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Zur isodiametrischen und isoperimetrischen Ungleichung
in der Relativgeometrie *)

Wilhelm 8vss zum Oedenken

von Woldemar Barthel, Saarbriicken

Einleitung

Flir den euklidischen Raum bewies Bieberbach [2] mittels Symmetrisie-
rung zuerst, da8 unter allen konvexen Kôrpern gegebenen Durehmessers die
Kugel das grôBte Volumen hat2). Weitere Beweise hierfûr sind in Abschâtzun-
gen enthalten, die Urysohn [15], Sùss [14] und Bonnesen-Fenchel [4]
S. 109/110 iiber Volumen und mittlere Breite, Ktjbota [12]3) xiber QuermaB-
integrale und Durchmesser sowie Erhard Schmidt [13] S. 86/87 iiber Volu-
mina und Maximalentfernung zweier Mengen durchgefuhrt haben. Ein neuerer
Beweis findet sich bei Hadwiger [10] S. 173. Fur eine symmetrische Mm-
KOWSKi-Metrik gab schlieBlich Btjsemann [5] S. 243-246 einen ziemlich um-
fangreichen Beweis der «isodiametrischen Ungleichung», der allerdings keine
Diskussion des Gleichheitszeichens enthâlt. Wir wollen hier die ScHMiDTsche
Idée wieder aufgreifen und dem Spiegeltheorem des BRUNN-MiNKOWSKischen
Satzes ein Âquivalent zur Seite stellen, aus dem die isodiametrische Ungleichung

mit vollstândiger Gleichheitsbedingung fur eine MiNKOWSKi-Metrik
folgt. Daraus erkennt man, daB bei symmetrischer MiNKowsKi-Metrik unter
allen kompakten Mengen gegebenen Durchmessers genau jene das grôfite n-
dimensionale Map hat, welche zum Eichkôvper homothetisch ist.

Eine unmittelbare Folgerung der BRUNN-MiNKOWSKischen Ungleichung ist
die isoperimetrische Ungleichung fur die âu/Sere MiNKOWSKi-Oberflàehe. Nicht
trivial ist allerdings die Gleichheitsbedingung, welche sich bekanntlich nicht
aus der des BRFNN-MiNKOWSKischen Satzes herleiten làBt. Fur den euklidischen

Raum wurde der erste symmetrisierungsfreie Beweis der isoperimetrischen

Ungleichung mit erschôpfender Gleichheitsdiskussion von Dinghas [7]
erbracht. An die einfachere Fassung von Dinghas-Schmidt [8] ankniipfend,
gab dann Bxjsbmann [6] einen vollstândigen Beweis der isoperimetrischen
Ungleichung bezuglich eines konvexen Eichkôrpers. Die isoperimetrische Ungleichung

bezûglich eines beliebigen kompakten Eichkôrpers bewies Hadwiger [9]

1) Vorliegende Abhandlung umfaÛt einen zweiten Teil der Habilitâtionsschrift, die der Natur-
wissenschafblich-mathematischen Fakultât der Universitât Freiburg i.Br. am 14. Juni 1957 vor-
gelegt wurde.

8) Vgl. auch Blaschke [3] S. 122-123 und Bonnbsen-Fbnchbl [4] S. 76.
8) Vgl. BONNBSEN-FENOHBIi [4] S. 107.
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mittels Symmetrisierung, ohne jedoch die Gleichheit zu diskutieren. In einer
neueren Arbeit lôsten Hadwiger und Ohmann [11] dièses allgemeine Pro-
blem einschlieBlich der Gleichheitsbedingung mit mengengeometrischen Me-
thoden. Dieser Beweis ist auch bei Hadwigeb [10] Kap. 5 aufgenommen.

