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Einige Ahnlichkeits- und Symmetriesiitze

fiir differenzierbare Flichen im Raum

von ALFRED AEPPLI, Ithaca, N.Y. (USA)

Einleitung

Die vorliegende Arbeit lehnt sich an die Dissertation [1] von K. Voss an:
mit wenigen Ausnahmen werden die Bezeichnungen aus [1] iibernommen, und
die grundlegenden differentialgeometrischen Formeln, die hier wie zum Bei-
spiel (1.2) benutzt werden, findet man in [1].

Unter einer Fliche verstehen wir eine orientierte n-dimensionale zweimal
(oder dreimal) stetig differenzierbare Fliche im (n» + 1)-dimensionalen Eukli-
dischen Raum R»+!. Nachdem in [1] Parallelabbildungen einer geschlossenen

Fliche F auf eine andere F in Zusammenhang mit Kriimmungseigenschaften
von F und F betrachtet wurden, und die Translationen durch H, = H, oder

bei Eiflichen durch H, = H,(1 <y < n, » fest gewahlt) charakterisiert wur-
den (Sdtze V und VI in [1]), liegt es nahe, dhnliche Betrachtungen iiber Zen-
tralprojektionen anzustellen. Dabei gelangen wir zu den Ahnlichkeitssitzen,
Sétze 1 und 10: Ist bei der Zentralprojektion 7' zwischen den geschlossenen

Flichen F und F die reduzierte mittlere Kriimmung invariant, oder die »-te
reduzierte mittlere Kriitmmung bei Eiflichen mit einer verbindenden linearen
Schar konvexer Flichen (rH, =7H, bzw. »H,=7rH,; r = r(p) ist der
Abstand des Punktes peF vom Projektionszentrum), so ist 7' eine Streckung.
Analoge Sdtze wurden von K.-P. GROTEMEYER und von W. Stss in [2] und
[3] aufgestellt im Falle einer Abbildung zwischen zwei Eiflichen durch Zu-
ordnung paralleler Normalen. — Wir kénnten uns auf Flichen im R? beschrin-
ken (und auf Kurven in der Ebene), ohne dal viel Substanz verlorenginge.
Doch ist der Formalismus so elegant, dafl ebenso gut der allgemeine Fall
F» c R*! betrachtet werden kann, was wir auch tun. — Als Anwendung der
Ahnlichkeitssitze ergeben sich die Symmetriesitze, Sitze 2 und 11.

Die Beweise beruhen auf Integralformeln, die mit Hilfe des Stokesschen
Satzes abgeleitet werden. Daraus bekommen wir auch Sitze iiber berandete
Flédchen (zum Beispiel Satz 1'). Daneben werden die Sidtze 7, 8, 9 und 9’ iiber
berandete Fliachen mit einer andern Methode bewiesen. Sie besteht darin, die
eine Fliche F so lange mittels Streckungen zu deformieren, bis die deformierte

Fliche F' die andere F einseitig beriihrt. Diese Methode der Deformation bis
zur einseitigen Berithrung wurde schon von A.D. ALexanprov und E. P.
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SENKIN in [5] angewandt, nur sind es dort Translationen, die an Stelle der
Streckungen treten.

SchlieBlich werden aus den Integralformeln Extremalprinzipien abgelesen
(zum Beispiel Sdtze 3 und 5): Die Streckungen maximalisieren gewisse Inte-
grale I, (F ; 7', 0), und allgemeiner IV(F ; ', 0) im Falle zweier Eiflichen
mit einer verbindenden linearen Schar konvexer Flichen. Es werden speziell
die Sphiren in Satz 4 und bei (6. 6) durch Integralbeziehungen charakterisiert.
— Herrn Dr. K. Voss danke ich fiir die Durchsicht des Manuskriptes und Herrn
Prof. H. Hopr fiir anregende Diskussion iiber die Arbeit.

§ 1. Eine Integralformel

F sei eine orientierte n-dimensionale zweimal stetig differenzierbare Fliche
im (n + 1)-dimensionalen Euklidischen Raum R»+l, n > 2. F wird gegeben
durch ¥=x(ulu? ..., u").

F sei eine zweite Fliche im Rn+! derselben Art wie F. F wird dargestellt
durch I=x(ul,u? ..., u").

Es bestehe eine Zentralprojektion 7' von F auf F : Eine topologische Ab-
bildung 7'p = p, bei welcher die Verbindungsgeraden entsprechender Punkte
p, p durch einen festen Punkt O gehen, und zwar sei 7' durch ¥ = fx gegeben,
wo = f(p) = f(u!, u?, ..., u") eine nicht negative reelle Funktion ist1).

f sei zweimal stetig differenzierbar, und 7' sei regulidr, das hei3t die Funk-
tionaldeterminante von 7' sei iiberall verschieden von null?). 7T erhalte die
Orientierung. Es mufl f> 0 gelten wegen der Regularitit von 7. Falls

O¢F, ist auch O e F , und F, F beriihren sich in 0. Wir betrachten also
die Abbildung —

= __7(p)
x(p)=fp=zp, [@= ()

>0, (1.1)

wenn r = || und 7 = |%| gesetzt wird.
n sei die Normale von #'. Nach [1], (9.1) gilt?)

dn X ... Xdn Xdx X ... Xxdg=(—1pn!Hndd, 0 <v<mn, (1.2)
4 n—v

1) f > 0 ist keine einschneidende Voraussetzung.

?) fist in den Punkten p € F, die nicht zur Schattengrenze von F bei T' gehoren, von selbst
zweimal stetig differenzierbar und 7T regular, da dies fir F' und F vorausgesetzt wurde. Ist die
Richtung einer Mantellinie des Beriihrungskegels von F bei T' verschieden von allen Asymptoten-
richtungen im zugehérigen Berithrungspunkt p ¢ F, so wird f in p stetig differenzierbar und
T regulér; vgl. Lemma 1 in [1], p. 188.

3) Sind o, = q;dut, oty = agdut, ..., ®, = a,m-du" vektorielle Differentialformen auf F (die
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wo H, die »-te mittlere Krimmung bezeichnet ((1.8) in [1]):

(")Hv=k1k2...k,,+..., v=1,2,....n, Hy=1.

