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Tenseurs harmoniques et groupes de mouvement
d’un espacc de Riemanw

par G. VRANCEANU, Bucarest

On sait d’apreés des résultats dus & G. pE RHAM et W. HopGE!), qu’étant
donné un espace de RIEMANN compact orientable, le nombre des tenseurs
harmoniques indépendants d’'un certain ordre p qu’on peut construire dans
I’espace, est égal au nombre de Berrr B,. D’autre part on sait, d’aprés un
théoreme de K. YaN02) que chaque tenseur harmonique est un invariant par
rapport & un mouvement de ’espace. Il y a donc une relation étroite entre le
nombre r des parametres du groupe de mouvement d’'un espace V, compact
et les nombres de BETTI de cet espace. D’autre part, comme chaque tenseur
harmonique est en méme temps un tenseur & dérivée extérieure nulle, ou
comme on dit encore un tenseur fermé, il y a une relation étroite entre le
nombre des tenseurs fermés invariants et le groupe G, de 1 espace.

Dans la premiére partie nous allons donner certaines formules qui lient les
tenseurs symétriques gauches avec le groupe de mouvement G, de ’espace.

Dans la seconde partie nous allons supposer que l’espace est rapporté a un
systéme de congruences orthogonales et nous allons montrer que dans le cas
ou l'espace possede un groupe de mouvement simplement transitif et 1'on
utilise les congruences orthogonales & coefficients de rotation constants?), la
recherche des tenseurs harmoniques de I’espace devient un probleme algébri-
que, ce qui généralise un résultat de HopGE relatif aux espacessdes groupes
semi-simples.

I

Etant douné un espace de RiemaNN V,, défini comme une variété différen-
tiable, dont la métrique dans un certain voisinage est donnée par la formule

ds? = a dxidat (1)

on sait que si ’espace V,, est compact, il peut étre couvert par un nombre fini
de voisinages. Une certaine propriété est valable pour I’espace ¥, compact,
si elle est valable dans chacun de ces voisinages. Considérons alors un tenseur
symétrique gauche quelconque §&; ; covariant d’ordre p. On sait qu’on peut

1) W. Hopeg, The theory and applications of harmonic integrals, Cambridge Univ. Press, 1952.

%) K. Yawo, Curvature and BETTI numbers, Annals of Math. Studies, Princeton 1953, p.48-49.

3) G. VRANCEANU, Sur les espaces de RIEMANN ayant leurs coefficients de rotation constants,
C. R. Paris, t. 184, 1929, p. 386-388.
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162 G. VRANCEANU
former avec ce tenseur un tenseur symétrique gauche d’ordre p 4 1

0&,. . i 08k. . i 08, . &
iy iy = alxk £ — dz e -—Eﬁﬁ?_ (2)

qu’on appelle, la dérivée extérieure du tenseur &  ; . Si cette dérivée ex-
térieure est nulle on dit que le tenseur est fermé.

Considérons maintenant un vecteur contrevariant #f. On sait qu’un tel
vecteur définit un groupe G, continu & un parametre, la transformation in-
finitésimale de ce groupe étant donné par la formule

2t = &t + 7 (3)
ou %* sont considérés comme des quantités du premier ordre. On peut former
& l'aide du tenseur §;  ; et du vecteur n* la dérivée de Lir

08,

ont
1...ip— axk £ nk+§8ig.. 4

.ip axil

on®
Fo bl @

L,

et cette dérivée est nulle si le tenseur &;  ; admet le groupe de mouvement
G,, ou comme on dit encore, §’il est invariant par le groupe @,;, ou bien par
le mouvement (3).

D’autre part, on peut associer aux deux tenseurs §; = ;
symétrique gauche d’ordre p — 1

, €t 7' le tenseur

b’il. . .'ip..l = Eil. . .’ip..glnl ° (5)
Cela fait, nous avons les formules
Lbil. . .ip..l = nlLSil . "ip—ll
Akb‘il : .’ip_.l = n’Akéil. ip-al + Lf’il. . .ip..lk .

