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Valeurs déficientes et valeurs asymptotiques
des fonctions méromorphes

par Albert Edrei et Wolfgang H. J. Fuchs1)

1. Introduction

Les recherches que nous exposons ici continuent et complètent celles que
nous avons publiées ailleurs [1]. Nous nous sommes proposés d'élucider quelque
peu certains problèmes posés par la théorie des fonctions méromorphes de
M. R. Nevanunna.

I. Si une fonction entière f(z), d'ordre fini, admet une valeur exceptionnelle
au sens de Borel, son ordre est nécessairement entier, positif et sa croissance

parfaitement régulière.
Que subsiste-t-il de ce résultat si Von suppose que f(z) est méromorphe et que

la somme de ses déficiences excède Vunité?

II. On sait qu'il existe des fonctions méromorphes [7, 8] et même des fonctions

entières d'ordre fini [3; p. 371] pour lesquelles certaines valeurs sont dé-

ficientes sans être asymptotiques.
Ceci signifie-t-il qu'il faut complètement renoncer à établir une liaison entre

ces deux genres de valeurs exceptionnelles?

III. On sait [6] qu'une fonction entière d'ordre fini p, admettant une valeur
exceptionnelle au sens de Borel, a un développement de Taylor dont les

coefficients non nuls ont une densité kjp où Je est l'un des entiers 1,2,3,... ,p.
Peut-on étendre ce résultat au cas des fonctions entières ayant des valeurs
déficientes finies?

Nous avons abordé ces trois problèmes par une étude préliminaire des fonctions

méromorphes dont les pôles et les zéros sont déficients. Ceci nous a
conduits à des inégalités dont on trouvera une démonstration détaillée dans notre
mémoire déjà cité. Comme on le verrait, en se reportant à ce travail, on peut,
grâce aux inégalités en question, résoudre en partie le problème I.

C'est aux deux autres problèmes que nous nous attacherons ici. Nous
montrerons qu'en les adaptant convenablement, les méthodes de [1] donnent une
bonne approximation de log | / (z) | en fonction de T(\ z \, f). Ceci nous per-

1) Les recherches que nous présentons ici ont été rendues possibles par des subventions de la
National Science Foundation, de la Fondation Guggenheim et de la U.S. Air Force (Research
supported by the United States Air Force under Contract No. AF 18(600)-685 monitored by
the Office of Scientific Research).
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mettra de démontrer que, si Tordre de la fonction entière f(z) est fini, et la
somme de ses déficiences suffisamment grande, il existe des valeurs déficientes
finies qui sont également asymptotiques.

2. Notations et terminologie

La variable complexe sera, en général, désignée par z et nous poserons

z x + iy re%e (x,y, 6 réels ; r ^ 0)

La fonction f(z) sera, en général, méromorphe mais il sera parfois nécessaire
de la supposer entière.

Considérons ceux des zéros de / (z) qui ne coïncident pas avec l'origine ;

nous les distribuerons dans une suite que nous dénoterons toujours par

al9at9a99 (2.1)

Nous considérons de même la suite

bl9bl9bz, (2.2)

des pôles de f(z) qui ne coïncident pas avec l'origine ainsi que la suite

dl9d29dS9 (2.3)

obtenue en distribuant, dans une suite unique, les éléments de (2.1) et de

(2.2). L'ordre des termes de (2.3) est supposé tel que

| d, | <* | d2 | <£ | d3 | <£

Nous utiliserons, dans leur sens aujourd'hui classique, les symboles usuels
de la théorie de M. R. Nevanlinna:

log,Jf(r,/), m(r,/), n(r,a), N{r,a), T(r,f).
S'il n'y a pas de confusion à craindre, nous écrirons T(r) et M(r) au lieu

de T(r, f) et M (r, /) et nous poserons toujours

n(r) n(r, 0) + n(r, oo) ; N(r) N(r, 0) + N{r, oo) (2.4)

Si l'origine n'est ni un pôle ni un zéro de f(z), la quantité n(t) représente
le nombre de termes de (2.3) dont le module n'excède pas t. Cette interprétation

conduit aux formules bien connues

dont nous ferons un usage fréquent.
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Les lettres X et p désigneront toujours Tordre et l'ordre inférieur de /(z),

logr r f— logr

Si A [â, nous dirons que f(z) est à croissance régulière.
Nous désignerons par d(r) la déficience de la valeur r :

T(r)

la déficience totale de la fonction f(z), c'est-à-dire la somme des déficiences
de toutes les valeurs déficientes de f(z). Là où nous ne considérons que la
déficience d'une seule fonction, la notation précédente suffira. Quand il nous
arrivera de considérer plusieurs fonctions f,g,h,... nous utiliserons la
notation plus complète

ô(x,f), Ô(r,g), ô(r,h)
La quantité j^^£f (2.7)

joue un rôle prépondérant dans ce mémoire ; on a manifestement

Les majuscules A, B, C, G affectées d'indices convenables, désigneront
toujours des constantes numériques positives ; nous avons jugé inutile de rappeler

cette convention dans nos énoncés et nos démonstrations.
Presque toutes nos inégalités ne sont valables que pour des valeurs suffisamment

grandes de certains paramètres. Le plus souvent, nous rappellerons ce

fait sous forme symbolique, en faisant suivre les inégalités en question par
d'autres, entre parenthèses ; par exemple : (j > j0), (r > r0).

3. Enoncé de nos résultats principaux

Nous commencerons par résumer, dans le lemme suivant, les conséquences,
les plus utiles ici, des résultats de notre mémoire [1].

Lemme A. Soit f(z) une fonction méromorphe d'ordre inférieur fini et

égal à p. Soit p l'entier défini par les inégalités

p — \ ^ju<p+ J. (3.1)
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on a

De plus, chaque intervalle

x<,r ^(35)2* (x>x0)
contient un point s tel que

T(u)u~p+$ g T(s)s~p+i (x0 ^ u ^ s)

in^ ^ tel que
,—P—h <r rp(f\f—P—i (f <C ii\JU * ^5 JL \l/) v * \v ^5 vu)

Du Lemme A, nous déduisons le

Théorème 1. Soit f(z) une fonction méromorphe d'ordre inférieur fini et

égal à ju et soit p Ventier défini par (3.1).
Uinégalité

A
g,

1X (0<c^l), (3.3)

entraîne

p^l, X<p + \, (3.4)

ainsi que les propriétés suivantes de la caractéristique T(r).
I. Si

l<<r^36 (3.5)
on a

T(ar) o*T{r) (1 + rj(r, a)) (r > r0) (3.6)
où

\v(r;*)\<e. (3.7)

II. Soit E(u,p) le facteur primaire de genre p. La fonction f(z) qui, en vertu
de (3.4) est de genre p ou p — 1, peut être représentée sous la forme suivante

lTE(—,p)
f(z) zke«o*p + «i*p-1 + --+«p p: L (Rentier). (3.8)