Wie bereits E. Schmidt [13] S. 153 und Hadwiger [9] bemerkten, gilt auch fur
die innere MiNKowsKi-Oberfloche eine isoperimetrische Ungleichung. Sie folgt
unmittelbar aus dem Spiegeltheorem zum BRTJNN-MiisrKOWSKischen Satz. Die
bisher noch nieht behandelte Frage nach dem Eintreten des Gleichheitszeiehens
in dieser isoperimetrischen Ungleichung soll hier untersucht werden. Dabei
zeigt sich, da8 unter allen kompakten Mengen gegebener innerer Minkowski-
scher Relativ-Oberflâche genau jene maximales n-dimensionales Mafi besitzen, fur
die eine majigleiche Teilmenge homothetisch zu dem am Ursprung gespiegelten

Eichkôrper ist. Man gewinnt also eine etwas einfachere Bedingung als im Fall
der âuBeren MiNKOWSKischen Relativ-Oberflâche. Der Beweis ist jedoch we-
sentlich komplizierter, weil in ihm statt des BRUNN-MiNKOWSKischen Satzes
dessen Spiegeltheorem fur n — 1 Dimensionen benôtigt wird. Die Anwen-
dung des Spiegeltheorems, welche in gewissem Sinn einer Extrapolation gleich-
kommt, ist aber nicht in dem gewiinschten Umfang môglich, was eine Reihe
zusâtzlicher Abschâtzungen erforderlich macht. Umgekehrt folgt aus der

Gleichheitsbedingung fur die isoperimetrische Ungleichung der inneren Min-
KOWSKischen Relativ-Oberflâche natûrlich wieder die des Spiegeltheorems zum
BRFKN-MiNKOWSKischen Satz.

1. MiNKOWSKische Linearkombinationen

In einem w-dimensionalen affinen Raum Rn(n ^ 1) sei ein Punkt 0 aus-

gezeichnet als Bezugspunkt fur die MiNKOWSKisehen Linearkombinationen
&Ro + ^-^î von nicht-leeren Mengen 5l0 un(l ^i m^ Koeffizienten, die nicht
beide negativ sind. Fur das Rechnen mit MiNKOWSKischen Linearkombinationen

verweisen wir auf Bonnesen-Fenchel [4] und vor allem Hadwiger [9].
Wir wollen hier nur die in diesem Zusammenhang benutzten Definitionen und
Sâtze wiedergeben, wobei ein beliebiges affines Koordinatensystem mit dem

Ursprung 0 zugrunde gelegt werde.

Définition der Multiplikation und Spiegelung:
Fur eine nicht-leere Menge R c En und eine Zahl oc ^ 0 setzen wir

{(ocxr) | (xr) tR}, «* {(- xr)

Définition der MiNKowsKischen Addition und Subtraktion:
Fur zwei nicht-leere Mengen R{ € En, (i 0; 1), sei

5lo + Stt {(xr0 + x[)
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# ft {( | fûr jedes (x[) e ftt ^ (xr 4. x[) e #0}

{P | P + ^ c fl0}

Satz von Brunn-Minkowski:
i^ttr ewe nicht-leere kompakte Menge $t0 und einen honvexen Kôrper ftt mit

|fli|n>0 ist L L L
I «0 + «1 C > I «0 i; + I «1 C •

Dabei steht das Gleichheitszeichen genau dann, wenn Ro und 5^ homothetisch sind.

Spiegeltheorem zum BRUNN-MiNKowsKischen Satz*):
Fûr eine nicht-leere kompakte Menge Ro und einen konvexen Kôrper 5%x mit

I &i In > 0 ist bei nicht-leerer MiNKowsKischer Differenz

Dabei steht das Gleichheitszeichen genau dann, wenn eine majigleiche Teilmenge
von Ro homothetisch zu ^ ist.

2. Isodiametrisehe Ungleichung fûr eine MiNKOWSKi-Metrik

Im Rn werde ein konvexer Kôrper (£ von positivem MaB, der den Ursprung
0 im Innern enthâlt, als Eichfigur ausgezeichnet. Jede Menge, die aus (£ bzw.
(E* durch Homothetie und Translation hervorgeht, soll als Kugel bzw. gespie-
gelte Kugel und das Bild von 0 unter dieser Abbildung als deren Zentrum5)
bezeichnet werden. Die Eichfigur erlaubt nun, im Rn eine (nicht notwendig
symmetrische) MiNKOWSKi-Metrik einzufuhren.

Définition. Die Entfernung eines Punktes Px von einem Punkt Po ist

Fur nicht-leere Mengen sei die Maximalentfernung*) der Menge 5^ von $t0

und der Durchmesser der Menge 5^

def

Mittels dieser MaBbestimmung kônnen wir dem fûr konvexe Kôrper gûltigen

4) Vgl. etwa unsere Note [1].
5) Dies wollen wir auch dann tun, wenn (£ nicht symmetrisch bezûglich 0 ist.
6) Im Falle der Kompaktheit der 5lt- wird die Maximalentfernung von einem Punktepaar

Po, P1 angenommen.
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Spiegeltheorem zum BRUNN-MiNKOWSKisehen Satz eine âquivalente Aussage

zur Seite stellen, ans der unmittelbar die «isodiametrische Ungleichung » be-

zuglich der betrachteten Metrik folgt.

