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Zur isodiametrischen und isoperimetrischen Ungleichung
in der Relativgeometrie?)

WiLaerm Stss zum Gedenken

von WoLDEMAR BARTHEL, Saarbriicken

Einleitung

Fiir den euklidischen Raum bewies BIEBERBACH [2] mittels Symmetrisie-
rung zuerst, dafl unter allen konvexen Korpern gegebenen Durchmessers die
Kugel das groite Volumen hat?). Weitere Beweise hierfiir sind in Abschéitzun-
gen enthalten, die Urysonwn [15], Stss [14] und BoNNESEN-FENCHEL [4]
S. 109/110 iiber Volumen und mittlere Breite, KuBora [12]3) iiber Quermaf-
integrale und Durchmesser sowie ErRHARD ScHMIDT [13] S. 86/87 iiber Volu-
mina und Maximalentfernung zweier Mengen durchgefiihrt haben. Ein neuerer
Beweis findet sich bei Hapwicer [10] S. 173. Fiir eine symmetrische Min-
KOwWSKI-Metrik gab schlieBlich Busemann [5] S. 243-246 einen ziemlich um-
fangreichen Beweis der «isodiametrischen Ungleichung», der allerdings keine
Diskussion des Gleichheitszeichens enthédlt. Wir wollen hier die ScaMIDTsche
Idee wieder aufgreifen und dem Spiegeltheorem des BRUNN-MiNnkOWsKIschen
Satzes ein Aquivalent zur Seite stellen, aus dem die isodiametrische Unglei-
chung mit vollstindiger Gleichheitsbedingung fiir eine Minkowski-Metrik
folgt. Daraus erkennt man, dall be: symmetrischer Minrowskr-Metrik unter
allen kompakten Mengen gegebenen Durchmessers gemau jene das grifte n-
dimensionale Map hat, welche zum Eichkorper homothetisch ist.

Eine unmittelbare Folgerung der BRUNN-MINKOWSKIschen Ungleichung ist
die isoperimetrische Ungleichung fiir die dufere MiNkOWSKI-Oberfliche. Nicht
trivial ist allerdings die Gleichheitsbedingung, welche sich bekanntlich nicht
aus der des BRuNN-MinkowsKischen Satzes herleiten 148t. Fiir den euklidi-
schen Raum wurde der erste symmetrisierungsfreie Beweis der isoperimetri-
schen Ungleichung mit erschopfender Gleichheitsdiskussion von DingHAS [7]
erbracht. An die einfachere Fassung von DiNneHAS-ScHMIDT [8] ankniipfend,
gab dann BUSEMANN [6] einen vollstéindigen Beweis der isoperimetrischen Un-
gleichung beziiglich eines konvexen Eichkorpers. Die isoperimetrische Unglei-
chung beziiglich eines beliebigen kompakten Eichkérpers bewies HADWIGER [9]

1) Vorliegende Abhandlung umfa@t einen zweiten Teil der Habilitationsschrift, die der Natur-
wissenschaftlich-mathematischen Fakultat der Universitit Freiburg i.Br. am 14.Juni 1957 vor-
gelegt wurde.

%) Vgl. auch BrascuekE [3] S. 122-123 und BoNNESEN-FENCHEL [4] S. 76.

3) Vgl. BoNnNESEN-FENCHEL [4] S. 107.
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mittels Symmetrisierung, ohne jedoch die Gleichheit zu diskutieren. In einer
neueren Arbeit 16sten HADWIGER und OHMANN [11] dieses allgemeine Pro-
blem einschlieBlich der Gleichheitsbedingung mit mengengeometrischen Me-
thoden. Dieser Beweis ist auch bei HApwigEeR [10] Kap. 5 aufgenommen.

Wie bereits E. ScamMipT [13] S. 153 und HADWIGER [9] bemerkten, gilt auch fiir
die innere Minkowsgk1-Oberfliche eine isoperimetrische Ungleichung. Sie folgt
unmittelbar aus dem Spiegeltheorem zum BrUNN-Minkowskischen Satz. Die
bisher noch nicht behandelte Frage nach dem Eintreten des Gleichheitszeichens
in dieser isoperimetrischen Ungleichung soll hier untersucht werden. Dabei
zeigt sich, dal unter allen kompakten Mengen gegebener innerer MinkowSEI-
scher Relativ-Oberfliche genau jene maximales n-dimensionales Maf besitzen, fiir
die eine mafgleiche Teilmenge homothetisch zu dem am Ursprung gespriegelten
Eichkdrper ist. Man gewinnt also eine etwas einfachere Bedingung als im Fall
der dulleren MinkowsKkischen Relativ-Oberfliche. Der Beweis ist jedoch we-
sentlich komplizierter, weil in ihm statt des BRUNN-MINKOWSKIschen Satzes
dessen Spiegeltheorem fiir n» — 1 Dimensionen benétigt wird. Die Anwen-
dung des Spiegeltheorems, welche in gewissem Sinn einer Extrapolation gleich-
kommt, ist aber nicht in dem gewiinschten Umfang mdglich, was eine Reihe
zusitzlicher Abschitzungen erforderlich macht. Umgekehrt folgt aus der
Gleichheitsbedingung fiir die isoperimetrische Ungleichung der inneren MiN-
rowsKischen Relativ-Oberflache natiirlich wieder die des Spiegeltheorems zum
BrunN-MiNnkKOWSKIschen Satz.

