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Einige Ahnlîchkeits- und Symmetriesâtze
fur differenzierbare Flâchen im Raum

von Alfred Aeppu, Ithaca, N.Y. (USA)

Einleitung

Die vorliegende Arbeit lehnt sich an die Dissertation [1] von K. Voss an:
mit wenigen Ausnahmen werden die Bezeichnungen aus [1] ubernommen, und
die grundlegenden differentialgeometrischen Formeln, die hier wie zum Bei-
spiel (1.2) benutzt werden, findet man in [1].

Unter einer Flâche verstehen wir eine orientierte w-dimensionale zweimal
(oder dreimal) stetig differenzierbare Flâche im (n + l)-dimensionalen Eukli-
dischen Raum Rn+1. Nachdem in [1] Parallelabbildungen einer geschlossenen

Flâche F auf eine andere F in Zusammenhang mit Krummungseigenschaften

von F und F betrachtet wurden, und die Translationen durch Hx H1 oder

bei Eiflâchen durch Hv Hv(l <v <n, v fest gewâhlt) charakterisiert wurden

(Sâtze V und VI in [1]), liegt es nahe, âhnliche Betrachtungen iïber Zen-
tralprojektionen anzustellen. Dabei gelangen wir zu den Âhnlichkeitssâtzen,
Sâtze 1 und 10: Ist bei der Zentralprojektion T zwischen den geschlossenen

Flâchen F und F die reduzierte mittlere Krummung invariant, oder die v-te
reduzierte mittlere Krummung bei Eiflâchen mit einer verbindenden linearen
Schar konvexer Flâchen (rH1 rH1 bzw. rvHv rvHv; r r(p) ist der
Abstand des Punktes pcF vom Projektionszentrum), so ist T eine Streckung.
Analoge Sâtze wurden von K.-P. Gbotemeyeb und von W. Sûss in [2] und
[3] aufgestellt im Falle einer Abbildung zwischen zwei Eiflâchen durch Zu-
ordnung paralleler Normalen. - Wir kônnten uns auf Flâchen im i?3 beschrân-
ken (und auf Kurven in der Ebene), ohne daB viel Substanz verlorenginge.
Doch ist der Formalismus so élégant, daB ebenso gut der allgemeine Fall
Fn c i?w+1 betrachtet werden kann, was wir auch tun. - Als Anwendung der
Âhnlichkeitssâtze ergeben sich die Symmetriesâtze, Sâtze 2 und 11.

Die Beweise beruhen auf Integralformeln, die mit Hilfe des Stokesschen
Satzes abgeleitet werden. Daraus bekommen wir auch Sâtze liber berandete
Flâchen (zum Beispiel Satz 1'). Daneben werden die Sâtze 7, 8, 9 und 9' uber
berandete Flâchen mit einer andern Méthode bewiesen. Sie besteht darin, die
eine Flâche F so lange mittels Streckungen zu deformieren, bis die deformierte
Flâche F1 die andere F einseitig berûhrt. Dièse Méthode der Déformation bis
zur einseitigen Berûhrung wurde schon von A. D. Alexandeov und E. P.
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Senkik in [5] angewandt, nur sind es dort Translationen, die an Stelle der
Streckungen treten.

SchlieBlich werden aus den Integralformeln Extremalprinzipien abgelesen
(zum Beispiel Sàtze 3 und 5) : Die Streckungen maximalisieren gewisse Intégrale

It(F;F,O), und allgemeiner IV(F;F,O) im Falle zweier Eiflâchen
mit einer verbindenden linearen Schar konvexer Flâchen. Es werden speziell
die Sphâren in Satz 4 und bei (6.6) durch Integralbeziehungen charakterisiert.

- Herrn Dr. K. Voss danke ich ftir die Durchsicht des Manuskriptes und Herrn
Prof. H. Hopf fur anregende Diskussion uber die Arbeit.

§ 1. Eine Integralformel

F sei eine orientierte n-dimensionale zweimal stetig differenzierbare Flâche
im (n -f- l)-dimensionalen Euklidischen Raum jRw+1, n > 2. F wird gegeben
durch / «

X ï(^M2, Un)

F sei eine zweite Flâche im Rn+1 derselben Art wie F. F wird dargestellt
durch - _

X x (u1, u2, un)

Es bestehe eine Zentralprojektion T von F auf F : Eine topologische Ab-
bildung Tp — p, bei welcher die Verbindungsgeraden entsprechender Punkte
p, p durch einen festen Punkt 0 gehen, und zwar sei T durch ï fx gegeben,
wo / f(p) f(ux, u2, un) eine nicht négative réelle Funktion ist1).

/ sei zweimal stetig differenzierbar, und T sei regulâr, das heiBt die Funk-
tionaldeterminante von T sei iiberall verschieden von null2). T erhalte die
Orientierung. Es muB / > 0 gelten wegen der Regularitât vbn T. Falls

0 e F, ist auch 0 e F, und F, F beriihren sich in 0. Wir betrachten also
die Abbildung _

wenn r | x \ und r | S | gesetzt wird.
n sei die Normale von F. Nach [1], (9.1) gilt3)

du X X dn X dx x X dx (— l)vn\ HvndA 0 < v < n (1.2)
n — v

x) / I> 0 ist keine einschneidende Voraussetzung.
2) / ist in den Punkten p € F, die nicht zur Schattengrenze von F bei T gehôren, von selbst

zweimal stetig differenzierbar und T regulâr, da dies fur F und F vorausgesetzt wurde. Ist die
Richtung einer Mantellinie des Beruhrungskegels von F bei T verschieden von allen Asymptoten-
richtungen im zugehôrigen Beruhrungspunkt p € F, so wird f in p stetig differenzierbar und
T regulâr; vgl. Lemma 1 in [1], p. 188.

3) Sind <xt audu4, oc2 û2i^w*,..., an anidul vektorielle Differentialformen auf F (die
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wo Hv die v-te mittlere Krummung bezeichnet ((1.8) in [1]):

/„ kxk2 kv + v 1, 2, n H0 1

Wegen (1.1) ist 7- 7 rtV6 v ; dx fdx + xdf, (1.3)

woraus mit Hilfe von (1.2), angewandt auf F und F fur v 0, die Beziehung

(xn)dl fn(xn)dA (1.4)

folgt. An Stelle von x kann in (1.4) irgendein zu x paralleler Vektor eingesetzt
werden.