14

Wegen (1.1) ist dx — fdx + zdf , (1.3)

woraus mit Hilfe von (1.2), angewandt auf F und F fiir » = 0, die Beziehung
(xn) dA f*(xn)dA (1.4)

folgt. An Stelle von x kann in (1.4) irgendein zu x paralleler Vektor eingesetzt
werden.
Es gilt4)

din —n,x,dx, ...,dx) = (n —n,dx,dx, ..., dx)

— (x,dn — dn, dx, ..., dx). (1.5)

Wir formen die Glieder auf der rechten Seite in (1.5) um. Zunéchst ist
wegen (1.2) fir » =0
(m—n,dx,dx, ...,dx) =n! (n —n)n)d4,
ins heibt m—mn,dx,dx, ...,dzx) = in! (n —n)2d4. (1.6)

Wegen (1.3), wegen (1.2) fiir Fund =1, und wegen (1.4) kommt

(x,dn,dx, ..., dx¥) = o (x,dn, d&, ..., d¥)

fn
dA —
n! fH, (x7) o = — ! tH,(xm)dd,

so dafl bei nochmaliger Anwendung von (1.2) fiir » = 1 folgt:

— (x,dn —dn,dx, ..., dx) =n!(H, — fH,) (xn)dA . (1.7)
a;; sind Tangentialvektoren an F; Summation iiber sich wiederholende Indizes), so ist
o X oy X ... X &, das «vektorielle Produkt» der Formen o,:

o X 0y X o.o X o, = (14, X Qg4, X ... X Qng,) duir A duiz A ... A duin,

wo in der Klammer im Ausdruck rechts das gewohnliche Vektorprodukt von réumlichen Vek-
toren a;; im R™*! steht, und die Differentialformen schief multipliziert Werden In [1] steht im
vektoriellen Produkt fiir Differentialformen an Stelle von x das Zeichen X. — n! nd4 = dx X
dx X ... X dx ((1.2) fur vy = 0) bestimmt die Normale n, n! fidd = dE¥ X d¥ X ... X d¥ die
Normale fi: die Orientierung von F' zusammen mit n bzw. von F mit fi bestimmt die (gleiche)
Orientierung des R"+1,

4) d ist der &ullere Differentiationsoperator. Die Klammern in (1.5) deuten Determinanten
an. Es gilt fiir einen Vektor v und die vektoriellen Differentialformen o, o, ..., 2, (vgl.[1],§ 8)

(n’al’aa, ...,an)=n(al x az x LI X an).
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(1.5), (1.6), (1.7) ergeben mit ¢ .—_-_;_

1 -
—n—'d(n n,x,dx, ..., dx)

= $(n — n)2d4 + (H, —fH)xn)dA (1.8)
%n——nsz—i—(rH——rH)( n)d4 .

Integration von (1.8) iiber F liefert

n'f(n—-nxdx ., dx)

_ (1.9)
=}f(n—n)*d4d + ((rH, — rH,) (tn)dA4
F F
wenn JdF den Rand von F bedeutetb). _
Es wurde n > 2 vorausgesetzt. Fir » = 1, das hei3t fir Kurven C, C
in der Ebene, tritt an Stelle von (1.8) die Formel

d((t — )x) = 3(t — t)2ds + (rk — 7k) (tn)ds, (1.10)
und daraus folgt
(t—t)x| =3¢ —t)2ds + [(rk — 7k) (xn)ds . (1.11)
¢ C ¢

Bemerkung. Fiir w = ¥ — ¥ kommt analog zu (1.8)

dit —n,w,dx, ...,dx) = (n —n,dw, dx, ..., dx) } (1.12)
+ ! ({H, — H,) (wn)dd . |

Lassen wir das Projektionszentrum O in der Richtung ¢ (Je| = 1) unend-

lich fern werden, so wird f =1, w = we, und

M —n,dw,dx, ..., dx) = (n — 1)! }(1 — n)2(d4 + d4),

und damit folgen aus (1.12) durch Grenziibergang die Formeln (9.5), (9.6)
in [1] fiir die Parallelabbildung ¥ = x 4+ we.

§ 2. Ein Ahnlichkeitssatz und ein Symmetriesatz

Wir nennen rH, die (beziiglich O) reduzierte mittlere Krimmung von F.
Betrachten wir solche Zentralprojektionen 7': F — F, bei denen die Schat-

8) Wenn von berandeten Flichen F gesprochen wird, soll die abgeschlossene Hiille von F
kompakt sein und der Rand 0F geniigend differenzierbar, so da8 der Satz von Stokes angewandt
werden kann.

12 Commentarii Mathematici Helvetici
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tengrenze von F bei T keine inneren Punkte enthélt®), so gilt der folgende
Satz:

Satz 1. Ist bei der Zentralprojektion T der geschlossenen Fliche F auf F die
reduzierte mittlere Kriismmung invariant, so ist T eine Streckung.

Beweis: Wegen rH, = TH , folgt aus (1.9) fiir eine geschlossene Fldche F,
n=>2,
fn —n):d4 =0,
F

so daB n =n sein muB. Fiir » = 1 wird wegen (1.11) t =1, also auch
n=n. Fir :+=1,2,...,n bekommen wir daher?)

= (fx);n = (fx);n = f,(zn) + f(x,n) = f,(xn),

und da die Punkte auf F mit ¥n = 0 nirgends dicht liegen, wird f, = 0,
das heilt f = const., q.e.d. _
An Stelle der Voraussetzung rH, = r H, kann in Satz 1 gefordert werden,

daB die Ungleichungen xn <0 f.ii.%) und rH, < 7H, erfiillt sind: gelten
bei der Zentralprojektion 7' der geschlossenen Fliche F auf F' die Ungleichun-

gen xn<O0fi. und rH, < Fﬁl, so ist 7' eine Streckung. Damit xn < 0 f.1.
auf einer geschlossenen Fliche F ohne Selbstdurchdringungen bestehen kann,
mufl F vom topologischen Typus der n-Sphére S” sein, fiir n muf} die innere
Normale genommen werden, und ¥n < 0 f.ii. bedeutet, da man F von O
aus von innen sieht.

Die Integralformel (1.9) bzw. (1.11) liefert fiir berandete Fliachen:

Satz 1'. Ist bei der Zentralprojektion T der berandeten Fliche F auf F die
reduzierte mittlere Kriiommung invariant sowie auf dem Rande die Normale, so
18t T eine Streckunyg.

Weiter bekommen wir: gelten bei der Zentralprojektion 7' der berandeten

Fliche F auf F die Ungleichungen ¥n <0 f.ii. und rH, < TH ;> und ist auf
dem Rande n = n, so ist T eine Streckung.
Nun sei 7' die Antipodenabbildung von F beziiglich O: x(p*) = — f(p)x(p),

) Diese Eigenschaft der Schattengrenze von F wird in allen Satzen der vorliegenden Arbeit
entweder vorausgesetzt oder sie trifft zu als Folge anderer Bedingungen (zum Beispiel bei Ei-
flachen). F soll also keine Kegelstiicke mit der Spitze O enthalten. Diese Bedingung kann ab-
geschwicht werden (vgl. [1], p. 203): es geniigt zu fordern, da8 F — S, zusammenhéngend ist,
wenn §, die Menge der inneren Punkte der Schattengrenze von F bei T ist. Gilt dann rH, = 7H,,
so gibt es eine Streckung, welche F' in F iiberfiihrt.

7) Der Index ¢ bedeutet hier die Ableitung nach ut.

8) «f.ii.» heiBt «fast iiberall». Ist eine Beziehung auf F fast iiberall erfiillt, so soll sie bis auf
endlich viele niedriger dimensionale Ausnahmeflachen iiberall auf ¥ gelten.
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: : 1 : : .
p* e F ist der Antipode von pe F', f> 0, f(p*) = ) f sei zweimal stetig

differenzierbar, T' reguldr, und die Schattengrenze von F bei Zentralbeleuch-
tung von O aus enthalte keine inneren Punkte. Dann gilt der folgende Sym-
metriesatz:

Satz 2. Ist bei der Antvpodenabbildung der geschlossenen Fliche F beziiglich
O die reduzierte mittlere Kriiommung invariant, so ist O Symmetriezentrum von F .