Pour la démonstration, on remarque que la formule (4), si I’on utilise la for-
mule (2) pour éliminer la dérivée de &; ; par rapport & x* devient la seconde
formule (6) si I’on remarque que A4,b; c’est-a-dire la dérivée extérieure
du tenseur (5), peut encore s’écrire

(6)

, .’il_.p’

0 0 0
A b, iy, =’a’§k_(fi1...ip..u’7') + '5:;{1_(53...1:778) + .- +m(§il...ak’78) (7)

et que nous avons
k — k
n Ak ty...8pal /| Al&il---"‘p-—lk * (8)

De méme il en résulte facilement les premiéres formules (6).
Nous avons donc le théoréme suivant:

Etant donné un tenseur symétrique gauche d’ordre p fermé &, . , invariant
y g p t1...%p
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par rapport au mouvement n', le tenseur associé (5) est aussi fermé et invariant
par rapport a n*.

En prenant la dérivée covariante de la formule (5) par rapport & a2/ nous
avons

_ i i
bil. . .‘ip—ly 7 §i1 v .ip_]_’i T],f + E’il . .ip_li,f 77 * (9)
Nous pouvons donc écrire la formule
8 — 8 U sj i
a "bil. e .‘ip_gt,f =a ?Eil. . .’l:p_gsin,j + a ]fi]_. . .ip-.gBi,jn * (10)
Comme le tenseur &;  ; est harmonique si nous avons
8j —
a”&; g si,i =0 (11)

il en résulte que le premier membre de la formule (10) est aussi nul, donc le
tenseur associé (5) est aussi harmonique, si le tenseur

I A

11...11)..2 as’ - 5

sl ik
@p 28%77’7 tp 231,“ a nk,t (12)

est nul.

Considérons maintenant dans l’espace V, un groupe G, et soient
ni(x=1,...,7) les r vecteurs qui définissent les transformations infinitési-
males du groupe. On sait alors que nous avons les formules

o’ o .
T]oz axf - 77?3 ax;x = cgﬁnz (13)

ol ¢, sont les constantes de structure du groupe.

Nous voulons montrer que les formules (6) peuvent se généraliser & un ten-
seur symétrique gauche quelconque & ; d’ordre p et deux®vecteurs 7,
n% et méme & un nombre quelconque de vecteurs. En effet, on peut toujours
considérer les tenseurs associés d’ordre p — 2,

E‘il...ip-zaﬂ = E'i],...ip-gij”i’?%' (14)
Nous allons démontrer en premier lieu la formule
Lag‘il @p 18 = nﬁL 5 .ip-gi + E':l. ..’i:p_.lq c&ﬁ (15)

\ — j
ol nous avons posé & i, e = &, . ip_,i M- En effet nous avons, en accord
avec les premiéres formules (6)

0&,  ip. o
Lafil . .ip._l B = ‘“5512__2?— nfsna + 5’&1 p-—1f axf 17;
on,, ; 0Ny

+ b ipaithge + o

3??73 ax‘bp 1
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On voit que dans le second membre, les termes qui ont en facteur #} consti-
tuent L&  ;,,; sauf le dernier terme de L, qui manque. Donc, dans le

second membre, en dehors du terme #}L,&; ...ip,; Testent les termes

I 07
5 “p-l’ ax’ 77('! 5.1.. .ip—ll _a——x-?- n’ﬁ *

En changeant s avec j dans le second de ces termes et en tenant compte des
formules (13), il en résulte les formules (15), ce qui constitue une généralisa-
tion des premiéres formules (6).