Es gilt4)

d(n - n, x, dx, dx) (n — n, dx±dx, ...,dx)
— {x,dn — dn,dx, ..,dx). ^ ' }

Wir formen die Glieder auf der rechten Seite in (1.5) um. Zunâchst ist
wegen (1.2) fur v 0

(n — n, dx, dx, dx) n\ ((n — n)n)dA
das heiBt - (/ -,9JA ^ n,(n — n,dx,dx, ,dx) |n! (n —n)2d^4 (1.6)

Wegen (1.3), wegen (1.2) fur F und v l, und wegen (1.4) kommt

(S, dn, *t, dx) -^zr (*> dn, dx, dx)

so daB bei nochmaliger Anwendung von (1.2) fur v 1 folgt:

- (3t, dn - dn, dx, dx) »!(#! - fHx) {xn)dA (1.7)

a^^ sind Tangentialvektoren an F; Summation ûber sioh wiederholende Indizes), so ist
<*! X a2 X x <xn das « vektorielle Produkt » der Formen at- :

ax x a2 x x an (ai^ x a2i2 x x anin) duh A duh A • • • A ***»
wo in der Klammer im Ausdruck reehts das gewôhnliche Vektorprodukt von râumlichen Vek-
toren a^ im En+1 steht, und die Differentialformen sohief multipliziert werden. In [1] steht im
vektoriellen Produkt fur Differentialformen an Stelle von x das Zeichen X. - n! ndA — dx x
dt x X dx ((1.2) fur v — 0) bestimmt die Normale n, n! ndA dx X dx X X dï die
Normale n: die Orientierung von F zusammen mit n bzw. von F mit n bestimmt die (gleiche)
Orientierung des Rn+1.

*) d ist der âuÔere Differentiationsoperator. Die Klammern in (1.5) deuten Determinanten
an. Es gilt fur einen Vektor t) und die vektoriellen Differentialformen oct, a2, an (vgl. [1], § 8)

(t>, al9 a2, <xn) 0(ax x a2 x X an).
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(1.5), (1.6), (1.7) ergebenmit r= —

(1.8)

-n,x,dx, ...9dx)

i(n - nfdA + (Hi - fHt) (xn)dA

i(n - n)*dA + {rH1 - rHt) (xn)dA

Intégration von (1.8) tiber F liefert

i- f (n -n,i,<fe,n\dF
^

(1 9)

if (n - n)2dA + j(rHx - rHJ (xn)dA
F F

wenn dF den Rand von F bedeutet6).
_

Es wurde n > 2 vorausgesetzt. Fur n 1, das heiBt fur Kurven C, G
in der Ebene, tritt an Stelle von (1.8) die Formel

- t)x) i(t - t)2ds + (rk - rk) (xn)ds (1.10)

und daraus folgt

(t - t)x | if (t - t)«<fo + f (ri - rfc) (m)* (LU)
ac c c

Bemerkung. Fur vo x — x kommt analog zu (1.8)

d(n - n,t»,efo, ...,*e) (n -n,dm,dx, ...,dx) \

+ nl(fH1-H1)(mn)dA.J
Lassen wir das Projektionszentrum 0 in der Richtung e (|c| 1) unend-

lich fern werden, so wird / 1, VO wt, und

(it - n5 dm, dx, dx) (n - 1)! i(ît - n)2(dl + dA),
und damit folgen aus (1.12) durch Grenzûbergang die Formeln (9.5), (9.6)
in [1] fur die Parallelabbildung I x + wt.

§ 2. Ein Âlmlichkeitssatz und ein Symmetriesatz

Wir nennen rH1 die (bezuglich 0) reduzierte mittlere Kjiimmung von F.
Betrachten wir solche Zentralprojektionen T : F -> F, bei denen die Schat-

5) Wenn von berandeten Flàchen F gesprochen wird, soll die abgeschlossene Huile von F
kompakt sein und der Rand dF genugend differenzierbar, so daÛ der Satz von Stokes angewandt
werden kann.

12 Commentarii Mathematici Helvetici
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tengrenze von F bei T keine inneren Punkte enthâlt6), so gilt der folgende
Satz:

Satz 1. Ist bei der Zentralprojektion T der geschlossenen Floche F auf F die
reduzierte mittlere Krûmmung invariant, so ist T eine StrecJcung.

Beweis: Wegen rHx rH1 folgt aus (1.9) fur eine geschlossene Flâche F,
n > 2,

${n-n)2dA 0,
F

so da8 n n sein muB. Fur n 1 wird wegen (1.11) t t, also auch

n n. Fur i 1,2, n bekommen wir daher7)

0 (/x),n (fx)tn ft(*n) + f(xin) /<(m),

und da die Punkte auf F mit xn 0 nirgends dicht liegen, wird fi 0,
das heiBt / const., q.e.d.

__
An Stelle der Voraussetzung rH1 rH1 kann in Satz 1 gefordert werden,

da8 die Ungleichungen xn< 0 f.ù.8) und rH1 <rH1 erfullt sind: gelten
bei der Zentralprojektion T der geschlossenen Flâche F auf F die Ungleichungen

xn < 0 f.ii. und rHt < ^rH1, so ist î7 eine Streckung. Damit xn < 0 f.ii.
auf einer geschlossenen Flâche F ohne Selbstdurchdringungen bestehen kann,
muB F vom topologischen Typus der w-Sphâre Sn sein, fur n muB die innere
Normale genommen werden, und £n< 0 f.ii. bedeutet, daB man F von 0
aus von innen sieht.

Die Integralformel (1.9) bzw. (1.11) liefert fur berandete Flâchen:

Satz 1'. Ist bei der Zentralprojektion T der berandeten Floche F auf F die
reduzierte mittlere Krûmmung invariant sowie auf dem Ronde die Normale, so

ist T eine Streckung.
Weiter bekommen wir: gelten bei der Zentralprojektion T der berandeten

Flâche F auf F die Ungleichungen xn < 0 f.u. und rHt <rHt, und ist auf
dem Rande n n, so ist î7 eine Streckung.

Nun sei T die Antipodenabbildung von F bezuglich 0: 3e (p*) — f(p)X (p),

•) Dièse Eigenschaft der Sehattengrenze von F wird in allen Sâtzen der vorliegenden Arbeit
entweder vorausgesetzt oder sie trifft zu als Folge anderer Bedingungen (zura Beispiel bei Ei-
flaehen). F soll also keine Kegelstucke mit der Spitze O enthalten. Dièse Bedingung kann ab-
geschwâcht werden (vgl. [1], p. 203): es geniigt zu fordern, daÔ F — So zusammenhângend ist,
wenn So die Menge der inneren Punkte der Sehattengrenze von F bei T ist. Gilt dann rH1 rHlf
so gibt es eine Streckung, welehe F in F uberfuhrt.

