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An Entire Function of Restricted Growth

by GEORGE PIRANIAN, Ann Arbor, Michigan (USA)

W. KarLaN [1] has used an approximation theorem of KELbys and MER-
GELYAN to show that there exists an entire function f such that each half-line
in the z-plane contains infinitely many disjoint segments of length 1 on which
|f(z)] < 1. In an oral communication, he has asked whether there exists such
a function of finite order. I shall construct an appropriate example.

Theorem. T'here exists a sequence {(t,, r,)} such that the function

f(z) = 1°7° (1 — (gfr, ) (1)

18 entire and has the property that each half-line contains infinitely many disjornt
segments of length 1 on which |f(z)| < 1. Corresponding to each real-valued
function h(r) satisfying the condition h(r)/logr - co as r—> oo, the sequence
{(t,, r,)} can be chosen in such a way that the inequality

”(,,.eie) | < yh(r)

holds for all r (r>r,) and all 0.

The proof will be carried out by choosing the pairs (t,, r,) in such a way
that | f(z) | < 1/» throughout each of the annular sectors §,,(k =1, 2, ...,
n; n=1,2,...) determined by the conditions

z = (1 4 8)r,eit6+27hin) (g5 and O real, |s|< 1/n2, | 6| <m/n?).

We consider first the product of the first m factors in (1), for values of z
in one of the sectors §,,,. The restrictions on s and 6 imply that

|1 —(/rp)" | =11 —(1+s)meme| <Cyfm

(throughout the proof, we shall use symbols C, to denote constants independent
of m). This in turn implies that

|1 — (2[rp)™ '™ < (Cyfm)'™. (2)

Also, if 2 <7 <r,< ..., then, for each indexk (¢t =1,2,...,m —1) and
for all z in §,,,, we may write

|1 — (2/ri)¥ | < (Carn)®.
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Therefore, if r,, > 1/C, and

t,>tb + 2+ ...+ (0 —1)t,_,

for n = 2, 3, ..., we conclude that

m—1

1]’ l 1 — (Z/Tk)k ltk < (Ozrm)tl+2t2+.. A (m—1)ty 4 < (Czrm)mtm_l
k=1
in 8,,,. Together with (2), this yields the inequality
m
IT |1 — (2[ry)¥ | < (Cy/m)'™ (Cy1,y) ™bm-1 .
k=1

For an appropriate constant C,, the right member is less than 1/2m if

r. — oxp LaimloBM

o (3)
We note that r,,, determined as a function of ¢,, by (3), tends to oo as ¢,,— oo .

Suppose that the constants ¢, have been chosen for n =1, 2, ..., m, and
that each corresponding constant r, satisfies (3) (with ¢, = 1). Since the
product of the first m factors in (1) has modulus less than 1/2m in each of the
m sectors S,,, (h=1,2,...,m), the condition |f(2)| < 1/m holds in each
of the sectors provided the product of the remaining factors has modulus less
than 2. Now "
|1 — (efr)n | <IT{1 + (| 2]|/r,)"}tn

m+1 m+1

— M exp {t,log[1 + (|2]/r,)"]}

m-+1
<139XP {t.(12] [r)"}
m+1
Cyt, log n }

tn-—l

= exp 2'¢, | zl“exp{——
m+-1

Throughout each fixed disk |z| < g, and for any fixed value of ¢,_,, the

term with index n in the infinite series in the last expression tends to 0 uni-

formly as t¢,—> co. Therefore |f(z)| < 1/n throughout each of the sectors

S,,(b=12 ...,n;n=1,2 ...) provided ¢,— oo rapidly enough.

If r,>n% for each n, then, by a familiar theorem on approximation by
rational numbers [2, p.48, Theorem 14], each half-line in the plane meets
infinitely many sectors §,, in a segment of length greater than 1. This proves
the first part of the theorem.

The second part of the theorem follows from the facts that the logarithm
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of the maximum modulus function M(r; f) is a convex function of logr;
that
| f(rae?®) | <(Carn)™™ ;
and that by (3),
ntn—l

tn=m ogr, .
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