Considérons maintenant ¢ + 1 vecteurs 7, 7,,--., 7%, du groupe G,
et considérons le tenseur d’ordre p — ¢
— o ]
é‘il.. Ap—gOy...0g T ’,}&11 v n(!gfij_. --ip—-qh- .. Jg (16)
Nous avons alors la formule
- J
L(!Sil...’ip..q(xl...aq — 77<x11 te nagLaEi,...ip_qjl...jq (17)
+ Gil...ip._qoag...achta; + A + E‘il...ip_qax...ecgzaq *

Pour la démonstration on remarque dans ce cas aussi que nous avons

65 ’ : .
—_— ] 1y...99p-@¢21...9¢ 8
Lagil...ip,qal...aq - 770;11 e nag ax. N

d :
j
+ 5i1...ip_qf1...jq axs ["70:}_ e n&qq

517 on® i i /

+ [53... ip—gi...Jg axh + + 'fil... 841...4¢ axip_q 770:1 te ’7«3] (17 )

On voit que les termes du second membre qui contiennent en facteur

773;11 1;' représentent les » 4+ 1 — ¢q premiers termes de la dérivée de Lik

Lo&i,..tp_gh1.. En faisant apparaitre dans le second membre de (17’) cette
dérivée les autres termes du second membre de (17') s’écrivent

ons, . .
5‘1...ip-q51...5q axs (n(jxli 17 ) - 5‘1 ip_qafg...iq%—;};n&i A 773!%
e
]
- 5“1...ip._q51 .8 axgq n&i = naqq
de fagon qu’en tenant compte des formules (13) il en résulte les formules (17).
Supposons maintenant que les vecteurs 7}, Lt n};q déterminent un groupe
@, & q paramétres, invariant dans @,. En ce cas l'indice ¢ dans les seconds
membres des (17) peut prendre seulement les valeurs «,,...,«,. En tenant

compte d’autre part de la gauche symétrie des £, , il en résulte que 'on
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peut avoir des termes non nuls seulement si dans ¢}, nous posons ¢ = a;.
11 en résulte donc que les formules (17) deviennent en ce cas
. . ,
La&.il... ip_qoq. . Olg = 77&11 st 77:1)31 LaEil. . ’ip_qfl. . fq - haéil... ip_qal...aq’ (17 )
oll nous avons posé
hoy = Cogo + - -+ + €3y

Nous avons donc le théoréme:

Etant donné un tenseur gauche symétrique §&; ., d’ordre p invariant par
une transformation 7', et un groupe G, d’ordre q < p, tnvariant dans G, le

tenseur associé (16) au grouwpe G, est ausst invariant par rapport & 1, st la
quantité h, est nulle.

On peut remarquer que les quantités A, sont nulles, si ¢, est le groupe
dérivé de G, et si le vecteur de structure de @, est nul.
Ecrivons maintenant les formules (14) sous la forme
fil...ip_,aﬁ = 77:; Eil...ip__az‘ﬂ? (Eil...i,,_qiﬂ = Eil...ip_,iinfs)

et prenons les dérivées extérieures. Nous avons en appliquant la seconde
formule (6)

Akfil...ip_gaﬁ = n:;Ak‘Eil...ip_giB + LaEil...z’p_ng .
En tenant compte des formules (6) nous obtenons la formule
AkEil...t’p_zaﬁ = ﬂiﬂ%AkEi,...ip_gn + niLBEil...ip_gik + nzlLa‘Sil...ip._gki
+ Eil...ip_.zkgcgtﬂ . ’

Considérons encore la dérivée extérieure d’un tenseur associé & trois vec-
teurs. Nous avons la formule

Akgil...ip_aaﬁy = nAkEil...ip..a lB)’ + Laéil...ip_, kBy'
En tenant compte de la formule (17) et (18) nous avons
Akfil...ip_,aﬁy = Wiﬂ%ﬁ,ﬁAkEi,...ip_,in I W%W;Lafil...ip_, kil
=+ ninﬁLﬁfil...p-,ikl I WingLyfil...ip_,uk -+ Sfil...i,,_,keac‘éy

ou S signifie qu’on fait la somme des termes qui s’obtiennent par les permuta-
tions circulaires des indices «, 8, y.