Satz. Fur zwei nicht-leere konvexe Kôrper Ro> $tx mit \ Ro \n > 0 gilt

wobei das Gleichheitszeichen dann und nur dann steht, wenn Ro eine gespiegelte

Kugel und Rx eine Kugel mit demselben Zentrum ist. Dièse Ungleichung ist
àquivalent zum Spiegeltheorem des BRUNN-MiNKowsKischen Satzes fur kon-
vexe Kôrper mit positivem Map.

Beweis. Zunàchst ist

r(g _ 5** {P | d(R0, P) < r} (2.2)

Die Menge der linken Seite besteht nâmlich aus allen Punkten P mit
der Eigenschaft, daB fur jedes Po e 5l0 wegen OP — OP0 ==¦ P0P folgt
P€P0 + r(£, das heiBt q(P0,P) < r und damit d(R0, P) < r. Umgekehrt
ist entsprechend zu schlieBen. Setzen wir jetzt r d(R0, 5^), das heiBt fur
jeden Punkt Px € Rx ist d(R0, Px) ^ r, so erhâlt man aus (2.2)

itx c r(£ — 51*
•

Insbesondere ist also r(£ — R* nicht leer. Dièse Relation und das
Spiegeltheorem zum BRiJNN-MiNKOWSKischen Satz haben dann zur Folge

_L JL JL A

Dabei erfordert das Gleichheitszeichen der zweiten Ungleichung die Homo-
thetie von 51* und G, nàmlich

mit r0 ^ r und einem beliebigen Punkt Q, und die Gleichheit bei der ersten
Abschatzung

5^ r(& — 51* (r(£ — ro(£) — Q (r — ro)(£ + Ç*

Dies ist aber gerade die Behauptung ûber 5l0 und &i •

Beim Âquivalenzbeweis gehen wir von zwei konvexen Kôrpern mit
positivem MaB aus. Einen davon wâhlen wir als C und ergânzen ihn zu einer Eich-
figur; der andere werde mit R bezeichnet. Wenn nun (£ — 51 # 0 ist, folgt
nach(2-2) <*(**,<£-*)
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und damit aus (2.1) die behauptete Ungleichung

JL i. _L

Steht hierin das Gleichheitszeichen, so muB

5^* r($j,* -j- 0 (\ Si r^è ~4~ 0*

sein mit r < 1 und einem beliebigen Punkt Q. Dies hat nâmlich auch

(g _ Si ((g - r(g) - Q* (1 - r)(g + Q

zur Folge. Damit ist die Homothetie von Si und (g als Gleichheitsbedingung
fur (2.3) erwiesen.

Als Korollar zu diesem Âquivalent des Spiegeltheorems folgt jetzt der

Satz uber die isodiametrische Ungleichung:
Fur jede mefibare Menge Si c Rn ist

i i

Dabei gilt filr die Klasse der aus mehr als einem Punkt bestehenden kompakten
Mengen das Gleichheitszeichen dann und nur dann, wenn die Eichfigur symme-
trisch ((£ ©*) und Si ^ine Kugel ist.

Beweis. Sowohl fur eine Nullmenge als auch fur eine unbesehrànkte meB-
bare Menge ist die Ungleichung stets richtig. Geht man nun von einer be-
schrànkten meBbaren Menge zu ihrer abgeschlossenen Huile ûber, so bleibt
der Durchmesser derselbe und das MaB verkleinert sich nicht. Beim tîbergang
von einer kompakten Menge zu ihrer konvexen Huile wird der Durchmesser

wegen der Konvexitât der Eichfigur wiederum nicht veràndert, wâhrend sich
das MaB vergrôBert, wenn die Menge noch kein konvexer Kôrper war. Fur
einen konvexen Kôrper Si gewinnt man die Behauptung aus dem vorigen Satz,
indem man dort SiQ R± Si setzt.

