist, so soll S als eine in U eingelagerte Punktmenge eine topologische
bzw. reelle bzw. komplexe Mannigfaltigkeit sein (mit der durch U induzierten reell bzw. komplex
analytischen Struktur); es handelt sich also um singularitétenfreie (oder regulire) Einlagerungen.
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Beweis: Da die Einlagerung 8 — U regulir ist, wird die Abbildung ¢ in
(2) in einer Umgebung X eines Punktes o ¢S mit Hilfe geeigneter Koordi-
natensysteme {x,,x,,...,%,} in X bzw. {y,,¥9,,...,¥,} in einer Um-
gebung von p nach KooprmAN ?) gegeben durch

Y = 7',
Ai
Y = @ { Z F b (T, - o0, @) + xix,},
k=0 (5)
T =2,3,...,n, 8§>0, §;>0,
222132 .. Zz'n—-l...>_ ln20~
Dabei wird § ~ X in X durch z, = 0 dargestellt. Die Abbildung = — y
in 6) (x=(xy, ...,%,), ¥y= (Y5 -..,Y,)) laBt sich umkehren zu einer
8;-deutigen Korrespondenz y — x in einem Gebiet auBerhalb des Punktes
p=(0,0,...,0): die z; sind Funktionen der Variabeln %!, y,, ys, ..., ¥,,

holomorph in diesen Variabeln in einem Gebiet auflerhalb p und meromorph
inp (¢=1,2,...,n). Fiir eine Modifikationsabbildung (2) muB} also s; = 1
sein. Ist weiter ¢ eine in X c U reguldr eingebettete und S in o regulir
schneidende Kurvel?), so kann C durch z, parametrisiert werden, und das
Bild ¢C (bei der Modifikationsabbildung (2)) wird wegen (5) und s, =1
eine durch y, = xz; parametrisierbare regulire Kurve durch p. Daher gilt:

Lemma. Be: der Modifikationsabbildung (2) ist das Bild einer reguliren
Kurve, welche die Singularititenmannigfaltigkeit S regulir schneidet, eine regu-
lire Kurvell).

@ werde nun in einer Umgebung X von o € 8 durch (4) dargestellt, und die

%) [9], p. 571, Gln. (7) mit r = 0. An Stelle von z, y, py, ¢, W, 7 in [9] stehen hier y, z,
8;,k,hip,q. — Die Betrachtung der Funktionaldeterminante A(p) in der Taylor-Entwicklung
nach z; lehrt, da bei iiberall regulérer Einlagerung S C U alle Punkte in S «non-specialized
points» sind ([9], p. 567 und p. 570): andernfalls miiBte S Singularitéten aufweisen. Daher gilt
die Darstellung (5) fiir die Umgebung eines beliebigen Punktes 0 € S (in geeigneten Koordinaten).

10) (O ist also eine komplex 1-dimensionale komplexe Mannigfaltigkeit, und der Schnitt
C ~ 8 = o ist der einfach gezéhlte Punkt o.

11) Daf die Voraussetzung der reguliaren Einlagerung S C U wesentlich ist, zeigt das Bei-
spiel der Abbildung = y, gegeben durch

Y = T, %5 ... Xy =1, y; = txg, 1=2,3,...,n,
mit der Inversen y— = In ¥y, ... Yp 7 0:
n
Y; .
w1=—L, i =—, 1=2,3,...,n.
Ya « - Un Y

Hier besitzt das Bild jeder komplex analytischen Kurve durch den Nullpunkt o im z-Raum eine
Singularitit im Ursprung p des y-Raumes. Da auch die Bedingung des reguléren Schnittes
C ~ 8 nicht weggelassen werden kann, zeigt das Beispiel einer S beriihrenden Kurve.
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Kurve C besitze die komplexe Parameterdarstellung z; = z,(2) mit «,(0) = 0

(t=1,2,...,n;C wie oben gewihlt; die Koordinaten x,, y, bei (4) sind
im allgemeinen nicht die speziellen, die in (5) gebraucht werden; o ist der
Ursprung des Systems {z,, ,, ..., %,}). Da nach dem Lemma ¢C regulir
ist (¢C gegeben durch y, = y,(2) = t(,(2), ..., 2,(2)) 9:(2,(?), ..., 2,(2))),
mul} fiir mindestens ein ¢
dy
/ _ %Y
vil) | =70 #0,
und ist ¢,(0,0, ..., 0) = 0 fiir alle ¢, so folgt
Y o dg;
dZ (O) "‘t(O,O’ ‘--,0) dZ (0) #O
fiir mindestens ein ¢. Daher ist £(0,0,...,0) % 0, so dall ¢ =1 gesetzt
werden darf. (4) lautet dann vy, =g¢,(,, ..., %,), (91,92 ---,9,) = 1.

Wegen der Eineindeutigkeit von ¢ in X — 8~ X hat A(p) hochstens dort
Nullstellen, wo ¢(z) = p. Wir behaupten: A(p)| % 0. Denn da g¢,, g,,

x=0
.., g, teilerfremd sind, muBl fir N = {z|g,(x) = 0 fiir alle 1} die kom-

plexe Dimension von N kleiner oder gleich n — 2 sein: dimg N < n — 2,
wihrend fir D = {z| 4(¢) =0} dimyD =mn — 1, falls D nicht leer ist.
Daraus folgt: Gilt ¢,(0,0, ...,0) = 0 fiir alle 7, so ist ¢ eineindeutig in X
und daher in U, es ist ¢ 1p = o, und die Singularititenmenge S wird leer,
womit Hilfssatz 2 bzw. 2 bewiesen ist.

Bemerkung. Nachdem fiir geeignete Koordinatensysteme {z;, ..., z,}

und {y,, ...,y,} die Darstellung (5) gilt, kann der Beweis zum Hilfssatz 2
auch folgendermaBen zu Ende gefiihrt werden: Wegen (5) und s; =1 ist
das zu dem bei (5) benutzten Koordinatensystem {y,,...,y,} gehorige y
auf S fortsetzbar. Daraus folgt : Beim Ubergang zu einem andern Koordinaten-
system in der Umgebung von p resultiert eine (neue) Abbildung y, die wieder
fortsetzbar ist, deren Fortsetzung auf S aus dem alten o | S mittels einer
projektiven Abbildung von P®-1) auf sich erhalten wird (vgl. auch [4]).

d) Nun betrachten wir die komplexe Modifikation
@: (U™, §n-1) > (Um, A(0) (1)
mit der komplex analytischen Abbildung
g: Um > Um (2')

U™ igt wie in ¢) eine komplexe Koordinatenzelle, S-1) die (eventuell leere)
Nullstellenmenge von A(p) in der komplexen Mannigfaltigkeit U™, ferner
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soll 8 eine komplexe Mannigfaltigkeit sein (oder leer). Dann gilt entsprechend
(5) in geeigneten Koordinaten in einer Umgebung von o0 €S bzw. von pe 4
nach Kooprman12) die folgende Darstellung fiir die Abbildung (2'):

Y1 = 7",

Yi = xi‘{kgoxf hir(Tigrs + o0 @) + 2t}

yizxi’- (8)
T =2,3,...,n—¢q, j=m—9q+1,...,n, §>0, s8>0,
AZ>A> . .2k g1 2k =0, n—12>q¢g>0.