Considérons maintenant la dérivée extérieure du tenseur (16). On peut
écrire évidemment

Akg‘il...ip_.qal...aq = n:!lAkEil...‘ip_qiag...aq + Lalfil...ip..q kaz...aq' (18’)
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11 s’agit maintenant de montrer que nous avons les formules

Ak&il. v ip._qal. os U-q:: 17211 tte nf!qquEil. .o ‘ip-q’l. .o fq + 77(’.!23 M nljquL{xl Eil. .o ip_.q kis.. ..fq
. i 19
+ AR + 773111' * 'n;g_]iLaqgil...fp_qjl...k + Ssz‘l...ip_qkea,...achzlag ( )
ou 8 signifie qu’on fait la somme des termes correspondants & toutes les com-
binaisons qui s’obtiennent de «,,...,x, en associant & chaque paire «,, «;
les autres n — 2, «, (s # ¢, j) de fagon que «,,«;,«, ... .«, , s’obtiennent
de «,,«,,...,x, par une permutation paire.
Pour la démonstration on suppose que la formule (19) est vérifiée pour
q — 1 vecteurs. En ce cas, en tenant compte de la formule (18') et des for-
mules (17) il en résulte que la formule (19) est aussi vérifiée pour q vecteurs.
En effet, il est facile & vérifier que dans le second membre de (18') intervien-
nent les termes du second membre de (18) qui contiennent la dérivée exté-
rieure A, et les dérivées de Lie. En ce qui concerne les termes en ¢, dans
(187) ils s’écrivent

1 0 '
nalsfilb..ip_qikea4...achzgozs + Eil...‘ip_q kea,...chgqag + Eil...ip_q kag...Qccxlaq (19 )

ou 8 signifie qu’on fait la somme par rapport & tous les couples formés avec
%y, &y, ..., 0, Mais le premier terme peut aussi s’écrire

e
Sfil... ip_q kQuyoy... g Cagaa

et il est facile & voir que la formule (19') coincide avec la somme S de la for-
mule (19).

Les formules (17) et (19) peuvent donc étre considérées comme une générali-
sation des formules (6) et nous avons le théoréeme suivant:

Etant donné un groupe G, et un tenseur syméirique gauche &; . ,, les dif-
férents tenseurs (16) associés au groupe, satisfont aux formules (17) et (19).

Supposons maintenant que 7, . . .7, déterminent un groupe G,. En ce
cas l'indice ¢ dans les formules (19) peut prendre seulement les valeurs «,.
D’autre part, en tenant compte de la symétrie gauche du tenseur &, ., il
résulte que la formule (19) s’écrit, dans le cas ol ce tenseur est fermé et in-
variant,

Akéil...ip_qal...aq - calfil...ip_q ka,...rxq+ b '(—_l)qcaqsil...ip_q kal...aq_.l (20)

A} 2 — g
olt nous avons posé c,, = c¢,,,
structure du groupe @,.

Nous avons donc le théoréme:

les ¢,, étant les composantes du vecteur de
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Etant donné un tenseur gauche symétrique &; ;, fermé et invariant par
rapport au groupe G, le tenseur associé (16) est ausst fermé, si le vecteur de struc-
ture du groupe @, est nul.

On sait que tous les groupes simples ou semi-simples de méme que les
groupes qui coincident avec leur groupe dérivé ont le vecteur de structure
nul. Il en résulte donc que si ’espace V, posséde un groupe & ¢ paramétres &
vecteur de structure nul et si nous avons un tenseur fermé invariant £, ., ,
les quantités

uy...oq = Moy - - -77;'; €., iq (207)

sont des constantes, ce qui constitue une généralisation dans le cas d’un
espace V, compact du théoréeme de BoCHNER, qui correspond au cas ¢ = 1.