Beweis: Durch Spiegelung an O entsteht aus F eine Fliche F. Es wird eine
Zentralprojektion T:F >F induziert, gegeben durch ¥ = fx. Wegen
r(p)H,(p) = r(p*)H,(p*) gilt rH, = 7H , bei geeigneter Orientierung von
F. Daher muB nach Satz 1 f = const., und da f> 0 und f(p*) _ 1 ,
wird f = 1, das heiBt F = F, q.e.d. 1)

Fiir berandete Flichen erhalten wir:

Satz 2'. Bei der Antipodenabbildung der berandeten Fliche F beziiglich O
ser die reduzierte mattlere Krimmung invariant, und auf dem Rande gelte
n(p*) = — n(p). Dann ist O Symmetriezentrum von F .

§ 3. Ein Extremalprinzip

Wir betrachten wieder Flichen F, F im R*1, welche die Bedingungen

von Satz 1 erfiillen (bis auf rH, = 7H, ) B, F sind zweimal stetig differen-
zierbar, n-dimensional, orientiert, geschlossen; es besteht die zweimal stetig
differenzierbare regulire orientierungserhaltende Zentralprojektion p = Tp

zwischen F und F mit dem Zentrum O, gegeben durch ¥ = jxt f>0; die
Schattengrenze von F bei 7' enthilt keine inneren Punkte. Wir nehmen bei

festem F und festem O simtliche Flichen F , derart daf} die genannten Be-
dingungen erfiillt sind. Diese Flidchen F bilden eine Klasse K(F, 0), die von
F und von O abhingt. Zu jedem Fe K(F, O) gehoren zwei Funktionen f und
H .- Nun gilt die Formel (1.9) (bzw. (1.11)), die fiir geschlossene Fldchen

1f(n — )24 + ((rH, — rH,) (xtn)dd = 0 (3.1)
F F
lautet, so daB fiir alle F ¢ K(F, O) die Ungleichung
{rH, —7H,) (tn)d4 <0 (3.2)
F

gilt. Wir sehen sofort: Geht F durch eine Streckung mit dem Zentrum O und
einem Faktor ¢ >0 aus F hervor, ist also f=¢, H,=cH, = fH,, so
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steht in (3.2) das Gleichheitszeichen. Wird umgekehrt in (3.2) das Gleich-
heitszeichen angenommen, so folgt aus (3.1) n =n, und daraus nach dem
Beweis zu Satz 1 f = const., so daB wir das folgende Extremalprinzip be-
kommen:

Satz 3. F sei eine geschlossene orientierte n-dimensionale zwermal stetig dif-
ferenzierbare Fliche im R™t1. F werde von O aus beleuchtet. Daber enthalte die

Schattengrenze von F keine inneren Punkte. Dann gilt fiir alle Fe K(F, 0)
{(rH, —7H,) (tn)d4 <0, (3.2)
F

und das Gleichheitszeichen wird dann und nur dann angenommen, wenn F aus F
durch eine Streckung mit dem Zentrum O und einem positiven Faktor hervorgeht.
Setzen wir

I,(F;F,0)= ——er tn)d4d = er (rn*)d4 ,
wo n* = — n ist, so besagt die Unglelchung (3. 2)
I,(F;F,0)<I,(F;F,0). (3.2))

Wegen (1.2) gilt
dx,n,dn, ...,dn,dx, ..., dx)

N —— t———
y—1

= (x,dn, ...,dn,dx, ..., dx) — (n,dn, ..., dn,dx, ..., dx)
1
14 Yy —

= (— 1n! H, (n)dA — (— 1"n! H,_,dA ,
das heiflt
dx,n,dn, ...,dn,dx,...,dx)=(— 1yn! (H,(xn) + H,_,)dA .

r—— ———
y—1

Daraus folgt fiir eine geschlossene Fliche F' die Minkowskische Formel®)
fH,(xn)dA + [H, ,dA =0. (3.3)
Fir » =1 kommt ) !
I,(F; F,O0)= ——jH (xn)dA4 = j'dA A(F), (3.4)
wenn A (F') den Fliacheninhalt von F bezelchnet. (3.2') lautet dann
I,(F;F,0) = Ij"FI:_Il(rn*)dA < A(F). (3.5)

9) Zur Minkowskischen Formel (3.3) vgl. [6], wo sie fiir Riemannsche R#éume hergeleitet
wird. — (3.3) bis (3.6) gelten auch fiir Kurven in der Ebene (n =9 = 1).
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(3.5) gilt fiir alle F e¢RK(F,0), und das Gleichheitszeichen wird in (3.5)
genau dann angenommen, wenn F und F perspektiv dhnlich sind mit posi-
tivem Proportionalitétsfaktor und dem Zentrum O. Das Integral I, (F; F, 0)
wird also bei festem F und festem O durch die Streckungen mit dem Zentrum
O und mit positivem Faktor maximalisiert, und der Maximalwert ist gleich
A (F) unabhéngig von O.

Nehmen wir fiir F' die n-Sphire § = S® vom Radius 1 und fiir O das Zen-
trum von S. n sei die innere Normale von § und n* die d4uBere. Dann wird
(xn*) = — (¥n) = 1, und damit folgt aus (3.5)

g'rHIdQ <=x,, (3.6)

wenn df2 das Flachenelement und %, den Flicheninhalt von 8 bezeichnet,

und wenn F, r, H, an Stelle von F, r, H , gesetzt wird. Mit Hilfe von (3.6)
werden die Sphiren mit dem Zentrum O unter den Flichen F ¢ K(S, 0)1)
in folgender Weise charakterisiert:

Satz 4. Fiir jede Fliche F ¢ K(S, O) gilt
frHdQ < =, . (3.6)
8

Die n-Sphiren Sy von beliebigem Radius R mit dem Zentrum O sind unter den
Flichen F ¢ K(S, O) dadurch ausgezeichnet, dafy das Funktional I,(F; S, O)
= [rH,dQ genau fir F = Sy sein Maximum x, annimms.

8

Satz 4 ist ein Spezialfall von Satz 3, und Satz 1 ist in Satz 3 enthalten. Als
unmittelbare Folge von Satz 4 (oder von Satz 1) erhalten wir: gilt fiir eine
Fliche F ¢ K(S, O) die Gleichung rH, = 1, so ist F eine Sphédre mit dem
Zentrum 0O11), _

Fordern wir in Satz 3 zusétzlich, dall der Flicheninhalt von F (oder das
Volumen V(F) des von F berandeten endlichen Gebietes 12)) mit dem von F
(bzw. mit V (F)) iibereinstimmt, und steht in (3.2) oder in (3.5) das Gleich-
heitszeichen, so fallen die beiden Flichen F, F zusammen.

Fiir berandete Flichen F, F gilt entsprechend Satz 1’ die Ungleichung
(3.2), wenn noch auf dem Rande n = 1 vorausgesetzt wird, und die Strek-

10) Wir kénnen die Flachen F € R(S, O) sternférmig (beziiglich O) nennen.