Zum Beweis von (5) wird neben der regulidren Einbettung von S in U nur
benutzt, daBl ¢ auBerhalb S lokal eineindeutig ist. Aus (5') folgt die regulire
Einbettung von 4 in U, insbesondere bekommen wir:

Hilfssatz 3. Be: der Modifikation (1') mit der Abbildung (2') st die Aus-
nahmemenge A eine komplexe Mannigfaltigkert13).

Fir ¢ = 0 geht (5') wieder in (5) tiber, und es fehlt die dritte Gleichungs-
gruppe vy, =x,;. Fir ¢q=mn —1 {fehlt die zweite Gleichungsgruppe
y; = z3¢{...}. Im Falle einer Modifikationsabbildung (2') wird s, = 1, weil
z; = 2,(¥\*, ys, ¥s, ..., y,) (holomorph in den Variabeln 4*1, y,, ys, ..., ¥,
in einem Gebiet aullerhalb 4, meromorph in gewissen Punkten von 4;
t=1,2,...,n —q). Ist also bei einer Modifikation (1) ¢=n — 1, so
folgt aus (5') und s, = 1: A(p) # 0 iiberall, U ist (unverzweigte) Uber-
lagerung von U, das heiflt es gilt:

Hilfssatz 4. Ist in (1'), (2') g =n — 1, so ist ¢ ein komplexer Hombomor-
phismus. :
Hilfssatz 4 gilt fiir kompakte!4) Modifikationsabbildungen auch ohne die

Voraussetzung der reguldren Einlagerung S — U (siehe [10], § 3, Satz 7),
wenn A4 als irreduzible komplex (» — 1)-dimensionale komplexe Menge vor-
ausgesetzt wird 1%).

Wegen Hilfssatz 3 existieren in einer Umgebung von p e 4, die wie in (1')
U heiflen soll, solche Koordinaten y,, v,, ...,¥,, daB die Gleichungen

12) Vgl. Anm. 9.

13) Zu Hilfssatz 3 vgl. Satz 6 in [10], § 3, p. 288, der besagt, daB bei einer «eigentlichen »
Modifikation das Bild einer komplexen Menge komplex ist («analytisch» in [10] an Stelle von
«komplex »).

14) «Kompakte» Abbildung: das Urbild jeder kompakten Menge ist kompakt (auch «eigent-
liche» Abbildung, oder «application propre » nach BOURBAKI).

18) Zur Dimension einer komplexen Menge vgl. [11], p. 2661f.
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Y1=0, ¥y,=0, ...,y,_,= 0 die Mannigfaltigkeit 4 ~ U charakterisieren.
Wird dann die Abbildung ¢ in (2') gegeben durch

:l/,-'“-—‘f,-(x), i=1322 "'3"’: meﬁ(n)’ (3’)
so betrachten wir entsprechend y in c) eine Abbildung w: Um Pn—a-1)
dargestellt durch

8 1/)(23) = (fl(x)’ fz(x), ooy fn—q(x)) ’

WO (Y1, Ys3s ++ 5 Yn_o) den Punkt mit den homogenen Koordinaten y,, ys,
.+ Yn_o im komplex projektiven Raum Pm-9-1) hedeutet. y ist definiert

(und komplex analytisch) zunédchst in U— 8. Es gilt analog dem Hilfssatz 2
bzw. 2:

Hilfssatz . Bei der Modifikation (1') kann die Abbildung v auf SV ana-
lytisch fortgesetzt werden.

Hilfssatz 5. Wird die M odifikationsabbildung @ in (2') in einer Koordinaten-
umgebung von o € 8 gegeben durch

¥y = fi(xy, ... 2,) =82y, ..., 2,)9;(2q, ..., 2,),
y,=f(xy, ....2), ¢t=1,2,...,.n—q, j=n—q+1,...,n,;(4)
(gl)gzs"'agn—q)=l)

8o wird g,(0) % 0 fiir mindestens ein ©.
Denn aus (5') mit 8, = 1 folgt wiederum das Lemma in c¢) fiir die Abbil-
dung (2') an Stelle von (2), und daraus liBt sich Hilfssatz 5 bzw. 5 wie Hilfs-

satz 2 beweisen. Es gilt auch hier eine der am Schlul von ¢) gemachten ana-
loge Bemerkung.

§ 2. Einzigkeitssatz iiber den o-Proze8

Satz 1. Liegt die lokale komplexe Modifikation
@: (U™, §n-0) — (U™, p) (1)

vor, wortn U™ eine komplexe Koordinatenzelle vst und S™1) eine kompakte
komplexe Mannigfaltigkeit, n > 2, so ist (1) der o-Prozef3 in p.

Genauer: Ist U™ die durch den o-ProzeB in p modifizierte Koordinaten-
zelle U™ (eingebettet in U™ x P"-1_ vgl. [1] oder [2]), so existiert
unter den Voraussetzungen des Satzes 1 ein komplexer Homéomorphismus

7: Um U™, derart, daf ~
=ng,
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wenn x: U™ x Pr-1) — U die Projektion des topologischen Produktes
Um x P auf U™ bedeutet.

Zusatz: GemiafBl der Betrachtung in § 1b) kann noch gesagt werden: Ist
@: (U™, §m) - (U™, p)
eine lokale komplexe Modifikation, in welcher § eine reell m-dimensionale

kompakte Mannigfaltigkeit ist mit m > 1, so ist § eine komplex (n — 1)-

dimensionale komplexe Mannigfaltigkeit, und die Modifikation @ ist der
g-Prozel} in p.

Bemerkung. In Satz 1 wird mitbehauptet, dafl der o-Proze8 in einem Punkt
p einer komplexen Mannigfaltigkeit M™  n > 2, unabhingig ist von der
Wahl der lokalen komplexen Koordinaten in der Umgebung von p: fiir ver-
schiedene Koordinatensysteme bekommt man équivalente Modifikationen (1)
(zum Aquivalenzbegriff siehe § 3a)). Dies kann leicht direkt eingesehen wer-
den!¢). Wir sprechen also vom ¢-Proze8 in p, ohne auf spezielle Koordinaten
Bezug zu nehmen.