•W—. + 7 ',.,fa,"-'-,.,I/-'>^ <3-9»
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on a alors x v /A 1A.| c(trr) - c(r) | < e \ c(r) | (r > r0) (3.10)

T(r) (l+Vl(r)) ' ^' (r>r0) (3.11)

00 Ui(r)l<«- (3-12)

III. Dès gwe r dépasse une borne convenable v0, on a

f(z)-ze, x v )_ _, (3 15)

IV. Posows

où les quantités a* sont finies et quelconques et les quantités a* et 6* sont d'arguments

quelconques mais telles que

*,...). (3.16)

}-*}; (3.17)

(3.18)

pourvu que r soit suffisamment grand.
Nous ne ferons pas usage, par la suite, de la partie IV du Théorème 1. Elle

nous paraît de quelque intérêt parce qu'elle montre l'influence des arguments
des zéros et des pôles sur la valeur de la caractéristique et, par conséquent,
sur les déficiences. Le corollaire suivant, que l'on peut rapprocher de certains
résultats de M. A. A. Goldberg [2], est une conséquence immédiate de (3.18).

Corollaire 1.1. La relation K(f) 0 entraîne

Posons

on a alors

encore

c*(r)

«u

«î-f

T (r /*

- —

6*
V bv

l Jz* \av j

c*(r)
31

e
'^ 2

s

c(r)

ni
où (o ep et les oc* sont des nombres finis quelconques.
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Tous nos énoncés sont caractérisés par des inégalités telles que (3.1) et (3.3)
faisant intervenir Tordre inférieur p.

On peut, tout aussi bien, remplacer (3.1) par

V — \ ^^<V + ï-
Dans ce cas, on a encore un entier q(^ p) tel que

q-i ^f*<q + h (3.19)

et de l'hypothèse (3.3), on tire

Mais alors, en vertu de (3.4) et (3.19)

q — £ ^ji ^ A<g + £,

d'où l'on conclut p q.

Théorème 2. Laissons inchangées les notations du Théorème 1 et remplaçons
Vhypothèse (3.3) par

II existe alors un chemin continu JC s1étendant à Vinfini et tel que, tout le long

|/(s)|>eM (r>r0). (3.21)

Désignons par jC(k) le chemin obtenu par une rotation de JJ, autour de l'origine,

d'angle k — (en vertu de (3.4), on a p 2: 1).

L'inégalité (3.21) est valable le long des chemins

Le long de

|/(»)|<e M (r>r0). (3.22)

La portion de JJ qui appartient à la couronne

où ^ r < oc
2

(oc ep+1 ; j entier),

est rectifiable et sa longueur n'excède pas Ct oô.
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Dans le cas particulier des fonctions entières et réelles, on peut même affirmer
que Vinégalité (3.22) est vérifiée dans un angle A dont le sommet est à Vorigine

et Vouverture est -=—. La même inégalité est encore vérifiée dans les angles qui se

déduisent de A par des rotations, autour de Vorigine, d'angle k.

Le théorème suivant généralise un important résultat de M. A. Pfluger [5]
qui a étudié le cas d'une fonction entière dont la déficience totale est égale à
2. Il a montré que, dans ce cas, les déficiences sont des multiples entiers de

Ijp, où p désigne l'ordre (nécessairement entier et positif) de /(z). La partie
de notre énoncé qui se rapporte à l'existence de valeurs asymptotiques nous
paraît nouvelle.

Théorème 3. Soit f(z) une fonction méromorphe d'ordre fini X et d'ordre
.inférieur p. Soit p l'entier défini par

p - i ^/u<p + J,
et soit

Les inégalités

ô(oo)>l-y, 2ô(r)>l-y, (3.24)
ir;zfoo

entraînent

De plus, il existe s(ï> 1) valeurs asymptotiques, finies:

telles que 8

2 à(pk)>l -O2e, (3.25)

à(Pk)> — -Q*e (k= 1,2, s). (3.26)

Dans le cas particulier des fonctions entières et réelles, on peut choisir, pour
chemins asymptotiques de déterminations px, /?2 » • • • fi9 »

des rayons issus de

l'origine.
Nous terminons ce travail par l'étude des lacunes du développement de

Taylob d'une fonction entière d'ordre fini dont la déficience totale est proche
de son maximum.

Notre énoncé fait intervenir les notions, systématiquement introduites par
M. G. Pôlya, de densités inférieure et supérieure. Considérons la suite

/i>/2,/s> (3.27)
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et désignons par v(t) le nombre de termes non nuls dont l'indice n'excède

pas t. La densité supérieure D et la densité inférieure D de (3.27) sont
définies par u, ,,x

Théorème 4. Soit

f(z) S fnzn (f(z) =é constante) (3.28)

une fonction entière d'ordre fini A et d'ordre inférieur /u.
Désignons par p Ventier défini par

p - i ^fi,<p + £,

et par À la déficience totale de f(z).
L'inégalité

A>2-Go{P + mi + iog(P + i)} (°<*<è)' <3-29>

entraîne
i=sp, x<p + i,

ainsi que l'existence d'un entier s(l ^s ^ p) tel que

— (1 - 30e) <, D ^ D <> —
p -- ~ ~ p

Les quantités D et D désignent, respectivement, les densités inférieure et
supérieure de la suite {fn}n~i •

4. Conséquences du Lemme Â

Lemme 1. Les hypothèses du Lemme A entraînent Vexistence d'une suite

#n}£Li> croissante et non bornée, jouissant des trois propriétés suivantes.

IL L'inégalité ^^ (4

entraîne U\*H
T(tn). (4.2)

n

III. Il existe une borne positive x0 telle que les inégalités

x0 <£ u ^ x
et

(4.3)
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entraînent

—j T(tn). (4.4)

Démonstration. Une des inégalités du Lemme A entraîne l'existence d'un
point tx(> x0) tel que

T(u) g (£}'** T(tt) (u^h).
En appliquant encore la même inégalité du Lemme A, on trouvera un point

^k^i> ô¥ (^^)2^i e^ jouissant encore de la pro-
Jk/llOUC JLX U.UL JLJCJL1HJJLC A.

^

En répétant le même raisonnement, on construira, de proche en proche, une
suite {tn} jouissant des propriétés I et II du Lemme 1. Vérifions encore
qu'elle jouit de la propriété III.

En effet, x(> x0) étant donné, il existe, en vertu du Lemme A, un point
«(=.(*)) tel que * £, £ (35)«*, (4.5)
et tel que y („)«-»+* ^ T(s)s~1>+i(x() ^u^s). (4.6)

En vertu de (4.3) et de (4.5)

tn^s^2(36)Hn. (4.7)

La propriété II (déjà démontrée) donne, grâce à la première des inégalités
(4*7> fsVH

£\j-J T(tn). (4.8)

En combinant (4.6) et (4.8), et en tenant compte de la seconde des inégalités
(4.7), on trouve

T(u) ^ 2(36)» (j-J^ T(tn) (xo^u^s).
Notre propriété III est ainsi démontrée, puisqu'en vertu de (4.5), x ^ s.