Wenn auch die Symmetrie im Begriff des Durchmessers nichts anderes er-
warten lieB, so ist doch bemerkenswert, daB die in der isodiametrischen
Ungleichung gegebene Schranke nur fur eine symmetrische MiNKOWSKische Me-
trik scharf ist.

3. Isoperimetrische Ungleichung fur eine MusKowsKische Belativ-Oberflâche

Wie im vorigen Abschnitt zeichnen wir im affinen Rn eine Eichfigur aus, das

heiBt einen konvexen Kôrper ©, der den Ursprung 0 im Innern enthalt. Sie

gestattet uns, MiNKOWSKische FlâchenmaBe einzufuhren.
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Définition. Fur eine nicht-leere kompakte Menge 51 sei die àufiere Min-
xowsKische Relativ-Oberflâche

und die innere MiNKowsKische Relativ-Oberflâche1)

j
r->+0 r

Aus dem BnuNisr-MiNKOWSKischen Satz und seinem Spiegeltheorem folgt
fur jede der beiden MiNKOWSKischen Relativ-Oberflàchen sofort die isoperi-
metrische Ungleichung. Allerdings erhâlt man auf diesem Wege nicht die Be-
dingungen fur die Gûltigkeit des Gleichheitszeichens, dafur werden detaillier-
tere Abschâtzungen benotigt. Um jedoch die Gleichheitsbedingungen ûber-
sichtlich formulieren zu kônnen, soll zunàchst der von Busemajstn ([6] S. 746)
stammende Begriff des wesentlichen Telles RE einer Menge 51 erôrtert werden.

Im Bn werde dureh Basisvektoren Y, Zx, Zn_1 ein Koordinatensystem
festgelegt und jeder Punkt dureh seine Koordinaten (rj, zQ) gekennzeichnet.
Mittels des Parallelstreifens

®?= {{n>*Q)\v<n<*>}
definieren wir nun ftir R die wesentlichen Schranken

a, sup {V || 51- ©L, |n 0} ft inf {r, || R~ g," \n 0}

den wesentlichen Stutzstreifen <B(u) Sfj in der (n — 1)-Richtung von
u Zx A A ^n-i und schlieBlich den wesentlichen Teil

Seine Eigenschaften fassen wir zusammen in dem

Satz. Fur eine nicht-leere kompakte Menge 5t ist

I a I. 1 a* U, Mft) > f+(*x) ' f
7) Hadwigeb [9] definiert die innere MiNKOWSKisehe Relativ-Oberflâche etwas anders:

Er mifît also den inneren Parallelbereich von R in der zu (£* gehôrenden Metrik, wàhrend wir
diesen inneren Parallelbereich von 51 im Abstand r als âuBeren Parallelbereich vom Komplement
051 (beziiglich des Mn) im gleichen Abstand r auffassen, wie aus der Relation

Cft (51 — r(g*) Cc (9t _ rm (CSt) Cc* + r (g (OR)

hervorgeht. SchlieÔlich sei noch vermerkt, daB /_(5l) nur dann endlich sein kann, wenn
| 5^ |M | #o |n giit. Man hat namlich (J <5l —r(£*) 51°, wâhrend Ç] (51 + r(£) R 51 ist.

r>0 r>0
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Beweis. Vermoge der Separabilitat existiert eine Folge ux mit f]Q(u)
fl © {ut). Daraus erhalt man
i

und wegen | CSi(Si ^ S(wt)) |n 0 die Behauptung (3, la). Daim folgt aber
(3, lb) sofort aus Si + rt& RE -\- rt£. Weiter bemerken wir, da8 il — r(g*
aus allen Punkten P besteht, fur die der konvexe Korper P + r(g* c il.
Dies bedeutet aber offenbar P + ^G* c il^, also

(3.2)

Nunmehr kommen wir zu dem

Satz t^6er die isoperimetrische Ungleichung :

Fur eine kompakte Menge Si ist

/+(5t)>n|a|7|Œi; • (3.3)

Dabei gilt das Gleichheitszeichen dann und nur dann, wenn $iE homothetisch zu
(£ sowie /+(Jt) f+i&s) ist-

Weiter ist fur eine kompakte Menge R mit Innenpunkten

USt)>n\Si\nn |Œ|; (3.4)

wobei das Gleichheitszeichen dann und nur dann gilt, wenn $tE homothetisch zu
(g* ist.

