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Sur les structures homographiques d’une surface de Riemann

par C. TELEMAN

Introduection

Soit R une surface de RiEmANN. Nous considérons des systémes de p 4 1

fonctions analytiques sur R, u,, ..., u,,,, satisfaisant aux conditions sui-
vantes:
1. Si 'on prolonge analytiquement le systéme w = (u,, ..., %,,,), le long

d’un chemin fermé de R, les fonctions u,; subissent une transformation homo-
graphique
Qui=c%u1+... +Cf+lup+1,(’l:=1,...,p+l) (1)
c;'- étant des constantes complexes et ¢ une fonction analytique.
2. Le wronskien des fonctions u,:

u? w U
u® Lul u,
W= . Do 2)
(p) /
Upt1 « - Upy1 Upya

n’est nul en aucun point de R (on a désigné par u® les dérivées de u par
rapport & un uniformisateur local z de B. La condition W 3 0 ne dépend
pas du choix de cet uniformisateur).

3. Les fonctions u; n’ont pas d’autres singularités que des poéles.

Au point de vue géométrique, ces conditions nous disent que les fonctions
u, associent & tout domaine simplement connexe de R une courbe de I’espace
projectif complexe & p dimensions, et cette courbe a en chaque point une tan-
gente et un hyperplan osculateur déterminés.

Convenons de dire que deux tels systémes %, 4 sont équivalents si entre
une détermination w,, ..., u,,; du premier et une détermination u,, ...,
u,,, du second, dans un domaine simplement connexe de R, existe une rela-
tion de la forme (1). Nous appellerons structure homographique d’ordre p de
R toute classe H de tels systémes contenant tous les systémes équivalents a
P’un d’eux.

Dans un autre travail [1] nous avons considéré le cas p = 1 et nous avons
obtenu le résultat suivant:

Les structures homographiques d’ordre 1 d’une surface R sont en correspondance
biunivoque avec les formes différentielles, quadratiques et réguliéres de R.
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Nous rappellerons briévement la démonstration de ce théoréme et nous le
généraliserons ensuite pour p > 1.

Nous remercions M. le Prof. GEoOrcES DE RHAM pour les précieuses indica-
tions données.

1. Considérons le cas p = 1. Au systéme u = (u,, u,) on peut associer

la fonction analytique w
et 3

Uy

h =

qui a les propriétés suivantes:

a) Par prolongement analytique, la fonction A subit une transformation
homographique.

b) Les dérivées de h et 1/h ne s’annulent en aucun point de R; donc & n’a
pas d’autres singularités que des pdles simples.

Sur toute surface R on peut trouver une telle fonction. Par exemple, on
peut considérer la fonction w qui fournit la représentation conforme de la

surface universelle de recouvrement R de R, sur le cercle unité lw| <1 ou
sur le plan w, complété ou non par le point & l'infini, suivant que R est du
type hyperbolique, elliptique ou parabolique.

Supposons qu’on ait deux fonctions A, k satisfaisant aux conditions a), b).
Soit ¢ un point de R et 4 un domaine simplement connexe contenant ¢. Les
déterminations A,, k; des fonctions 4, k£ dans 4 se déduisent de deux déter-
minations particuliéres, kg, k,, par des transformations homographiques

_ ko + b ko 4 By
oehy +d; Y yiko + 6

b

G=1,2...) (3)

a;, b;, ¢;, d;, o;, B;, y:, 0; étant des constantes complexes & déterminants
a,d; — b,c;, x;6, — B;y; non nuls. On peut couvrir la surface R par une famille
de domaines A4, de maniére que chacune des déterminations A;, k, puisse étre
prise comme coordonnée complexe dans tout 4. Pour toute paire d’indices
¢, 7 on peut considérer le schwarzien

d2 dh; 1[ d dh; \ I?
s, = g5 (lom ) — 5 s (o )| “

L’expression (4) ne dépend pas de la détermination %, de % ; on peut donc
la désigner par {h}r;. En formant le schwarzien de h par rapport & une autre
détermination k; de k£, on obtient la relation de CAYLEY [2, p. 57]

{h}e, = (%)2[{’0}@- — {ki}e; ] -
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Mais en vertu de (3) on a {k,}k,, = 0, donc
{h}kldk§ s {h}kjdk‘;? .

I1 en résulte qu’aux fonctions %, k£ on peut associer une forme différentielle
quadratique ,
wy = {h},dk* = — {k},dh? (5)

qui ne dépend pas des déterminations choisies pour %, k; c’est donc une forme
uniforme sur la surface R et en tenant compte de la propriété de régularité b),
on montre facilement que la forme (5) est partout réguliére.

En fixant la fonction %, on en déduit qu’a toute fonction » on peut associer
une forme différentielle, quadratique et réguliére w, et cette forme w, déter-
mine la fonction A & une homographie pres.

En tenant compte de la définition des structures homographiques donnée
dans I’Introduction, on peut énoncer le théoréme suivant:

Les structures homographiques d’ordre 1 d’une surface de Rigmann sont en
correspondance biunivoque avec les formes différentielles, quadratiques et régu-
liéres de cette surface.

2. Considérons maintenant le cas p > 1. Associons au systéme u = (u,,
..., U, satisfaisant aux conditions 1°, 20 et 3°, ’équation différentielle,
linéaire et homogéne, d’ordre p + 1, ayant les fonctions u; comme solutions
linéairement indépendantes:

g+ 6 0
p+1 /
uPtY L wy wy
=0. (6)
(p+1) /

Cette équation est déterminée dans chaque domaine simplement connexe
4 de R, dés qu’on connait la détermination du systéme u et la coordonnée
complexe z. Ecrivons 1’équation (8) sous la forme

gr+1) 1 (p_i_ 1) ¢, 0™ + ... +(p —; 1) 2,0" + 4510 = 0; (7)

les coefficients ¢,, ..., q,.; sont des fonctions holomorphes dans le do-
maine 4.