1. Minkowskische Linearkombinationen

In einem n-dimensionalen affinen Raum R, (n > 1) sei ein Punkt O aus-
gezeichnet als Bezugspunkt fiir die Minkowskischen Linearkombinationen
xRy + BKR; von nicht-leeren Mengen ], und K], mit Koeffizienten, die nicht
beide negativ sind. Fiir das Rechnen mit MiNkowsKIschen Linearkombina-
tionen verweisen wir auf BONNESEN-FENCHEL [4] und vor allem HAbwiGER [9].
Wir wollen hier nur die in diesem Zusammenhang benutzten Definitionen und
Sitze wiedergeben, wobei ein beliebiges affines Koordinatensystem mit dem
Ursprung O zugrunde gelegt werde.

Definition der Multiplikation und Spiegelung:

Fiir eine nicht-leere Menge R ¢ R, und eine Zahl « > O setzen wir
def def

aft = {(xa") | (@) e K},  K* = {(—2")[(27) e K}.

Definition der Mivrowskrschen Addition und Subtraktion:

Fiir zwei nicht-leere Mengen K, ¢ R,, (¢ = 0; 1), sei
def

Ko + K = {(a5 + 21) | () e K},
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def

K — K = {(z7)| fiir jedes (2]) e K1 ¥ (2" + 27) € K¢}
= {P|P+R1CRo}.

Satz von BRUNN-MINKOWSKI:
Fur eine nicht-leere kompakte Menge K und einen konvexen Korper K, mit
| K[, >0 ast 1 1 1

| Ko+ Ku X =K1 + K2
Dabes steht das Gleichheitszeichen genau dann, wenn K, und K, homothetisch sind.

Spiegeltheorem zum Brunn-Mivrowskischen Satz*):

Fiir eine nicht-leere kompakte Menge K, und einen konvexen Korper R, mit
| R |, > 0 st bes nicht-leerer Mingowskischer Differenz

1 1 1

| Ko — Ku P <IRI? — 1R 1" .

Dabei steht das Gleichheitszeichen genau dann, wenn etne mafgleiche Teilmenge
von K, homothetisch zu K, ust.

9. Isodiametrische Ungleichung fiir eine MinkowsKki-Metrik

Im R, werde ein konvexer Korper € von positivem Maf3, der den Ursprung
O im Innern enthilt, als Hichfigur ausgezeichnet. Jede Menge, die aus § bzw.
€* durch Homothetie und Translation hervorgeht, soll als Kugel bzw. gespie-
gelte Kugel und das Bild von O unter dieser Abbildung als deren Zentrum °)
bezeichnet werden. Die Eichfigur erlaubt nun, im R, eine (nicht notwendig
symmetrische) MINKOWSKI-Metrik einzufiihren.

Definition. Die Entfernung eines Punktes P, von einem Punkt P, ist
0(Py, Py) Zinf {r | Py e Py + rG) .
Fiir nicht-leere Mengen sei die Maximalentfernung®) der Menge K, von K],
d(Ro, R) = sup {o(Po, Py) | Py € Ko, Py € R}
und der Durchmesser der Menge &
def

d(R) =d(], R) .

Mittels dieser Ma3bestimmung konnen wir dem fiir konvexe Korper giiltigen

4) Vgl. etwa unsere Note [1].
§) Dies wollen wir auch dann tun, wenn € nicht symmetrisch beziiglich O ist.

%) Im Falle der Kompaktheit der &; wird die Maximalentfernung von einem Punktepaar
P,, P, angenommen,
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Spiegeltheorem zum BRUNN-MINKOWSKIschen Satz eine dquivalente Aussage
zur Seite stellen, aus der unmittelbar die «isodiametrische Ungleichung» be-
ziiglich der betrachteten Metrik folgt.

Satz. Fiir zwei nicht-leere konvexe Korper Ky, &; mit | K |, > 0 gilt
1 1 1

| Ko l? + | K IF <d(Ro, K)-| E|" (2.1)

wober das Gleichheitszeichen dann und nur dann steht, wenn K, eine gespiegelte
Kugel und K, eine Kugel mit demselben Zentrum ist. Diese Ungleichung ist
dquivalent zum Spiegeltheorem des Brunn-Minrowskischen Satzes fir kon-
vexe Korper mit positivem Maf.