7) Der Index i bedeutet hier die Ableitung nach u*.
8) «f.ii. » heifit «fast iiberall». Ist eine Beziehung auf F fast iiberall erfullt, so soll sie bis auf

endlich viele niedriger dimensionale Ausnahmeflâehen uberall auf F gelten.
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p* € F ist der Antipode von p e F, / > 0, /(#>*) ~JTT> f 8e* zweimal stetig

differenzierbar, T regulâr, und die Schattengrenze von F bei Zentralbeleuch-
tung von 0 aus enthalte keine inneren Punkte. Dann gilt der folgende Sym-
metriesatz :

Satz 2. Ist bei der Antipodenabbildung der geschlossenen Floche F bezûglich
0 die reduzierte mittlere Krûmmung invariant, so ist O Symmetriezentrum von F.

Beweis: Durch Spiegelung an O entsteht aus F eine Flâche F. Es wird eine

Zentralprojektion T : F -> F induziert, gegeben durch X fx. Wegen

r(p)Hx(p) r(p*)Hx(p*) gilt rHx lrH1 bei geeigneter Orientierung von

F. Daher muB nach Satz 1 / const., und da / > 0 und f(p*)
/(P) '

wird / 1, das heiBt F F, q.e.d.
Fur berandete Flàchen erhalten wir :

Satz 2'. Bei der Antipodenabbildung der berandeten Flâche F bezûglich O

sei die reduzierte mittlere Krûmmung invariant, und auf dem Rande gelte

— n(p). Dann ist O Symmetriezentrum von F.

§ 3. Ein Extremalprinzip

Wir betrachten wieder Flàchen F, F im Rn+1, welche die Bedingungen

von Satz 1 erfullen (bis auf rH1 rHx): F, F sind zweimal stetig differenzierbar,

w-dimensional, orientiert, geschlossen; es besteht die zweimal stetig
differenzierbare regulàre orientierungserhaltende Zentralprojektion p Tp
zwischen F und F mit dem Zentrum O, gegeben durch ï fx, / > 0; die
Schattengrenze von F bei T enthàlt keine inneren Punkte. Wir nehmen bei

festem F und festem O sàmtliche Flàchen F, derart da8 die genannten
Bedingungen erfûllt sind. Dièse Flàchen F bilden eine Klasse $t(F, O), die von
F und von O abhângt. Zu jedem F e R(F, O) gehôren zwei Funktionen / und

H1. Nun gilt die Formel (1.9) (bzw. (1.11)), die fur geschlossene Flàchen

iJ(n - n)HA + $(rH1 - rHt) (xn)dA 0 (3.1)
F F

lautet, so daB fur aile F e R(F,0) die Ungleichung

1 - rHx) (xn)dA < 0 (3.2)

gilt. Wir sehen sofort: Geht F durch eine Streckung mit dem Zentrum O und
einem Faktor c > 0 aus F hervor, ist also f c, H1 cH1 fH1, so
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steht in (3.2) das Gleichheitszeichen. Wird umgekehrt in (3.2) das Gleich-
heitszeichen angenommen, so folgt aus (3.1) n n, und daraus nach dem
Beweis zu Satz 1 / const., so daB wir das folgende Extremalprinzip be-
kommen :

Satz 3. F sei eine geschlossene orientierte n-dimensionale zweimal stetig dif-
ferenzierbare Floche im R71*1. F werde von O aus beleuchtet. Dabei enthalte die

Schattengrenze von F keine inneren Punkte. Dann gilt fur aile F e $t(F, 0)

${rHx - rHx) (xn)dA < 0 (3.2)
F

___

und das Gleichheitszeichen wird dann und nur dann angenommen, wenn F aus F
durch eine Streckung mit dem Zentrum O und einem positiven Faktor hervorgeht.

Setzen wir
__ __ ____

It(F; F,O) - ftHifrriidA frHx{xn*)dA
F F

wo n* — ît ist, so besagt die Ungleichung (3.2)

I^F'^F^O) <IX(F;F,O). (3.2')
Wegen (1.2) gilt

d(x, n, dn, ,dn, dx, dx)

(x, dn, dn, dx, dx) — (n, dn, dn, dx, dx)

v p — 1

(- l)"n! Hv(xn)dA - (- 1)"-%! Hv_xdA

das heifit

d(x, n, dn, ...,dn, dx, dx) (- 1)*»! (Hv(xn) + Hv_x)dA

v-l
Daraus folgt fur eine geschlossene Flâche F die Minkowskische Formel9)

§Hv(xn)dA + jH^dA 0 (3.3)
F F

Fur v 1 kommt

It(F;F, O) - - iHx{xn)dA \dA A (F), (3.4)
F F

wenn A (F) den Flâcheninhalt von F bezeichnet. (3.2;) lautet dann

I^F; F,O) ftH^xn^dA <A(F). (3.5)
F

•) Zur Minkowskischen Formel (3.3) vgl. [6], wo sie fur Riemannsche Râume hergeleitet
wird. - (3.3) bis (3.6) gelten auch fur Kurven in der Ebene (n v 1).
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(3.5) gilt fur aile FcR(F,O), und das Gleichheitszeichen wird in (3.5)
genau dann angenommen, wenn F und F perspektiv ahnlich sind mit posi-
tivem Proportionalitatsfaktor und dem Zentrum 0. Das Intégral IX(F\ F,0)
wird also bei festem F und festem 0 durch die Streckungen mit dem Zentrum
0 und mit positivem Faktor maximalisiert, und der Maximalwert ist gleich
A (F) unabhangig von 0.

Nehmen wir fur F die n-Sphare S Sn vom Radius 1 und fur 0 das
Zentrum von S. n sei die innere Normale von S und n* die auBere. Dann wird
(tn*) — (xn) 1, und damit folgt aus (3.5)

QKx^ (3.6)
s

wenn dQ das Flachenelement und xn den Flacheninhalt von S bezeichnet,
und wenn F, r, Hx an Stelle von F, r, H1 gesetzt wird. Mit Hilfe von (3.6)
werden die Spharen mit dem Zentrum 0 unter den Flachen F €$t(8, G)10)

in folgender Weise charakterisiert :

Satz 4. Fur jede Flache F cR(8,0) gilt

Q <nn. (3.6)
s

Die n-Spharen SR von beliebigem Radius R mit dem Zentrum 0 sind unter den

Flachen F € R(S, 0) dadurch ausgezeichnet, dafi das Funktional I1(F] S,O)
frH^Q genau fur F SR sein Maximum xn annimmt.

s
Satz 4 ist ein Spezialfall von Satz 3, und Satz 1 ist in Satz 3 enthalten. Als

unmittelbare Folge von Satz 4 (oder von Satz 1) erhalten wir: silt fur eine
Flache F e St{8, 0) die Gleichung rHx 1, so ist F eine Sphare mit dem
Zentrum 011). _Fordern wir in Satz 3 zusatzlich, daB der Flacheninhalt von F (oder das

Volumen V(F) des von F berandeten endlichen Gebietes12)) mit dem von F
(bzw. mit V(F)) ubereinstimmt, und steht in (3.2) oder in (3.5) das

Gleichheitszeichen, so fallen die beiden Flachen F, F zusammen.