Der Beweis der Gleichheitsbedingung fur die au/iere MiNKOWSKische Relativ-
Oberflache wurde von Busemann ([6] Nr. 4) gefuhrt Weil wir mehrere der
dort benutzten Schlusse zur Diskussion des Gleichheitszeiehens fur die innere
MiNKOWSKische Relativ-Oberflache ebenfalls notig haben, soll der Busemann-
sche Beweis hier kurz wiedergegeben werden. Dabei treten gewisse beim
Beweis des BnuNN-MiNKOWSKischen Satzes ubliche Abschatzungen auf.

Beweis der Gleichheitsbedingung fur die isoperimetrische Ungleichung (3.3)
der auBeren MiNKOWSKischen Relativ-Oberflache :

Wir nehmen n > 2 an, verstehen unter (ZQ)V den im Punkt (rj, 0) abgetra-
genen Raum (ZQ) und benutzen die Abkurzungen

I Un) l-i
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Dann sind _

rM V:1 $v,(u)du (3.5)
— oo

monotone, absolut stetige Funktionen. Fur sie setzen wir noch

a% sup {rjt | r(rjt) 0} ft inf {,, | Tfat) 1} (3.6)

Weil nun (£ ein konvexer Korper sem sollte, ist r(rj0) fur oto ^rj0 ^ /?0 sogar
eine streng monotone, differenzierbare Funktion. Sie besitzt also eine Um-
kehrfunktion rj0 r)0(r) mit 0 < r ^ 1, die fur 0 < t < 1 wegen (3.5)
und vo(^o) > 0 die Ableitung

hat. Dann ist auch
def

*?o(*?l) Vo(r(Vl)) (3-8)

eine monotone, absolut stetige Funktion mit

1?1 €(<*!,/?!) (3.9)

und aus (3.7) sowie (3.5) folgt

yji € \ax, fl{\ (3 10)

Zuerst soll nun gezeigt werden, dafi die Gultigkeit des Gleichheitszeichens
in (3.3)stets

vl(ri1)>0 fur %« (04,18») (3.11)
erfordert. Setzt man

(3.12)
»; («' +r(E) « (Z,^ < (Si" + rŒ) - (Ze)ni \

und bezeichnet man mit e die Projektion von (g langs Y auf (ZQ)0, so ist
(5V + r(£) ^ S^ bzw. (&" + r (g) ^ Sîîw in dem Zylinder mit der Basis

$y + ^C bzw. sf + re und der Hôhe /80r^ bzw. |ao|rF enthalten. Daher
ist

| (X + r(£) - (il" + r(g) I, < r(fi0 \4 + rt |B_X - «„ | < + rc \n^)

Aus il + rŒ (^' + rŒ) ^ (il" + r(g) folgt deshalb
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und wegen | 51 |w I 5V |n + | Si" \n die Relation

Nun ist die abgeschlossene Menge îx(ni) cgj und s^, was

li(ni) n (si + ^e) n (s? + re)
r>0 r>0und

^(^j) lim | Br + re |n_x lim | sr + re \n-i
r->+0 r->+0

zur Folge hat. Dann ergibt sich aber aus (3.13) durch Grenziibergang r -> + 0

//Q.\ "^ i /Q-'\ i / /Q-^\ lR /v

Weil fur die Mengen Rr und Si" die isoperimetrische Ungleichung (3.3) gilt
und fur r\1 € (at, j3x) stets | SI' \

n > 0, | R" \
n > 0 ist, erhâlt man

n-1 i r/ 1 q-/ 1 1 Q-" 1 \ n~1K11)
(3.15)

also aus (3.14)

Fur ^i(^i) 0 kann daher in (3.3) kein Gleichheitszeichen stehen, womit
(3.11) bewiesen ist.

Die Funktion def

ist in [&i,/?i] streng monoton und absolut stetig. Daher sind die Mengen

ï (y) ïi (ni) + r ïo (^o (^i)) ^r iyx c [*!, /8J

eindeutig bestimmt und geniigen der Relation

51 + r© U ï(q)
n(*i)

die zu der Abschatzung ^^
(3-17)
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fiihrt. In diesem Intégral substituieren wir die Funktion (3.16) und wenden
auf den Integranden den BRUNN-MiisrKOWSKischen Satz an. Setzt man

^f und F^, (3.18)

so folgt fur fast aile

p
e [x1,

1

— vi(r)i)i^ H" r((n — l)An~

und damit nach (3.17)