Bewers. Zunichst ist
r€ — K = {P|d(R, P) <r}. (2.2)

Die Menge der linken Seite besteht ndmlich aus & allen Punkten P mit

der Eigenschaft, daf fiir jedes P,e R, wegen 0P — OPo = POP folgt
PePy+ rE€, das heilt o(P,, P) < r und damit d(K,, P) <r. Umgekehrt
ist entsprechend zu schlieBen. Setzen wir jetzt r = d(K,, &), das heiBit fir
jeden Punkt P, e K, ist d(K,, P;) < r, so erhilt man aus (2.2)

R, (€ — K5 .

Insbesondere ist also r& — K% nicht leer. Diese Relation und das Spiegel-
theorem zum BRUNN-MINKOWSKIschen Satz haben dann zur Folge
1 1 1

1
| Ry <I7€— K51y <r[€ly — K1, -

Dabei erfordert das Gleichheitszeichen der zweiten Ungleichung die Homo-
thetie von | und €, nimlich

R::To@+Q v K = rC* + @*

mit ry <7 und einem beliebigen Punkt @, und die Gleichheit bei der ersten
Abschitzung

3127'@_‘5‘::(765‘“7'0(5)“Q=(r“ro)(g‘f‘Q*-

Dies ist aber gerade die Behauptung iiber &, und K;.

Beim Aquivalenzbeweis gehen wir von zwei konvexen Korpern mit posi-
tivem Maf3 aus. Einen davon wihlen wir als € und ergénzen ihn zu einer Eich-
figur; der andere werde mit & bezeichnet. Wenn nun € — & £ @ ist, folgt

nach (2.2) dR* G — R) = 1
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und damit aus (2.1) die behauptete Ungleichung

1 1 1

1€ —RIy<IGIT — R} (2.3)
Steht hierin das Gleichheitszeichen, so muf3
KRE=rC*+Q ~ KR=rC + Q*
sein mit 7 <1 und einem beliebigen Punkt . Dies hat ndmlich auch
C—R=C—7rC) —Q*=01—rCE+Q

zur Folge. Damit ist die Homothetie von & und € als Gleichheitsbedingung
fiir (2. 3) erwiesen.

Als Korollar zu diesem Aquivalent des Spiegeltheorems folgt jetzt der

Satz uber die isodiametrische Ungleichung:
Fiir jede mef3bare Menge K ¢ R, ist

1 1

21K <dR) - |E|" . (2.4)

Dabes gilt fur die Klasse der aus mehr als etnem Punkt bestehenden kompakten
Mengen das Gleichheitszeichen dann und nur dann, wenn die Eichfigur symme-
trisch (€ = €*) und K eine Kugel ist.

Beweis. Sowohl fiir eine Nullmenge als auch fiir eine unbeschrinkte mef3-
bare Menge ist die Ungleichung stets richtig. Geht man nun von einer be-
schrinkten meBbaren Menge zu ihrer abgeschlossenen Hiille iiber, so bleibt
der Durchmesser derselbe und das MaB verkleinert sich nicht. Beim Ubergang
von einer kompakten Menge zu ihrer konvexen Hiille wird der Durchmesser
wegen der Konvexitdt der Eichfigur wiederum nicht verdndert, wihrend sich
das Mal} vergroBBert, wenn die Menge noch kein konvexer Koérper war. Fiir
einen konvexen Koérper | gewinnt man die Behauptung aus dem vorigen Satz,
indem man dort &, = &; = K setzt.

Wenn auch die Symmetrie im Begriff des Durchmessers nichts anderes er-
warten lieB, so ist doch bemerkenswert, dal die in der isodiametrischen Un-
gleichung gegebene Schranke nur fiir eine symmetrische MiNkOwsKIsche Me-
trik scharf ist.

3. Isoperimetrische Ungleichung fiir eine Minkowskische Relativ-Oberfliche

Wie im vorigen Abschnitt zeichnen wir im affinen R, eine Eichfigur aus, das
heiBt einen konvexen Korper €, der den Ursprung O im Innern enthilt. Sie
gestattet uns, MinkowsKiIsche Flichenmafle einzufiihren.
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Definition. Fiir eine nicht-leere kompakte Menge K sei die dufere MIn-
rowskische Relativ-Oberfliche

|R+r®ln—lﬁloz

r

£o(R) = lim

r—> 10
und die ¢nnere Mingowskische Relativ-Oberfliche?)