11

Supposons maintenant que 1’on considére dans l’espace de Riemann ¥V,
un systeme de n congruences orthogonales. Cela signifie que la métrique (1)
a été écrite sous la forme canonique

ds® = (ds')* + - 4 (ds™)? (21)
et que nous avons des formules de la forme

ds® = A%dxt, dat = ulds®, A2ui = 08, a,; = A2 Ay, a'l = ue ul (21%)
et ’on dit d’aprés Rrccr et LEvi-CIviTA que ui(a = 1,...,n) sont les para-
métres des » congruences orthogonales et Af(a = 1,...,n) sont les moments.
On dit aussi que ds® sont les différentielles des arcs des congruences, car si
toutes les ds® sont nulles, sauf une, disons ds!, alors nous avons un déplace-
ment sur la premiére congruence.

Supposons maintenant que nous ayons une transformation (3) de l'espace
V., donc que sont vérifiées les formules

__ Oay

a 8
La‘ii__' axx 4

n* +a - T

i 9x

on®
t8 ax,‘

= 0. (217)

En tenant compte des formules (21’) on peut écrire ces formules sous la
forme

La;; = 23 LAY + A{LA; = 0 (22)
ol nous avons posé
04 N ani !
s — __° 4 22



168 G. VRANCEANU

En multipliant par uj, u! et en sommant nous obtenons les formules

WL+ LR =0 (23)

Supposons maintenant que l’espace V, posséde un groupe de mouvement
simplement transitif @ défini par les n vecteurs %) (x =1,...,n). Nous
avons alors des formules de la forme (13) ou c{p (x,8,0=1,...,7n) sont

les constantes de structure du groupe. En ce cas on peut choisir un systéme
de congruences orthogonales dans I’espace V, qui soient en méme temps in-
variantes par rapport au groupe (,, donc de fagon & avoir
047 on’,

La)»;-‘ = 'a— , + A] -—a-—-*T = 0. (24)
I1 est facile & voir que les congruences (1) ainsi définies forment elles aussi par
les vecteurs u} un groupe simplement transitif H, et on peut s’arranger de
fagcon que H, posséde les mémes constantes de structure que G,,, car les deux
groupes sont réciproques?) et les coefficients de rotation de Riccr des n con-
gruences (A1) sont des constantes définies par les formules

ygc = %(cgc + clc,a + cga)‘ (24”)

Considérons maintenant un tenseur gauche symétrique §; , et soient
€a,...a, S€8 composantes sur les congruences (1). Nous avons alors les formules

_— a a — U i
5‘1...‘1} - Eal...ap)‘ill e li:’ 5“1...% - 551...ip”a’i° * ';ual;‘

Si I’on considére maintenant les dérivées extérieures, il est facile & voir qu’on
obtient les formules

Akéij,...ip:: Aafal...aplgll"'zg:}*z
oll nous avons posé
A E s as&al...ap . a‘fa...ap . . afal...a
¢ 0s% 0s% T ds%»
+ 5/ Qp ala + + ‘fal apa - ‘f)‘a. w(/h_ag - - Eal llp 18p (25)

les termes négatifs du second membre de (25) provenant du terme général

— 1
Eal. ..ag-1/...ag1a.. wa,aq

ol s$ < q. En ce qui concerne les quantités wy, elles sont les coefficients des
covariants bilinéaires As®* des formes ds® et nous avons

As® = §ds® — dds® = wj,dsPds° . (26)

1) G. VRANCEANTU, Sur les espaces de RIEMANN ayant leurs coefficients de rotation constants,
C. R. 189, 1929, p. 386 et Legcons de géométrie différentielle, vol. I, 1947, p. 291.