J »i(%) ((» - l)^""1 + FA-i)rf% (3.19)
«1

Jetzt benutzen wir die durch Differentiation leicht zu bestâtigende Ungleichung

n-l
in der das Gleichheitszeichen nur fur X F n gilt. Aus (3.19) erhâlt man
dann n~\ i

U{R)>nV/rvf
n-l

auBer wenn A(^x) F n fur fast aile ^ e [a1? ^] ist.
Die Gûltigkeit des Gleichheitszeichens in (3.3) hat daher nach (3.10)

Èl± v^ fur fast aile % € [«2, j8J

also wegen der absoluten Stetigkeit von rye(^i) sowie der Anfangsbedingung
(3.9) L

zur Folge. Dièse Funktion substituieren wir nun im Intégral fur die ^-Koordi-
nate des Schwerpunktes von (£

(% - ^i) + *0] Fn%

Bringt man jetzt den Schwerpunkt der Menge Vn R dureh Translation mit
dem von (g zur Inzidenz, so hat man weiter

«0

01

orf^o j" F
«1
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i —
Daraus folgt aber Vn <xx oco und analog Vn ^ p0, das heiBt die wesent-

lichen Stiitzstreifen von Vn Si und (g in der Richtung Zx/\ A Zn_x B^n^
identisch. Weil dies fur jede solche Richtung gilt und (g als konvexer Kôrper

i
der Durchschnitt seiner Stiitzstreifen ist, haben wir also Vn RE c (g. Nun

i
wurde zu einem Punkt P cCçiV"$tE) wegen der Abgeschlossenheit von

i i
VnRE eine Umgebung P -\- @(g c C(Vn$tE) existieren, fur die wegen der
Konvexitât von (g jedenfalls | (P + q(&) ^ (g |n > 0 ist. Dann wàre

JL

I Vn &e \n < Fo, was aber offenbar ein Widerspruch ist. Also mu6

F"ft, Œ und /+(«E) w.Fin Fo"

sein. Hiermit haben wir als notwendige Bedingung fur die Gleichheit in (3.3)
schlieBlich die Homothetie von $tE und (g sowie f+(R) /+(il^) gefunden.
Busemann weist in [6] S. 750 besonders darauf hin, da8 dièse letzte Glei-
chung nicht uberflussig ist.

Beweis der Gleichheitsbedingung fur die isoperimetrische Ungleichung (3.4)
der inneren MiNKOWSKischen Relativ-Oberflâche :

Wir verfahren dabei in gewisser Analogie zu vorstehendem Beweis. Aller-
dings macht das Auftreten der MiNKOWSKischen Differenz ${ — r(g* wesent-
lich schârfere Abschàtzungen erforderlich. Wir nehmen wieder n ^ 2 an,
bezeichnen mit {ZQ)n den im Punkt (rj, 0) abgetragenen Raum (ZQ) und
verwenden folgende Abkurzungen

SchlieBlich benutzen wir die von (3.5) bis (3.10) untersuchte Funktion

Weiter wollen wir zeigen, daB bei Giiltigkeit des Gleichheitszeichens in (3.4)
zu hinreichend kleinem e > 0 eine Konstante A (e) mit

v1(r}l)>A(e)>0 fur ni e K + e, 0± ~ e] (3.20)

existiert. Ist bei festem rj1€(oc1,p1) fur aile r > 0 stets

(51 - r(g*) - (ZQ)ni 0

{ZQ)ni c C(St - rŒ*)
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so folgt _ ~^-z

und damit

(ZQ\X + r& cC!R + r(£0 GR + r& C(R - r(£*) (3.21)

Andererseits besteht die Menge R — r(£* aus allen Punkten P, fur die
P + p(£* C 5t. Dann ist mit der Bezeichnung von (3.12) entweder
P + r(£* c ft' oder P + r(£* c 5l/x oder P * (R ~ r(£*) ^ ((Ze)^ + r&)
Letzteres ist jedoch nach (3.21) ausgeschlossen, so daB

unddaher
/_(«)>/_(«') + /-(«')

folgt. Die rechte Seite dieser Ungleichung kann man nun analog zu (3.15)
abschàtzen, was n-i jl^

ergibt. Wenn also in der isoperimetrischen Ungleichung das Gleichheitszeichen
stehen soll, muB bei festem y\x e {ocx, /9X) und geeignetem r > 0 ein Punkt

P € (51 - r®*) rs (ZQ)ni

existieren. Dann ist aber

und somit

i (r?i + ^ir?i) > 0 fur m e (oc*, /M

Fur ein genûgend kleines e > 0 gibt es also eine Konstante mit der Eigen-
schaft (3.20), nâmlich A(e) inf {^(^x) | ^x e [oc^ + e, ^ — e]}.