L“ﬂgfﬁmAIRLf_!f—_r&*“.

r>+0
Aus dem BrunN-MiINkKOWsKIschen Satz und seinem Spiegeltheorem folgt
fir jede der beiden MinkowsKIschen Relativ-Oberflichen sofort die isoperi-
metrische Ungleichung. Allerdings erhilt man auf diesem Wege nicht die Be-
dingungen fiir die Giiltigkeit des Gleichheitszeichens, dafiir werden detaillier-
tere Abschitzungen benétigt. Um jedoch die Gleichheitsbedingungen iiber-
sichtlich formulieren zu konnen, soll zunédchst der von BusEma~nw ([6] S. 746)
stammende Begriff des wesentlichen Teiles K einer Menge & erortert werden.
Im R, werde durch Basisvektoren Y, Z,, ..., Z,_;, ein Koordinatensystem
festgelegt und jeder Punkt durch seine Koordinaten (7, 2¢) gekennzeichnet.
Mittels des Parallelstreifens
Sy = {(n,29) | v <n <w)
definieren wir nun fiir & die wesentlichen Schranken
def

5 Zsup ]| R Sl =0}, AZinf{n||KRnS7|, =0},

den wesentlichen Stiitzstreifen & (u) = GE in der (n — 1)-Richtung von

=2\ ... \Z,_; und schliellich den wesentlichen Teil
def

RET—R’“QQ(’M)

Seine Eigenschaften fassen wir zusammen in dem

Satz. Fir eine nicht-leere kompakte Menge K ist
| R =18el. () =218, [L(R) =/[(Ke) . (3.1)

) HApwiGER [9] definiert die innere MiNnkOwsKische Relativ-Oberfliche etwas anders:

|Rln— I8 —r€ln

r

lim

r>+0
Er mift also den inneren Parallelbereich von R in der zu E* gehérenden Metrik, wihrend wir
diesen inneren Parallelbereich von & im Abstand r als &uleren Parallelbereich vom Komplement
CK (beziiglich des R,) im gleichen Abstand r auffassen, wie aus der Relation

O (] — rE*) = Cg(x — re¥) (CR) = Cpg + 16 (OR)

hervorgeht. Schliellich sei noch vermerkt, da f_(f) nur dann endlich sein kann, wenn

| K |n = | K | gilt. Man hat némlich {J (R —rE*) = K°, wihrend N (R + 7€) = K = K ist.
r>0 r>0
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Beweis. Vermoge der Separabilitit existiert eine Folge u; mit ﬂ@( ) =
ﬂ S (u;). Daraus erhdlt man

und wegen |Cq (] ~ S(u,;)) |, = 0 die Behauptung (3, 1a). Dann folgt aber
(3, 1b) sofort aus & + r(E > &g + r€. Weiter bemerken wir, daB K — rE*
aus allen Punkten P besteht, fiir die der konvexe Korper P + rE* ¢ K.
Dies bedeutet aber offenbar P + rE* ¢ K, also

KR—7rC* =K — rE*. . (3.2)
Nunmehr kommen wir zu dem

Satz iiber die isoperimetrische Ungleichung :
Fir etne kompakte Menge K st

n—1 1

f(R) =n|RI," €D (3.3)

Dabet gilt das Gleichheitszeichen dann und nur dann, wenn Kg homothetisch zu
€ sowie [, (K) = [ (Kg) st
Weiter ist fiir eine kompakte Menge ] mit Innenpunkten

n—1 1

fR)=n|K|" |€|", (3.4)

wobet das Gleichheitszeichen dann und nur dann gilt, wenn K homothetisch zu
E* ist.

Der Beweis der Gleichheitsbedingung fiir die duflere Minkowskische Relativ-
Oberfliche wurde von BUSEMANN ([6] Nr. 4) gefithrt. Weil wir mehrere der
dort benutzten Schliisse zur Diskussion des Gleichheitszeichens fiir die innere
Minkowskische Relativ-Oberfliche ebenfalls n6tig haben, soll der BusemaNN-
sche Beweis hier kurz wiedergegeben werden. Dabei treten gewisse beim Be-
weis des BRUNN-MinkowsKIschen Satzes iibliche Abschitzungen auf.

Beweis der Gleichheitsbedingung fiir die isoperimetrische Ungleichung (3.3)
der duBeren MinkowsKischen Relativ-Oberfliche:

Wir nehmen 7 > 2 an, verstehen unter (Z,), den im Punkt (n, O) abgetra-
genen Raum (Z,) und benutzen die Abkiirzungen

t(n) = €~ (Ze)n ) fl(’?) =R~ (Ze)n )

v;(n) = | L;(n) |ne
Vo=1€[|,>0, V,=[|8R].>0.
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Dann sind ni
def