11) Diese Bemerkung ist fiir n = 2 enthalten in [4], Satz 1. Es geniigt, rH, = ¢ = const.
vorauszusetzen: durch Betrachtung der Stellen, wo » maximal bzw. minimal wird, und der zu-
gehorigen beriihrenden Sphiren mit den Mittelpunkten in O, zeigt man sofort, da3 bei geeigneter
Orientierung ¢ = 1 sein muB (vgl. [7], p. 162, 8).

13) F und F sollen in diesem Fall ohne Selbstdurchdringungen im R"+! liegen. Dann ist das
Volumen V(F) bzw. V(F) (in iiblicher Weise) definiert.
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kungen werden wiederum durch das Annehmen des Gleichheitszeichens in
(3.2) charakterisiert. Weiter besteht auch fiir berandete Flichen: ist zusitz-
lich A(F) = A(f), sowird F=F.

Nun sei wie bei Satz 2 T die Antipodenabbildung von F beziiglich O (mit
den dort angegebenen Voraussetzungen): p* = 7'p. Dann gilt fiir eine ge-
schlossene Fliache F entsprechend (3.2)

;(r(p)Hl(p) — 7 (p*)H,(p*)) x(p)n(p))dA(p) <O, (3.7)
und an Stelle von (3.5) kommt jetzt
I{r(p*)ﬂl(p*) (x(p)n*(p))dA(p) < A(F). (3.8)

Wir erhalten:
Satz b. Fir eine geschlossene Fliche F mit Antipodenabbildung beztiglich O gilt

ﬁf r(p*)H (p*) (t(p)n*(p))dA (p) < A(F), (3.8)

und das Qleichheitszeichen wird genau dann angenommen, wenn O Symmetrie-
zentrum von F ist.

Die geschlossenen zentralsymmetrischen Flichen3) werden also dadurch
charakterisiert, daB in (3.8) fiir einen geeigneten Punkt O das Gleichheits-
zeichen gilt.

Fiir eine berandete Fliche mit Antipodenabbildung trifft (3.7) immer noch
zu, wenn auf dem Rande n(p*) = — n(p) erfiillt wird, und bei Gleichheit in
(3.7) ist O Symmetriezentrum.

§ 4. Weitere Ahnlichkeitssiitze fiir berandete Fliichen

Im Anschlufl an Satz 1’ hatten wir auf die Anwendung der Integralformel

(1.9) bzw. (1.11) auf den Fall aufmerksam gemacht, in welchem F und F
berandete Flichen sind, in welchem ferner die Ungleichungen xn < 0 f.ii.,

rH, <7H,, und auf dem Rande die Gleichung n = #i erfiillt sind (nebst den
weiteren Voraussetzungen des Satzes 1’). Anstatt xn< 0 f.i., rH, < rH "
kann ¥n > 0 f.i., 7H, > 7H, vorausgesetzt werden. Ganz analog ergibt sich
der folgende Satz:

Satz 6. Bei der Zeniralprojektion T der berandeten Fliche F auf F gelte
in>0 fi., n=n auf dem Rande, H, = cﬁl > 0 far eine Konstante c,
f <c. Dann ist T eine Streckung mit dem Faktor c.

Denn wegen 0<f<c¢, H,= cﬁl >0 wird H, > ffll, das heil3t

13) Dabei sollen fiir die betrachteten Flachen F und Punkte O die Voraussetzungen wie bei
Satz 2 erfiillt sein.
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rH, > rH,, und zusammen mit ¥n > 0 f.ii. folgt wegen (1.9) bzw. (1.11)
n = n auf ganz F. Daraus ergibt sich wie bei Satz 1, da} f konstant ist, und
es ist sofort ersichtlich, dafl f = ¢ sein muB.

In Satz 6 wird neben xn > 0 f.ii. vorausgesetzt, dal H, > 0 ist. Diese
Bedingungen sind sicher dann erfiillt, wenn F von O aus konvex ist und die
Schattengrenze von F bei 7 keine inneren Punkte besitzt. Es gilt ein zu
Satz 6 analoger Satz fiir von O aus konkave Fliachen F: Ist ¥n <0 f.i.,

H, = cH , >0, f>¢>0, und sind die weiteren Voraussetzungen des
Satzes 6 erfiillt, so wird f = c¢. Der Beweis bleibt bis auf die Vorzeichen-
dnderung derselbe.

Fir H, > ¢ > 0 wird Satz 6 verschirft, falls der Rand durchwegs reguliar

ist (wenn auch eventuell mit Selbstdurchdringungen), was wir in diesem § im
folgenden annehmen:

Satz 7. Bei der Zentralprojekiion T der berandeten Fliche F auf F gelte
in>0 fi., n=n auf dem Rande, H, = cH, > ¢ > 0 filr positive Kon-
stanten ¢, ¢. Dann ist T eine Streckung mit dem Faktor c.

Beweis: Da die Schattengrenze von F bei T' keine inneren Punkte hat
(wegen xn > 0 f.ii.), existieren eine positive Konstante ¢’ und ein Punkt
qeF, sodaB fir ¢ =7¢q und fiir x'(p’) = ¢'x(p) die Gleichungen

¥()=cxq=%9, ¢=4q, (4.1)
bestehen, und auBlerdem mit 7' = |x'| die Ungleichung
r'(p') >7r(p) firalle pelkF. (4.2)

Der Punkt ¢ kann im Innern oder auf dem Rande von F Megen. Durch
¥’ = c'x ist eine berandete Fliche F' gegeben, welche F in ¢ einseitig be-

rithrt 4), Wegen (4.2) ist ' = c¢'r = ¢’ —;— > r, das heillt
¢ >f. (4.3)
Im Punkte ¢' = q gilt _
Hi(q) > H,(q), (4.4)

denn nach Wahl geeigneter Koordinaten in den Umgebungen von ¢ in F’ und
in F wird in ¢ ¢;; = g;; = 8,;, und fiir einen Tangentialvektor p der Linge 1
in ¢ bekommen wir fiir die Kriimmungen der zugehorigen Normalschnitte

K (0) = Z1j;v'0, -I;(n) = Zii,.v"vf ,

i,j t,§

1) Hier wird die Randbedingung benutzt: n = fi auf dem Rande. Daraus folgt, daf es sich
um eine Berithrung von F’ mit F in § handelt, auch wenn g auf dem Rande liegt.
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ferner ist nach Konstruktion %’'(p) > 70(1)) fiir alle Tangentialvektoren p in
q; daraus folgt k; >k, firalle 1 = 1,2, ...,%%), und damit (4.4). Wegen
¢H, =H,=cH,>¢>0, ¢>0, erhalten wir zusammen mit (4.4) die

Ungleichung oy s
c>c. :

Aus (4.3) und (4.5) folgt f <c, so daB alle Voraussetzungen des Satzes 6
erfiillt sind, also wird f = ¢ nach Satz 6, q.e.d.