Tenseurs harmoniques et groupes de mouvement d'un espace de RIEMANN 169

Autrement dit A4s* sont les dérivées extérieures des ds®, exprimées a l'aide
des formes ds!,...,ds*. On voit donc que la condition pour que le tenseur
€q,...a, 80it fermé est donnée dans le systeme des congruences (1) par la con-
dition 4., ., = 0. D’autre part en considérant la dérivée de L1k du ten-
seur £ . mnous avons les formules

afal.. 1 1 a a !
L&, . = [_a_;,;a,?k + & ot LA+ ..+ ealm,yapmg]z,,;. AL (26)

Supposons maintenant que l’espace V, posséde un groupe simplement tran-
sitif @, et que les congruences (1) sont invariantes par ce groupe. En ce cas
comme nous avons montré plus haut que L A! sont toutes nulles et wf, sont
égales aux constantes cj, de la structure du groupe @,, les équations (26)
nous disent que le tenseur £; _; est invariant par le groupe G,, si les com-
posantes &, ,, sont toutes des constantes et la formule (25) nous dit que
le tenseur &, ,, est en méme temps fermé si nous avons les conditions

f f —
’Sfag...apcala + ... + §a1...fcapa - §ia...apc¢,uag T e —Eal...fac{xp._l ap — 0. (27)

Nous avons donc le théoréme:

Etant donné un espace V, possédant un groupe simplement transitif Q, la
recherche des temseurs gauches symétriques fermés et invariants, se réduit a la
recherche des solutions des équations algébriques (27).

Considérons maintenant les dérivées covariantes, &, ., , du tenseur
£a,...q,- En tenant compte que les composantes &, ., sont des constantes

et que les coefficients de la connexion dans le systéme des congruences (A)
sont p¢, nous avons ’

5al...ap,a = E/...apytlea + A + éal...f'y{tpa (27,)

et il est facile & voir que 'on peut exprimer les formules (27) aussi sous la
forme

‘Eal...ap,a — éa...ap,al T oeee T Eal...a,ap = 0.

En tenant compte que dans un systéme de congruences orthogonales les com-
posantes du tenseur métrique sont dj il en résulte qu’en posant dans les for-
mules (27') a, = a et en contractant on obtient comme conditions pour que
le tenseur soit harmonique

Sfa,...apytfw + faf...ap'ycfzga + ...+ §amg... fy{lpu = 0. (28)

Les conditions (27) et (28) représentent donc les conditions nécessaires et

suffisantes pour que le tenseur £ay...ap SOI harmonique.
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On voit aussi qu’une condition suffisante est que

§a1...ap,a = Ef...apycfua + L 44 + fal...f'}'{zpa =0 (28,)
En tenant compte des formules (24”) nous obtenons

I _ a6 __
7’aa"—caf""cf

ol ¢, est ce qu’on appelle le vecteur de structure du groupe @, et les équations
(28) s’écrivent en tenant compte des formules (24")

El...apcf + EGI...GPC:: + ...+ éaag...aczg =0 (29)
ou l'indice a est plus petit que s. Nous avons donc le théoréme:

Etant donné un espace V, compact orientable possédant un groupe simplement
transitif G, la recherche des tenseurs harmoniques revient & la recherche des solu-
tions des équations algébriques (27) et (29).

Supposons maintenant que nous ayons un vecteur harmonique dont les
composantes sur les congruences (1) sont &,. Ce vecteur est fermé si nous
avons conformément aux équations (27)

Ecl,=0 (30)

ces équations ne possédant pas des solutions si le groupe @G, coincide avec son
groupe dérivé. Il n’y a donc plus de vecteur harmonique et nous avons le
théoréme :

Etant donné un espace V, compact @ groupe G, qui coincide avec son groupe
dérivé, le nombre de BETTI B, est nul.

Si le groupe dérivé de @, est un groupe @,_,, >0 les équations (30) pos-
sédent m solutions. En tenant compte que les équations (29) s’écrivent

&, =0 (30"

il en résulte qu’'une des solutions des équations (30) nous donne un vecteur
harmonique si son produit scalaire avec le vecteur c, est nul. Nous avons le
théoréme suivant:

Le nombre de BETTI B, d’un espace V, compact @ groupe G, possédant un
groupe dérivé Q,_,, est égal @ m — 1 ou & m.