T(n) = Vi foi(u)du (3.5)

monotone, absolut stetige Funktionen. Fiir sie setzen wir noch

def def |

&g = sup {n; | =(n;) = 0}, B, = inf {n:| v(n,) = 1}. (3.6)
Weil nun € ein konvexer Korper sein sollte, ist 7(n,) fir «, < 5, < f, sogar
eine streng monotone, differenzierbare Funktion. Sie besitzt also eine Um-
kehrfunktion 7, = 74(r) mit 0 < v <1, die fir 0 <t<1 wegen (3.5)
und v,y(7n,) > 0 die Ableitung

d
2 — Vovg (10(v)) (3.7)
hat. Dann ist auch sot
M0 (n1) = 1o (7 (171)) (3.8)

eine monotone, absolut stetige Funktion mit

Mo (0v1) = oo
oo < Mo(ny) < Bo  fr my e (o, B1) (3.9)
70(B1) = Bo >
und aus (3.7) sowie (3.5) folgt

dn, _ Vo v1(1)
dny Vi ve(n0(n1)

Zuerst soll nun gezeigt werden, daf3 die Giiltigkeit des Gleichheitszeichens
in (3.3) stets

fir fast alle %, € [o;, f1] - (3.10)

vl (")1) > O fﬁl‘ 771 € (0&1 ’ ﬂl) (3. 11)
erfordert. Setzt man

R=RK~6",, K =8~6C",
5, = (] + 7€)~ (Zg),,» 5 = (R + 7€) ~ (Zy),,

und bezeichnet man mit e die Projektion von € lings Y auf (Z,),, so ist
(R + 7€)~ S bzw. (R 4+ rE)~ &", in dem Zylinder mit der Basis
s, + re bzw. s, + re und der Hohe f,rY bzw. |xo|rY enthalten. Daher
ist

(3.12)

[ (] 4+ 7€)~ (R + 7€) |, <7(Bo| 8 + 7€y — x| 5 + 7€ ]51) -
Aus & + 7€ = (& + 7€) v (R” 4+ rE) folgt deshalb
IR+ 7€, =R + €|, + K" +r€|, —r(Bol s + 7€| 0y — X|5r + 7|0 )
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und wegen | K|, = |&'|, + | K" |, die Relation

IR+7@|n”—|R|n>iR'+T(‘5|n—lR'ln+|ﬁ"+7’@|n—|R”|n
r = r r (3.13)
““(ﬁoi5;+Te|n—1“0‘0l5:,+7”eln—1)-

Nun ist die abgeschlossene Menge f,(n;) ¢ s, und s,, was

Lin)=n (sﬁ +re)=~n (s;' + re)
r>0 r>0
und

vy(n;) = lim | 5; + rel|, ;= lim | 5:, +rel,a
r->+0 r->+0

zur Folge hat. Dann ergibt sich aber aus (3.13) durch Grenziibergang » — + 0

[+(8) = fL(R) + LK) — (B — o) vi(ny) - (3.14)

Weil fiir die Mengen K und K" die isoperimetrische Ungleichung (3.3) gilt
und fir %, e (x4, f;) stets | K|, >0, | ]|, > 0 ist, erhdlt man

1 n-—1 n—1 N
f RI +f+ Rll nV’n(IRII n +!R”|”ﬂ )
n—1 n-—1

e | R [\ » 3.15
=V, VI( ) +(V) } (3-19)

n—1 1 n—1 1
Ay | (18 In |8 1) v v
>n V1 ; [( A 7o) = nV, Vo ,

also aus (3.14)

n—1 1

[+(R)>nV, " V? — (Bo — o) v1(m1) -

Fiir v,(n,) = 0 kann daher in (3.3) kein Gleichheitszeichen stehen, womit
(3.11) bewiesen ist.

Die Funktion def
7 (11) = N1+ 790(N1) (3.16)

ist in [«,, B;] streng monoton und absolut stetig. Daher sind die Mengen
def

T(n) = Li(p) + rE(mo(ny)) fiir 7y e [y, Bil

eindeutig bestimmt und geniigen der Relation

R+ 7G> "‘u" £(n) ,

die zu der Abschéitzung 7(By)

|8 +7r€lL = | [T(®) [aadn (3.17)

n(xy)
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filhrt. In diesem Integral substituieren wir die Funktion (3.16) und wenden
auf den Integranden den BRuNN-MiNKOWsKIschen Satz an. Setzt man

A(ny) gw und ie_fj{“_ (3.18)

v1(m) Vi’
so folgt fiir fast alle 7, € [x,, f1]

M T 4 Ty v
|f(77)|n—177;1—>(v1 14 oy 1).1(1_’_7,17;1__)

0

1
= v;(M1) (14 rA™t (1 4 r VA1)
1

= vy(n) [L +7((n — A" + VA1 + O(r)]
und damit nach (3.17)

1

B1 -
f+(8) = o) (0 — 1)AT + VA Ydy, . (3.19)

Jetzt benutzen wir die durch Differentiation leicht zu bestitigende Ungleichung
1 1

m— DA L VA1 nV",
n-—1
in der das Gleichheitszeichen nur fiir A = V " gilt. Aus (3.19) erhilt man
dann n-1 1

fR)>nV * VT

n—1
auller wenn A(n) =V " fiir fast alle #, € [x,, 8] ist.
Die Giiltigkeit des Gleichheitszeichens in (3.3) hat daher nach (3.10)

1
dano _ V»  fiir fast alle 2, € [, 4],
dn,

also wegen der absoluten Stetigkeit von #4(7,) sowie der Anfangsbedingung
(3.9) 1

No(n) = V™ (1 — o) + o
zur Folge. Diese Funktion substituieren wir nun im Integral fiir die #-Koordi-
nate des Schwerpunktes von €

BO 81 n—1 1 1

f o (1) Nodno = j‘ V" o (771)[VW(771 — o) + &) V—’Tdm .