Man kann Satz 7 auch beweisen, ohne auf Satz 6 zuriickzugreifen, das hei3t
ohne die Integralformel (1.9) bzw. (1.11) zu benutzen. Nachdem man nam-
lich wie oben gezeigt hat, dafl f < c¢ sein muf}, zeigt man in dhnlicher Weise,
daB auch f > ¢ gilt: Es existieren eine positive Konstante ¢” und ein Punkt
xeF, so daB fir x =Tz und fiir x"(p") = c¢"x(p) die folgenden Bezie-
hungen gelten:

¥ (x")=c"%x(z) =%(x), 2" ==,
r"(p") <7r(p) firalle pelF;

daraus folgt ¢ < f, und wegen H”(z) < H,(z) kommt ¢ < c¢” analog der
Beziehung (4.5), womit ¢ < f und wegen f <c¢ schlieBllich f = ¢ sein muf.

Satz 7 wird wie Satz 6 auf von O aus konvexe Flichen angewandt. Dal} ein
dhnlicher Satz fiir von O aus konkave Flichen nicht richtig sein kann, zeigt
das Beispiel einer Kugel, welche ganz im Innern einer zweiten Kugel liegt, und
wo als Zentrum O ein vom Ahnlichkeitszentrum verschiedener innerer Punkt
der kleineren Kugel genommen wird.

Aus Satz 7 wird ein zu Satz 2’ analoger Symmetriesatz hergeleitet:

Satz 8. Bei der Antipodenabbildung p* = Tp der berandeten Fliche F be-
zilglich O gelte xn > 0 f.4., n(p*) = — n(p) auf dem Rande, und die iiberall
positive mittlere Krivsmmung sei invariant: H,(p) = H,(p*) > ¢ > 0. Dann st
O Symmetriezentrum von F .

Eine weitere Anwendung des Satzes 7 ergibt sich in der folgenden Situation:

F und F seien geschlossene reell analytische Flachen, zwischen denen eine reell

analytische Zentralprojektion 7' besteht¢). F und F besitzen einen gemein-
samen Beriihrungskegel, der F lings B beriihre. Umrandet dann eine Kompo-
nente von B ein Flichenstiick G von F in der Weise, daB fiir @ zn > 0 und

15) k; bzw. Ic sind die Hauptkriimmungen von F’ bzw. F in ¢ = g, der GroBe nach ge-
ordnet, und als solche stellen sie die Eigenwerte der Form X’(p) bzw. %k(p) dar. Zum Satze,
daB aus k' (v) > k(v) fiir alle v die Ungleichungen ki > %, folgen, vgl. [8], p. 28. — X = lun,

X = I ;i sollen auf F' bzw. F inklusive Rand 0F bzw. 0F definiert und stetig sein.

18) T wird bei reell analytischen F und F von selbst f.ii. reell analytisch, meistens sogar

iberall (vgl. Lemma 1 in [1] fiir den analytischen Fall).
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Hy m= cH 1 > ¢€¢>0 (cund ¢ positive Konstanten), so geht F aus F durch eine
Streckung mit dem Faktor ¢ hervor.

Betrachten wir den Beweis zu Satz 7, der sich nicht auf die Integralformel

(1.9) bzw. (1.11) stiitzt, so bemerken wir, daB sich mit derselben Methode der
folgende Satz beweisen 148t :

Satz 9. Zwischen den von O aus konvexen berandeten Flichen F, F bestehe
die Zentralprojektion T. Es gelte ¥n >0 f.i., n=mn auf dem Rande,
H, = c"ﬁ, > e >0 fir positive Konstanten c, ¢ (1 <v <m, v fest gewdhlt).
Dann ist T erne Streckung mit dem Faktor c.

Die Konvexitiat der Fliachen F, F brauchen wir, um die Ungleichungen

k! >0 und k; >0 firalle ¢t = 1,2, ...,n sicherzustellen, denn nur dann
folgt fiir » > 2 aus K, >k, bzw. K/ <k, i=1,2,...,n, die Unglei-
chung H, > H, bzw. H' <H,.

Weiter ist an Hand des Beweises (ohne Integralformel) zu Satz 7 einzusehen,
dafB Satz 9 folgendermaflen verallgemeinert wird:

Satz 9'. Zwischen den berandeten Flichen F, F bestehe die Zentralprojektion
T. Es gelte xn1 > 0 f.i. und n =1n auf dem Rande. Ferner sei fiir die vom
v-ten Grade (v > 1) homogene Funktion W(k,, ..., k,) die Beziehung

Wk, ... k)=cWky,...FLk)>e>0 erfalll, ¢ und ¢ positive Kon-

ow . . . .
stanten, % >0 fir 1=1,2,...,n. Dann ist T eine Streckung mit dem
t

Faktor c.
Dabei sei die Funktion W in einem konvexen Gebiet G des (k,, k,, ..., k,)-

Raumes K™ definiert, dort gelte %%—7— > 0 fir alle ¢, und die Krﬁﬁmungsbilder

von F, F sollen in @ liegen (das « Kriimmungsbild » von ¥ wird durch die Ab-
bildung p — (k,, k5, ..., k,) gewonnen, pekF, (k,,ky, ..., k,) e K", wo
ki, ks, ..., k, die der GroBe nach geordneten Hauptkrimmungen in p sind).

Analog zu Satz 8 wird aus Satz 9’ ein Symmetriesatz hergeleitet. Ferner ent-
halten die Sdtze 7, 9 und 9’ als Spezialfille: sind die Voraussetzungen in Satz 7
bzw. 9 bzw. 9’ erfiillt, und ist zusétzlich ¢ =1, so dal H, = H . bzw.

H,=H, bzw. W(ky, ..., k)= W(ky, ..., k,), so fallen ¥ und F zusam-

men.
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§ b. Integralformeln fiir die »-ten mittleren Kriimmungen

F, F seien wie in § 1 zwei n-dimensionale Flichen im R*l n > 2, zwi-
schen denen eine Zentralprojektion 7' besteht. Neben F und F, die durch

¥ = fx, f> 0, miteinander in Beziehung stehen, betrachten wir die Schar &
der Flachen F,, 0 <t <1, welche fiir f =1 4 p durch

xt)=f@®=x, [ =141, 0<t<1, (5.1)

gegeben wird. x(0) = f(0)x = x beschreibt die Flidche F, x(1) = f(1)x =
f £ =  beschreibt die Fliche F. F und F seien dreimal stetig differenzierbar,
die Funktion f ebenfalls. Dann trifft dies auch auf f(t) zu, es ist f(¢) >0
ferner soll in den Punkten der Schattengrenze n = n gelten, so daB dann alle
Fliachen F, reguldre dreimal stetig differenzierbare Flichen sind!?). Entspre-
chend (1.3) und (1.4) kommen die Formeln

dx(t) = f(t)dx + xdf(t) = f(t)dx + txdp, (5.2)
(on(t))dA () = (f(t))*(on)d4 , (5.3)

falls n(t) bzw. dA(t) die Normale bzw. das Flichenelement von F, bezeich-
net und v einen zu ¥ parallelen Vektor.
Im folgenden bedeutet der Strich die Ableitung nach ¢. Wir bekommen

x’(t)=dxd(tt) =pX=(¥—X=1mW. (5.4)

Wegen (n(t))2=1 wird n()n'(¢) =0, also n'(f) = a(t)x,(t)*8). Aus
n(t)x,(t) = 0 folgt zusammen mit (5.4)
n' (t)%,(¢) + n@)w;(t) = 0.
und damit wird a/(t) = — g% (¢) (w;n(t)) oder??)
() = — g () (w,n()%, (). (5.5)
Mit Hilfe von (1.2) und (5.3) bekommen wir fiir ein festes v, 1 <» < n,

(w,dn(t),..., dn(f), dx(t),...,dx(t)) = (w,dn(t),...,dn(t), f(t)dx, ..., f(¢)dx)
v n—vy
= (f@®)) (w, dn(t) , dn(t), dx,..., dx) = (— 1) n! H,(t) (wn(t))dA(t)
= (— 1)n! H,(¢) (ft) )" (wn)d4 ,

17) Vgl. [1], p. 191, insbesondere (2.13). Zur dreimaligen stetigen Differenzierbarkeit von f
siehe Anmerkung 2.

