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The spherical derivative of meroniorphic fonctions

in the neighbourhood of an isolated singularity

by Olm Lehto

1. Introduction

1. This paper deals primarily with the behaviour of meromorphic functions
f(z) in the neighbourhood of an isolated essential singularity. In a joint paper
[4] K. I. Virtanen and I introduced the spherical derivative

' i + I /(*) I2

as a natural measure for the growth of f(z) near the singularity. We proved
that if f(z) is meromorphic in the neighbourhood of the singularity z a,
an absolute constant k > 0 exists such that

We found later that k ^ \ ; a proof to this effect was reproduced in the

survey lecture [2], This numerical estimate of k became interesting as it
appeared that k \ is the best possible value in (1.1): there do exist
meromorphic functions f(z) for which

(1.2)
a

This resuit will be established in Theorem 1 below.

2. For meromorphic functions f(z) omitting at least one value in a
neighbourhood of the singularity z a, we hâve always

Um | z — a | q (f(z)) oo

In particular, this is true for regular functions (f(z) =fi oo) One might think
that in this case, the slowest possible growth for ç(f(z)) would occur for
functions f(z) growing slowly in the classical sensé, i. e. for f(z) of order zéro
and with simple zéros very thinly distributed. This, however, is not the case :

it will be shown (Theorem 2) that, on the contrary, for such functions q (f(z))
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is always of fairly rapid growth at the zéros of / (z). This admits interesting
conclusions regarding the distribution of values of such functions (Theorem 4).

3. In [4], particular attention was devoted to the class of meromorphic
functions for which

It appeared that thèse functions are identical with functions weakly normal in
a vicinity of z a. This class also coincides with the functions exceptional
in the sensé of Julia. This latter resuit was discovered already by Mabty [5],
a fact which was unfortunately overlooked in [4].

Hence, Julia's well-known modification of Picabd's Theorem can be stated
as follows : If

Km|«-a|e(/(«)) oo, (1.3)

there exists a séquence of circular dises Cv : | z — zv | < s \ zv — a \, lim zv a,
e > 0 arbitrarily small, such that f(z) takes ail values, except perhaps two,
in the union of every infinité subsequence of the dises Cv.

In this paper, we shall show that quite a simple reasoning yields the foliowing
best possible improvement of Jtjma's Theorem: Let h(r) be an arbitrary
function tending to zéro with the positive variable r. If

lim h(\zv — a\)Q(f{zv)) oo
V —>• OO

then and only then Picard's Theorem holds in the union of every infinité
subsequence of the dises Cv: \ z — zv \ < eh(\zv — a\) with arbitrarily small
positive e1).

Hence, the more rapid is the maximal growth of the spherical derivative
the smaller is the point set in which Picard's Theorem already holds, and
vice versa. The above-mentioned regular functions with a very small charac-
teristic function but with a large spherical derivative at certain points show
that it is in this connection essential to characterize the growth of f(z) by
means of the spherical derivative Q(f(z)) itself and not by integrated mean
values of q (f(z)) (characteristic function, spherical area of certain maps, etc.)
as it is customary in the classical theory.

We conclude the paper by certain remarks on the existence of a Julia
radius for functions meromorphic in the unit dise, which sharpen and
complète a previous resuit of Constantinescu [1].

*) This resuit sharpens a récent generalization of Julia's Theorem by Constantinbscu [1].
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2. Growth of the spherical derivative

4. As regards the growth of the spherical derivative, we shall now prove

Theorem 1. Let f(z) be meromorphic in a neighbourhood of the essential

singularity z a. Then

ÏÎS)^i. (2.1)

Eqwûity holds for the WEiERSTRASsiem products

n
z — a + av

where the numbers av satisfy the condition \ av+1 \ o(\av\).

Proof: For simplieity, we assume that a 0, and recall first how the
inequality (2.1) can be established.