Fur berandete Flachen F, F gilt entsprechend Satz T die Ungleichung
(3.2), wenn noch auf dem Rande n n vorausgesetzt wird, und die Strek-

10) Wir konnen die Flachen F e R{S, O) sternformig (bezughch O) nennen.
11 Dièse Bemerkung ist fur n — 2 enthalten m [4], Satz 1. Es genugt, rHx c const.

vorauszusetzen durch Betrachtung der Stellen, wo r maximal bzw. minimal wird, und der zu-
gehongen beruhrenden Sphâren mit den Mittelpunkten in O, zeigt man sofort, daB bei geeigneter
Orientierung c 1 sem mufi (vgl. [7], p. 162, 8).

12) F und F sollen m diesem Fall ohne Selbstdurchdrmgungen îm Rn+1 liegen. Dann ist das

Volumen V(F) bzw. V(F) (m ubhcher Weise) defimert.
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kungen werden wiederum durch das Annehmen des Gleichheitszeichens in
(3.2) charakterisiert. Weiter besteht auch fur berandete Flâehen: ist zusâtz-

lich A {F) A (F), so wird F F.
Nun sei wie bei Satz 2 T die Antipodenabbildung von F bezuglieh 0 (mit

den dort angegebenen Voraussetzungen) : p* Tp. Dann gilt fur eine ge-
sehlossene Flâche F entsprechend (3.2)

S(r(p)H1(p) ~ rip^H^P*)) (t(p)n(p))dA(p) < 0 (3.7)
F

und an Stelle von (3.5) kommt jetzt

$r(p*)Hx(p*) (t(p)n*(p))dA(p) <A(F) (3.8)
F

Wir erhalten :

Satz 5. Fur eine geschlossene Floche F mit Antipodenabbildung bezuglich 0 gilt

(T(p)n*(p))dA(p) <A(F) (3.8)
F

und das Oleichheitszeichen wird genau dann angenommen, wenn 0 Symmetrie-
zentrum von F ist.

Die geschlossenen zentralsymmetrisehen Flachen13) werden also dadureh
charakterisiert, daB in (3.8) fur einen geeigneten Punkt O das Gleichheits-
zeichen gilt.

Fur eine berandete Flâche mit Antipodenabbildung trifift (3.7) immer noch

zu, wenn auf dem Rande n(p*) — n(p) erfullt wird, und bei Gleichheit in
(3.7) ist O Symmetriezentrum.

§ 4. Weitere Âhnlichkeitssâtze fur berandete Flachen

Im AnsehluB an Satz 1' hatten wir auf die Anwendung der Integralformel
(1.9) bzw. (1.11) auf den Fall aufmerksam gemaeht, in welchem F und F
berandete Flâchen sind, in welchem ferner die Ungleichungen xn < 0 f.û.,
rHx <rHx, und auf dem Rande die Gleichung n ït erfullt sind (nebst den

weiteren Voraussetzungen des Satzes 1'). Anstatt am< 0 f.ii., rH1<^rH1
kann xn > 0 f.û., rH1 > rH1 vorausgesetzt werden. Ganz analog ergibt sich
der folgende Satz :

Satz 6. Bei der Zentralprojektion T der berandeten Flâche F auf F gelte

Xn > 0 /.#., n n auf dem Bande, H1 cH1 > 0 fur eine Konstante c,
/ < c. Dann ist T eine Streckung mit dem Faktor c.

Denn wegen 0 < / < c, H1 cHt > 0 wird H1 > fHl9 das heiBt

18 Dabei sollen fur die betrachteten Flâchen F und Punkte O die Voraussetzungen wie bei
Satz 2 erfullt sein.
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rHx > rHly und zusammen mit xn > 0 f.ii. folgt wegen (1.9) bzw. (1.11)
n rt auf ganz F. Daraus ergibt sich wie bei Satz 1, da6 / konstant ist, und
es ist sofort ersichtlich, da8 / c sein muB.

In Satz 6 wird neben xn > 0 f.ti. vorausgesetzt, dafi Ht>0 ist. Dièse

Bedingungen sind sicher dann erfullt, wenn F von 0 aus konvex ist und die
Schattengrenze von F bei T keine inneren Punkte besitzt. Es gilt ein zu
Satz 6 analoger Satz fur von O aus konkave Flâchen F: Ist xn<0 f.û.,
Ht cHx > 0, / > c > 0, und sind die weiteren Voraussetzungen des

Satzes 6 erfullt, so wird f c. Der Beweis bleibt bis auf die Vorzeiehen-
ànderung derselbe.

Fur Hx > e > 0 wird Satz 6 verschârft, falls der Rand durchwegs regulâr
ist (wenn auch eventuell mit Selbstdurchdringungen), was wir in diesem § im
folgenden annehmen :

Satz 7. Bei der Zentralprojektion T der berandeten Flàche F auf F gelte

xn> 0 /.#., n ït auf dem Bande, H1 cHx > e > 0 fur positive Kon-
stanten c, e. Dann ist T eine Streckung mit dem Faktor c.