18) ITn den §§ 5 und 6 wird iber sich wiederholende lateinische Indizes summiert. x
f;» @; bezeichnen die entsprechenden Ableitungen nach .

19) Die Beziehung (5.5) lautet gleich im Falle einer Parallelabbildung. Siehe [1], p. 195, (4.3).

i Wy
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und F# (t) = (f(¢))H,(t) gesetzt,
(w,dn(t), ..., dn(t),dx, ...,dx) = (— 1) n! F(t) (wn)d4 .
Daraus ergibt sich
(w, dn'(t), dn(t), ..., dn(t),dx, ...,dx) = (— 1)" ,Z"(t) (mwn)d4 ,

und weiter
(w, dn' (), dn(t),...,dn(t), dx(t), ..., dx(t))
v—1 n—v (5.6)
= (— 1P 2 G F0) m)dd

Unter Beriicksichtigung von (5.5) und [1], (1.7), (1.2), (1.5) und (1.14)
erhalten wir

' (1), dw, dn(t), ..., dn(t), dx(), ..., dx(t))
v—1

(— )¢ (¢) (w;n(t)) L ( A UN EAL x,l(t), o x, (8),
va(t)’ NP S )du"/\du"l A...A\Ndu' v—l/\du"v A...Adu"n-1
(= 197 () &jry . ry_yr,.. .r,H(t)ek A A 1 /21 1) I M 1)
- (0, 1(t)) (W, (t))dA(t)

= (— 1y'(n — 1)! c(,,) ) (w;n(¢)) (w,n(t))dA4(?),
das heil3t

I

— @), dw, dn(), ..., dn(t), dz(t), ..., dx(t))’
v—l n—y (5.7)
= (— 1)(n — 1)! ¢y (1) (w;n(2)) (wn(£))dA ().

(5.6) und (5.7) liefern mit der Formel
dw,n' (t),dn(t), ...,dn(t),dx(), ..., dx(t))
v—1

= (w, dn'(t), dn(t), ...,dn(t), dx(), ..., dx())
— (@), dw,dn(), ...,dn(t), dx@), ..., dx(t))

die Beziehung
d(w, n'(t), dn(t), ...,dn(t),cfx(t), e, dx(2))
ry—1 n—y
= (=1 ——-(f )y FH(t) (mm)dA
+ (— 1) (n — l)lc(,)( ) (w;n(2)) (w,n(2))dA ().

(5.8)
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Wir wollen die Gleichung (5.8) durch (f(t))» dividieren. Zu diesem Zweck
berechnen wir

@) ymd(w, n' (), dn(@), ..., dn(t),dx(@), ..., dx(t))
v-—l n—y
=d(w,n' (¢),dn(t), ..., dn(), dx, ...,dx)
+ (m — ») (f(¢) )—1df(t A, n' (), dn(t), ...,dn(t), dx, ..., dx).

(5.9)

Wenden wir wie oben die Beziehungen (5.5) und [1], (1.7), (1.2), (1.5) und
(1.14) an, so bekommen wir

@) df () A (w, ' (t), dn(?), ..., dﬁ(t), dx, ..., dx)

-

(f( )~ H0df () A (w, n'(2), dn(t), ..., dn(t),dx(?), ..., dx(t))

= (— 1) (f(&))- -+ gt (1) (m,-n DY) ... L1 () fu(t)-
-(m, 50), %, @), ....% __@),% @0, ... %,  @))dFAduTA. A
Adulr—r Adu™ A ... Ndu"n—1

= (= V(@) g () e, e (BT T (f).
LHE) . L1 () fr () (win(8)) (wn(E))dA (2)
= (— 1 (n — 1)! (f(£))~ "+ D ik (8) (0,1 ()] () (wn(2))dA(2) .

Wegen (5.1), (5.2) und (5.4) kommt

fe®) = tox
wn(t) = (e + ex)n(t) = o, Gn(t)) + 7%; () 2 (2))
=0, (xn(?)) + o (f(¢ )"1( —to;¥)n(t))
= 0 0) (1 — 52 ) = e en®) (O)
() = e, (xn(®)) (1), (5.10)

so daB

F@)1df &) A (w, ' (t), dn(t), ..., dn(t), dx, ..., dx)
y—1 n—vy

= (= 1 (n — D)2 (1) 0,0 (1 (1)) (o (t))dA (2)

Aus (5.4), (5.8), (5.9), (5.10) und (5.11) folgt

(5.11)
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d(,n' (), dn(), ..., dn(t), dx, ..., dx)

y—1 n—y
= (— 1)"”’7! fo,(t) (wn)d4
+ (— D (n — 1) (F@))~ ek (8) (w,1(8)) (w,n(t))dA () (5.12)

— (=1 (n—2) (n—D) L (f ()2 () 0s0e (E1 () (@M (E) ) A ()
= (— 17 ™ 7#0) (wn)dd
+ (1P (=D — (1) Q) ()" e (10,0, G (0)2AA ()

oder

d(,n' (t),dn(), ...,dn(t),dx, ..., dx)
y—1 n—y

—(— 1)»1:_‘ T (1) (mn)dA (5.13)

+ (= 1y (z — DI A — (= — »)t0) (F())" -
¢ (1) (w;1(8)) (w0, (t))dA (2)

und durch Integration erhalten wir

— 1y 1
f;;:i))—;&(af(m,n’(t),dn(t), . dn(t), dx, ..., dx)dt

y—1 n—vy

— —’:- pj:(fVE,, _ H) (wn)d4 (5.14)

+1§0§(1 — (v — »)te) (F()) " +V (i (t) 0,00 (1 (1))2dA (t)dt

insbesondere folgt fiir » = n *

=y
WD A @ 0.dn@). . dn)d } 515

_-:j[(jnﬂn — H,) (wn)d4 + jj'c(n) ) (w;n(t)) (w,n(t))dA(t)dt

und in (5.15) kann noch ¢y, = ¢** = g=1I7;, (gemiB [1], (1.11)) beriicksichtigt
werden.