En effet supposons que nous avons choisi les transformations infinitésimales
X,f du groupe G, de fagon que X, f(oxo =m + 1,...,n) soient les transfor-
mations de @,_,,. En ce cas ¢* = 0(h = 1,...,m) et le vecteur ¢, est égal
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a ¢y;. Comme chaque vecteur (&,,...,&,,0,...,0) est fermé, ce vecteur
est harmonique si nous avons

Ehen=20, (ch=cy), (h=1,...,m) (307)

et le nombre de BETTI est égal & m — 1 si ¢,(h=1,...,m) ne sont pas
toutes nulles, autrement il est égal & m. Il en résulte en particulier que le
nombre de BETTI B, est égal & m, si le vecteur de structure du groupe @,
est nul.

Cherchons maintenant les tenseurs fermés du second ordre. Ils doivent satis-
faire aux équations (27), qui en ce cas s’écrivent

5/1,0('“ + Eiacgb =+ é:fcclfa =0. (31)
Pour que le tenseur soit harmonique il faut qu’il satisfasse aussi aux formules
Sfbcf + ‘fasc?w =0 (a <s). (32)

On peut maintenant remarquer que 1’on peut toujours satisfaire aux formules
(31) en posant

)
& o= ApCp

ou a, sont des constantes quelconques, donc il en existe une infinité de ten-
seurs fermés du second ordre.

Pour qu’un tel tenseur soit harmonique il faut qu’il satisfasse aux formules
(32) qui s’écrivent

an(chye; + chydh,) = 0. (32)

»
11 faut donc que ce systéme posséde des solutions dans a,.

Supposons que nous avons une solution &,,. On peut toujours par une trans-
formation orthogonale & coefficients constants réduire le tenseur &,, & la forme
canonique ol toutes les composantes sout nulles sauf &,,..., &, 1,,, Ol
2qg < n. Nous allons supposer que 2¢ < n. En ce cas si dans les équations
(31) les indices b, ¢ varient de 2g + 1 & », nous avons les conditions

251 25 025; =0, &a512s 0?;71 =0 (B,y>29q)

ou s est un indice fixe ayant les valeurs 1,...,q. Cela nous dit qu'on doit
avoir cgy = 0 (b < 29) donc les opérateurs Xgf (8 > 2¢) forment un sous-
groupe & n — 29 parameétres du groupe G,. Nous avons donc le théoréme:

Une condition nécessatre pour qu’'un espace V, & groupe simplement transitsf
G, posséde un tenseur harmonique d’ordre 2 et de rang 2q, est que le groupe G,
posséde un sous-groupe Q,_,,.
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Supposons cette condition vérifiée et supposons aussi que le groupe @,_,,
est un sous-groupe invariant. En ce cas on peut supposer dans les équations
(31) que les indices a, b, ¢ ont des valeurs plus petites que 2¢ 4+ 1 et les for-
mules (32) s’écrivent

‘Ejbcf + Easc?u =0, ‘Eaacga = 0. (33)

On voit que les équations (31) sont identiquement vérifiées si les opérateurs

X, fl@a=1,...,2q) forment un groupe abélien et les (33) sont alors vérifiées
si ¢, = 0. Nous avons donc le théoréme:

Une condition suffisante pour que Uespace V, posséde un tenseur arbitraire
harmonique du second ordre et de rang 2q est que le groupe @, posséde un sous-
groupe invariant G,_,,, un groupe complémentaire G, abélien et que le vecteur
de structure de Q,, soit nul.