Beweis: Da die Schattengrenze von F bei T keine inneren Punkte hat
(wegen xn > 0 f.u.), existieren eine positive Konstante c' und ein Punkt
q e F, so da6 fur q Tq und fur Xr (pr) c'x(p) die Gleichungen

X/(ï') c/x(?) I(ï), g' g, (4.1)

bestehen, und auBerdem mit r' \x!\ die Ungleichung

r' {p')>r (p) fur aile p e F. (4.2)

Der Punkt q kann im Innern oder auf dem Rande von F ffegen. Durch
Xf cr x ist eine berandete Flàche F1 gegeben, welche F in q einseitig be-

rûhrt14). Wegen (4.2) ist r' cl r cf -£- > r, das heiBt

c'>f. (4.3)
Im Punkte q' q gilt _

denn nach Wahl geeigneter Koordinaten in den Umgebungen von q in F' und

in -F wird in q gf{j go- (5ti, und fiir einen Tangentialvektor t> der Lange 1

in q bekommen wir fiir die Krlimmungen der zugehôrigen Normalschnitte

14) Hier wird die Randbedingung benutzt: n fî auf dem Rande. Daraus folgt, dafi es sich

um eine Berùhrung von F' mit F in q handelt, auch wenn ~q auf dem Rande liegt.
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ferner ist nach Konstruktion le1 (t)) > k(v) fur aile Tangentialvektoren t) in

q; daraus folgt lc[ > kt fur aile i 1,2, n15), und damit (4.4). Wegen

c!Hfx Hx c-ffi > e > 0, c > 0, erhalten wir zusammen mit (4.4) die

Ungleichung
c>cf. (4.5)

Aus (4.3) und (4.5) folgt / < c, so daB aile Voraussetzungen des Satzes 6

erfullt sind, also wird / c nach Satz 6, q.e.d.
Man kann Satz 7 auch beweisen, ohne auf Satz 6 zuruckzugreifen, das heiBt

ohne die Integralformel (1.9) bzw. (1.11) zu benutzen. Nachdem man nam-
lich wie oben gezeigt hat, daB / < c sein muB, zeigt man in ahnlicher Weise,
daB auch / > c gilt: Es existieren eine positive Konstante c" und ein Punkt
x c F, so daB fur x Tx und fur x"(p") c"x(p) die folgenden Bezie-

hungen gelten :

X"(x") c"x(x) ï(ï) x" x
r" (pff) < r (p) fur aile p e F ;

daraus folgt c" < /, und wegen Hf[(x) < H1(x) kommt c < c" analog der
Beziehung (4.5), womit c < f und wegen / < c schlieBlich f c sein muB.

Satz 7 wird wie Satz 6 auf von 0 aus konvexe Flachen angewandt. DaB ein
ahnlicher Satz fur von 0 aus konkave Flachen nicht richtig sein kann, zeigt
das Beispiel einer Kugel, welche ganz im Innern einer zweiten Kugel liegt, und
wo als Zentrum O ein vom Àhnlichkeitszentrum verschiedener innerer Punkt
der kleineren Kugel genommen wird.

Aus Satz 7 wird ein zu Satz 2' analoger Symmetriesatz hergeleitet :

Satz 8. Bei der Antipodenabbildung p* Tp der berandeten Flache F be-

ziiglich O gelte xn > 0 f.û., n{p*) — n(p) auf dem Rande, und die Uberall

positive mittlere Krûmmung sei invariant: Ht(p) H1(p^i) > e > 0. Dann ist
O Symmetriezentrum von F.

Eine weitere Anwendung des Satzes 7 ergibt sich in der folgenden Situation :

F und F seien geschlossene reell analytische Flachen, zwischen denen eine reell

analytische Zentralprojektion T besteht16). F und F besitzen einen gemein-
samen Berùhrungskegel, der F langs B beruhre. Umrandet dann eine Kompo-
nente von B ein Flachenstuck G von F in der Weise, daB fur O aen > 0 und

15) k[ bzw. k% sind die Hauptkrummungen von F' bzw. F m g' q, der Grofie nach ge-
ordnet, und als solche stellen sie die Eigenwerte der Form &'(t)) bzw. k{o) dar. Zum Satze,
dafî aus k' (t>) > k(t)) fur aile t) die Ungleichungen k'% ;> kt folgen, vgl. [8], p. 28. - t%i ^3Tt,
3^ =r ï^ïi sollen auf F bzw. F înklusive Rand dF bzw. dF definiert und stetig sem.

16) T wird bei reell analytischen F und F von selbst f.u. reell analytiseh, meistens sogar
uberall (vgl. Lemma 1 m [1] fur den analytischen Fall).
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Hx cHx > e > 0 (c und e positive Konstanten), so geht F aus F durch eine

Streckung mit dem Faktor c hervor.
Betrachten wir den Beweis zu Satz 7, der sich nicht auf die Integralformel

(1.9) bzw. (1.11) stutzt, so bemerken wir, daB sich mit derselben Méthode der
folgende Satz beweisen laBt :

Satz 9. Zwischen den von 0 aus konvexen berandeten Flachen F, F bestehe

die Zentralprojektion T. Es gelte xn> 0 f.u., n ît auf dem Bande,

Hv — cvHv > e > 0 fur positive Konstanten c, e (1 < v < n, v fest gewahlt).
Dann ist T eine Streckung mit dem Faktor c.

Die Konvexitat der Plachen F, F brauchen wir, um die Ungleichungen

K ^> 0 und kt > 0 fur aile i 1,2, n sicherzustellen, denn nur dann

folgt fur v > 2 aus k[ > kt bzw. k% <kt, i 1, 2, n, die Unglei-
chung H'9 > Hv bzw. H"v < Hv.

Weiter ist an Hand des Beweises (ohne Integralformel) zu Satz 7 einzusehen,
daB Satz 9 folgendermaBen verallgememert wird*

Satz 9'. Zwischen den berandeten Flachen F, F bestehe die Zentralprojektion
T. Es gelte xn > 0 f.u. und n — n auf dem Bande. Ferner sei fur die vom
v-ten Grade (v > 1) homogène Funktion W(kx, kn) die Beziehung

W(kl9 kn) cvW(kx, kn) > e > 0 erfullt, c und e positive

Konstanten, -^r- > 0 fur i 1,2, ...,n. Dann ist T eine Streckung mit dem

Faktor c.
Dabei sei die Funktion W in einem konvexen Gebiet G des (kx, k2,..., kn)-

dW #
Raumes Kn definiert, dort gelte -^~- > 0 fur aile i, und die Krummungsbilder

von F, F sollen in G liegen (das «Krummungsbild» von F wird durch die Ab-
bildung p -> (kl9 k2, kn) gewonnen, p e F, (kl9 k2, kn) e Kn, wo
kl9k29 •., kn die der GroBe nach geordneten Hauptkrummungen in p smd).

Analog zu Satz 8 wird aus Satz 9' ein Symmetriesatz hergeleitet. Ferner ent-
halten die Satze 7, 9 und 9; als Spezialfalle : smd die Voraussetzungen in Satz 7

bzw. 9 bzw. 9' erfullt, und ist zusatzlich c 1, so daB Hx Hl bzw.