5. Variation des fonctions T(r) et c(r)

Lemme 2. Remplaçons Vhypothèse (3.2) par l'hypothèse plus restrictive

K(f) < A^+ 1} (0<s^l, -40>10e), (5.1)

et laissons inchangées les notations et les autres hypothèses du Lemme A.
Les inégalités t^r (5.2)
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e(r) |

T(r)
7t

T{tn)

267

(5.3)

(5.4)

Démonstration. Nous avons supposé

Ao> 10e,

ce choix de Ao, qui sera précisé plus loin, rend valables toutes les conclusions
du Lemme A et du Lemme 1. En particulier, l'inégalité A < p + \ montre
que l'on peut mettre f{z) sous la forme (3.8).

Considérons la quantité c(r) définie par (3.9) et posons

h g
f(z)
h (5.5)

II existe évidemment des relations analogues entre les quantités /* ,g*, h*
obtenues en partant de la fonction définie par (3.15) :

h* — g a* (5.6)

En désignant par E (u, p) le facteur primaire de genre p, on tire de (3.8)

z
log | f(z) | - 5Rc(r)z» log | g | v

I «„!:£«•

- v log
\bv\>r OV\<*v\>r

+ 0 (r*-1 + log r) (r -> + oo) (5.7)

On peut prendre la constante, implicitement contenue dans le terme

0{r*-x + log r), égale à | le | + E {\ ocv \ + \ oc* |}. Les termes <%* ont étés

introduits dans cette expression afin d'obtenir une constante valable à la fois

pour f(z) et /*(z).
ddPosons

et faisons usage de l'inégalité
2n

teie - (t * 1),

pjlU (5.8)

que nous avons établie ailleurs [1],
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Passons de la relation (5.7) à une inégalité entre les valeurs absolues de ses

termes, et intégrons par rapport à l'argument 0. Compte tenu de (5.8) et de
la définition de la suite {dv}, il vient

m(r,g) + m(r, — j^ V rp~x I u-pœ[ — du(r,g) + mlr, — )^ J£ rV~x I u-pœ(—)
\ g ] \dv\<2r J \rj

u-p-iJ— du + 0(rp'x + log r) {r -> +
\dp\

que l'on peut manifestement mettre sous la forme

r,—J ^ rp~x n{u)u-p<p(—\du + r^nir) I u~p<p(—
y / j \ I j \ i

Mil r

r iu\+ tp I {n(u) — n(r)}u~p~1q)( — )du + O^"1 + log r) (r -> + °°) •

J \r I
r

Observons que les intégrales au second membre de (5.9) ne dépendent que
des modules des zéros et pôles de f(z). Par conséquent, en partant de (5.6)
au lieu de (5.5), on voit que l'on peut, dans (5.9), remplacer g par (7*.

Posons 1

=ep+1ep+1 (5.10)

Dès que u excédera une borne convenable ro(> x0), on aura, en vertu de

l'hypothèse (5.1),

n(u) ^(p+ l)f^-dx ^(p+ l)N(au) < (p + l)rT(<xu), (5.12)

et, par conséquent, (5.9) entraîne

9) + mlr9 —\ ^m ' "" ' \ ' g ~~

T(ocu)u~p<p(—\du + (p H

f*o f
00

+ (P + 1) rr9 ÏTfcuîu-^cp (~r)du + 0(r*~x + log r) (r -> + 00). (5.13)
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Examinons, tour à tour, les diverses intégrales au second membre de cette
inégalité. La première d'entre elles est manifestement bornée quand
r ~> + oo et, par conséquent, le terme où elle intervient peut être absorbé

par le terme correctif 0 (rp~x + log r).
Considérons maintenant

r

1 ÏT(ocu)u-*(p(y\du.

En vertu de (5.2) et (5.10)
i

tn<ocr ^ e~P+r(36)ztn < 2(36)3£n

ce qui permet de prendre x otr et d'appliquer la propriété III du Lemme 1.

Il vient

En effectuant la substitution u vr, et en observant que

ocp~i < e

on obtient x

~\~ fv-h<p(v)dv. (5.14)
o

En utilisant, de la même manière, la propriété II du Lemme 1, et en
remarquant que / a 3

1 ^( J
s

J (5.15)

on trouve ^ «,

U~Pv \T)du - \T~) T^ I
f

3

*

^ e (36)^ U-\P T (tn) fv-h y (v) dv

i
De même ^ „

r 1

En combinant (5.13), (5.14), (5.16) et (5.17), on obtient

m(r, g) + m (r, —) ^ AB(p + l)J-f)P T(tn) + 0(r^ + log r) (r
\ 9/ V!
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où l'on peut prendre M

Par hypothèse, l'ordre inférieur de / (z) est au moins égal à p — J, et par
conséquent, en tenant compte de (5.2),

f*-ï-n (0 < rj < J) (5.19)

pourvu que r soit suffisamment grand. On peut donc récrire (5.18) en omettant
le terme O^-1 + log r), à condition de majorer la constante Az ; on prendra,
par exemple, AA= l -\- Az et l'on aura

m(r, g) + m(r, -
\ 9

(5.20)

dès que r est suffisamment grand.
Nous allons maintenant démontrer (5.3). Considérons c(r) et soit œ(r)

une des déterminations de son argument. On tire de (5.5)

puis
log \h\ \ c(r) \ rp cos (dp + co(r))

ix _ /m- ix__ \c(r)\rP

De f gh, on déduit [4; p. 14]

T(r,f) ^1
De même, h — entraîne

9

et, en combinant (5.21), (5.22) et (5.23), il vient

Observons encore que le même calcul livre

,* \c*(r)\r»
n

(5.21)

(.-,.22)

(5.23)

(5.24)

(5.25)

Les seconds membres de (5.24) et (5.25) sont faciles à estimer puisqu'en
vertu de (4.2) et (5.15)

N(r, g) + N(r,-) N(r, g*) + N\r, ^j N(r, f)

\P + i 5 lr\P
¦,-)^rT(r,f)

(5.26)



Valeurs déficientes et valeurs asymptotiques 271

De (5.24), (5.26) et (5.20), on déduit

l)rT(tn, /)(¦£-)*(^5 At + (36)1) (5.27)

De même (5.25), (5.26) et (5.20) (où l'on remplace g par g*) donnent

T(r, /*) - c* (r) <iA5(p+l)rT(tn,f) — (5.28)
r

En tenant compte de (5.11) et en posant

^6 ^> (5.29)
on obtient (5.3). °

II nous reste à prouver (5.4). En vertu de la définition (3.9) et des inégalités
(5.12) et (4.2)

~~
V tn<fZv\<r v

tn<\bv\^r
r

V tn<\dv\sJ - pr» J te**1 ~~ V

Comme précédemment, en tenant compte de (5.15) et (5.10), on trouve

-) (5.30)

puis, en tenant compte de (5.11) et en posant

on obtient (5.4).