Die zur Substitution benôtigte Funktion

^îW=Si-^oW (3.22)

ist nun zwar fur r\x € [(xx, f}x] absolut stetig, muB aber nicht notwendig mono-
ton sein. Dièse Schwierigkeit kann umgangen werden, indem wir zeigen, daB

die Funktion in jedem Teilintervall \ax + e, px — e] wàchst, wenn nur r hin-
reichend Hein ist. Sei nâmlich rj1, rjt + à rj1 e \jxx + e, px — s] mit A rj1 > 0,
so erhâlt man aus (3.22)

wegen der Dififerenzierbarkeit von rjo(r) aus (3.7)

Ar\x -rVoV^irjoir)) [r^ + Arit) — r^)] mit 0 < r < 1
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und nach dem Mittelwertsatz der Integralrechnung

A rj1 (1 — r VqVq1 (rjo(r)) -jll) mit ju < B const.

Nun ist #o0?ofai)) > 0 und stetig ftir r}x e {xl9 f}x), also gibt es eine Zahl
C(e) mit

Q < cr(e) < Vo(%(|?i)) fûr Vi e K + £j ^ _ £]

Dann ist aber die Funktion (3.22) im Intervall [(xx -\- e, f}x — e] mit e > 0

wachsend, wenn ^ # v

gewâhlt wird.
Wir geben jetzt e > 0 so vor, daB

-«) (3.23)

ist, und beschrânken uns auf positive Werte

wobei Z) eine obère Schranke fûr #0 (*?<)) sein niôge. Dann ist im Intervall
[«! + £,/?! — «] einerseits nach (3.20)

1 1

"'10 < v?-1 (Vl) - rv"'1 (r,M) (3.25)

und andererseits die Substitutionsfunktion (3.22) streng monoton. Letzteres
ermôglicht die eindeutige Définition der Mengen

ïM ï(()) fti [ + P ]

die der Relation ,o n(Pi-e)
Sgfî;;^ (51 - f(g*) c U 1(1,) (3.26)

genugen. Ist nâmlich (rj, 2^) ein Punkt der links stehenden Menge, so korre-
spondiert dem rj c [rji^ + e), rji^ — e)] vermôge (3.22) eindeutig ein

es ist

Zum anderen gilt
fa, »•) + rlofoofai)) c fa? 2e) + r(£* c

fa, ^e) + Hofaofax)) c 51 - (Z,^ ÎAm),

was die Relation (3.26) bestàtigt. Aus ihr folgt jetzt die Abschâtzung

«(«-rŒ*)|.< J
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In diesem Intégral substituieren wir die Funktion (3.22) und wenden auf den

Integranden das Spiegeltheorem zum BnuNN-MiNKOWSKischen Satz an, was

wegen (3.25) môglich ist. Mit den Abkûrzungen (3.18) erhàlt man dann fur
fast aile rj1 e [oc± + e, px — e]

v

also

01-e
x + i + 0(r) •

(3.27)

Fur die weiteren Abschâtzungen beachten wir, da8 nach (3.24) und (3.23)

— r(£*ist und (#1), (/?i) wegen (3.2) die extremalen ^-Koordinaten von
darstellen. Aus (3.27) ergibt sich nun die Ungleichung

- r(E*) | „

O(r)
(3.28)

in der wir noch die neben dem Intégral auftretenden GrôBen abschatzen mus-
sen. Dafur setzen wir zur Abkûrzung

R° ~ (Ze\rfo) (51 r(g*)

und bezeichnen mit Ao bzw. 50 den Vektor von O nach einem Punkt von (g

mit der extremalen 77-Koordinate — oco bzw. — /?0. Zu dem Zylinder mit

der Basis t(a2 + e) und der Hôhe r—— Ao gibt es dann eine Teilmenge

von S^+e^C^(5l ~-r(£*) mit grôBerem Ma6. Nach Konstruktion von
Si — r©* muB nàmlich jede Gerade durch einen Punkt von r(<%x + e) mit
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der Richtung Ao die Menge S«J+6 ^ C& (R — /•(£*) mindestens in einer