%o

1
Bringt man jetzt den Schwerpunkt der Menge V" R durch Translation mit
dem von ¢ zur Inzidenz, so hat man weiter

B1 n—1 1 1

= f V™ vi(n) V;‘—ﬁl V?dm .

%1
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1 1

Daraus folgt aber V~’70c1 = &, und analog 4 f1 = By, das heillt die wesent-
1

lichen Stiitzstreifen von V" & und & in der Richtung Z, A ... A Z,_, sind
identisch. Weil dies fiir jede solche Richtung gilt und € als konvexer Korper
1

der Durchschnitt seiner Stiitzstreifen ist, haben wir also VWRE ¢ €. Nun
1

wiirde zu einem Punkt P e CG(V?RE) wegen der Abgeschlossenheit von
1 1

VWRE eine Umgebung P + o€ ¢ C(VWRE) existieren, fiir die wegen der

Konvexitit von € jedenfalls |(P + p&)~ E|, > 0 ist. Dann wire
1

| V" Kz |. < V,, was aber offenbar ein Widerspruch ist. Also muf}

1 n—1 1

V'R =€ und f(Rg)=n-V," V7

sein. Hiermit haben wir als notwendige Bedingung fiir die Gleichheit in (3.3)
schlieBlich die Homothetie von K und € sowie f (R) = f,(Rg) gefunden.
BusSEMANN weist in [6] S. 750 besonders darauf hin, daBl diese letzte Glei-
chung nicht iiberfliissig ist.

Beweis der Gleichheitsbedingung fiir die isoperimetrische Ungleichung (3.4)
der inneren MiNgkowsKIschen Relativ-Oberfliche:

Wir verfahren dabei in gewisser Analogie zu vorstehendem Beweis. Aller-
dings macht das Auftreten der MiNkowsSKischen Differenz | — rE* wesent-
lich schirfere Abschidtzungen erforderlich. Wir nehmen wieder » > 2 an,
bezeichnen mit (Z,), den im Punkt (n, O) abgetragenen Raum (Z,) und
verwenden folgende Abkiirzungen

fo(’?) = E*n (Ze)na f1(77) =K~ (ZQ)n 5
v;(n) = 5) |n-1»
V0:‘®*|n>0) Vl'_:lR|n>O.

SchlieBlich benutzen wir die von (3.5) bis (3.10) untersuchte Funktion

Mo (71) .-
Weiter wollen wir zeigen, dafl bei Giiltigkeit des Gleichheitszeichens in (3.4)

zu hinreichend kleinem &> 0 eine Konstante A4 (e) mit
vi(n) > A(e) >0 fir nelx, + ¢, 8 — €] (3.20)
existiert. Ist bei festem 7%, € (x,, f,) fiir alle r > 0 stets
(R —7rC*)~(Z),, =0,
(Zg)y, CC(R —7rC*)=CKR + rE,

also
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so folgt (Za),, < oR

und damit
(Zo),, + 1€ C OR 4+ rE° = CR +rE = C(R —rE*).  (3.21)

Andererseits besteht die Menge R — r&* aus allen Punkten P, fiir die
P + rE* ¢ . Dann ist mit der Bezeichnung von (3.12) entweder
P+7rE*cR oder P+ rE* R oder Pe(] — r€*) n~ ((Z,), + r€

Letzteres ist jedoch nach (3.21) ausgeschlossen, so daf3
KR —rC*= (R —rE*) v (] —rE*)
[-(8) = [_(]) + [(K")

folgt. Die rechte Seite dieser Ungleichung kann man nun analog zu (3.15)
abschitzen, was n—1 1

f(K)>nV ™ VD

und daher

ergibt. Wenn also in der isoperimetrischen Ungleichung das Gleichheitszeichen
stehen soll, muBl bei festem 7, € (x;, ;) und geeignetem r > 0 ein Punkt

P e (] — r€*) ~ (Zy),,
P+ rE*c K

existieren. Dann ist aber
und somit

”1(771)2@01(771+A771)>0 fir %, €(x, B1) -

4n1->0

Fiir ein geniigend kleines ¢ > 0 gibt es also eine Konstante mit der Eigen-
schaft (3.20), ndimlich A (e) = inf {v,(n,) | 71 € [y + &, By — €1}.
Die zur Substitution benotigte Funktion