Supposons maintenant qu’on veut que le tenseur harmonique soit de rang 2,
donc ¢ = 1. En ce cas les équations (31) et (32) s’écrivent

£12(Cly + €20) = 0, £12€1 + 163, = 0
£31Cy + E10¢l, =0, =0, cty=0 (x,8=3,...,n)
donc X,f et X,f forment aussi un groupe. En tenant compte des valeurs de
¢,, ¢, nous avons les conditions
=0, &=0, cq,=—¢,.
Nous avons donc le théoreme:

Une condition nécessaire et suffisante pour qu’un espace V, & groupe simple-
ment transitif G, posséde un tenseur harmonique du second ordre de rang 2 est
que la structure du groupe @, soit de la forme

(X1X2) = aXl + sz ’ (XﬁXy) = c%yXQ (“’ ﬁ’ Y, @ > 2) (34)
(XIXa) = aaXI + baX2 + mgLXQa (x2X<x) = caXI — aaX‘z + ngnxa

o m§ = n=0. Il en résulte donc que si un espace V, fermé orientable
posséde le groupe simplement transitif (34) le nombre de BETTI B, est au
moins égal 3 I'unité.

Supposons maintenant que le groupe G, est un groupe semi-simple. On sait
qu’en ce cas le tenseur symétrique

e 8 P
Cpie = ch'pckc

n’est pas dégénéré et si le groupe @, est un groupe fermé, le tenseur c,; est
défini négatif. Si 1’on suppose ce tenseur réduit & la forme canonique — 4%
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les constantes de structure c, sont gauches symétriques dans chaque paire
d’indices. En tenant compte des formules (24"), il en résulte 292, = c2,. On
dit alors que I’espace V, est I’espace représentatif du groupe semi-simple G, .
Nous avons donc le théoréme.

La détermination des tenseurs harmoniques d’un espace V, représentatif d’un
groupe semi-simple fermé se réduit o la recherche des solutions des équations
(27) et (29) avec ¢, = O et ck, gauches syméiriques dans chaque paire d’indices?).

En tenant compte du fait qu’un groupe @, semi-simple coincide avec son
groupe dérivée, il en résulte, d’aprés un théoréme démontré plus haut, que
Pespace a le premier nombre de BETTI B, nul, ce qui est bien connu. De méme,
pour démontrer que le nombre B, est aussi nul, on observe qu’en multipliant
les équations (31) par ¢!, et en sommant par rapport & ¢ et @ nous avons en
tenant compte de la gauche symétrie des c;,

Cnsboy + 261aC35Cha = 0. (35)
D’autre part en tenant compte des identités de Lir, nous avons
26}'40?06‘)::01 = Efac;fcgh

dont le second membre est nul en vertu des formules (32) et du fait que nous
avons ¢; = 0. Les formules (35) se réduisent donc aux premiers termes et
comme le déterminant |c,,| est différent de zéro, il en résulte §&,, =0,
donc le nombre B, est aussi nul.

Supposons maintenant qu’on considere les tenseurs fermés du troisiéme
ordre. Dans ce cas les formules (27) et (29) s’écrivent

»
! / b b4 I
Efbccad -4 ffafccbd = ‘Eabfccd - ‘Efdcc{zb — &naChe — Eafdcbc =0
Sasaac:: + Saagscz: = 0.

Si le groupe @, semi-simple est fermé et le tenseur c,;, a été réduit & la forme
canonique — 42 il est facile & voir que ces équations admettent la solution
& e = ¢l,, car les premiéres équations (36) sont vérifiées & cause des identités
de L1k du groupe G, et les secondes & cause du fait que ¢, ,, = 0. Il en résulte
d’une maniére trés simple le résultat connu que le nombre By > 1. D’autre
part le calcul direct de tous les nombres de BETTI des groupes simples fait par
Hopee montre que pour chaque groupe simple By = 1 donc nous avons
B, =1, pour l'espace V, & groupe @, semi-simple et qui est le produit de !
groupes simples.

(36)

Recu le 20 février 1958

1) W. HopGE montre dans son livre, Harmonic integrals, p. 255, que les conditions suffisantes
(28’) sont aussi nécessaires dans le cas d’un espace V,, représentatif d’un groupe @,, semi-simple
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