6. Démonstration du Théorème 1

Supposons que la constante Ao ait été choisie suffisamment grande pour que
1>Onait

A<<1 AK<h- (6 1)

ceci est évidemment possible en vertu de (5.29) et (5.31).
Dans ces conditions, en prenant r tn, on tire de (5.3)

1 T(tn) \ c(U | ^ 3 T(tn)
2 K - n

(6.2)



272 Albert Edrei / Wolfgano H. J. Ftjchs

De même, on tire de (5.4)

I c(tn) | -\^- ^ I c(r) | ^ | c(tn) | +y^>
puis, en utilisant (6.2)

£i\c(tn)\, (6.4)
et aussi T( T(±^L ±™ (6.5)

La première de ces inégalités permet d'éliminer T(tn)t~p du second membre
de (5.28); en tenant compte de (5.11), (5.29) et (6.1), on obtient (3.18).

JSfous démontrerons maintenant les propriétés I et II de l'énoncé du Théorème

1. Déterminons l'entier n par les inégalités

K ^ r < tn+1

En vertu de (3.5) et du Lemme 1,

or

et, par conséquent, (5.4) reste valable quand on y remplace r par or. Donc

(6.6)

et, en vertu de (6.5) et (6.1)

\c(r)-c(or)\<2Age\c(r)\<s\c{r)\
ce qui démontre (3.10).

De (5.3) et (5.4), on tire encore

Tir) T(tn)
(6.7)

et, si Ao est suffisamment grand,

16+A\<1 f (6.8)

et par conséquent, 3 T(n T(r)

De (6.7), on tire

T(r) T(ar)
rv avTv
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puis, en tenant compte de (6.8) et (6.9),

273

T(r) T(ar) <e T(r)

ce qui démontre (3.6) et (3.7).
On raisonnerait de même pour déduire (3.11) et (3.12) de (5.3) et (6.9).
Considérons enfin les inégalités (3.13) et (3.14).
En vertu de (4.4), on obtient d'abord

du <
2(36)5 r*T(tn)T(u)

UY+1

puis, grâce à (3.6) et (3.7), on peut remplacer, au second membre, T(tn)tnp
par T(r)

puisque, par hypothèse, V (r/tn) < 36. On obtient ainsi (3.13).
De même (4.2) et les raisonnements précédents entraînent (3.14):

o

/ T{u)
UV+1

du<
36 r»T(tn) 144 T(r)

(y-p- (y-p-
7. Valeur approchée de log | f(z) \

Lemme 3. Remplaçons l'hypothèse (3.3) par Vhypothèse plus restrictive

(O<ilB (7.1)

et laissons inchangées les notations et les autres hypothèses du Théorème 1.

Considérons les couronnes Fj définies par
3 i

<x!

et soit

Posons

log |

(j= 1,2,3,...; a e*+i),

n (i—l)

(7.2)

(7.3)

log

„.&,('-*)
On a alors

| H(z) | < eT(r)

pourvu que z € Fi et Ventier j soit suffisamment grand.

18 Commentai-!! Mathematlci Helvetici

H(z). (7.4)

(7.5)
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Démonstration. Nous avons supposé

BQ ^
ce choix de Bo, qui sera précisé plus loin, rend valables toutes les conclusions
du Théorème 1. En particulier la représentation (3.8) peut être employée.
En faisant usage de la notation (3.9) et de la définition de la suite {dv}, on
obtient

r
-T.

Posons

(7.6)

«¦

et
S,

Les sommes <r, apparaissent explicitement au second membre de (7.6), quant
aux sommes .S,, elles s'introduisent dans nos calculs de la manière suivante.

Partons de l'inégalité

valable pour | w \ < 1. En supposant | dv \ > R^ on tire de (7.2) et (7.3)

T T 1

< (78)

ce qui permet de passer de (7.7) à

log
\dv\>Rj

La seconde des inégalités (3.4) assure la convergence des séries ]£l et
entraîne aussi

on (m\ ]M (m\
(7.10)Ul Ul

La convergence de la série double au second membre de (7.9) résultera de
la suite de nos calculs.

Afin d'estimer les sommes at faisons usage des relations (2.5) où il faut
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remplacer n (u) par n (u) — \ h |. En intégrant par parties, il vient

De même, (2.5) et (7.10) donnent

00

Ei âZ f-^rdu (l p + l,p + 2, (7.12)

Posons

1 - B0(p +1){1+ log (p + 1)} '

dès que u excédera une borne convenable uOi on aura, en vertu de l'hypothèse

(7.1)
N{u)<r1T{u), (7.13)

ainsi qu'une inégalité analogue à (5.12):

n(u) <(p + V^Tiocu) (7.14)
Posons

rx max {u0, v0, r0}

(où v0 et r0 sont les bornes qui apparaissent dans l'énoncé du Théorème 1) puis

ri^ (1=1,2,Z,...,

De (7.11), (7.13) et (7.14), on tire d'abord

%x —^- + lxx J -^f du {B,

riri
puis, en vertu de (3.13)

On peut encore transformer le second membre de cette inégalité en faisant

usage de (3.6); il vient
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En tenant compte de (7.2) et (7.3), l'inégalité (7.15) entraîne

que l'on peut manifestement remplacer par

ÏV' ^ PÊ13lrl + B2(p + 1) log (p + l)rxT(r) (7.16)

Un calcul tout pareil permettra d'évaluer le second membre de (7.9). De

(7.12), (7.13), (3.14) et (3.6), on tire

x.

puis, en vertu de la seconde des inégalités (7.8)

i r> v, < 2e*AtrlT(r) S (4" + (P + *) ~

En revenant à (7.9), on voit que

log 1) log (p + l)xxT(r) (7.17)

En combinant (7.6), (7.16) et (7.17), on obtient

| H(z) | ^ (B2 + Bz) (p + 1) log (p + \)x1T(r) + O(r^+ log r) (r -> oo) •

En remplaçant B2 + Bz par B0(>B2 + J53), on peut omettre le terme
O(rp~x -f log r), puisque, par hypothèse, Tordre inférieur de f(z) est au moins
égal à p — |(^ |).

En revenant à la définition de xl9 on obtient (7.5) pourvu que r soit
suffisamment grand. Le Lemme 3 est ainsi démontré.

8. Conséquences du lemme de M. H. Cartaii

Lemme 4. Remplaçons l'hypothèse (7.1) par Vhypothèse plus restrictive

e
K(f)<

B0(p + 1) log (p + 1) + B^p + 1) log 1^1

/ 1 \
(8.1)
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et laissons inchangées les notations et les autres hypothèses du Lemme 3.
Considérons les couronnes Fj définies par (7.2).