Hv Hv bzw. W(kl9 kn) WÏjc^ ...,kn)9 so fallen F und F zusam-
men.
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§ 6. Integralîormeln fur die v-ten mittleren Krûmmungen

F, F seien wie in § 1 zwei w-dimensionale Flâehen im i?n+1, n > 2, zwi-
schen denen eine Zentralprojektion T besteht. Neben F und F, die durch
X fx, / > 0, miteinander in Beziehung stehen, betrachten wir die Schar g
der Flâchen Ft, 0 < t < 1, welche fur / 1 + q durch

l + tg, 0<t<l, (5.1)

gegeben wird. x(0) f(O)x X beschreibt die Flàche F, x(l) f(l)X
fx X beschreibt die Flâche F. F und F seien dreimal stetig differenzierbar,
die Funktion / ebenfalls. Dann trifft dies auch auf f(t) zu, es ist f(t) > 0;
ferner soll in den Punkten der Schattengrenze n n gelten, so da8 dann aile
Flâchen Ft regulâre dreimal stetig differenzierbare Flâchen sind17). Entspre-
chend (1.3) und (1.4) kommen die Formeln

dx(t) f(t)dx + Xdf(t) f(t)dx + txdg (5.2)

(pn(t))dA(t) (j{t)Y{ion)dA (5.3)

falls n(t) bzw. dA(t) die Normale bzw. das Flâchenelement von Ft bezeich-
net und v einen zu x parallelen Vektor.

Im folgenden bedeutet der Strich die Ableitung nach t. Wir bekommen

lt_t ia). {6A)t{t) _ QX==lt_t ia).

Wegen (n(t))2 1 wird n(t)n'(t) 0, also n'{t) a* («)*, (*)")•
n(t)tt(t) 0 folgt zusammen mit (5.4)

und damit wird a^(t) — g*i(t) {xotv.{t)) oder19)

n'(O -0"W(w<n(t))ï,(«). (5.5)

Mit Hilfe von (1.2) und (5.3) bekommen wir fur ein festes v, 1 <v <n,
(w,dn(t),...,dn(t),d*{t),... ,dx(t)) (xo,dn(t),...,dn(t),f(t)dx,... ,f(t)dx)

v n — v

(/W)K-V(tt», dn(t),..., dn(t), dx,...,dx) (- 1)" n\ Hv{t) (mn(t))dA(t)
(-iyn\Hv(t)(f(t)y(mn)dA,

1?) Vgl. [1], p. 191, insbesondere (2.13). Zur dreimaligen stetigen Differenzierbarkeit von /
siehe Anmerkung 2.

18) In den §§5 und 6 wird ûber sich wiederholende lateinische Indizes summiert. %if mi9
fi » Qi bezeichnen die entsprechenden Ableitungen nach ui.

19) Die Beziehung (5.5) lautet gleich im Falle einer Parallelabbildung. Siehe [1], p. 195, (4.3).
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und Jfv{t) (f(t)YHv(t) gesetzt,

(ro,dn(t), ...,dn(t),dx, ...,dx) {- \)vn\ 3£v{t) (von)dA

Daraus ergibt sich

(yo,dn'(t),dn(t), ,dn(t),dx, ...,dx) (- 1)" — 3V'v(t) (vow)dA

und weiter
dn'(t), dn(t),..., dn(t),dx(t), dx(t))

ni
v

v—1 n — v

fv(t)(wn)dA.

(5.6)

Unter Benicksichtigung von (5.5) und [1], (1.7), (1.2), (1.5) und (1.14)
erhalten wir

(n'(t),dw,dn(t), ,dn(t),dx(t),

t)...i::zi(t) (x3(t), mk,xri(t),
xTv{t), xrnl(t))duk Adu'i A Adu»"-i Adur* A

(- îy-ifa — 1)! cftit) (tD,n(O) (mkn{t))dA{t),

das heiBt

- (n; (0, dm, dn(Q, ...,dn(0, dx(t), dg(Q)

^— 1 72, — î;

(— l)v(n — 1)! c\^(t) (votn{t)) (vokn(t))dA(t).

(5.6) und (5.7) liefern mit der Formel

d(m,ri(t)9dn(t), ...9dn(t),dx(t),

(5.7)

v-1
(tD, dri (t), dn(t), dn(t), dx(t),

...,dn(t),dx(t),
die Beziehung

d(m,n'(t),dn(t), ,dn(t),dx(t), dx(t))

v-l
1)" —

(- l)v(n

n — v

(mn)dA
(5.8)



188 Alfred Aeppli

Wir wollen die Gleichung (5.8) durch (f(t))n~v dividieren. Zu diesem Zweck
berechnen wir

n'(t),dn(t), ...,dn{t),d*(t),
v—l n—v

d(m,n'(t),dn(t), ...9dn(t),dt, ...,dx)
+ (n-v) {j(t))-Hf{t) A (tx>, n'(t),dn{t), dn(t)9 dx,...9 dx)

(5.9)

Wenden wir wie oben die Beziehungen (5.5) und [1], (1.7), (1.2), (1.5) und
(1.14) an, so bekommen wir

A (p3,n'(t),dn(t),...,dn(t),dx,

A (», n'(0, dn{t), dn(t), dx(t), dx(t))

• (tu, xt(t), xn(t), ï^W, xTr(t)> • • •. xrnl(t))duk Adu'i A A

A du'"-1 A dur" A A du'"-1

(».n(0)

(- i)'(n - 1)! ^
Wegen (5.1), (5.2) und (5.4) kommt

(e,« + QXt)n(t) e,(xn(

so daB

A (», n'

y-1 n — v

(5.10)

(5.11)

Aus (5.4), (5.8), (5.9), (5.10) und (5.11) folgt
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d(ra,n'(t),dn(t), ,dn(t),dx, dx)
v — 1 n — v

n\(- iy — JIT'p(t) {mn)dA

+ (- i)'(n - 1)! (vokn(t))dA(t)

JSF[{t) {mrt)dA

oder
d (to, n' (t), dn(t), dn{t), dx, dx)

v— 1 n — v

+ (- l)*(n - 1)! (1 - (n - v)tQ) (/(0)-"1-"-

und durch Intégration erhalten wir

T—~r JJ(w,n'(«),dn(O,...,dn(«),(fe£, ...,dx)dt
r-l

- Hv) {xan)dA
n — v

F 0

insbesondere folgt fur v n

(1)" J(tB, n'(0,
(n— 1)! jf o

- jy.) (xan)dA

(5.12)

(5.13)

(5.14)

(5.15)

und in (5.15) kann noch c^ ctk g"1^ (gemâfi [1], (1.11)) berûcksichtigt
werden.