1) = ny — r00(m) (3.22)

ist nun zwar fiir %, € [,, f;] absolut stetig, muf} aber nicht notwendig mono-
ton sein. Diese Schwierigkeit kann umgangen werden, indem wir zeigen, daf3
die Funktion in jedem Teilintervall [«, + ¢, f; — ¢] wichst, wenn nur r hin-
reichend klein ist. Sei ndmlich #,, 7, + 4n, € [, + €, 8, — &] mit 4y, >0,
so erhilt man aus (3.22)

n(m + An) —n(n) = A9y — rne(z(ny + 4n1)) — no(x (1)) ],

wegen der Differenzierbarkeit von 7,(t) aus (3.7)

= Any — rVov5 (16(7)) [t(m + 4my) — ()] mit 0 <7 <1
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und nach dem Mittelwertsatz der Integralrechnung
= An, (1 — rVovg ' (no(7))-#) mit u < B = const.
Nun ist v¢(n0(n1)) > 0 und stetig fiir 7, e (x,, f;), also gibt es eine Zahl
G 0 < 0(e) < vp(ralmy)) fir 7y e oy + ¢, By — €]

Dann ist aber die Funktion (3.22) im Intervall [x, + ¢,8; —¢] mit >0
wachsend, wenn

r < )
VoB
gewahlt wird.
Wir geben jetzt ¢ > 0 so vor, daBl
Mooy + &) <0 <mo(By — ) (3.23)

ist, und beschrianken uns auf positive Werte

r<Min((A1()8))nil, 1(50(2 {:0’, %) (3.24)

wobei D eine obere Schranke fiir v,(n,) sein moége. Dann ist im Intervall

[¢; + €, f; — €] einerseits nach (3.20)
1 1

0< ”1n_1 (m) — "'von—l (70 (71)) (3.25)

und andererseits die Substitutionsfunktion (3.22) streng monoton. Letzteres
ermoglicht die eindeutige Definition der Mengen
def

En) = ti(m) — r¥o(no(ny)) fiir uye [ + ¢, By — €],
die der Relation n(B1—e)
Sarran (R —r€) ¢ U F() (3.26)

geniigen. Ist namlich (7, 2¢) ein Punkt der links stehenden Menge, so korre-
spondiert dem 7 e [n(x, + €), n(fy — €)] vermoge (3.22) eindeutig ein
Ny € [%; + €, B, — €], und es ist

(n,22) + 7% (10 (71)) € (Zo)y, -
Zum anderen gilt

(n,29) + rfe(o(n1)) ¢ (n,29) +rE* ¢ K

(7,29 + ¥ (no(11)) ¢ K ~ (Zg)y, = F1(m1) ,

was die Relation (3.26) bestétigt. Aus ihr folgt jetzt die Abschitzung
n(B1—e&)
|GG~ ® =@ |a < S T [aadn
n(xy+e

also
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In diesem Integral substituieren wir die Funktion (3.22) und wenden auf den
Integranden das Spiegeltheorem zum BrUNN-Minkowskischen Satz an, was
wegen (3.25) moglich ist. Mit den Abkiirzungen (3.18) erhélt man dann fir
fast alle 7, € [o; + ¢, f; — €]

1 1
8O0 g < (65 — royt (1= 1722 )
1

0

= v1(ny) (1 — AT — r V ATY)

1

= v, () [1 —r((n — DA™ 4 VA1 4+ 0(M)],

aleo 1 Bi—¢ (B1—¢)
7 (l ea:-}—s R ln - ‘ GZ(ai—i—s) (R - 7‘&*) l’n)
bimse 1 (3.27)
= .f v1(m) ((n — l)ln~1 + VAiY)dy, + O(r) .
a1+e

Fiir die weiteren Abschidtzungen beachten wir, dafl nach (3.24) und (3.23)

o < Nloey) = 0 — rog <oy +e<<mlog + 8) <
N(Br— &) <Py —e< Py —rhy=n(h) < B

ist und 7(x,), 5(B,) wegen (3.2) die extremalen 7-Koordinaten von & — rE*
darstellen. Aus (3.27) ergibt sich nun die Ungleichung

1
— (K1, — & —rE*],)

> 8t Ca(R — 7€) [, — o | GIG O (R — 169,
P : (3.28)
+ f () (n — 1)A" 4 VA~ dyy + O(r)

a1+e

1
— l Sh-er Ca(R — 7€) |, —— | Gt~ (R — 7€) [,

in der wir noch die neben dem Integral auftretenden Gréfen abschitzen miis-
sen. Dafiir setzen wir zur Abkiirzung