Les invariants de I’équation (7), par rapport aux transformations du para-
métre z et par rapport aux transformations

0=26 (A = fonction holomorphe dans A4)
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sont évidement des invariants du systéme % et méme des systémes équivalents
a u. De plus, la donnée de I’'équation (7) nous permet de déterminer le sys-
téme % & une transformation (1) pres.

Donc 1’étude des structures homographiques de R se réduit a 1’étude des
invariants des équations (7) par rapport aux transformations

z2=12(2), 0=A0. (8)

Cette derniere étude a été faite par LAGUERRE et ForsyaHT [2] et nous
allons appliquer leurs résultats.

On sait que dans tout domaine 4 de R on peut trouver une coordonnée
z = h et une fonction A telles que 1’équation (7) se transforme en une équation
ayant q, = g, = 0. Les fonctions A, 4 sont données par les équations [2, p.26]

{h}zzpiz(qz——fﬁ—qi),

P

dh\™ 2
f— —Ildz
}'_(dz) e—fadz

Il s’ensuit que la coordonnée A est déterminée & une homographie prés:

E=“h+ﬁ

et pour une telle transformation, 4 est donnée par
A= (yh + 6)*. (10)

Les coordonnées kb définissent donc une structure homographique d’ordre 1
sur R.

Nous avons donc un premier résultat :

A toute structure homographique H d’ordre p on peut associer une structure
d’ordre 1. On peut donc assocter & H une forme différentielle quadratique w,.

Supposons qu’on a choisi dans chaque domaine simplement connexe 4 de
R, comme coordonnée, une détermination d’une des fonctions A assocides &
la structure H . Cette structure sera définie, dans chaque 4, par une équation
différentielle 1

g+ (p 3 )Q30p'_2 + i+ g8 =0. (11)

La théorie de LAGUERRE et FORSYGHT nous donne les invariants de 1’équa-
tion (11) par rapport aux transformations (9), (10): pour chaque m(3 < m
< p + 1) on peut construire I’expression [2, p. 32]

_[mss \ (m — 2)!m! (2m — s — 2)! . "
Oy = [,:2(') (—1) (m —s — 1)! (M—s)!(2m__3)!8!qgn)_a-|dh ) (12)

14 Commentarii Mathematici Helvetici
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qui est un invariant par rapport aux transformations (9), (10), donc
Done: D, =, mM=3,...,p+1).

Etant donnée une structure homographique H d’ordre p sur une surface de

Riemanny R, on peut lur associer p formes différentielles réguliéres w,, ...
Wy, dordres 2, ...,p+ 1.

On sait que les invariants w,, ..., w,,, définissent complétement 1’équa-
tion différentielle (7), car la connaissance de w, nous permet de réduire I’équa-
tion (7) & la forme (11), dont les coefficients ¢s, ..., ¢,,; peuvent étre déduits
des formules (12).

Donec:

Les structures homographiques d’ordre p d’une surface R sont en correspon-
dance biunivoque avec les systémes (wsy, ..., w,.,) de p formes différentielles,
réguliéres d’ordres 2,3, ...,p+ 1 de R.

4. Si nous considérons des systémes « satisfaisant seulement aux conditions
10, 30, alors les zéros du wronskien (2) seront des pdles d’ordres m pour les
formes w,,.

Supposons qu’on a par exemple une surface B fermée et soit C une courbe
algébrique plane ayant R pour type conforme. Si u,, u,, u; sont des coordon-
nées homogénes d’un point de C, alors u = (u,, %, ;) est un systéeme qui
satisfait aux conditions 10, 3°, mais le wronskien (2) s’annule aux points d’in-
flexion et de rebroussement de C'. Si le genre de C n’est pas nul, alors ce
systéme ne peut jamais satisfaire a la condition 29, car une courbe de genre
g # 0 a au moins un point d’inflexion ou un point de rebroussement.

5. Supposons la surface R fermée et de genre g > 1. Soit A une différen-
tielle abélienne de premiere espéce de R. On peut représenter toute forme
différentielle, réguliére w,,, d’ordre m, sous la forme

W,y = (PmAm ’

ou ¢,, est une fonction rationnelle sur R, ayant des pbles d’ordre m au plus
dans les 2(g — 1) zéros de A. D’aprés le théoréme de RiEmMaNN-RocH, la
fonction ¢,, dépend de

20— 1)ym—g+1=(2m—1)(g—1)

constantes complexes arbitraires.

Donc les structures homographiques H d’ordre p d’une surface fermée de genre

g > 1 dépendent de
p+1

(g—1)2Z(2m—1)=(p*+2p) (g — 1)

m=2
constantes complexes arbitraires.
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Pour g =1, les fonctions ¢,, doivent étre des constantes, donc les struc-
tures H dépendent de p constantes arbitraires.

Pour g = 0, on n’a pas d’autres formes w,, réguliéres que celles identique-
ment nulles. Dans le cas w,, = 0, 1’équation (11) s’écrit

H(r+1) — @

et posséde les solutions linéairement indépendantes 1, A, A%, ..., h"; ces
fonctions sont uniformes sur R et définissent une application de R dans I’espace

projectif complexe & p + 1 dimensions, I'image de R étant la courbe nor-
male bien connue.
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