Verallgemeinerung von (5.12) und (5.13). Wie (5.12), (5.13) werden For-
meln abgeleitet, in denen an Stelle von m qx der Vektor Qmx (m reell)
steht20). Die Ûbertragung von (5.6), (5.9) und (5.11) ist klar. Anstatt (5.10)
kommt

*°) Auf dièse Môglichkeit maohte mich Herr K. Voss aufmerksam.
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und damit leitet man wie bei (5.7) die Formel

- (n'(t), d(Qmx), dn(t), ...,dn(t), dx(t),

(— l)v(n — iy c

v-l n — v (5.70

her. Unter Berucksichtigung von (5.7') erhalt man eme zu (5.8) analoge Be-
ziehung, und es ergibt sich

d(Q™x,nr(t),dn(t), ...,dn(t),dx,
v-l n — v

+ (- l)v(n - 1)' (m + (m + v - n - l)tç)Qm-1(f(t))-in-v+2)

(5 12')

d(Q™x,nr(t),dn(t), dn(t),dx, dx)
v — l n — v

(vokn(t))dA(t)

(5 13')

(5.12), (5.13) sind die Formeln (5.12'), (5.13') fur m 1, und fur m 0
wird

d(x,n'(t),dn(t), dn(t), dx, dx)
v—l n — v

(5.120)

das heiBt es gilt

(n — 1) '

V p

'(«), dn(t),...,dn(t),dx, dx)dt
v—l n—v

- JJ(»
F 0
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Wegen
(xn(t))dA(t) (f(t)r(xn)dA

fur g det(gij) folgt daraus mit

die Beziehung

(5.16)

(n-l)\dJFo
J !(t,n'(t),dn(t)9...,dn(t),dt, ...,dx)dt

v—l n — v

~$(f»ïîv-Hv)(xn)dA
V F

(5.140)

Setzenwirin(5.120) v=l, berùcksichtigen c^ gik, (5.3), (5.10), (5.5),
und integrieren uber t von 0 bis 1, so resultiert von neuem die Formel (1.8).

Bemerkung. Aus (5.13) bekommen wir durch Grenzûbergang die Gleichun-

gen (9.10), (9.11), (9.12) in [1] fur die Parallelabbildung I x + wt. Es
ist dann / 1, q 0, und

d(m,n'(t)9drt(t),...9dn(t)9dx9 dx)

n! v— 1 n — v

(- 1)* — H'9(t) {mn)dA

)!c**(«) (w,n(0) (TO*tt

(5.13)

MitHilfevon
(ett(l))«W(«) (en)<Ll j
(en(0) &(«))*

folgen aus (5.13) die zitierten Formeln.

§6. Âhnlichkeits- und Symmetriesatze mit den v-ten mittleren Kriimmungen

F, F, T seien wie in § 5 dreimal stetig differenzierbar, n > 221). Wir nen-
nen rvffv die v-te (beziiglich 0) reduzierte mittlere Krummung von F. Mit

21 Die Sâtze 10, 11 gelten wegen der Sàtze 1, 2 ebenso fur Kurven O, C in der Ebene R*
{n v 1). Es kônnte auch fur diesen Fall die lineare Kurvenschar zwischen C und G benutzt
werden, um zu einem Beweis zu gelangen, welcher dem hier fur n > 2 gegebenen analog ist.
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Hilfe der Integralformel (5.140) wird ein zu Satz 1 analoger Âhnlichkeitssatz
abgeleitet, allerdings nur unter den zusâtzlichen

Voraussetzungen. Bei der Zentralprojektion T': F -> F soll gelten:
(a) F ist Eiflâche ;

(b) F ist gleichartig orientierte22) konvexe Flâche;

(c) die lineare Schar g {Ft\ 0 < t < 1} (gegeben durch (5.1)) besteht
aus lauter konvexen Flâchen23).

Satz 10. Sind bei der Zentralprojektion T: F -> F die Voraussetzungen (a),
(b), (c) erfûllt, und ist die v-te reduzierte mittlere Kriimmung invariant
(1 < v < n, v fest gewàhlt), so ist T eine Streckung.

Beweis: Wegen (a) kann lijxix'i positiv définit angenommen werden. Dann
erfûllt wegen (b), (c) die vom Parameter t stetig abhângende quadratische
Form lii(t)xixj die Beziehungen

LÂtSx'x* > 0 fur 0 < t < 1 \

lijxJxi > 0 fur (a?1, x2, xn) # (0, 0, 0) J

Wegen [1], (1.12) und (1.13) folgt aus (6.1)

<$*(*)Vi*i > 0 fur 0 < K 1 \~~ ~~ ~ \ (6.2)
(v) i j J-vll \Us *l> j ••.}•*/ f -f— \"j "y • • • j "/ • /

Auch cfy(t) ist stetig von t abhângig, und nach (5.16), (6.2) wird CfyxiX
positiv définit. Mit rvHv rvHv, (5.140) und (xn) ^ 0 f.u. folgt e< 0 fur
aile i 1,2, n, das heiBt q const. oder / 1 + Q const., q.e.d.

Wie wir aus Satz 1 den Symmetriesatz, Satz 2, bekommen haben, so erhalten
wir aus Satz 10 einen Symmetriesatz, unter der Voraussetzung

(c) die lineare Schar § {Ft ; 0 < t < 1} zwischen der Eiflâche F und der

aus F durch Spiegelung an O erhaltenen Flâche F besteht aus lauter
konvexen Flâchen.

22 Zwei geschlossene Flâchen F, i^ ohne Selbstdurchdringungen sind gleichartig orientiert,
wenn die Orientierungen von F und F zusammen mit den âuÛeren Normalen n und ït dieselbe
Orientierung des jRn+i erzeugen. Es folgt in dièsem Fall ît n in den Punkten der Schatten-
grenze (bei der (orientierungserhaltenden) Zentralprojektion T : F -> F), so daÛ die lineare
Schar (J aus regulâren Flâchen besteht, und es gelten die Formeln von § 5 (wegen der weiter ge-
machten Differenzierbarkeitsvoraussetzungen

23) Es gibt Paare F, F von Eiflâehen, deren zugehôrige lineare Schar gr nicht-konvexe Flâchen
enthâlt: fur n — 1 nimmt man zum Beispiel zwei Ellipsen in der sey-Ebene, gegeben durch
a-2x2 _j_ 5-2^2 _ i^ ^-2^2 _j_ a~2yi l, a > 0, 6 > 0, mit 16a262 < (a -f 6)2(a2 + 62), das

(a \2 / 6 \2
1 -j- —- i -f- I 1 -{ J >16, und das Projektionszentrum O sei der Ursprung des

Koordinatensystems.
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Satz 11. Ist bei der Antipodenabbildung der Eiflâche F bezilglich O die v-te

reduzierte mittlere Krûmmung invariant, und ist (c) erfiillt, so ist O Symmetrie-
zentrum von F.