Put F(z) f(z)f(ze^) and choose & so that F(z) is singular at z 0;
ail values of & with one possible exception do for this purpose. By Weier-
strass' Theorem, there corresponds to every e > 0 a séquence of points zv,
converging towards z 0, such that | F (zv) + 1 | < e. The points / (zv)

and f(zvei&) lie "almost" diametrically opposite on the Bjemanh sphère, and
hence the spherical length of the image of | z \ | zv \ by f(z) is greater
than n — ô(e), where ô(e) -> 0 as e -> 0. On the other hand, this length
is at most equal to 2?r | zy | max Q{f(z)), and (2.1) follows2).

|«|-|a*|
In order to prove the latter part of the Theorem we construct a convergent

WEiERSTRASsian product

n
v=o z

{2.2)

where av > 0, av > av+1, lim av 0. For this function, f( — z) l//(z) so
that Q(f(— z)) q(\jf(z)) @(/(z)). Hence, in estimating ç>(f(z)), we may
assume that Re {z} ^ 0.

Differentiation yields

2a"
(2.3)

1 + - oî

2) The rea-soning applies also to funotions f(z)9 quasiconformal in a neighbourhood of the
singularity z 0. If [a, 6] dénotes the chordal distance of a and b on the Riemann sphère, the
resuit can be expressed as follows :

Min (max [/W,/W]) l.
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For Re {z} ^ 0,

I Hz) I ^
Z a» ^1, v 0,1,2, (2.4)

Because x(l + x2)-1 is increasing for 0 ^ x < 1, we get from (2.3), by
replacing f(z) by the linear majorants in (2.4),

Let us now suppose that
av+1 o(av). (2.5)

If an+1 < | z | <£ an, it then follows readily that

Tî7r i,im-o • (2-6)

Further, by (2.5),
n - 1

V -
a,n-l

and hence,
«-1 a, 0(1) o(

Similarly,

Hence, by (2.6), (2.7) and (2.8),

M <?(/(*)) ^i + o(l).
Thus we hâve equality in (2.1) for the functions (2.2) whenever av+1 o (av) ;

the assumptions a 0 and «„ real and positive are clearly unessential.
The above extremal functions satisfying (2.1) as an equality are

meromorphic for ail z 76 0. Hence, there exist extremal functions meromorphic
in every neighbourhood of the singularity.

5. Let us study the growth of g(f(z)) for certain meromorphic and entire
functions. In order to hâve the situation most familiar in the classical theory
we assume, for the moment, that f(z) is meromorphic in the whole plane
except for the singularity at z 00. The inequality (2.1) then becomes



200 Oixi Lbhto

It is known ([4], [3]) that

\z\Q(f(z))=O(l) (2.9)

is équivalent to f(z) being an exceptional fonction in the sensé of Jtjlia. The
relation (2.9) implies that thèse functions hâve a slowly growing character-
istic function: T(r) 0(log2r), and that the distribution of values is quite
symmetric. Functions omitting a value cannot be exceptional, and it follows,
therefore, that for ail entire functions

lim|z|e(/(z)) oo.

We hâve, for instance, max g(cos z*) ~ | | z |-ï max q{e^) ~w/21 z I*-1,
etc.

One might think that q (/ (z)) would be of quite a slow growth for entire
functions of order zéro with simple zéros very thinly distributed. Such functions

possess a slowly growing characteristic function and maximum modulus.
Oddly enough, almost the opposite is true: For such entire functions, g(f(z))
is always fairly large at the zéros of the function.

We introduce the customary counting function N (r, a) and establish the
foliowing resuit.

Theorem 2. Let
f(z) n{\ -z\av)

be an entire function the zéros of which satisfy the conditions

|a«+i/«J ^?>1- (2.10)
Then

lim | av | e-*<l«H,o> Q(f(ay)) > o (2.11)
V—>¦ OO

Proof: At a zéro z an we hâve

This can be written in the form

|o«le(/(«J)= n |^=-| n |i-«>B| n \i-ajav\.
v<n u>v v<n v>n

By the condition (2.10) we thus hâve

l«.le(/(«.)) >cv n \ajav\,
oo v<n

where Gq 77(1 — q~vf > 0. Since

log n \aJap\=N(\an\90),
v < n

the Theorem follows.
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6. It is clear that if a function f(z) takes a value a infinitely often, then

hm —- oo

Hence, we obtain the foliowing less accurate but more striking version of
Theorem 2 :

For the functions of Theorem 2,

lim | a, |-*e (/(«*„)) oo
V—> 00

for arbitrarily large p.

