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Tenseurs harmoniques et groupes de mouvement
d'un espace de Riemann

par G. Vranceanu, Bucarest

On sait d'après des résultats dus à G. de Rham et W. Hodge1), qu'étant
donné un espace de Riemann compact orientable, le nombre des tenseurs
harmoniques indépendants d'un certain ordre p qu'on peut construire dans
l'espace, est égal au nombre de Betti Bp. D'autre part on sait, d'après un
théorème de K. Yano 2) que chaque tenseur harmonique est un invariant par
rapport à un mouvement de l'espace. Il y a donc une relation étroite entre le
nombre r des paramètres du groupe de mouvement d'un espace Vn compact
et les nombres de Betti de cet espace. D'autre part, comme chaque tenseur
harmonique est en même temps un tenseur à dérivée extérieure nulle, ou
comme on dit encore un tenseur fermé, il y a une relation étroite entre le
nombre des tenseurs fermés invariants et le groupe G> de 1 espace.

Dans la première partie nous allons donner certaines formules qui lient les

tenseurs symétriques gauches avec le groupe de mouvement Qr de l'espace.
Dans la seconde partie nous allons supposer que l'espace est rapporté à un

système de congruences orthogonales et nous allons montrer que dans le cas
où l'espace possède un groupe de mouvement simplement transitif et l'on
utilise les congruences orthogonales à coefficients de rotation constants3), la
recherche des tenseurs harmoniques de l'espace devient un problème algébrique,

ce qui généralise un résultat de Hodge relatif aux espaces#des groupes
semi-simples.

I
Etant donné un espace de Riemann Vn, défini comme une variété différen-

tiable, dont la métrique dans un certain voisinage est donnée par la formule

ds2 dijdxtdxi 9 (1)

on sait que si l'espace Vn est compact, il peut être couvert par un nombre fini
de voisinages. Une certaine propriété est valable pour l'espace Vn compact,
si elle est valable dans chacun de ces voisinages. Considérons alors un tenseur
symétrique gauche quelconque |rii ^ covariant d'ordre p. On sait qu'on peut

1) W. Hodge, The theory and applications of harmonie intégrais, Cambridge Univ. Press, 1952.
a) K. Yano, Curvature and Betti numbers, Aimais of Math. Studies, Princeton 1953, p. 48-49.
3) G. Vbanceantj, Sur les espaces de Riemann ayant leurs coefficients de rotation constants,

C. R. Paris, t. 184, 1929, p. 386-388.
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162 G. Vbancbanu

former avec ce tenseur un tenseur symétrique gauche d'ordre p

qu'on appelle, la dérivée extérieure du tenseur f^ ^ - Si cette dérivée
extérieure est nulle on dit que le tenseur est fermé.

Considérons maintenant un vecteur contrevariant rj*. On sait qu'un tel
vecteur définit un groupe Qx continu à un paramètre, la transformation
infinitésimale de ce groupe étant donné par la formule

xri xi + rf (3)

où rf sont considérés comme des quantités du premier ordre. On peut former
à l'aide du tenseur £ix A et du vecteur rf la dérivée de Lie

L^ ^ %%V n + ^ lâjîï + + ^ If ^
et cette dérivée est nulle si le tenseur Çi% { admet le groupe de mouvement
Ol9 ou comme on dit encore, s'il est invariant par le groupe Olt ou bien par
le mouvement (3).

D'autre part, on peut associer aux deux tenseurs Six,,,ip et rf le tenseur
symétrique gauche d'ordre p — 1

Cela fait, nous avons les formules

+ Lï
Pour la démonstration, on remarque que la formule (4), si l'on utilise la
formule (2) pour éliminer la dérivée de fit A par rapport à xk devient la seconde

formule (6) si l'on remarque que Akb{l A c'est-à-dire la dérivée extérieure
du tenseur (5), peut encore s'écrire

et que nous avons
(8)

De même il en résulte facilement les premières formules (6).
Nous avons donc le théorème suivant :

Etant donné un tenseur symétrique gauche d'ordre p fermé iit_j invariant
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par rapport au mouvement rf, le tenseur associé (5) est aussi fermé et invariant
par rapport à rj%.