Die Voraussetzungen zu Satz 10 (und zu Satz 11) kônnen abgeschwâcht wer-
den. An Stelle von (a), (b), (c) (bzw. von (c)) genûgt es, da6 die folgenden
Bedingungen erfiillt sind: Die Schattengrenze der geschlossenen Flâche F bei

T enthâlt keine inneren Punkte, es existiert die lineare Schar g (bzw. 5), und
es gilt (6.2) fur g (bzw. §). Wegen cj/} g^ bedeutet die letzte Forderung fur
v 1 keine einschrânkende Voraussetzung, so da8 Satz 1 abgesehen von der
Existenz von g und den stârkeren Differenzierbarkeitsvoraussetzungen neu
bewiesen wird. Hingegen wird wegen c(^ ci?" 9^1% die Form ci^xixi nur
auf Eiflâchen définit24). Weiter sehen wir: Die (positive) Definitheit von
"c)^)xixi sowie die Gleichung rvHv rvHv mlissen nur fast iiberall erfiillt sein,
und an Stelle von (6.2) geniigt die Forderung: c\l){x)xixj (f.û.) positiv définit
fur ein r, 0 < r < 1, cll){t)xixj positiv semidefinit fur 0 < t < 1.

Die Integralformel (5.140) fûhrt wie (1.9) zu Âhnlichkeits- und Symmetrie-
satzen fiir berandete Flâchen :

Satz 10'. Existiert bei der Zentralprojektion T zwisclien der berandeten positiv

gekrûmmten25) Flâche F und der Floche F die lineare Schar g {gegeben durch
(5.1)), sind aile Ft semipositiv gekrûmmt25) (0 < t < 1), und ist die v-te
reduzierte mittlere Krûmmung invariant sowie auf dem Rande die Normale (n ît
auf dem Rande ; 1 < v < n, v fest gewâhlt), so ist T eine Streckung.

Satz 11'. Existiert bei der Antipodenabbildung der berandeten positiv ge-

krûmmten Flâche F die lineare Schar Qf (wie in (c)), sind aile Ft semipositiv
gekrûmmt (0 <t < 1), ist die v-te reduzierte mittlere Krûmmung invariant
(1 <ï v < n, v fest gewàhlt) und gilt auf dem Rande n(p*) — n(p), so ist
O Symmetriezentrum von F.

Aus der Integralformel (5.14) gewinnt man àhnlich den Sàtzen 10', 11'

Einzigkeitssâtze fur berandete Flâchen, wenn x ï bzw. x(p*) — x(p)
auf dem Rande vorausgesetzt wird.

Fur eine feste Eiflache F und einen Punkt O betrachten wir samtliche Flà-
chen F, derart dafi F, F die Bedingungen von Satz 10 erfullen (bis auf

rvHv rvHv, analog den Flâchen F, F in § 3 mit den Bedingungen von

24) Nach [1], p. 209 gibt es Flâchen vom topologischen Typus S1 X Sn~19 die nicht konvex
sind, und auf denen cjïK xi xk iiberall définit ist, 2 < v <Ç n — 1.

25) F heifît positiv (bzw. semipositiv) gekrummt, wenn ï<fca^ie* positiv définit (bzw. positiv

semidefinit) ist.
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Satz 1). Dièse Flâchen F bilden eine Klasse 2(F, 0). Aus (5.140) folgt wegen
(6.2), (5.16)

$(f*Hv-Hv)(xn)dA>0 (6.3)
F

fur aile F € 2 (F, 0) (und fur aile F c fi (F, 0) bei festem F)m). (6.3) ist
die Verallgemeinerung von (3.2). Das Gleichheitszeichen wird wiederum genau
dann angenommen, wenn F aus F durch eine Streckung mit dem Zentrum O

und positivem Faktor hervorgeht, was wie im Beweis zu Satz 10 eingesehen
wird. Fuhren wir

I,{F; F,O) - SfHv(xn)dA Sf>Hv(xn*)dA
F F

ein, so lautet (6.3) _
IV(F;F,O) <IV(F;F,O). (6.3')

Setzen wir CV(F) $HvdA, so hat die Gleichung (3.3) die Gestalt

IV{F-,F,O) GV_1{F) (6.4)

((6.4) stimmt fur v 1 mit (3.4) iiberein), und (6.3') ist âquivalent mit der
Ungleichung

__

I^FiF.O)^^^). (6.5)

Entsprechend (3.6) ergibt sich fur aile F e Q(S,O) (Bezeichnungen wie bei

(3.6))
$r*HvdQ<xn, (6.6)
s

und das Gleichheitszeichen wird genau fur die Sphâren mit dem Mittelpunkt
0 angenommen. Es folgt: Gilt fur ein F e 2(8,0) rvHv=l (fur ein v,
1 < v < n), so ist F eine Sphâre mit dem Zentrum 0 27).

An Stelle von (3.7) und (3.8) tritt nun im Palle einer Antipodenabbildung
unter den entsprechenden Voraussetzungen

S((f(p))vHv(P*) ~ HV(P)) (x(p)n(p))dA(p) > 0 (6.7)
F

(x(p)n*(p))dA(p) < CV_X(F) (6.8)

28) Im Falle der Parallelabbildung und der «Antipodenabbildung» an einer n-dimensionalen
Ebene (siehe [1], (9.6) und (9.12)) bekommt man entsprechend (6.3) und (6.7) die TJngleichungen

— x(p))n(p)dA(p) <^ 0.

27) Sohon rvHv — c — const. eharakterisiert die Sphâren in 2(S, 0): aus rvHy c folgt
c 1 (siehe Anmerkung 11).
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und das Gleichheitszeichen wird genau dann angenommen, wenn 0 Symmetrie-
zentrum von F ist.

Entsprechend den Satzen 10', 11' lassen sich die Ungleichungen (6.3), (6.7)
sowie die zugehôrigen Charakterisierungen der Streckung bzw. der Zentral-
symmetrie auch fur berandete Flachen herleiten (unter Voraussetzung ge-
eigneter Randbedingungen).
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Zusatz bei der Korrektur Nach einer brief lichen Mitteilung von Yuen-Fat Wong hat Chin-
Shui Hsue ahnhche Ûberlegungen gemacht wie m den oben stehenden §§1 und 2. Es soll daruber
eine Veroffentlichung herauskommen m den Proc Amer. Math Soc.
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