Hence, for the functions of Theorem 2, which from the classical point of
view represent non-rational functions of slowest possible growth, the maximal
growth of the spherical derivative is more rapid than e. g. for any function
e*n,n= 1,2,

In certain cases it is possible to state (2.11) in a more explicit form. For
instance, if | an+1/an | g > 1, it follows by an easy computation that

log 1 av 1

Km q(f{av)) \ av | 2iog« > 0

In contrast to the Julia exceptional functions, the distribution of values
of the entire functions of Theorem 2 is quite "non-uniform". If the zéros
z av are isolated with small circles, the function tends uniformly to oo out-
side the dises, whereas the behaviour inside the dises is quite différent: for
large v, the set of values in the dise covers the whole Riemann sphère, ex-
cept perhaps for two small islands. (See Theorem 4 below.)

3. Spherical derivative and Picard5 s Theorem

7. In this section we shall prove, in exact terms, that if f(z) is of rapid
spherical growth in the neighbourhood of the isolated singularity, then f(z)
takes ail values, with two possible exceptions, already in a small point set,
and conversely. We shall say in the following that Picard's Theorem holds
for f(z) in a point set E if f(z) omits at most two values in E.

The proof is based on the following simple remark (cf. also [1], [3]). Let
us consider ail meromorphic functions f(z), omitting three given values in a

simply-connected domain Denoting by do the élément of length in the
hyperbolic metric of G and fixing a point z in G, we obviously hâve at this

-O<., ,3.1)
(IO\Z)
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since the existence of the extremal functions is elear by virtue of Schwarz's
Lemma. Now (3.1) is a conformai invariant, and it follows immediately that
(3.1) holds with the same constant C, irrespective of the simply-connected
domain G and the spécial point z.

Denoting by h (r) an arbitrary positive function of the positive variable r,
with the property h (r) O (r) as r -> 0, we shall now prove

Theorem 3. Let f(z) be meromorphic in a neighbourhood of the singularity
z a. If for a séquence zv, lim zv a,

lim h(\zv-a\)e(f{zv)) oo, (3.2)
V -> 00

Picard's Theorem holds for f(z) in the union of any infinité subsequence of the

dises

Cv: \z — zv\<eh{\zv-a\) (3.3)
for each s > 0.

Conversely, if there exist dises (3.3) such that for any e > 0 Picard's Theorem
00

is valid in every U CVi, then (3.2) is true.
i

Proof: Supposing first that (3.2) holds, we make the antithesis that f(z)
omits three values in a set U Cvi. A fortiori, / (z) omits the same three values
in every CVi. Hence, by (3.1),

e (/(«)) \dz\ ^Cda
in CVi. If especially z zvi centre of Gvi), daj \dz\ equals the reciprocal
value of the radius of Cvi so that

i)) ^Cje <oo.
This, however, contradicts the assumption (3.2), and the sufficiency of the
condition (3.2) is proved.

In order to prove the necessity of (3.2), we suppose that for any e > 0,
Picard's Theorem is valid in the union of every infinité subsequence of the
dises (3.3).

Let us consider the function family

fv(w) f(zv + wh(\zv - a\)) v 1, 2, (3.4)

By hypothesis, the functions of any infinité subsequence {fvi(w)} take ail
values, with two possible exceptions, in every dise | w \ < e. The family
{fv(w)} cannot, therefore, be normal at w 0. Hence, by Marty's condition,

lime(/F(0)) oo. (3.5)
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By(3.4),
e(/,(0)) e (/(«„)) Ml *,-«l)

so that (3.5) is équivalent to (3.2). The Theorem is thus completely proved.
If the singularity lies at infinity, we must put in (3.2) and (3.3) a 0.