A tout entier j suffisamment grand, on peut attacher un ensemble exceptionnel
Ei tel que

entraîne

log
io77jl-^)

77 (1--Ï-
IM<iî

<eT(r) {R R, <x'+2). (8.2)

L'ensemble E3 peut-être enfermé dans un nombre fini de disques, dont la somme
des rayons n'excède pas 4eô(x?+2.

Dans le cas particulier des fonctions entières, Vinégalité

log 77 1 (8.3)

est valable dans toute la couronne
Démonstration. Posons

T9

B0(P + 1) log (p + 1) + #i(P + 1) 10g (-y)
'

le choix de Bx ^ J50) sera précisé plus loin.
Dès que u excédera une borne convenable, on aura, en vertu de (8.1)

N(u) < r2T(u)

n(u)<t2(p+

(8.4)
ainsi que l'inégalité

(8.5)
analogue à (5.12).

En tenant compte de (8.4), (8.5) et des définitions de R et oc, on obtient
d'abord

log

+ (P + l)r2T((xR) log (1 + (X2) (8.6)

Comme nous l'avons vu plusieurs fois, on peut, grâce à (3.6), remplacer
(8.6) par

(8.7)log

En choisissant Bx au moins égal à54,on obtient (8.3).
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En vertu du lemme bien connu de M. H. Cabtan, on a

- log | n (z-bv)\^~ n(R, oo) log (ÔR) (8.8)

sauf, peut-être, si z appartient à un ensemble exceptionnel, formé d'un nombre
fini de disques dont la somme des rayons est au plus égale à 2eôR. Ne
considérons que la portion E^ de cet ensemble située dans la couronne F3.

De même, en partant de

- log | n (z ~ av) | £ - n(R, 0) log (ÔR)

au lieu de (8.8), on définira un ensemble exceptionnel E'f et Ton prendra

Hj j Ëi
y -f- Jhj j

Si r n rt \

l'inégalité (8.8) est valable et, par conséquent,

1
log log|6J-n(jB,oo)loglî

n (i-f)
- N(B, oo) + n(R, oo) log(i-j ^ n(R, oo)

o)log

Puis, en vertu de (8.5) et (3.6)
1

log

Enfin, en combinant (8.7) et (8.9), il vient

n (i—l"

(8.9)

n (i~
SS (Bt + B6) (p + l)r2T(r) logi-jr),log

et cette inégalité est encore vraie si l'on change le signe de son premier membre.

En prenant
Bx ^ S* + B5

on obtient (8.2).

Posons

9. Un lemme résumant les résultats précédents

c(*t) c$ (7=1,2,3,...).
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De (3.10), on déduit

\e(B,)-cf\<e\e,\ {B, «'+«), (9.1)
ainsi que

I e(r) | < (1 + «) | c, | ^ 2 | Ci | («,^r<«'+i). (9.2)

En combinant (7.4), (8.2) et (9.1), on obtient

| log | f(z) | - 5Rc)2" | <2sT(r) + e\c,\r', (9.3)
pourvu que

et que j soit suffisamment grand.
On peut encore transformer le second membre de (9.3). En effet, de (3.11)

et (9.2), on déduit 2
T(r)< — \ c(r) | r* < — \ c3 \ rp (9.4)

71 71

Nous venons ainsi de démontrer le

Lemme 5. Laissons inchangées les hypothèses et les notations du Lemme 4.

Il existe alors une suite {cs} telle que

I l°g I f(z) I — 9tc,zp | < 4 e | c3 | ?p (9.5)
pourvu que „ze {r3 — E3},

et que j soit suffisamment grand.
Dans le cas dune fonction entière, on a

log | f(z) | < 9ic,z* + 4 e | c}\ r* (9.6)

dans toute la couronne F3 (j > j0).

10. Démonstration de l'existence de chemins asymptotiques
dans le cas des fonctions entières et réelles

La fonction f(z) étant réelle, il en est de même de la quantité c(r) définie

par (3.9). Les termes de la suite {c3} sont donc réels. D'autre part, en vertu
de (3.10), iiiet, par conséquent,

pourvu que j soit assez grand. Les quantités c^ sont donc toutes de même

signe pour j > j0; supposons ^ <Q
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Fixons les valeurs des paramètres s et <5 ; nous choisirons

£-JL 3- 1

16 ' (p + l)a '

de sorte que tous nos raisonnements seront valables dès que

K{f)< U(B0 + 2Bl)(p+l)]Og(p+l)- (10'2)

Considérons le secteur _

Si z appartient à ce secteur et si \z\ est suffisamment grand, on aura,
en vertu de (10.1) et de (9.6)

log|/(«)|< - il cjr», (10.3)

que Ton peut transformer grâce à (9.4):

| f(z) | < e~^TW

Manifestement, cette dernière inégalité reste valable si Ton remplace z par

ze v Nos raisonnements prouvent donc l'existence de p secteurs dans
lesquels on peut choisir les chemins asymptotiques de détermination 0. Observons

encore que si Ton avait c^>0, au lieu de (10.1), l'inégalité (10.3)
serait encore valable dans le secteur

7t 71

p
ainsi que dans les secteurs qui s'en déduisent par des rotations convenables

autour de l'origine.
Le § 11 de ce travail sera consacré à la construction de chemins asymptotiques,

dans le cas général de fonctions méromorphes qui ne sont pas nécessairement

réelles.
L'existence de tels chemins se démontre par une méthode qui n'est, au fond,

pas différente de celle que nous venons d'exposer. La complication des détails
provient de ce que les quantités cj ne sont plus alignées et aussi de ce que les

chemins asymptotiques doivent éviter les ensembles exceptionnels Ei.

11. Démonstration du Théorème 2

Nous prendrons, dans l'hypothèse (8.1) du Lemme 4,
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et

Les couronnes /^ et J^ ont en commun la couronne

d'épaisseur I>i :

i()2(j>+1) (11.3)

Désignons par
O0") o(i) M)

les rayons des disques qui recouvrent Er En vertu du Lemme 5 et de (11.1)
on a 2 ji

Observons en outre que les centres de ces disques sont à une distance de

l'origine au moins égale à Aj :

Vus de l'origine, ces disques sous-tendent des angles dont la somme n'ex-
cède pas S,: U)

S, <,2 v arcsinpf- <>-—- EQa) ^ STte^ô (11.6)

La somme des diamètres des disques recouvrant Ei + £i_1 est L^ :