R — rG*)  (Zy), < R(y) = Ko (2y),

() = (

und bezeichnen mit 4, bzw. B, den Vektor von O nach einem Punkt von ¢
mit der extremalen 7-Koordinate — «, bzw. — §,. Zu dem Zylinder mit

der Basis t(x; + ¢) und der Hohe 7 MAO gibt es dann eine Teilmenge

von G3ten Og(R —r€*) mit groBerem MaB. Nach Konstruktion von
! — r@* mufl3 ndmlich jede Gerade durch einen Punkt von t(x, + &) mit
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der Richtung A4, die Menge &;'"°~ Cq(f — rE*) mindestens in einer
7o (%1 + &)

o
folgt. Andererseits mull aber der aullerhalb des genannten Zylinders liegende

Strecke r A4, schneiden, woraus wegen 0 < <1 die Behauptung

Teil von &U%F9~ (] —rE*) in dem Ringzylinder mit der Basis

O (s, +0 (% + &) und derselben Hohe r 770(—“;-—t§)—
Ringzylinder besitzt das Maf3 0

(IR + &) |pmr — | (g + €) | o) 7| Moy + &) | =70(r) .

Die ersten beiden Terme der rechten Seite von (3.28) sind also > O(r), was
ganz analog auch fiir die beiden letzten Glieder dieser Ungleichung folgt. Damit
erhilt man aus (3.28) durch Bildung des unteren Limes fiir r - + 0 und
nachfolgendem Grenziibergang ¢ — 4 0

A, enthalten sein. Dieser

1

B1
[Z(R) = foi(n) (m — A" + Vai1t)dn, .

Diese Relation ermoglicht nun dieselbe Schlulweise, wie wir sie im Anschluf3
an die entsprechende Ungleichung (3.19) durchgefiihrt haben. Als notwendige
Bedingung fiir die Gleichheit in (3.4) ergibt sich dann wegen (3.1c¢) die Homo-
thetie von & und €*, was zu zeigen war.
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Wir wollen nicht versdumen, die Gleichheitsbedingung des BRUNN-MIN-
rowsKIschen Satzes analog zu DiNgHAS-ScHMIDT [8] und BusEMaNN [6] aus
der Gleichheitsbedingung fiir die isoperimetrische Ungleichung (3.3) herzu-
leiten. Diese SchluBlweise 148t sich ndmlich auch auf das Spiegeltheorem zum
Brun~N-MiNnkowsKIschen Satz und die isoperimetrische Ungleichung (3. 4) iiber-
tragen.

Beweis der Gleichheitsbedingung des BRuNN-MiINkOWsKIschen Satzes (vgl.
Nr. 1): Unserer jetzigen Schreibweise entsprechend hat diese Ungleichung die
Gestalt

1 1

> K+ €7 (3.29)

1
n

|| + €|

n

Wihlt man 0 < 7' <r, soist

RIHrE=R+7C) 4+ (r —7)E
und daher

1 1 1
IR+7€|; =K+ 7C|; +(r—1)|C|;
1 1 1 1 1

>|KIP PGP+ —r)|E"=|RI"+7r]|C|".

Wenn also in der BRUNN-MiNkKOWSKIschen Ungleichung (3.29) fiir » das
Gleichheitszeichen steht, so muf} es dort fiir jedes 7' < r und damit auch in
der isoperimetrischen Ungleichung (3.3) gelten. Dies hat aber die Homothetie
von |z und € zur Folge. Existiert ein Punkt P ¢ Cgq(RKg), so wird er durch
eine Stiitzhyperebene an ! von dieser Menge getrennt, weshalb

1 1

IR+7€[,> | Ke + 7€, = (K" +7[E*)

ist. Aus der Gleichheit in (3.29) folgt also noch K&z = K. Daher haben wir
als notwendige Gleichheitsbedingung fiir den BRUNN-MINKOWSKIschen Satz
die Homothetie von & und €, was offenbar auch hinreichend ist.

Beweis der Gleichheitsbedingung des Spiegeltheorems zum BRUNN-MIN-
rowsKischen Satz (vgl. Nr. 1): Die Ungleichung hat jetzt die Form

1 1 1

R —r@* P <|R|® —r |G| (3.30)
Aus 0 <7’ <r folgt

KR—rE=R —1r'C*) — (r —r)E*
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und somit, wenn diese Menge nicht leer ist,
1 l 1
| R —r@*|? <R — 7@ |7 — (r—7r)| "
1 1 1 1 1
SIKI =@ —(—r)[C 7 =|K|F —r|C|}

Sobald also in der Spiegelungleichung (3.30) fiir » Gleichheit besteht, muB sie
dort fiir jedes 7' < r und folglich in der isoperimetrischen Ungleichung (3.4)
gelten. Als notwendige Gleichheitsbedingung fiir das Spiegeltheorem ergibt
sich deshalb die Homothetie von & und *, was wegen (3.2) auch hinreichend
ist.
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