Verallgemeinerung von (5.12) und (5.13). Wie (5.12), (5.13) werden For-
meln abgeleitet, in denen an Stelle von w = g% der Vektor p¢™x (m reell)
steht 20). Die Ubertragung von (5.6), (5.9) und (5.11) ist klar. Anstatt (5.10)
kommt

m — oMm—1,. __._Eg_ . f
@) = e () (m — L), (5.10)

20) Auf diese Moglichkeit machte mich Herr K. Voss aufmerksam.
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und damit leitet man wie bei (5.7) die Formel
— ('), d(e™x), dn(¢), ..., dn(t), dx(t), ..., dx(t))

y—1 n—vy (5.7r)

— (— 1V (n — i 2Qm—1 ____E_Q_
= (= Urn — D! SO os Gem(0) G- (m — &) ad 0

her. Unter Beriicksichtigung von (5.7’) erhdlt man eine zu (5.8) analoge Be-
ziehung, und es ergibt sich:

d(@™x, W (t),dn(), ..., dn(t),dz, ..., dx)
y—1 n—y
—(— 1)v”7! T (1) o™ (1) dd (5.12")
+ (=10 -1 (m+ (m+v—n— 1)te)e™ 1 (f(t))""+2.
: fo) (t)os0, (x1(2))2dA (2) ,

d(mx, W (t),dn(t), ..., dn(), dx, ..., dx)
y—1 n—vy
— (- 1)vl:_’ () om (1) dA (5.13")
+ (= 1P — ! (n + (m 4 v —n — Dig)e™ ()"
<o (8) (@, (2)) (wyn(t))dA () .

(5.12), (5.13) sind die Formeln (5.12’), (5.13') fiir m = 1, und fiir m = 0
wird

d(x, (), dn(), ..., dn(t), dx, ..., dx)
r—1 n—vy

= (— 1 2 7 0) (xm)dd
(= 1P (1 — 1)L — 1 — 1)1 (F )" 6i% (8) 0,04 (£ (1A (8)

(5.12,)

das heiBt es gilt

1y 1
(:&—-—-:)' a;’(;"(x’ n,(t)s qn(t),'°-,dn(t),d3, ceey di)dt

_ y—1 n—v
."(vav - Hv) (In)dA
F

— FI { (n — v + L)t (f())" D¢k () 0,0, (X (£))2dA () dE .
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Wegen (En()dA () = () (xn)dd (5.3')
bzw. GEn@) @) = () @En)g |

fir g = det(g,;) folgt daraus mit

. 1 .
Cos = 621 ()~} GO +-2ci5 (0 dt (5.16)
die Beziehung
=0 f j(x n'(),dn(),...,dn(t),dx, ..., de)dt
(n — 1! oo
" y—1 n—vy
J‘]‘v — H,)) (xn)dA (5.14,)

V F

—(n—v+1) .fo(v)Qsz (x11)*d4 .

Setzen wir in (5.12,) v = 1, beriicksichtigen 0(1) =g, (5.3), (5.10), (5.5),
und integrieren iiber ¢ von 0 blS 1, so resultiert von neuem die Formel (1.8).

Bemerkung. Aus (5.13) bekommen wir durch Grenziibergang die Gleichun-

gen (9.10), (9.11), (9.12) in [1] fiir die Parallelabbildung * = x + we. Es
istdann f=1, p =0, und

d(,n'(t),dn(t),...,dn(t),dx, ..., dx)
! y—1 n—vy 5 E";
= (= 1P 2 H(1) (wom)d4 (5.13)
»
+ (= 1)Y(n — 1)! c(,) ) (w;n(f)) (w,n(¢))dA ().

Mit Hilfe von (en(t))dA(t) = (en)d4

(en(®) (g(2))t = (em)g?

folgen aus (5. 13) die zitierten Formeln.

bzw. (5.5)

§6. Ahnlichkeits- und Symmetriesitze mit den »-ten mittleren Kriimmungen

F, F, T seien wie in § 5 dreimal stetig differenzierbar, » > 221). Wir nen-
nen rH, die v-te (beziiglich O) reduzierte mittlere Kriimmung von F. Mit

21) Die Satze 10, 11 gelten wegen der Satze 1, 2 ebenso fiir Kurven C, C in der Ebene R?
(n = v = 1). Es konnte auch fiir diesen Fall die lineare Kurvenschar zwischen C und C benutzt
werden, um zu einem Beweis zu gelangen, welcher dem hier fiir n > 2 gegebenen analog ist.
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Hilfe der Integralformel (5.14,) wird ein zu Satz 1 analoger Ahnlichkeitssatz
abgeleitet, allerdings nur unter den zusétzlichen

Yoraussetzungen. Bei der Zentralprojektion 7': F — F soll gelten:

(a) F ist Eifliche;

(b) F ist gleichartig orientierte 22) konvexe Fliche;

(c) die lineare Schar & = {F,; 0 <t <1} (gegeben durch (5.1)) besteht
aus lauter konvexen Flichen ).

Satz 10. Sind bei der Zentralprojektion T : F — F die Voraussetzungen (a),
(b), (c) erfullt, und st die v-te reduzierte mittlere Kriimmung invariant
(1 <v <mn, v fest gewihlt), so ist T eine Streckung.

Beweis: Wegen (a) kann l—,-, x'2! positiv definit angenommen werden. Dann
erfiilllt wegen (b), (¢) die vom Parameter ¢ stetig abhingende quadratische
Form [;;(t)x*2’ die Beziehungen

ﬁ,(t)x"xfzo fir 0<t<1, } 6.1)
lyxia >0 fir («',22,...,2") #% (0,0,...,0).

Wegen [1], (1.12) und (1.13) folgt aus (6.1)
f(‘:,f?(t)xix,ZO fir 0 <t <1, } o)
chx;x; >0 fir (', 2%, ...,2") #(0,0,...,0).

Auch ¢ (f) ist stetig von ¢ abhiingig, und nach (5.16), (6.2) wird Cf)z;z,
positiv definit. Mit »H, = 7H,, (5.14,) und (xn) s 0 f.ii. folgt g, = 0 fiir
alle 1 =1,2,...,n, das heit o = const. oder f =1 + ¢ = const., q.e.d.

Wie wir aus Satz 1 den Symmetriesatz, Satz 2, bekommen haben, so erhalten
wir aus Satz 10 einen Symmetriesatz, unter der Voraussetzung

~

(¢) die lineare Schar § = {F,; 0 <t < 1} zwischen der Eifliche F und der

aus F durch Spiegelung an O erhaltenen Fliche F besteht aus lauter kon-
vexen Flidchen.

22) Zwei geschlossene Flachen F, F ohne Selbstdurchdringungen sind gleichartig orientiert,
wenn die Orientierungen von F' und F zusammen mit den &uBeren Normalen 1t und 7t dieselbe
Orientierung des R”+1 erzeugen. Es folgt in diesem Fall n = n in den Punkten der Schatten-
grenze (bei der (orientierungserhaltenden) Zentralprojektion T': F — F), so da8 die lineare
Schar § aus reguléren Fliachen besteht, und es gelten die Formeln von § 5 (wegen der weiter ge-
machten Differenzierbarkeitsvoraussetzungen).