Z,, 2Eq(P + 2Eq(J~1) < 16e2ô^' (11.7)
V V

En vertu de (11.1), (11.3) et (11.7), on a

Lt<Dit
et, par conséquent, il est possible de trouver un rayon rj tel que

oà ^^<^'+4, (11.8)
et tel que la circonférence ^1^1 ^, (11.9)

ne coupe pas l'ensemble Ei + Et_x.
Considérons maintenant les nombres c§ :

c, | e, | eS- (Cj ^ 0)

que Ton peut, en vertu du Lemme 5, attacher aux couronnes 7^. D'après ce

qui précède, l'inégalité (9.5) sera valable sur toute la circonférence (11.9).
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De plus, l'inégalité obtenue en remplaçant, dans (9.5), j par j —- 1 sera également

valable.
Les conditions

z € F,, cos (pd + a),) > | (z reie) (11.10)

définissent p secteurs de Fi que nous désignerons par

et que nous nommerons les «secteurs de grand module». Chacun de ces

secteurs est d'ouverture ^r—dp
Définissons de même des « secteurs de petit module » par les conditions

z*rj9 cos(p6+ û>,)< -J, (11.11)
et désignons-les par

En vertu du Lemme 5, on aura (puisque s ^ — J

Iog\f(z)\>l\cj\r* (ztZt-Ei); (11.12)
de même

l°g|/(*)|<-iK|r* (Z€os-Et). (11.13)

En tenant compte de (9.4), on peut encore transformer ces inégalités; on
obtient

log I f(z) | > ~T(r) (ze^-E,), (11.14)

et
log | f(z) | < - j-T(r) (z*o,-Et). (11.15)

L'ouverture totale des secteurs J£> et ai est -— et il faut donc qu'il y ait
o

empiétement des secteurs de rang j et des secteurs de rang j — 1. Il ne saurait

y avoir empiétement d'un a^x et d'un J£^, ou d'un as et d'un ,£*_i,
puisqu'on pourrait alors trouver un point de la circonférence (11.9) pour
lequel les inégalités (11.14) et (11.15) se contradiraient.

Il faut donc que tout J£,-_i empiète sur un, et un seul, ^ et tout g^x sur
un, et un seul or Ceci nous permet, en partant d'un secteur £JQ, de
construire une chaîne

• • • -£/> ^+1> * • • (11.16)

de secteurs, s'étendant à l'infini, et telle que chacun de ses termes empiète
sur le suivant.
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Nous allons maintenant construire un chemin continu </?, s'étendant à Tin-
fini, ne quittant jamais (11.16), et tel que, tout au long de jC, l'inégalité (11.14)
soit constamment satisfaite.

Considérons un rayon issu de l'origine, défini par son équation polaire

6 0.
Soient Pi son point d'intersection avec la circonférence (11.9) et Qi+l son

point d'intersection avec la circonférence

z r3+1

En vertu de (11.6) et (11.1), on a

et l'on peut, en choisissant convenablement /?, s'arranger en sorte que le
segment PjQ}+1 soit dans le secteur ^ (de la chaîne (11.16)) et évite l'ensemble
E* formé par E^ et par les (2p — 1) ensembles obtenus par des rotations de

E$, autour de l'origine, d'angles

kj (fc= 1,2,3, (2p-l)).
Le chemin «Z'sera obtenu en joignant les segments rectilignes P^+i (j jOi

j0 + 1,... par les arcs de circonférence QJ+1PJ+1 (j j0, j0 + 1, j0 + 2,...)
(choisis de manière à ne pas quitter (11.16)). Le long d'un arc Q}P,, l'une
ou l'autre des inégalités

doit être satisfaite. Dans un cas, comme dans l'autre, on obtient (11.14).
Il est donc clair que l'inégalité (11.14) sera satisfaite tout au long de J3.

En outre, comme nous avons pris la précaution d'éviter E* (et non pas seulement

Ej), une rotation de *C, autour de l'origine, d'angle —, transformera le

chemin J3 en un chemin *C{1) situé tout entier dans une chaîne de secteurs de

petit module, et évitant les ensembles exceptionnels E5. L'inégalité (11.15)
sera donc satisfaite tout au long de J3(1). On peut évidemment, par de
nouvelles rotations, passer d'un chemin caractérisé par l'une des inégalités (11.14)
ou (11.15), à un chemin caractérisé par l'autre inégalité.

Estimons encore la longueur s} de la portion de J3 située entre Pi et Pj+1.
On a manifestement

s, < {x
+^ - «>) + |^V + * < 16*'
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et, par conséquent, la portion de jC située dans la couronne Fi a une longueur
inférieure à

16(oc*-1 + oô + <%'+1) < 16(2 + e)a*

Nous venons ainsi d'achever la démonstration du Théorème 2. En effet,
il suffit, pour que toutes nos constructions et inégalités soient valables, que

K(f) satisfasse à (8.1) avec le choix de à indiqué par (11.1) et e g -—
1

On peut évidemment prendre e —- ; dans ces conditions, en choisissant

convenablement O0, la condition à satisfaire peut être mise sous la forme
(3.20). L'énoncé complémentaire relatif aux fonctions entières et réelles a été
démontré au § 10.

12. Démonstration du Théorème 3

Notre démonstration repose sur le Théorème 2 ainsi que sur l'emploi
systématique du lemme suivant, implicitement contenu dans les travaux de M.
R. Nevanlikna.

Lemme 6. Soient f(z) une fonction méromorphe, z1,z2,
complexes, finis et distincts. On a toujours

1

zQ des nombres

1 1

ou

log 3

0 < rj ^ 1 rj ^ min | zk — zh \

kzth

(12.1)

Démonstration. Si q 1, l'inégalité est évidente et il n'y a rien à démontrer

; nous supposerons donc q ^ 2.
Soit Ek l'ensemble des points tels que

l/(*)-**l<-^ (*=1,2, ...gr).

Les raisonnements de M. Nevanlinna [4; p. 64] montrent que z e Ek entraîne

/(*) +
Zc +... /(*) - 2,

+ log 3

Mais, en tout point de

1/(2) -Z*l>^
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et par conséquent

Q + 1

H») - ** /(«)-*! log3

En vertu de la symétrie des deux membres de cette inégalité, elle reste
valable en tout point de Et + Ei -J- -\- Eq ; pour de tels points, l'inégalité
(12.1) est donc vérifiée.

Pour z i {Et + E3 + + Eq) on aura

I Hz) - *» I 2=

et, par conséquent, q +

JL
2q

1

=l,2, ...q),

f{z)-z
ce qui entraîne encore (12.1) et complète la démonstration du Lemme 6.