En prenant la dérivée covariante de la formule (5) par rapport à xJ nous
avons

Nous pouvons donc écrire la formule

Comme le tenseur |ti t est harmonique si nous avons

il en résulte que le premier membre de la formule (10) est aussi nul, donc le
tenseur associé (5) est aussi harmonique, si le tenseur

Ai >r* K *P-tttV>" K *p.ttt*l*tkV*,t (12)
est nul.

Considérons maintenant dans l'espace Vn un groupe Or et soient
rfc (oc 1,..., r) les r vecteurs qui définissent les transformations infinitésimales

du groupe. On sait alors que nous avons les formules

où c^ sont les constantes de structure du groupe.
Nous voulons montrer que les formules (6) peuvent se généraliser à un

tenseur symétrique gauche quelconque fti %
d'ordre p et deux^vecteurs rfa,

rffi et même à un nombre quelconque de vecteurs. En effet, on peut toujours
considérer les tenseurs associés d'ordre p — 2,

Nous allons démontrer en premier lieu la formule

où nous avons posé ftl t lj3 |tl % _l3 ^. En effet nous avons, en accord

avec les premières formules (6)

"f" • ' "
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On voit que dans le second membre, les termes qui ont en facteur rf$ constituent

LaÇit A * sauf le dernier terme de La qui manque. Donc, dans le
second membre, en dehors du terme rfpL0LÇii { %j restent les termes

En changeant s avec j dans le second de ces termes et en tenant compte des

formules (13), il en résulte les formules (15), ce qui constitue une généralisation

des premières formules (6).
Considérons maintenant q + 1 vecteurs rfa, rf^,..., rj]^ du groupe Or

et considérons le tenseur d'ordre p — q

Nous avons alors la formule

La£i1..Ap^ot1...<xq *?«!•• 'Ti^Loù^i1...ip.qj1...jq

Pour la démonstration on remarque dans ce cas aussi que nous avons

.ocq Vax ' • • Hac

On voit que les termes du second membre qui contiennent en facteur
rjî^.. .^ représentent les n + 1 — q premiers termes de la dérivée de Lie
IJ(X£i1...ip- h...i • -^n faisant apparaître dans le second membre de (17;) cette
dérivée les autres termes du second membre de (17') s'écrivent

6 fa£\

de façon qu'en tenant compte des formules (13) il en résulte les formules (17).
Supposons maintenant que les vecteurs rf^ rfa déterminent un groupe

Oq à q paramètres, invariant dans Gr. En ce cas l'indice q dans les seconds
membres des (17) peut prendre seulement les valeurs aly... ,<xq. En tenant
compte d'autre part de la gauche symétrie des f<1#<#< il en résulte que l'on
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peut avoir des termes non nuls seulement si dans c£ai nous posons q <xt.

Il en résulte donc que les formules (17) deviennent en ce cas

où nous avons posé

Nous avons donc le théorème :

Etant donné un tenseur gauche symétrique ft-1#..ip d'ordre p invariant par
une transformation rj^ et un groupe GQ d'ordre q ^p, invariant dans Or le

tenseur associé (16) au groupe Gq est aussi invariant par rapport à rfa, si la
quantité ha est nulle.

On peut remarquer que les quantités ha sont nulles, si Gq est le groupe
dérivé de Gr et si le vecteur de structure de Gr est nul.

Ecrivons maintenant les formules (14) sous la forme

£«!...*p_2aj3 Votait...ip-tifl> (£ii...ip-qip £*!... ip

et prenons les dérivées extérieures. Nous avons en appliquant la seconde
formule (6)

En tenant compte des formules (6) nous obtenons la formule

Considérons encore la dérivée extérieure d'un tenseur associé à trois
vecteurs. Nous avons la formule

En tenant compte de la formule (17) et (18) nous avons

où S signifie qu'on fait la somme des termes qui s'obtiennent par les permutations

circulaires des indices oc, p, y.
Considérons maintenant la dérivée extérieure du tenseur (16). On peut

écrire évidemment
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II s'agit maintenant de montrer que nous avons les formules

où 8 signifie qu'on fait la somme des termes correspondants à toutes les
combinaisons qui s'obtiennent de <xt,..., ocq en associant à chaque paire #t-, ai
les autres n — 2, a8 (s ^ i, j) de façon que <xi9 oc^ oc8i,.. ,<x8 _2

s'obtiennent
de oc1, oc2,..., ocQ par une permutation paire.