Beweis zu Satz 1: Die Abbildung g: Um > )  Um x Po-1  wird
durch -~

p(x) = (p(2), y())
gegeben. Sie ist nach Hilfssatz 2 auf ganz U™ definiert und komplex ana-

lytisch; aullerdem ist 81e auf U — S topologisch. Es sei Y = (pU cU.
Wir erhalten eine durch @ induzierte komplexe Modifikation

®: (U,8) (Y, S)
mit ¥cU, p8c P31, wo Py die Faser iiber p in U™ x Pr-1
bedeutet. -

Nun wenden wir den Hilfssatz 1 an: An Stelle von V=, §, W, A, W treten
jetzt U , 8, Y, ¢S, U , es sind die Voraussetzungen des Hilfssatzes 1 erfiillt,
und es folgt: @8 besitzt eine Umgebung in U, welche in Y enthalten ist.
Wegen der Kompaktheit von S und wegen (U — 8) ¢ U — P muB
dann @8 = P{, und Y = (7

Wegen ¢S = PV wird p = ¢ |8 fast iiberall lokal ememdeutlg (das
heiBt bis auf niedriger dimensionale Ausnahmemengen), und da @ in U—8
eineindeutig ist, gibt es einen Punkt o0 ¢S, in welchem @ lokal eineindeutig
ist1?) (das heiBt es gibt eine Umgebung von o, X c U, derart, daB | X

16) Der ¢-ProzeB im Punkt p e M besteht darin, p durch das Biindel der tangentiellen kom-
plexen Linienelemente in p zu ersetzen (siehe [1], p. 140 oder [4]).
17) Vgl. auch [4], Beweis zu Satz 8.
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topologisch ist). Die Funktionaldeterminante A(g) ist daher iiberall verschie-
den von null, denn wire in einem Punkt A4 (@) = 0, so miite 4(g) auf einer
komplex (n — 1)-dimensionalen komplexen Menge D verschwinden, es miifite
D = 8 sein und damit o ¢ D. Also ist ¢ iiberall lokal eineindeutig und daher
auch @, das heiBt S ist Uberlagerungsmannigfaltigkeit von P{~, so daB
wegen des einfachen Zusammenhanges von P~V die Mannigfaltigkeit S durch
@ homoomorph auf P$~" abgebildet wird8). Es folgt: @ ist ein komplexer
Homoéomorphismus, und es gilt ¢ = np, womit Satz 1 bewiesen ist.

§3. Die Einzigkeit des ¢™?-Prozesses

a) Satz 2. V™ und W™ seien kompakte komplexe Mannigfaltigkeiten, S™
ser eine Mannigfaltigkeit in V (singularititenfres eingelagert; m < 2n — 1).
Liegt dann die komplexe Modifikation

D: (VW 8m) —» (WM, 4) (6)
vor, welche durch die komplex analytische Abbildung
@: Vi > W (7)

erzeugt wird, so ist entweder (7) ein komplexer Homobomorphismus, das heif3t
(6) erne triviale Modifikation, oder es ist (6) der o™ 2-Prozef3 lings A in W:
S=8n-1_ A=A gind komplexe Mannigfaltigkeiten in V bzw. in W
(requldr eingelagert), m = 2n — 2, ¢ <n — 2, S wird komplex gefasert durch
projektive Riume:

P(419) = {§®-1  Pn—a-1) g} (8)

und die Projektionsabbildung dieser Faserung @: S®1 — A wird durch ¢
induziert.

Beweis: (6) sei eine nicht triviale Modifikation. S ist dann als Nullstellen-
menge der Funktionaldeterminante 4 (¢) und als Mannigfaltigkeit eine kom-
plex (n — 1)-dimensionale komplexe Mannigfaltigkeit. Indem wir die Hilfs-
sitze 3 und 4 heranziehen, ergibt sich weiter, dafl auch 4 eine komplexe (in
W regulir eingelagerte) Mannigfaltigkeit ist mit der komplexen Dimension
g <n—2.

Nun verlduft der Beweis analog dem zu Satz 1. Neben (6), (7) betrachten

18) Allgemeiner: der (globale) Abbildungsgrad von E =@ | S ist gleich + 1 bei einer (topo-
logischen) Modifikation @: (V, S)—> (W, 4) mit Abbildung ¢, in welcher V, W Mannigfaltig-
keiten und S, A kompakte orientierte Mannigfaltigkeiten derselben Dimension sind (vgl. [2],
§ 15 b)). — Es kénnte im obigen Beweis auch Hilfssatz 4 verwendet werden, an Stelle der Betrach-
tung iiber die Funktionaldeterminante A (&).
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wir den o™ 2-Prozel} lings 4 in W
: (Vm, Sm-1y 5 (W 4(@)
mit der komplex analytischen Abbildung
n: Vi > W

Es wird die Abbildung ¢@: V™ — V™ konstruiert: AuBerhalb § ist P
gleich ¢, in einer Koordinatenumgebung X mit X ~ 8 £ 0 wird
g: Xm > Um c Um x Pa—e-1  durch

~

¢(z) = (p(x), y(x))

gegeben, wo y die Abbildung vy in § 1d) ist. Wegen Hilfssatz 5 (bzw. 5) und
wegen der Koordinateninvarianz des ¢”™2-Prozesses!?) ist ¢ auf ganz V defi-

niert und komplex analytisch. Es ist ¢S < 8§, und wegen der Kompaktheit
von 8 liefert Hilfssatz 1: @ induziert eine Modifikation

@: (V,8) > (V,8).

Der Abbildungsgrad von @ = @ | S ist gleich 118), und da S reguldr in V
liegt, ist A (@) 7% 0 iiberall (gleicher SchluB wie im Beweis zu Satz 1). @ ist
also ein komplexer Hom6omorphismus, und es gilt ¢ = @@, q.e.d.

Wenn wir unter reguliren Modifikationen solche Modifikationen (6) mit
komplex analytischer Abbildung (7) verstehen, in denen V, W, S, A kompakte
komplexe Mannigfaltigkeiten sind (mit den reguliren Einlagerungen 4 ¢ W
und 8§ < V), so sind alle regulidren Modifikationen

®: (V,8) > (W, 4) (9)

nach dem obigen Satz ¢™?-Prozele (neben dem trivialen Fall der komplexen
Homoomorphismen):

Satz 2'. Jede nicht triviale regulire Modifikation ist dquivalent etmem o™ 92-
Prozef.