P°SOnS
H(z)=(Hz)-z1)(f{z)-za)...(Hz)-z,),

et observons que

log
1

¦ + ¦
l

f(z)-Zl ' f(z)-z. ¦+ ¦¦¦ + H'(z)
H(z)

(12.2)

,+ 1

I/'<*)! *

En combinant l'inégalité (12.2), le Lemme 6 et les propriétés fondamentales

de la dérivée logarithmique, on obtient le

Lemme 7. Soient f(z) une fonction méromorphe d'ordre fini et E(r) un
ensemble de valeurs de 6 appartenant à Vintervalle

0 ^ 6 ^ 2tz

L'ensemble E(r), qui peut varier avec r, sera supposé mesurable.
On a toujours, quels que soient les nombres

finis et distincts

f(re*°) - zk
0(log'

E(r)

En prenant, dans le Lemme 7,

E(r) [0,
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on obtient une inégalité importante signalée par Ullrich [9; p. 207] :

f(z)
!_

Comme nous l'avons montré ailleurs [1], de l'inégalité (12.4) et de l'inégalité

élémentaire [4; p. 104]

T{r, /') ^ T(r, f) + N(r, f) + 0(log r) (r -~> oo)

on tire aisément la conclusion suivante :

Si f(z) est une fonction méromorphe d'ordre fini, et si

3(oo,/)>l-y, Sd(T,f)>l-y (0<y<l),
on a aussi

En supposant O0> 2, la définition (3.23) donne y < | et, en vertu des

hypothèses (3.24) et de (12.5)

pourvu que l'on ait choisi ft
O0 > -Ç Co

En outre, en posant
rp (r\ __ m/r ff\

on a
(1 - y)T(r) £ Tx{r) ^ (1 + y)T(r) (T(r) T(r, f)) (12.7)

dès que r est suffisamment grand.
Ces dernières inégalités montrent que l'ordre inférieur de /' (z) coïncide avec

l'ordre inférieur de f(z). Toutes les hypothèses du Théorème 2 se trouvent
donc vérifiées pour la fonction f(z) et l'on peut affirmer l'existence de p
chemins

JJ(1), *Ci3), *C{5), (12.8)
le long desquels n

\f(z)\<e-"Tl{r). (12.9)

Désignons par *G l'un quelconque de ces chemins et soit z* un de ses points.
Considérons ^

$=: f(z*) + $ ff(Ç)dÇ (12.10)
2*
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l'intégrale étant prise le long de JJ. Supposons
i

^m <r I ?* I ^ /ym+1 //y p P+l \ (19 ]ï\

en vertu de (12.9), (12.10), (12.11) et du Théorème 2, on obtient

(12.12)
La série au second membre de (12.12) converge puisque Tordre inférieur de

/' (z) étant au moins égal à p — |, on a

Tt(<xn) > oc^-i-rt (p^i}ri>0)f
dès que n est suffisamment grand.

De plus, nos raisonnements montrent que f(z*) -+ p quand 2* -> oo le

long de <£. Les p chemins asymptotiques qui composent la suite (12.8) sont
donc des chemins asymptotiques de la fonction f(z); ils déterminent «(^1)
valeurs asymptotiques distinctes et finies :

/?!,&,&, ...,&. (12.13)

Nous nous proposons maintenant de démontrer les inégalités
8

1 — y — 235e ^E â(Pk) (12.14)

— _y -578s ^ â(pk) (k 1,2,3, s) (12.15)

où y est défini par (3.23).
Soit

la suite formée par toutes les valeurs déficientes, finies de /(z). Eliminons de

cette suite, s'il y a lieu, toutes les valeurs asymptotiques (12.13), et soit

la suite restante. En vertu de nos hypothèses,
00 8 00

Montrons d'abord que ^
(12.17)

Choisissons 5 tel que «,

X ^(Zv)<^ (12.18)
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En vertu de l'hypothèse Co ^ Ao, (12.6) entraîne

ce qui montre que le Théorème 1 s'applique à la fonction f'(z). Il en est de
même des Lemmes 4 et 5, à condition de choisir convenablement les
paramètres s et ô qui apparaissent dans leurs énoncés. Nous prendrons, comme
au §11,

ô= (p+ 1)-". (12.19)

Quant à s, il a la même signification que dans le calcul présent ; nous
supposerons

—, (12.20)

ce qui est nécessaire par la suite. En choisissant la constante numérique OQ

suffisamment grande, on aura encore

K(f)< (BQ+

et cette condition est suffisante pour permettre l'application des Lemmes 4
et 5 à f'(z), avec ô défini par (12.19).

On peut alors, comme nous l'avons montré au § 11, associer à f'(z) une
suite {f}} et une suite {c^} telles que sur toute circonférence

on ait
I log | /'(«) | - I c, | #? cos(p0 + ai,) | < 4e | c, | tf (12.21)

En vertu de (3.11) et (3.6), on a encore

(«0l _ Kl <(1 _ £)-1 (12.22))p
Associons au rayon ri un ensemble -B(r^), de valeurs de 0, défini par

cos (pO + a>i) ^ — 5e (12.23)

Considérons aussi l'ensemble complémentaire E* (r^), de valeurs de 0, telles

que
cos (p6 + o)j) < — 5e (12.24)

Lemnie 8. Soient
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des nombres complexes, finis et distincts. On a

dès que j est suffisamment grand.

Démonstration. De (12.21), (12.22) et (12.23), on tire

log
l < 9e | c,\ r» < Z§7teTx{r3) (s < \) (12.26)

et l'inégalité (12.25) résulte immédiatement du Lemme 7.

Considérons maintenant l'ensemble E* (rô). Il est manifestement composé
de p intervalles disjoints que nous désignerons par

T(3) T(i) TO)
1 2 ' * * ' p '

quand 6 parcourt/^, r3ete parcourt un arc S¥^ de la circonférence |z|=r,.
Nous engendrons ainsi p arcs disjoints

J/JT^ 3[^ S%^ (12 27)

Considérons l'un des chemins asymptotiques de la suite (12.8) et soit

lim f(z) /?!

II est clair qu'il existe toujours un point zls commun à *C{1) et à l'un des

arcs (12.27) puisque, le long de JJ(1\

alors qu'en un point d'argument appartenant à E(r,), on a, en vertu de

(12.20)et de (12.26)

On peut donc, par une numérotation convenable des arcs 5?{i)9 s'arranger
en sorte que Sjt£ et JC{X) aient en commun le point zu, pour tout j
suffisamment grand.

En vertu de (12.21) et (12.24), on a

\f'(z)\ <e~ElCjlr* (12.28)

sur tout Tare SZf^, et par conséquent,

I/W -/(««) I I Sf(C)dC\ <Lnr3e-Ae^r* (12.29)

19 Coinmentarii Mathematici Helvetici
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°r' lim f(zu) &
J->00

et, en vertu de (12.29)
lim f(z) & (\z\ rt)

uniformément sur chacun des arcs ^
Ces raisonnements sont évidemment valables pour chacune des valeurs

asymptotiques, et l'on voit que chacune de ces valeurs est approchée
uniformément par f(z) sur un ou plusieurs des arcs 32^.

Il est désormais facile de démontrer l'inégalité suivante :

\ r +

f(r,e'9) - log— (î>h) (12.30)

n min | 0fc - Xh

En efFet, pour j suffisamment grand, on aura, sur tous les arcs

I/(*)-*»!> Y'
ce qui entraîne manifestement (12.30).

En rapprochant cette dernière inégalité de (12.25), et en posant zh %h,

il vient

et, par conséquent, en tenant compte de (12.7),

Q / Vt Q

M V TL U ^ X' MISL U ^ X' MIS rp)U

^21 lim VTL"Ty

L'inégalité (12.17) résulte de (12.18) et (12.31); en revenant à (12.16), on
obtient (12.14).