33) Es gibt Paare F', F von Eiflachen, deren zugehérige lineare Schar § nicht-konvexe Flachen
enthalt: fir » = 1 nimmt man zum Beispiel zwei Ellipsen in der xy-Ebene, gegeben durch
a3z + bl =1,0222'4+a2yt=1,a >0, b> 0, mit 16a2b? < (a + b)?(a® + b%), das

2 2
heit mit (1 + —Z—) + (1 4 %) > 16, und das Projektionszentrum O sei der Ursprung des

Koordinatensystems.
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Satz 11. Ist bei der Antipodenabbildung der Eifliche F beziiglich O die v-te
reduzierte mittlere Krivmmung invariant, und ist (¢) erfallt, so ist O Symmetrie-
zentrum von F .

Die Voraussetzungen zu Satz 10 (und zu Satz 11) kénnen abgeschwicht wer-
den. An Stelle von (a), (b), (¢) (bzw. von (¢)) geniigt es, daB die folgenden
Bedingungen erfiillt sind: Die Schattengrenze der geschlossenen Fliche F bei
T enthilt keine inneren Punkte, es existiert die lineare Schar & (bzw. 5), und
es gilt (6.2) fiir § (bzw. ). Wegen ¢ty = g' bedeutet die letzte Forderung fiir
v = 1 keine einschrinkende Voraussetzung, so dafl Satz 1 abgesehen von der
Existenz von § und den stdrkeren Differenzierbarkeitsvoraussetzungen neu
bewiesen wird. Hingegen wird wegen c{j = ¢/ = g=1If; die Form c*z,z; nur
auf Eiflichen definit?). Weiter sehen wir: Die (positive) Definitheit von
¢id x,2; sowie die Gleichung 7 H, = *H, miissen nur fast iiberall erfiillt sein,
und an Stelle von (6.2) geniigt die Forderung: c(if)( 7)x;x; (f.1.) positiv definit
fir ein 7, 0 < v <1, ¢}y(t) 2, positiv semidefinit fir 0 <¢ < 1.

Die Integralformel (5.14,) fithrt wie (1.9) zu Ahnlichkeits- und Symmetrie-
sitzen fiir berandete Fliachen:

Satz 10'. Euxistiert bei der Zentralprojektion T zwischen der berandeten posi-

ttv gekrivmmten %) Fliche F und der Fliche F die lineare Schar & (gegeben durch
(5.1)), sind alle F', semipositiv gekrimmi?®) (0 <t < 1), wund st die v-te redu-
zierte mittlere Krimmung invariant sowie auf dem Rande die Normale (n = n
auf dem Rande; 1 <v <n, v fest gewihlt), so ist T eine Streckung.

Satz 11'. Eaxustiert bei der Antipodenabbildung der berandeten positiv ge-

krimmien Fliche F dive lineare Schar %y (wie in (<)), sind alle F, semipositiv
gekrimmt (0 <t < 1), st die v-te reduzierte mittlere Kriismmung tnvariant
(1 <v <m, v fest gewdhlt) und gilt auf dem Rande n(p*) = — n(p), so st
O Symmetriezentrum von F'.

Aus der Integralformel (5.14) gewinnt man #hnlich den Sédtzen 10', 11’
Einzigkeitssiitze fiir berandete Flichen, wenn ¥ =% bzw. x(p*) = — x(p)
auf dem Rande vorausgesetzt wird.

Fiir eine feste Eifliiche F und einen Punkt O betrachten wir sémtliche Fli-
chen F, derart da F, F die Bedingungen von Satz 10 erfiillen (bis auf
"H, = ;"E,,, analog den Flichen F, F in §3 mit den Bedingungen von

#4) Nach [1], p. 209 gibt es Flachen vom topologischen Typus S! x 8”1, die nicht konvex
sind, und auf denen c:f) x,x, iberall definit ist, 2 <y <n—1.

) F heiBt positiv (bzw. semipositiv) gekrimmt, wenn [, a2k positiv definit (bzw. posi-
tiv semidefinit) ist.

13 Commentarii Mathematici Helvetici
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Satz 1). Diese Flichen F bilden eine Klasse & (F, 0). Aus (5.14,) folgt wegen
(6.2), (5.16) _
J(fH, — H,) (xn)d4 >0 (6.3)
F
fir alle F e @ (F,0) (und fiir alle ¥ ¢ 8 (F, 0) bei festem F)*). (6.3) ist
die Verallgemeinerung von (3.2). Das Gleichheitszeichen wird wiederum genau

dann angenommen, wenn F aus F durch eine Streckung mit dem Zentrum O
und positivem Faktor hervorgeht, was wie im Beweis zu Satz 10 eingesehen
wird. Fiihren wir

I(F;F,0)= — [f*H,(xn)dA = [f*H,(xn*)dA
F F

ein, so lautet (6.3)

I(F;F,0)<I(F;F,0). (6.3")
Setzen wir C,(F) = [H,dA, so hat die Gleichung (3.3) die Gestalt
F
I(F;F,0)=C,_,(F) (6.4)

((6.4) stimmt fir v = 1 mit (3.4) iiberein), und (6.3’) ist dquivalent mit der
Ungleichung _
I(F; F,0) <C,,(F). (6.5)

Entsprechend (3.6) ergibt sich fiir alle F ¢ £(S, O) (Bezeichnungen wie bei

(3.6))
JrH,dQ < x, , (6.6)
S

und das Gleichheitszeichen wird genau fiir die Sphiren mit dem Mittelpunkt
O angenommen. Es folgt: Gilt fiir ein FeQ(S,0) »»H,=1 (fir ein »,
1 <v<mn), soist F eine Sphire mit dem Zentrum O 27).

An Stelle von (3.7) und (3.8) tritt nun im Falle einer Antipodenabbildung
unter den entsprechenden Voraussetzungen

FI((f(p))"H,,(p*) — H,(p)) G(p)n(p))dA(p) >0, (6.7)
1{ (f(p) Y H,(p*) (x(p)n*(p))dA (p) < O, (F), (6.8)

26) Im Falle der Parallelabbildung und der « Antipodenabbildung» an einer n-dimensionalen
Ebene (siehe [1], (9.6)und (9.12)) bekommt man entsprechend (6. 3) und (6.7) die Ungleichungen

j (H,—H,) (wn)d4 < 0,
F
; (H,(p*) — H,(p)) (x(p*) —2(p))n(p)d4 (p) < O.

%7) Schon rYH, = c¢ = const. charakterisiert die Spharen in £(S,0): aus r'H, = ¢ folgt
¢ = 1 (sieche Anmerkung 11).
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und das Gleichheitszeichen wird genau dann angenommen, wenn O Symmetrie-
zentrum von F ist.

Entsprechend den Sédtzen 10’, 11’ lassen sich die Ungleichungen (6.3), (6.7)
sowie die zugehorigen Charakterisierungen der Streckung bzw. der Zentral-
symmetrie auch fiir berandete Flichen herleiten (unter Voraussetzung ge-
eigneter Randbedingungen).
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Zusatz ber der Korrektur: Nach einer brieflichen Mitteilung von Yuen-Fat Wong hat Chin-
Shui Hsue ahnliche Uberlegungen gemacht wie in den oben stehenden §§ 1 und 2. Es soll dariiber
eine Veroffentlichung herauskommen in den Proc. Amer. Math. Soc.
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