Dabei wird der Aquivalenzbegriff bei komplexen Modifikationen mit Ab-
bildung folgendermaflen gegeben: Liegt die komplexe Modifikation

Dy: (V1,8,) = (W, 4)

mit der (komplex analytischen) Abbildung ¢,: V, - W vor, daneben eine
zweite

Dy: (Vy, Sy) - (W, A)

19) Satz 10 in [4].
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mit der Abbildung ¢@,: V, - W, und existiert ein komplexer Homdomor-
phismus 0: V;, - V, mit ¢, = ¢,0, so heiflen @,, D, zueinander dquivalent.

Bemerkung. An Stelle der Kompaktheit von V und W geniigt es, in Satz 2
und 2’ die Modifikationsabbildung ¢ als kompakt ) vorauszusetzen. (Siehe

Hilfssatz 1 in §4b).)

b) Anwendung in der algebraischen Geometrie. W™ sei eine (singularitaten-
freie) algebraische Mannigfaltigkeit in P und A(? eine (in W regulir ein-
gelagerte) Teilmannigfaltigkeit. Dann existiert ein Linearsystem A = {M}
von Hyperflichen M (-1 eines gewissen Grades in P  derart, da} die folgen-
den Eigenschaften erfiillt sind: (a) 4 ¢ M fiir jedes M e A; (b) zu zwei
verschiedenen Punkten z, ' in W — A gibt es eine Hyperfliche M ¢ A4 mit
xeM, ' ¢ M; (c) die Gesamtheit aller Hyperflichen M mit z e M fir
einen festen Punkt e W — A kann als Punkt einer komplexen Mannig-
faltigkeit V{" angesehen werden, welche regulir in einem komplex projek-
tiven Raum P®") eingelagert ist; (d) V, wird durch Hinzufiigen einer kom-
plexen Mannigfaltigkeit S™-1) zu einer kompakten singularitdtenfreien alge-
braischen Mannigfaltigkeit V® < P®') abgeschlossen, derart, daBl es eine
komplex analytische Abbildung ¢: V — W von V auf W gibt, welche auler-
halb 4 eineindeutig ist 2°). Es wird also eine regulidre Modifikation (9) erzeugt,
welche in der algebraischen Geometrie Dilatation oder monoidale Transfor-
mation genannt wird: V ist die lings A dilatierte algebraische Mannigfaltig-
keit W. Satz 2’ liefert sofort:

Satz. Die Dilatation der (singularititenfreren) algebraischen Mannigfaltig-
keit W™ lings der (regulir eingelagerten ) Teilmannigfaltigkeit A9, ¢ <n — 2,
18t der o™ 2-Prozef lings A in W.

Damit ist auch gesagt, daB} die Dilatation von W ldngs A vom gewihlten
Linearsystem / unabhingig ist. Da die dilatierte Mannigfaltigkeit einer alge-
braischen Mannigfaltigkeit wieder algebraisch ist, erhalten wir als Korollar:

Korollar 1. Die o™ 9-transformierte Mannigfaltigkeit einer algebraischen Man-
nigfaltigkeit ist algebraisch.

Die Dilatationen sind birationale Transformationen, so dafl wir als weiteres
Korollar bekommen :

Korollar 2. Die o™ 9-Prozesse stellen bei algebraischen Mannigfaltigkeiten bi-
rationale T'ransformationen dar.
Dies kann auch direkt eingesehen werden, indem man zeigt, dafl die Kérper

20) Zu den Eigenschaften (a) bis (d) vgl. [12], Vol. III, ferner [13], [14] und [15]. Auf den Zu-
sammenhang zwischen dem ¢"’?-Proze8 und der Dilatation hat mich Herr VAN DE VEN auf-
merksam gemacht (vgl. auch [16]).
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der meromorphen Funktionen auf ¥V und auf W bei einer Modifikation (9)
isomorph sind (Spezialfall eines Resultates in [2], § 19a); siehe auch [10]).

c) Es gilt eine Verallgemeinerung von Korollar 1 auf KArLERsche Mannig-
faltigkeiten:

Satz von BLANCHARD. Die o™ ?-transformierte Mannigfaltigkeit einer K AnLER-
schen Mannigfaltigkeit ist K AnLERSCh?!).

Beweis: oy sei eine KAHLERsche Metrik in W von der Klasse C* (oder
geniigend oft stetig differenzierbar). Wir bilden im abstrakt gegebenen «aus-
gefiillten Normalenbiindel» N2* von 4 in W (Biindel mit dem komplex affinen
Raum E®—9 als Faser, mit der Schnittfliche 4, und mit der Strukturgruppe
G = U(n — q)) die Funktion

n—gq _
Qy = Z gy px(x)2%2P .
a,8=1
Dabei ist xe A, 21,22 ...,2"? sind komplexe Koordinaten in E®-9
und g, g sind die Komponenten der Metrik oy, . Da Q}, gegeniiber @ invariant
ist, handelt es sich wirklich um eine Funktion in N. Wir iibertragen Q}, in

die Umgebung A™ von A in W mittels einer topologischen «lings A fast-
komplexen»2?) Abbildung der Klasse C* von einer Umgebung von 4 in N
auf A c W, und zwar soll diese Abbildung jedes Faserstiick U (z) ~ E™ 9 (z),
xeA, U(x) Umgebung von z in N, auf eine beziiglich der Metrik oy zu 4
orthogonale geoditische Vollkugel in W abbilden. Dadurch bekommen wir

eine Funktion Q% = Q% (x), x < A, von der Klasse C*. Es sei 2 = log 25%.
In 4 bezeichne o = o(x) den Abstand des Punktes x e A von A, gemessen
mit Hilfe der Metrik oy, . 7(p) sei eine Funktion der Klasse €% mit #(g) = ¢
fir 0<p<e, €>0, c positive Konstante, 7(p) =0 fir p > 2¢,
0 < %) <c. Dann ist

noo02 Q
op = ve*oy + lim p* X )2

e dx*dxB 10
o g1 Ox*0zP (10)

fiir eine geniigend groBe natiirliche Zahl » eine KAnLERsche Metrik in V).
xz* sind lokale komplexe Koordinaten in einer Umgebung U c W mit
UrnAd={x|a*=0 fir «a=1,2,...,n —¢q} im Falle eines nicht leeren
Durchschnittes U ~ A. Die Zahl » muBl so gro gewihlt werden, dafl o}
positiv definit wird: Erstens stort die Funktion #(p) die positive Definitheit

21) [17], Th. IL 6, p. 202.

%) Die Abbildung soll in den Punkten z € A die dort gegebene fastkomplexe Struktur er-
halten.

23) Die Metrik (10) ist die natiirliche Verallgemeinerung der Metrik, die von KODAIRA in
[18], p. 133 bei (8.2.2) angegeben wird. Vgl. auch [17] und [19].
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(dort, wo % nicht konstant ist), und zweitens stéren in {z | n(¢) > 0} die
Ableitungen nach den Koordinaten a7—91, gn-e+1 a7 zn,  Der Limes
in (10) ist so zu verstehen, dafl die durch (10) unter Weglassen von lim in
V — 8 bestimmte Metrik in natiirlicher Weise zu einer KAHLERschen Metrik
der Klasse C* in ganz V erweitert wird.