The particular choice h(r) r then yields Julia's Theorem.

8. Constantinescu ([1], Theorem 5) proved the validity of Picard's Theorem

in U Cvi under a condition which in our notations assumes the form

HmA(|2 -a\)( J Q*(f(z))dû)t oo (z - a ré») (3.6)
2 -> a \z-a\— const.

This is sometimes a much stronger requirement than (3.2). For instance, for
the function

/(z)=77(l-ze-")
V 1

we hâve the striking différence

J Q*(f
\z\=r

as r -> oo, while (cf. n° 6)

Q(f(r))

9. Applying Theorem 3 to the entire functions of Theorem 2, slowly growing
in the classical sensé, we see that in the neighbourhood of the zéros the functions

are extremely active as regards taking many values.

Theorem 4. Let the zéros of the entire function

f(z)=Jl(l-zlav)

satisfy the conditions \ an+1lan \ ^ q > 1. Then Picabd's Theorem holds in
the union of every infinité subsequence of the dises

Cv: \z-av\<e\av\~*
where p may be chosen arbitrarily large,

4. Functions in the unit dise

10. Let f(z) be meromorphic in the unit dise | z \ < 1. If f(z) omits at
most two values in the angle # — e < arg z < & -f e, no matter how small
s > 0 has been chosen, arg z # is called a Jtjlia radius, Constantinescu
[1] proved that f(z) possesses a Julia radius if
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ïïm(l -r)A(r) oo (4.1)
r-> i

where A(r) dénotes the spherical area of the map of | z | < r by f(z).
It seems to be difficult to give a necessary and sufficient metrical condition

for the existence of a Jtjlia radius. However, simple necessary and sufficient
conditions, in terms of the spherical derivative, can be given which are not
very far apart from each other.

Theorem B. A function f (z), meromorphic in \ z \ < 1, possesses a Jtjlia
radius if f(z) is not normal, i. e. if

oo«), (4.2)

This condition is not necessary; on the other hand, the condition

i)>0 (4.3)

(4.4)

is not sufficient,
A necessary condition for the existence of a Jtjlia radius is that

for ail positive functions cp with the property

c dr

Proof: Let us first suppose that f(z) does not possess any Jtjlia radius.
Then every radius arg z & has an angular neighbourhood A$ :

& — e# < arg z <ê + eâ in which f(z) omits three values. Thus f(z) is normal
in every A#, and by Heine-Bobel's covering theorem, f(z) is normal in the
whole unit dise. Hence (4.2) implies the existence of a Jtjlia radius.

In order to prove that (4.2) is not a necessary condition, let us consider an
arbitrary angle & — e < arg z < ê + e. If f(z) omits three values in this
angle, then by a well-known theorem, it possesses radial limits on a set dense

on the arc (e%^~~8\ ei(d + e)). Hence, for a function with no radial limits on
| z | 1, every radius is a Jtjlia radius.

Now it was proved in [3] (p. 58) that there exist normal functions with no
radial limits on \z\ 1. In other words, there exist functions for which
(1 — \z\)Q(f(z)) =0(1) and for which every radius is a Jtjlia radius. Hence,
(4.2) is certainly not a necessary condition.

8) The condition (4.1) implies of course (4.2).
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For the elliptic modular function the condition (4.3) is fulfilled. On the
other hand, since this function omits three values in the whole dise \z\ < 1,
no radius is a Julia radius. Thus (4.3) is not a sufficient condition.

The necessity of the condition (4.3) can be proved by a direct computation.
If (4.4) does not hold, we get the estimate

for the spherical distance of the points /(rtc^) and f(r2e%&). By (4.5), this
implies the existence of continuous radial limits on |z| 1. Hence, f(z)
cannot possess any Julia radius.
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