Strecke rA0 schneiden, woraus wegen 0 < ——— < 1 die Behauptung

folgt. Andererseits muB aber der auBerhalb des genannten Zylinders liegende

-ft»

Teil von <S&*+t in dem Ringzylinder mit der Basis

e) und derselben Hôhe r—— Ao enthalten sein. Dieser
Ringzylinder besitzt das MaB

e) \n^ - | e)\n_1)r s) \ rO(r)

Die ersten beiden Terme der rechten Seite von (3.28) sind also ^ 0 (r), was

ganz analog auch fur die beiden letzten Glieder dieser Ungleichung folgt. Damit
erhàlt man aus (3.28) durch Bildung des unteren Limes fur r -> -f- 0 und
nachfolgendem Grenzubergang e -> + 0

Dièse Relation ermôglicht nun dieselbe SchluBweise, wie wir sie im AnschluB
an die entsprechende Ungleiehung (3.19) durchgefuhrt haben. Als notwendige
Bedingung fur die Gleichheit in (3.4) ergibt sich dann wegen (3.1c) die Homo-
thetie von $tE und (£*, was zu zeigen war.
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Wir wollen nicht versâumen, die Gleichheitsbedingung des Brunn-Min-
KOWSKischen Satzes analog zu Dinghas-Schmidt [8] und Busemann [6] aus
der Gleichheitsbedingung fur die isoperimetrisehe Ungleichung (3.3) herzu-
leiten. Dièse SchluBweise làBt sich nâmlich auch auf das Spiegeltheorem zum
BRUKN-MiNKOWSKischen Satz und die isoperimetrisehe Ungleichung (3.4) iiber-
tragen.

Beweis der Gleichheitsbedingung des BRUNN-MiNKOWSKischen Satzes (vgl.
Nr. 1): Unserer jetzigen Schreibweise entsprechend hat dièse Ungleichung die
Gestalt ii i

Ift + HSi; >\St\î+r\<&\* (3.29)

Wàhlt man 0 < r' < r, so ist

tt + r(g (ft + r'Œ) + (r - r')(g
und daher

JL J_ i_
| « + r(g |; > | jl + r'Œ |; + (r - r') | Œ i;

JL JL J_ A JL

> I * i; + ^ I œ i; + (r - r1) | (s i; | R i; + r i (g i;

Wenn also in der BRUNN-MiNKOWSKischen Ungleichung (3.29) fur r das

Gleichheitszeichen steht, so muB es dort fur jedes r1 < r und damit auch in
der isoperimetrischen Ungleichung (3.3) gelten. Dies hat aber die Homothetie
von &E und (g zur Folge. Existiert ein Punkt P e <7a (51^) so wird er durch
eine Stûtzhyperebene an 51^ von dieser Menge getrennt, weshalb

L Jl
| 51 + H£ |n > | RE + r® \n >(| 51 \nn + r \ (Ê |nn )-

ist. Aus der Gleichheit in (3.29) folgt also noch RE R. Daher haben wir
als notwendige Gleichheitsbedingung fur den BRUNN-MiNKOWSKischen Satz
die Homothetie von 51 und (g, was offenbar auch hinreichend ist.

Beweis der Gleichheitsbedingung des Spiegeltheorems zum Brunn-Min-
KOWSKischen Satz (vgl. Nr. 1): Die Ungleichung hat jetzt die Form

i. JL Jl
I R - r(g* |; < | 511* - r | (£* |; (3.30)

Aus 0 < r' < r folgt

5t - r(£* (51 - /«*) - (r - r')(g*
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und somit, wenn dièse Menge nicht leer ist,
JL J_ JL

| # _ r(g* i» <^ | ft _ r'(g* |» __ (r __ r') | (g* |»

JL JL _L JL JL

Sobald also in der Spiegelungleichung (3.30) fur r Gleichheit besteht, muB sie

dort fur jedes rf <r und folglieh in der isoperimetrischen Ungleichung (3.4)
gelten. Als notwendige Gleichheitsbedingung fur das Spiegeltheorem ergibt
sich deshalb die Homothetie von $iE und (g*, was wegen (3.2) auch hinreichend
ist.
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