Ist oy eine HopgE-Metrik, das heif3t ist die zur Metrik oy, gehorige CARTAN-
sche Form ein ganzzahliger Cozyklus, so wird durch geeignete Wahl der Kon-
stanten ¢ in (10) erreicht, dafl auch o, eine Hopce-Metrik wird. Damit erhal-
ten wir einen zweiten Beweis zu Korollar 1 in b), indem der Satz von Ko-
pAIRA zu Hilfe gezogen wird, gemédf3 welchem eine komplexe Mannigfaltigkeit
mit Hopce-Metrik algebraisch ist 24).

§4. Reguliir verzweigte Uberlagerungen. Windungen

a) Nachdem bis jetzt Modifikationsabbildungen ¢: (V,8) - (W, 4) be-
trachtet wurden, liegt es nahe, dhnliche Uberlegungen auf Uberlagerungs-
abbildungen

p: (V,8) > (W, A) (11)

mit oV =W, ¢S = A und nicht leerem V — § anzuwenden. Dabei soll
es sich immer um kompakte't) (und stetige) Abbildungen handeln, und wir
sprechen von einer Uberlagerungsabbildung (mit der Singularititenmenge S
iiber der Ausnahmemenge 4), wenn ¢ in ¥V — § lokal eineindeutig, also lokal
topologisch ist. Ferner setzen wir voraus, dafl es zu jeder Umgebung U (S)
von 8 in V¥ eine Umgebung U(4) von 4 in W gibt mit ¢2U(4) < U(S),
und es soll im Falle orientierter Mannigfaltigkeiten ¥V, W der lokale Abbil-
dungsgrad g (¢) in ganz W konstant sein: Sind § und 4 (zusammenhéingende)
Mannigfaltigkeiten, so sollen also lings S sidmtliche Blitter von V «zusam-
mengeheftet » sein. Wenn in (11) V, W, 8 und 4 komplexe Mannigfaltigkeiten
sind und ist @ holomorph, so heit V eine regulir verzweigte Uberlagerung
von W und ¢ eine (holomorphe) Uberlagerungsabbildung mit regulirer Ver-
zweigung. Um solche Uberlagerungen zu behandeln, treffen wir in den folgen-
den Abschnitten b), ¢), d) einige Vorbereitungen.

b) Hiltssatz 1. ¢: (V», 8) —> (W, A) sei eine kompakte stetige Abbildung,
in V* — 8 lokal eineindeutig, o V=W, ¢S = A. V™ ser eine (n-dimen-

stonale) Mannigfaltigkeit; W liege in einer Mannigfaltigkeit Wn., A und S
seten echte Teilmengen von W bzw. von V™. Dann liegt eine Umgebung U’ einer

) Hauptsatz in [19].
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beliebigen kompakten Teilmenge A' von A in W, die Umgebung U’ n Wn ge-
nommen.

Korollar. W ist esne Mannigfaltigkeit W™,

Der Beweis ist bei kompaktem 8 fiir A’ = A derselbe wie zu Hilfssatz 1.
Bei einem beliebigen kompakten A’ c A fiihrt man den Beweis analog mit
Hilfe einer Umgebung U (8’) an Stelle von U (S), 8’ = ¢~14’, auch bei nicht
kompaktem S.

Hilfssatz 1 enthilt Hilfssatz 1. Er wird im Falle einer Modifikationsabbil-
dung zum Beweis der Bemerkung zu Satz 2 bzw. 2’ (am SchluB3 von § 3 a))
benutzt. Im folgenden tritt er nicht mehr explizit auf, steckt aber im Beweis
zu Satz 3, da dort Satz 2’ in der Form der zitierten Bemerkung herangezogen
wird.

An Stelle von (2') sei nun die komplex analytische Uberlagerungsabbildung
(mit Verzweigung)

@: (ff(n)’ S(n'l))é(U(n), A(G)) (_é)

gegeben. U™ ist eine komplexe Koordinatenzelle, U eine komplexe Mannig-
faltigkeit, S die (eventuell leere) Nullstellenmenge von 4(¢), und zwar eine

komplexe Mannigfaltigkeit (oder leer). Fiir die Abbildung (2) gilt dann nach
Wahl geeigneter Koordinaten die Darstellung (5'), ohne daf iiber die Ein-
bettung von A in U etwas vorausgesetzt wurde (wie schon in § 1 d) bemerkt).
Daraus folgt:

Hilfssatz 3. Bei der Abbildung (5) 18t A eine komplexe Mannigfaltigkeit.

Wird bei einer holomorphen Uberlagerungsabbildung (11) mit reguléirer Ver-
zweigung die Mannigfaltigkeit S homoomorph auf 4 abgebildet, so kommt
wegen (5') lokal in geeigneten Koordinaten

Yy = X3+, y,=2x; fir 7=2,3,...,n, 8 >1, (5")

und wir sprechen in diesem Fall von einer Windung lings 4 in W. Fiir alle
Darstellungen (5”) gilt s, = r fiir ein festes r lings ganz A (A4 ist als zusam-
menhidngend vorausgesetzt), und der Abbildungsgrad von ¢ ist gleich r. Es
handelt sich dann um eine r-fache Windung. Fiir » = 1 bekommen wir einen

komplexen Hom6omorphismus. Ist insbesondere in (2) ¢ =n — 1, und ist
U geniigend klein, derart, daB die bei (5’) benutzten Koordinaten y,, ¥, ...,
Y, ganz U iiberdecken®), so wird S durch ¢ homoomorph auf 4 abgebildet:

%) Unter den Voraussetzungen des Hilfssatzes 4 iiberdecken dann die Koordinaten z,,
%y, ..., 2, ganz U. *
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Hiltssatz 4. Ist in (2—) g=mn—1, so0ist ¢ eine Windung lings A in U.
¢) Sei
@: (V) Sn-1)y 5 (W) 4n-1))

eine r-fache Windung lings 4 in W. Uberdecken wir eine Umgebung von §:
V=U®)cV bzw. von A: W' =U(4) c W mit einem geeigneten
System {U;} bzw. {U;} von Koordinatenumgebungen, derart, daB ¢ | U} = ¢;:
U, - U, = U eine Darstellung (5") besitzt:

YO = @)y, ¢y = firk=2,3,...,n. (a)