Pour la démonstration on suppose que la formule (19) est vérifiée pour
q — 1 vecteurs. En ce cas, en tenant compte de la formule (18') et des
formules (17) il en résulte que la formule (19) est aussi vérifiée pour q vecteurs.
En effet, il est facile à vérifier que dans le second membre de (18') interviennent

les termes du second membre de (18) qui contiennent la dérivée
extérieure Ak et les dérivées de Lie. En ce qui concerne les termes en c^y dans

(18') ils s'écrivent

où S signifie qu'on fait la somme par rapport à tous les couples formés avec
oc2, <xl9..., <xq. Mais le premier terme peut aussi s'écrire

et il est facile à voir que la formule (19') coïncide avec la somme S de la
formule (19).

Les formules (17) et (19) peuvent donc être considérées comme une généralisation

des formules (6) et nous avons le théorème suivant :

Etant donné un groupe Or et un tenseur symétrique gauche l< <p
les

différents tenseurs (16) associés au groupe, satisfont aux formules (17) et (19).

Supposons maintenant que rf^, rfL déterminent un groupe GQ. En ce

cas l'indice q dans les formules (19) peut prendre seulement les valeurs 0^.
D'autre part, en tenant compte de la symétrie gauche du tenseur f^ t. il
résulte que la formule (19) s'écrit, dans le cas où ce tenseur est fermé et
invariant,

Ak£i1...ip_4<x1...OLqZ== ~~ Coc1^i1...ip.qkOL2...OLqJr ' • • (~~ ^)9coLq^ix... ip^ k<xt... OLq.x

où nous avons posé ca< cQQQLi, les cai étant les composantes du vecteur de

structure du groupe OQ.

Nous avons donc le théorème :
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Etant donné un tenseur gauche symétrique Çilm%mip fermé et invariant "par
rapport au groupe Oq le tenseur associé (16) est aussi fermé, si le vecteur de structure

du groupe Gq est nul.

On sait que tous les groupes simples ou semi-simples de même que les

groupes qui coïncident avec leur groupe dérivé ont le vecteur de structure
nul. Il en résulte donc que si l'espace Vn possède un groupe à q paramètres à
vecteur de structure nul et si nous avons un tenseur fermé invariant fti €

les quantités
è«1...aq VÏ1---viqJi1...<q (20')

sont des constantes, ce qui constitue une généralisation dans le cas d'un
espace Vn compact du théorème de Bochner, qui correspond au cas q 1.

II
Supposons maintenant que l'on considère dans l'espace de Riemann Vn

un système de n congruences orthogonales. Cela signifie que la métrique (1)
a été écrite sous la forme canonique

ds2 (ds1)2 + • • • + (dsn)2 (21)

et que nous avons des formules de la forme

ds- AtW, dx* ^ds\ A>* dl a» X^Kh «" AA (21')

et l'on dit d'après Ricci et Levi-Civita que ju,la (a 1,..., n) sont les
paramètres des n congruences orthogonales et A* (a 1,..., n) sont les moments.
On dit aussi que dsa sont les différentielles des arcs des congruences, car si
toutes les dsa sont nulles, sauf une, disons ds1, alors nous avons un déplacement

sur la première congruence.
Supposons maintenant que nous ayons une transformation (3) de l'espace

Vn, donc que sont vérifiées les formules

En tenant compte des formules (21') on peut écrire ces formules sous la
forme

Lau l)Ll\ + A? LA? 0 (22)
où nous avons posé
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En multipliant par fji%h, fi{ et en sommant nous obtenons les formules

4L X} + 4L Hi 0 (23)

Supposons maintenant que l'espace Vn possède un groupe de mouvement
simplement transitif G défini par les n vecteurs rfc (oc 1,..., ri). Nous
avons alors des formules de la forme (13) où c£p (oc, /3, q 1,..., n) sont
les constantes de structure du groupe. En ce cas on peut choisir un système
de congruences orthogonales dans l'espace Fn qui soient en même temps
invariantes par rapport au groupe On, donc de façon à avoir