La démonstration de (12.15) repose sur le même principe, mais il faut
examiner de plus près l'ensemble E* (r^). L'ensemble des arguments des points
de tous les arcs £2T(7) sur lesquels f(z) tend vers /9t sera désigné par J5*(r^).
Le complément de Et(rj) Par rapport à i?*^) sera désigné par F* (r^).
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Les raisonnements qui démontrent (12.30) donnent maintenant

1* 1 C +

t=2 *n J
dO 0(1)
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(12.32)

alors que le Lemme 7 entraîne

1* 1 C +

£* /log r,) (?-»oo).

(12.33)

L'intégrale au second membre de cette inégalité peut se calculer en revenant
à (12.21) qui, pour 0 c.0*(r,), donne

log
1

< - f* cos (pO + a>t) + 4s | c, | rj> (| z [ r,)

puis

- 1) cos 4e | c, | r'
(12.34)

Manifestement *
1 r v— 1 ÇV / 1 \ 1

r— / (—l)cos(pd + (od)d6<^~: / cos(a)p)da)= 1 )—, (12.35)In J v ; VjP ^ i} 2n J Ff \ pj n

et en combinant (12.22), (12.34) et (12.35)

(12.36)

De (12.32), (12.33) et (12.36), on tire

8 i r +

aSj 2jt J
1

r,) + r,) (12.37)

pourvu que soit suffisamment grand.
D'autre part, en vertu du Lemme 8

8 i r +

^ Tï / log
jb=2 &n J

dd< (12.38)

19*
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En combinant (12.37) et (12.38), il vient

et, en tenant compte de (12.7)

im) i lim y'i-P*l^ll-±
ifc=2 i=2r->oo 1 Vf \ V

< 1 - — + 343e
V

Cette inégalité, rapprochée de (12.14), donnera (12.15) pour h 1. Nos
raisonnements s'appliquent évidemment à l'une quelconque des valeurs fi;
l'inégalité (12.15) est donc démontrée en général. Les inégalités (12.14) et
(12.15) entraînent manifestement (3.25) et (3.26); le Théorème 3 est ainsi
complètement démontré.

13. Démonstration du Théorème 4

La fonction f(z) étant entière, l'hypothèse (3.29) entraîne

<5(oo)= 1, Zô(r)>l-y, (13.1)
T^foo

où y est défini par (3.23). Les conditions (13.1) étant vérifiées, il en est de
même des conditions (3.24) et, comme nous l'avons remarqué au § 12, les

Théorèmes 1 et 2 et le Lemme 5 s'appliquent à la fonction /' (z). Posons

Les densités supérieure et inférieure des coefficients de g (z) sont
respectivement égales aux densités supérieure et inférieure des coefficients de g(z)
et il suffit évidemment de démontrer que le développement de g(z) jouit des

propriétés indiquées dans l'énoncé du Théorème 4.

Notre démonstration suivra de près l'une des démonstrations de MM. Pflu-
geb et Pôlya [6; pages 154-155].

Désignons par p l'entier le plus proche de A et considérons la suite

9k, 9ic+p> 9ic+2p> • • • (0 ^ i < p) (13.2)

Nous démontrerons que e 0 < e < — étant donné, l'inégalité

K(a)< - (13.3)(9) C(p+l){l + log(p+l)}
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(qui est équivalente à (12.6)) entraîne la conséquence suivante: si l'un des

termes de la suite (13.2) n'est pas nul, la densité inférieure de cette suite est

au moins égale à
1 - 30 s

Posons 2 ni
a) e *

on sait que

g (g) + (Q-kg((oz) + co-2kg(coH) + + Q)-<*-1)kg(a>>-1z)
~~

pzk

(le 0,1, 2, (p- 1)). (13.4)

En vertu de l'inégalité (9.6) du Lemme 5,

| g(z)e-c>zP | < e4eM'p (c, ^ 0) (13.5)

pourvu que z e Fi et que j soit suffisamment grand.
Nous poserons

£ c,z*,\ f| =£,

et nous établirons quelques inégalités valables dans la couronne F* définie par :

| c, | oÔv ^ R < | ci |
oS* + $ p (13.6)

Considérons le développement

fi\ç,)& h 2l, —r s j \io. i)

en vertu de (13.4) et (13.5), on a

et, par conséquent,
ijJ-JB^<c*«*. (13.8)

De (13.7), on tire aussi

lK £ —pT (w 0, 1,2,3, ...)> (13.9)

et en introduisant les polynômes

?«(«) ïo + si«(2-l)(2-2),..(2-»+l) (m 0, 1,2,
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les relations (13.9) peuvent être mises sous la forme

hn Vmy> (n 0, 1,2,3, ...; m ^n) (13.10)

Prenons
m

où le symbole [ ] désigne la partie entière, et observons que pour

les inégalités (13.8) entraînent

i ^ R

\<pn{z)\ ^{m + l)e*'R ^ SeleR (R è Bo) (13.11)

Désignons par A (t) le nombre de termes de la suite

qui sont nuls et dont l'indice n'excède pas t. Il est évident, en vertu de (13.10),
que A (t) ne peut excéder le nombre de zéros, situés dans le disque \z\ ^ t,
de l'un quelconque des polynômes <pm(z) dont l'indice est supérieur à t.

Si l'un des termes de (13.2) n'est pas nul, on aura <pm(z) fé 0, pourvu que
m soit suffisamment grand. Ne considérons désormais que ce cas ; supposons
même

restriction dont on se débarasse aisément. On peut alors, grâce à (13.11) et
à la formule de Jensen, obtenir une borne supérieure de A (t) :

/T>\ /Q\ /*^i'j i \ / ï?a(4W(4)^ f l ?m{z)) *<iogjf(*,
(13.12)

Ce résultat, pour être valable, exige que £ appartienne à la couronne (13.6) ;

ceci sera certainement le cas si | £ | est suffisamment grand. En effet, nous
avons déjà supposé

J_
30 'Coè

par conséquent, (13.3) entraîne

K{g)
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On peut donc appliquer le Théorème 1 à la fonction g(z); en observant
encore que \ v v

3Ô<C —e ~°C '

l'inégalité (3.10) du Théorème 1 donne

c(«0 !<«"« |c,|

ce qui montre bien que F* et F*+1 empiètent dès que j est suffisamment
grand. D'autre part, les couronnes F* s'étendent à l'infini puisqu'en vertu
de (3.11)

UT

En passant à la limite R -> oo, (13.12) entraîne

$>0 t

et, par conséquent, la densité inférieure de la suite (13.2) est au moins égale
à 1 - 30e.

Nos raisonnements s'appliquent à chacune des suites (13.2) obtenues en
donnant à k les valeurs 0, 1, 2, (p — 1). Le Théorème 4 résulte
immédiatement de ce fait et de quelques propriétés évidentes des densités.
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