In U] wird S~ U; durch z{? = 0 gegeben, und es ist

= f;20, fi= 15D, &, .. D) £ 0 in Ui Ui~n8#0. (b)
Daneben gilt 4 ~ U, = {y |4 = 0}, und
¥ =990, 94 =050, 9, ...,y D) £ 0 in U;n Ujn d#£0. (o)

Aus (a), (b), (c) folgt nach Identifikation von 4 mit S
9;;= (fy)) in U;~nU;~n4%#0. (d)

Die Funktionen f;; definieren das komplexe Linienbiindel der Einbettung
S=A4cV, Qiber A (die Funktionen f;(0, 2, 2’, ..., 27’) operieren
als Transformationsfunktionen), die g,; desgleichen das Linienbiindel von
Ac W, Miber A. (d) besagt I = rL, und es gilt daher fiir die (ganz-
zahligen) charakteristischen Klassen

c(IM) =re(L), (12)

wo der ¢(R) reprisentierende ganzzahlige 2-Cozyklus ¢* = {¢,,,} bei geeig-
neter (geniigend feiner) Uberdeckung {U;} durch

definiert wird (U;~ U; bzw. U]~ Uj~ A ist bei geeigneter Uberdeckung
einfach zusammenhingend, log® = log"® ist ein Zweig der Logarithmus-
funktion in U; ~ U; und damitin U;~ Uj~ A; {t,,} bestimmt dann einen
2-Cozyklus 2 auf dem Nerv der Uberdeckung {U; ~ 4}29)).

Umgekehrt : Ist fiir das durch die Funktionen g;;in U;~ U, c U(4) c W
definierte komplexe Linienbiindel I iiber A der charakteristische Cozyklus

26) Zur Definition der charakteristischen Klasse eines komplexen Linienbiindels § = {L,C,4}
siehe [20] oder [21] (C ist der Koérper der komplexen Zahlen; Strukturgruppe in £ ist die multi-
plikative Gruppe C* der von null versthiedenen komplexen Zahlen).
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w? = {u;;} = {(2= Y —1)-1 (logtg,, 4 logg,, + log"g,,)} durch r teilbar,

r__ 110glii) g, .
so konnen die Funktionen f,; = Vg, = ¢ e (Zweig durch logt be-
stimmt) in den (einfach zusammenhéngenden) Mengen U,~ U; zur Defini-
tion eines komplexen Linienbiindels & iiber 4 verwendet werden (bei Be-
schrinkung der f;; auf 4), derart, daB3 eine r-fache Windung (L, 4) - (M, A4)

induziert wird (L bzw. M ist der Totalraum von £ bzw. IMN). Betrachten wir

P
die Funktion f,; in ganz U,~ U,, so bekommen wir durch a{’ =}/ ¢,
2P =y, k=2,3,...,7n, bei sukzessivem Durchlaufen aller Zweige der
r-ten Wurzel, Koordinaten in einer Umgebung U}, und durch z{ = f,a{"

r

= Vg, (@), 29, 2P, ..., 29). o) (Zweig wie oben durch log®" be-
stimmt), 2§ = ¥ ((2)r, 2§, 2§, ..., 2¥) Koordinatentransformationen
in U;~ Uj, so daB eine komplexe Mannigfaltigkeit V' = U’(4) und eine
r-fache Windung ¢: (V’, A) - (W', A) resultieren, wozu die Biindel £ und
I gehoren. Ist weiter der Cozyklus u? = {u,;;} nicht durch r teilbar, jedoch
die zugehorige charakteristische Cohomologieklasse ¢(I), existiert also eine
1-Cokette ¢! = {c,;} mit u? + dct = rt?, das heidt, ist

Uiyp + €5 + Cyp + €y = T,

so setzen wir log' g, = logtig,, + 2xV —1c,;, wir wechseln also durch
Addition von 2z) —1c,; das Blatt der Logarithmusfunktion in U, ~ U;.
u't = {ut{:il} = {(2n V:T)”l (log’ #g,; 4 log' Vg, + log’ 9 g,)} ist dann
durch r teilbar, und es kann, wie eben festgestellt, eine r-fache Windung
p: (V', A) - (W', A) gefunden werden.

Zusammengefafit:

Lemma. 1) Liegt die r-fache Windung ¢: (V, A) - (W, A) vor, und ist L
bzw. MM das zur Einbettung A < V bzw. A c W gehorige komplexe Linien-
biindel, so gilt

c(M) = re(Q) . (12)

2) Ist die charakteristische Klasse c(IN) des zur Einbettung A™Y c W™
gehorigen komplexen Linienbiindels MM durch r teilbar, so gibt es eine Mannig-
faltigkeit V' und eine r-fache Windung ¢: (V', A) > (W', 4A), W =U(d)c W.

Kiirzer: Dann und nur dann kann lings 4 in W eine r-fache Windung vor-
genommen werden, wenn ¢ () durch r teilbar ist.

Weiter ergibt sich der folgende Zusatz zu 2): Die Mannigfaltigkeit V' und
die Windung ¢ sind bei gegebenen (W, A) und r, bei r-torsionsfreiem H2(A4;Z),
und bei einfach zusammenhingendem A4 bis auf komplexe Homoomorphie ein-
deutig bestimmt.

2 Commentarii Mathematici Helvetici
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Bemerkung 1. Deutet man ¢(8) als Cohomologieklasse des Hindernis-
cozyklus, der sich der Konstruktion einer Schnittfliche im zu £ gehorigen
unitdren Kreislinienbiindel Mt = {N, 2', A} entgegenstellt (N ist das Nor-
malenbiindel, € das ausgefiillte Normalenbiindel von 4 in W; X% ist die k-
Sphire), so kann (12) auch direkt geometrisch eingesehen werden: ¢ erzeugt
eine fasertreue Abbildung ¢ des Normalenbiindels R,(4) = {N,, 2!, 4}
auf Ny(4) = {Ny,2', A}, ¢:N, > N,; dazu gehoren Abbildungen
¢:A—>A, @:2' >3, wo ¢ die Identitdt ist und g(@) = r. Ist eine
Schnittfliche F iiber dem 1-Geriist einer (geniigend feinen) Zellenzerlegung
von 4 in N, gegeben, F bestimmt also einen Cozyklus 2 € ¢(f), so bestimmt
die Schnittfliche @ F den Cozyklus r¢2, woraus (12) folgt.