KW gO. ,24,

II est facile à voir que les congruences (A) ainsi définies forment elles aussi par
les vecteurs 4 un groupe simplement transitif Hn et on peut s'arranger de

façon que Hn possède les mêmes constantes de structure que On, car les deux
groupes sont réciproques1) et les coefficients de rotation de Ricci des n
congruences (A) sont des constantes définies par les formules

Yl !(<& + obea + c\a). (24")

Considérons maintenant un tenseur gauche symétrique £iltmi et soient
lo ses composantes sur les congruences (A). Nous avons alors les formules

Si l'on considère maintenant les dérivées extérieures, il est facile à voir qu'on
obtient les formules

où nous avons posé

au 3 Jet!...ap

(25)

les termes négatifs du second membre de (25) provenant du terme général

où s <q. En ce qui concerne les quantités w*e elles sont les coefficients des

covariants bilinéaires Asa des formes dsa et nous avons

Asa ôds* - ddsa wlcdshdsG (26)

*) G. Vbancbanu, Sur Us espaces de Ribmann ayant leurs coefficients de rotation constants,
C. R. 189, 1929, p. 386 et Leçons de géométrie différentielle, vol. I, 1947, p. 291.
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Autrement dit Asa sont les dérivées extérieures des dsa, exprimées à l'aide
des formes ds1,..., dsn. On voit donc que la condition pour que le tenseur

|ai 0 soit fermé est donnée dans le système des congruences (A) par la
condition AaÇai ^ 0. D'autre part en considérant la dérivée de Lie du
tenseur |ti { nous avons les formules

«.,...,=[-' (26')

Supposons maintenant que l'espace Vn possède un groupe simplement transitif

On et que les congruences (A) sont invariantes par ce groupe. En ce cas

comme nous avons montré plus haut que LaX{ sont toutes nulles et w%c sont
égales aux constantes c£c de la structure du groupe Gn, les équations (26')
nous disent que le tenseur f4l#<>i est invariant par le groupe Gn, si les

composantes fai..#a sont toutes des constantes et la formule (25) nous dit que
le tenseur Sai...a es^ en même temps fermé si nous avons les conditions

%iai...apc'a1a + • • • + Çai...fcaPa £fa...apca1a2 • • • ^a1..Jacap-1ap ^* (^7)

Nous avons donc le théorème :

Etant donné un espace Vn possédant un groupe simplement transitif Gn la
recherche des tenseurs gauches symétriques fermés et invariants, se réduit à la
recherche des solutions des équations algébriques (27).

Considérons maintenant les dérivées covariantes, fOl..#o«,a du tenseur

|ai a En tenant compte que les composantes ffll>..a sont des constantes
et que les coefficients de la connexion dans le système des congruences (A)

sont ylc nous avons #

et il est facile à voir que l'on peut exprimer les formules (27) aussi sous la
forme

€at...aPia €a...ap,ai • • • £<*!...«, ap "•

En tenant compte que dans un système de congruences orthogonales les

composantes du tenseur métrique sont <5£ il en résulte qu'en posant dans les
formules (27') ax a et en contractant on obtient comme conditions pour que
le tenseur soit harmonique

Ç,a>...apyL + ^af...ap7fa2a + • • • + f..,...^. 0. (28)

Les conditions (27) et (28) représentent donc les conditions nécessaires et
suffisantes pour que le tenseur |fli a soit harmonique.
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On voit aussi qu'une condition suffisante est que

En tenant compte des formules (24") nous obtenons

rL <i %

où cf est ce qu'on appelle le vecteur de structure du groupe On et les équations
(28) s'écrivent en tenant compte des formules (24")

f/...VV + £••...<*<# + • • • + W.X? 0 (29)

où l'indice a est plus petit que s. Nous avons donc le théorème:

Etant donné un espace Vn compact orientable possédant un groupe simplement
transitif Gn la recherche des tenseurs harmoniques revient à la recherche des
solutions des équations algébriques (27) et (29).

Supposons maintenant que nous ayons un vecteur harmonique dont les

composantes sur les congruences (A) sont £a. Ce vecteur est fermé si nous
avons conformément aux équations (27)

|,c>6 0 (30)

ces équations ne possédant pas des solutions si le groupe On coïncide avec son

groupe dérivé. Il n'y a donc plus de vecteur harmonique et nous avons le
théorème :

Etant donné un espace Vn compact à groupe On qui coïncide avec son groupe
dérivé, le nombre de Betti Bx est nul.

Si le groupe dérivé de On est un groupe Gn-m(m>0) les équations (30)
possèdent m solutions. En tenant compte que les équations (29) s'écrivent

Sfc, 0 (30;)

il en résulte qu'une des solutions des équations (30) nous donne un vecteur
harmonique si son produit scalaire avec le vecteur cf est nul. Nous avons le
théorème suivant :

Le nombre de Betti Bx d'un espace Vn compact à groupe On possédant un
groupe dérivé On_m est égal à m — 1 ou à m.

En effet supposons que nous avons choisi les transformations infinitésimales
Xaf du groupe On de façon que Xaf(o<r m -f- 1,..., w) soient les transformations

de (?n-TO. En ce cas chab 0(h 1,..., m) et le vecteur cf est égal
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à c%f. Comme chaque vecteur (fl5..., |m, 0,..., 0) est fermé, ce vecteur
est harmonique si nous avons

hch=0, (c, C), (*=l,...,ro) (30")

et le nombre de Betti est égal à m — 1 si ch(h 1,..., m) ne sont pas
toutes nulles, autrement il est égal à m. Il en résulte en particulier que le
nombre de Betti Bx est égal à m, si le vecteur de structure du groupe Gn

est nul.
Cherchons maintenant les tenseurs fermés du second ordre. Ils doivent satisfaire

aux équations (27), qui en ce cas s'écrivent

ïfAc + ïfaCU + SfAa 0 (31)

Pour que le tenseur soit harmonique il faut qu'il satisfasse aussi aux formules

Çfbcf + èa8cba* 0 (a < s) (32)

On peut maintenant remarquer que l'on peut toujours satisfaire aux formules
(31) en posant

£/& ahcfb

où ah sont des constantes quelconques, donc il en existe une infinité de
tenseurs fermés du second ordre.

Pour qu'un tel tenseur soit harmonique il faut qu'il satisfasse aux formules
(32) qui s'écrivent

<*n(c%c, + <*<*) 0 (32')

II faut donc que ce système possède des solutions dans ah.
Supposons que nous avons une solution |ab. On peut toujours par une

transformation orthogonale à coefficients constants réduire le tenseur £ab à la forme
canonique où toutes les composantes sont nulles sauf f12,..., Ç2q-i 2a» °^
2q ^ n. Nous allons supposer que 2q < n. En ce cas si dans les équations
(31) les indices 6, c varient de 2q + 1 h n, nous avons les conditions

£2,-12*4; °> ^11,^ 0 (P,y>2q)

où s est un indice fixe ayant les valeurs 1,..., q. Cela nous dit qu'on doit
avoir c\y 0 {h < 2q) donc les opérateurs Xpf (/? > 2g) forment un sous-

groupe à n — 2q paramètres du groupe Gn. Nous avons donc le théorème:

Une condition nécessaire pour qu'un espace Vn à groupe simplement transitif
On possède un tenseur harmonique d'ordre 2 et de rang 2q, est que le groupe On

possède un sous-groupe Gn_2q.
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Supposons cette condition vérifiée et supposons aussi que le groupe Gn__2q

est un sous-groupe invariant. En ce cas on peut supposer dans les équations
(31) que les indices a, 6, c ont des valeurs plus petites que 2q + 1 et les
formules (32) s'écrivent

f/»<7 + f«<£. 0, |asC 0. (33)

On voit que les équations (31) sont identiquement vérifiées si les opérateurs
Xaf (a 1,..., 2q) forment un groupe abélien et les (33) sont alors vérifiées
si cf 0. Nous avons donc le théorème :

Une condition suffisante pour que l'espace Vn possède un tenseur arbitraire
harmonique du second ordre et de rang 2q est que le groupe Gn possède un sous-

groupe invariant Gn_2q, un groupe complémentaire G2q abélien et que le vecteur
de structure de Gn soit nul.