Bemerkung 2. Die in diesem Abschnitt durchgefiihrten Betrachtungen las-
sen sich auf den Fall einer (geniigend oft stetig) differenzierbaren Windung
p: (Vr, A"2) - (W", A*2) mit A(p) #0 in ¥V — 4 und orientierbaren
Normalenbiindeln N,, N, iibertragen. Als Strukturgruppe der Biindel N,
und RN, wird SO(2) = U(1l) genommen, {t;,} wird wie im komplexen Fall
definiert, und man erhélt (12). Ebenso gilt die Aussage 2) im Lemma, auf den
differenzierbaren Fall iibertragen, wobei wegen [21], 3.8 die Mannigfaltigkeit
V', bei gegebenem (W, A) und r und bei r-torsionsfreiem H2(A4; Z), bis auf
differenzierbare Homoéomorphie eindeutig bestimmt ist, und bei einfach zu-
sammenhéngendem 4 neben ¥V’ auch ¢. Weiter kénnen Metriken in ¥ und in
W so eingefiihrt werden, daB ¢ eine fasertreue Abbildung ¢ von R, auf Ny,
erzeugt, und die Bemerkung 1 behilt auch im differenzierbaren Fall ihre Giil-
tigkeit.

d) U, P~ geien die in der lokalen Modifikation (1) ((1) in Satz 1:
o-Prozefl) vorkommenden Mannigfaltigkeiten mit der durch den o-Prozef} in-

duzierten Einbettung PV c U (in (1) ist P11 = §»-1)  Dann gilt:

Hilfssatz 6. Jede komplex analytische Uberlagerungsabbildung mit reguldrer
Verzweigung _

18t ein komplexer Homoomorphismus.

Beweis: Lokal gilt (5”) fiir die Abbildung ¢ mit s, = r fiir alle Darstellun-
gen (5”) lings ganz P, ¢ induziert also auf § eine unverzweigte holomorphe,
das hei3t regulire, Uberlagerungsa,bbildung wegen des einfachen Zusammen-
hanges von P ist daher [ | § = ¢ ein komplexer Hombomorphlsmus @ ist

eine Windung ldngs P in U. Da fiir das zur Einbettung P < Um, n>2,
gehorige Linienbiindel I die charakteristische Klasse ¢ (M) = — z2 ist, wo
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22 die zur Hyperebene P"-2) — Pn-1) duale Cohomologieklasse darstellt??),
ist ¢(IN) durch keine Zahl r > 2 teilbar, so daBl wegen des Lemmas r = 1
und daher ¢ ein komplexer Homdomorphismus sein muB}, q.e.d.28).

Bemerkung. Hilfssatz 6 gilt auch im Falle einer Umgebung U™ einer Hyper-
ebene P11 im projektiven Raum P™,6 weil hier fiir die Einbettung
P(n—l) C U(n) c(wt) — z2 gilt.

e) Satz3. V™, W™ seien komplexe Mannigfaltigkeiten, S™ (m < 2n — 1)
eine (zusammenhdingende) Mannigfaltighkeit in V, und es sei gegeben die (kom-
pakte ) komplex analytische Uberlagerungsabbildung (mit eventueller Verzweigung )

p: (V™ 8m) — (W A4), (13)
Dann ist entweder ¢ = v eine unverzweigte Uberlagerungsabbildung, oder
Sm = 8@ und A = A sind komplexe Mannigfaltigkeiten in V bzw. in
W, m=2n—2, 0<qg<m—1, V ist also eine requlir verzweigte Uber-
lagerung von W, und es gilt :

1) fir q =n — 1 st in einer Umgebung V' von S in V

=00, (14))
wo v: (V, 8)—>(W', A) eine reguldre Uberlagerungsabbildung ist (W' =U(A)c W),
und w: (V',8) = (V,S8) eine r-fache Windung lings S in V, r > 2;
2) far 0 <qg<mn—2 st
= zv, (14,)

wo m;: (17, §) — (W, A) die (holomorphe) Modifikationsabbildung des o™9-

Prozesses lings A in W ist, und v: (V,8S) - (V, ,§) eine regulire Uberlage-
rungsabbildunyg.

Beweis: Die Abbildung (13) besitze eine nicht leere Singularitdtenmenge S,
welche dann als Nullstellenmenge von A(¢) und als Mannigfaltigkeit eine

) Vgl. z.B. [19].

28) DaB speziell eine (differenzierbare bzw. komplexe) Uberlagerungsabbildung mit regularer
Verzweigung ¢: (o™, Py, (U™, P"=Y) n > 2, notwendigerweise ein (differenzierbarer
bzw. komplexer) Homéomorphismus ist, wird auch folgendermafen bewiesen: zu ¢ gehért eine
fasertreue Abbildung 69' der Hopfschen X1.Faserung N = (X", 31, P("“l)} in sich mit
@: PM—D_, pn=1) . 31, 31, @ = Identitét, g(@) =r. Nach [22] ist g(p) = +* "1, und
daraus folgt r = + 1 (r = 4+ 1 im differenzierbaren, r = 1 im komplexen Fall), woraus mit
EI_ilfe der lokalen Eineindeutigkeit von @ auBerhalb P auf die globale Eineindeutigkeit in ganz
U geschlossen wird. Zudem folgt Hilfssatz 6 (auch im differenzierbaren Fall) direkt daraus, daB
der Umgebungsrand von P in U eine Sphire X2*~1 ist, also fiir n > 2 einfach zusammenhén.-
gend, so daB wegen der lokalen Eineindeutigkeit auBerhalb § ¢! X1 gine unverzweigte
Uberlagerung von X2"~1, also selbst eine Sphire Z2"~1 ist, g ist auf T2~ = =1 Z¥-1 gin.
eindeutig und somit in ¥V — §, also in V (wegen des einfachen Zusammenhanges von P oder
wegen Anm, 18).
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komplex (n — 1)-dimensionale komplexe Mannigfaltigkeit in ¥V ist, und nach
Hilfssatz 3 ist auch A4 eine komplexe Mannigfaltigkeit in W: 4 = A(® mit
0<qg<n—1.

1) Fiir ¢ =n — 1 wird die Abbildung ¢ lings S wegen Hilfssatz 4 lokal
eine Windung, so daB sich ¢ in einer Umgebung V' e U(S) c V zusammen-

setzt aus einer Windung w: (V’,8) - (V,8) lings Sin V und einer regu-
liren Uberlagerungsabbildung v: (V,8) — (W', 4) (W' = U(4) c W):
durch Identifikation der durch den Windungsanteil 2) von ¢ auseinander her-
vorgehenden Punkte in V' wird in V' die Darstellung ¢ = vw gewonnen

samt einer dazwischen geschalteten Mannigfaltigkeit V. Damit folgt (14,),
wobei die Windung w r-fach ist, » > 2, da in (allen Punkten von) § 4(p) = 0
vorausgesetzt wurde.

2) Sei 0 <q<mn—2. In der Umgebung X eines Punktes o0eS wird
¢ | X = ¢x durch (5’) dargestellt (in geeigneten Koordinaten). ¢3! ist also
aullerhalb S ~ X s,-deutig. s; = r lidngs ganz S. Durch Identifikation dieser
je r durch den Windungsanteil von ¢ (vgl. Anm. #)) auseinander hervor-
gehenden Punkte in einer Umgebung V' = U(S) ¢ V wird eine komplexe

Mannigfaltigkeit ¥ erhalten, und @ | V' setzt sich zusammen aus der r-fachen
Windung w: (V',8) - (V,8) und der (holomorphen) Abbildung g:
(V,8) > (W',4) (W =U(4) c W):p=gw. Wegen Satz 2’ (und der
Bemerkung am Ende von §3a)) ist @ «lokal» ein ¢™?-ProzeB, das heifit,
¢ ist die Zusammensetzung einer reguldren Uberlagerungsabblldung v:

(V S) - (V’ §) und der Modifikationsabbildung : (V’ )-—> (W', 4) des

o™2-Prozesses lings 4 in W': p = nv. GemiB (8) wird S und daher auch S
durch projektive Rédume P21 komplex gefasert. Die r-fache Windung w
induziert also mit Hilfe der Konstruktion des ¢™2-Prozesses IT: (17, 67) —(W, A)
zusammen mit v eine r-fache Windung lings der Faser P®—%1 < § in einer
geeignet gewihlten komplexen Mannigfaltigkeit 79 < V. Hilfssatz 6 im-
pliziert r = 1:  ist ein komplexer Homdomorphismus?3?), daher kann v in
ganz V definiert werden durch v |(V — 8) = ¢ | (V — 8), und es gilt (14,),
q.e.d.

) Der « Windungsanteil» von ¢ in einem Punkt o€ S wird erhalten durch ¢ | X fiir eine
geniigend kleine Umgebung X von o. Es gilt dann (in geeigneten Koordinaten) die Darstellung
(8’) bzw. (6") mit 8 = r > 1 langs ganz S. Wir sprechen im Falle » > 2 von einem (nicht
trivialen) Windungsanteil, und im Falle + = 1 sagen wir: es ist kein (nicht trivialer) Windungs-
anteil vorhanden.

30) DaB bei einer Uberlagerungsabbildung ¢: (V", S™) - (W", 4%), auch im differenzier-
baren Fall, kein (nicht trivialer) Windungsanteil vorhanden ist, sobald ¢ = dimp4 <n—3 =

dimy, W — 3, folgt daraus, daB8 im Normalenbiindel RNy, (4) = (N1 221 44} die Faser



Regulére Modifikation komplexer Mannigfaltigkeiten 21

Aus dem obigen Beweis ergibt sich der folgende

Zusatz zu Satz 3. Die Abbildungen n, v, w sowie die Mannigfaltigkeiten 14 ,

S , V sind bis auf komplexe Homoomorphie eindeutig besttmmd.
Weiter gibt es im Falle 2) eine Modifikationsabbildung

n': (Ve 81y . (Wi A(0)
und eine regulére Uberlagemngsabblldung v’ (W A—) —>(W A), derart, dafl
p=nv=0va, ’IW A——le S) fir W—A=V —8. Auch «’,

o', W, A sind bis auf komplexe Homoéomorphie eindeutig bestimmt.
Satz 3 enthilt speziell fiir die holomorphen Uberlagerungsabbildungen

@: (V) Sn-1) 5 (W 4l (15)
mit regulirer Verzweigung die folgende Aussage:

Satz 8'. Jede regulir verzweigte Uberlagerung V in (15) wird fir ¢ =n — 1
wn einer Umgebung V' = U(S) c V erhalten durch Zusammensetzen einer Win-
dung mit einer reguliren Uberlagerungsabbildung, und fir q <n — 2 einer
reguliren Uberlagerungsabbildung mit einem o™ 2-Prozef3.

Ist weiter A einfach zusammenhingend und somit auch S, so mufl v in
(14,) und (14,) ein Homoomorphismus sein:

Korollar. Jede Abbildung (15) ist ber einfach zusammenhingendem A fir
qg=mn—1 dquvalent einer Windung und fir ¢ <n — 2 dem o¢™?2-Prozef
limgs A in W.

f) Liegt eine holomorphe Uberlagerungsabbildung ¢: (V, 8) — (W, 4) mit
regulidren Verzweigungen vor, das heif3t besteht § aus mehreren Komponenten
Si, 8, ..., S;, so wendet man Satz 3 bzw. 3’ «lokal» auf jede einzelne Kom-
ponente S, an, £k = 1,2, ...,¢, indem fiir V eine geniigend kleine Umgebung
von §; genommen wird. Dabei braucht g(¢) nicht konstant zu sein in W, und
die Bedingung, daB3 es zu jeder Umgebung U (S) eine Umgebung U(A4) mit
prU(A) < U(S) gibt, kann ebenfalls weggelassen werden.

X971 ginfach zusammenhéngend ist (#hnliche Argumentation wie bei Anm. 28): man betrach-
tet die durch ¢ induzierte Uberlagerungsabbildung :p?: (f/\', ;Sl'\)—> ( P/V\', 2); A bzw. P/I}' ist die
universelle Uberlagerung von 4 bzw. W’ = U(4)C W, und S baw. 77 die aus S bzw. V'’ in-
duzierte Mannigfaltigkeit (erzeugt mit Hilfe von ¢ und des Uberganges von W’ zu ﬁ'/'\'); dann
ist in ‘RA (A) = {N”’m1 Z"=¢=1 2} der Totalraum N’}\—l einfach zusammenhangend, da-
her wird N%_ G ! durch q) -1 homoomorph in V' — S abgeblldet ((p o1 N wird durch eine
geeignete N ormalprOJektlon auf S in V' homoomorph auf N », abgeblldet, so daB8 N« /\

homéomorph ¢ 1 N o homoomorph N e ), cp ist also in V' _%9 ein Homoomorphlsmus,

und somit besitzt @ keinen (nicht tmvmlen) Windungsanteil: ¢ | X ist in X — 8~ X ein-
eindeutig fiir eine geniigend kleine Umgebung X von oeS. - Ebenso kann fir ¢ =n—1
nie ein (nicht trivialer) Windungsanteil auftreten.
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g) SchlieBlich folgt aus Satz 3’ zusammen mit dem Satz von BLANCHARD
(§ 3¢)) und dem Satz von KoDpAIRA 2) unter Beriicksichtigung des letzten Ab-
schnittes in § 3¢) (oder des Korollars 1 in § 3b)) : Eine regulir verzweigte Uber-
lagerung einer K imrerschen bzw. algebraischen Mannigfaltighkeit ist K im-
LERSch bzw. algebraisch (, wobei im Falle algebraischer Mannigfaltigkeiten nur
(endliche) Uberlagerungen kompakter Mannigfaltigkeiten betrachtet werden).
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