Supposons maintenant qu'on veut que le tenseur harmonique soit de rang 2,
donc q 1. En ce cas les équations (31) et (32) s'écrivent

*!«(<£* + 4*) o > fnCi + f12<4 o

Stict + £i24 0 c«=0, c*, 0 (a,0 3,...,n)
donc Xxf et X2f forment aussi un groupe. En tenant compte des valeurs de

cx, c2 nous avons les conditions

cal ==: 0 > ca2 0 ï cia C2a •

Nous avons donc le théorème :

Une condition nécessaire et suffisante pour qu'un espace Vn à groupe simplement

transitif Gn possède un tenseur harmonique du second ordre de rang 2 est

que la structure du groupe Gn soit de la forme

clyXQ (*,p,yfQ>2)
(Z1Xa) a(XX1 + baX2 + miXQ, {x2Xa) caXx - aaX2 + nJZa

}

où m% n" 0. Il en résulte donc que si un espace Vn fermé orientable
possède le groupe simplement transitif (34) le nombre de Bbtti B2 est au
moins égal à l'unité.

Supposons maintenant que le groupe Gn est un groupe semi-simple. On sait
qu'en ce cas le tenseur symétrique

chk ^ chpCk$

n'est pas dégénéré et si le groupe Gn est un groupe fermé, le tenseur chk est
défini négatif. Si l'on suppose ce tenseur réduit à la forme canonique — ô%
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les constantes de structure c^t sont gauches symétriques dans chaque paire
d'indices. En tenant compte des formules (24"), il en résulte 2y^t c\x. On
dit alors que l'espace Vn est l'espace représentatif du groupe semi-simple Gn.
Nous avons donc le théorème.

La détermination des tenseurs harmoniques d'un espace Vn représentatif d'un
groupe semi-simple fermé se réduit à la recherche des solutions des équations
(27) et (29) avec cf 0 et c\l gauches symétriques dans chaque paire d'indices1).

En tenant compte du fait qu'un groupe Gn semi-simple coïncide avec son

groupe dérivée, il en résulte, d'après un théorème démontré plus haut, que
l'espace a le premier nombre de Betti Bx nul, ce qui est bien connu. De même,

pour démontrer que le nombre JS2 est aussi nul, on observe qu'en multipliant
les équations (31) par cjc et en sommant par rapport à c et a nous avons en
tenant compte de la gauche symétrie des c"c

eh/ihf + 2£facbf8c°ha 0. (35)

D'autre part en tenant compte des identités de Lie, nous avons

dont le second membre est nul en vertu des formules (32) et du fait que nous
avons cf 0. Les formules (35) se réduisent donc aux premiers termes et
comme le déterminant | chk | est différent de zéro, il en résulte |6/ 0,
donc le nombre B2 est aussi nul.

Supposons maintenant qu'on considère les tenseurs fermés du troisième
ordre. Dans ce cas les formules (27) et (29) s'écrivent

#
abf ctf fdc

ab^
fbd ac afd bc ^

Si le groupe On semi-simple est fermé et le tenseur chk a été réduit à la forme
canonique — <3j il est facile à voir que ces équations admettent la solution
£/6c cfbc, car les premières équations (36) sont vérifiées à cause des identités
de Lie du groupe On et les secondes à cause du fait que ca%H 0. Il en résulte
d'une manière très simple le résultat connu que le nombre jB3 ^ 1. D'autre
part le calcul direct de tous les nombres de Betti des groupes simples fait par
Hodge montre que pour chaque groupe simple J58 1 donc nous avons
Bz Z, pour l'espace Fn à groupe On semi-simple et qui est le produit de l
groupes simples.

Reçu le 20 février 1958

1) W. Hodge montre dans son livre, Harmonie intégrais, p. 255, que les conditions suffisantes
(28') sont aussi nécessaires dans le cas d'un espace Vn représentatif d'un groupe Gn semi-simple
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