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Quelques propriétés fondamentales des

ensembles analytiques-réels

par H. Whitney et F. BRUH4T

Ce n'est que depuis peu de temps que les ensembles analytiques dans le
domaine réel ont fait l'objet d'études approfondies. La théorie des variétés de

Stein vient d'être transportée au cas des ensembles analytiques-réels
«cohérents» par H. Cartan [6], qui a montré que, dans R*, un ensemble lieu des

zéros d'un faisceau cohérent d'idéaux est «C-analytique», c'est-à-dire est la
partie réelle d'un ensemble analytique-complexe, et est globalement définissable

par l'annulation d'un nombre fini de fonctions analytiques-réelles. Par
ailleurs, F. Bruhat et H. Cartan ont étudié dans [2] et [3] le cas général des

ensembles analytiques-réels qui ne sont pas C-analytiques et ont montré que,
si ces ensembles ont toujours de bonnes propriétés «locales» (i. e. sur un
compact), ils peuvent avoir un comportement global très pathologique: en
particulier, il n'existe pas toujours de «bonne» décomposition en composantes
irréductibles.

Le but de ce travail est d'étudier la structure d'un ensemble C-analytique
E (remarquons que localement, tout ensemble analytique-réel est C-analytique).

Le premier théorème fondamental (prop. 6) donne une propriété minimale

de E dans un voisinage fixe d'un point arbitraire de E. La démonstration

repose sur une étude des propriétés de connexion locale de E (prop. 2).
Comme conséquence, nous montrons d'une part que l'intersection d'une
famille quelconque d'ensembles C-analytiques est C-analytique, d'autre part
qu'un ensemble C-analytique E dans Rn est la partie réelle d'un plus petit
ensemble analytique-complexe E* dans un voisinage suffisamment petit de

/s.
R* dans Cn, ce qui nous permet de définir la « complexification » E de E.
Enfin, ceci entraine l'existence et l'unicité d'une décomposition de E en
composantes C-irréductibles, correspondant à la décomposition de E*.

Ces résultats seront obtenus comme conséquences de l'étude, un peu plus
générale, des germes d'ensembles analytiques-complexes au voisinage d'un
sous-ensemble analytique-réel arbitraire.

Dans ces considérations, R*1 peut être remplacée par n'importe quelle variété
analytique-réelle paracompacte Q : pour cela, nous montrons au n° 1 comment
construire une complexification £}* de Q. Par ailleurs, H. Gratjert vient de

montrer que toute variété analytique-réelle peut être plongée analytiquement
dans un espace euclidien [7]. Ceci montre en particulier que le résultat d'H.
Cartan rappelé ci-dessus est valable dans Q.
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L'un des auteurs a récemment montré [9] comment une variété algébrique
réelle peut être décomposée en réunion de sous-variétés plongées, par des
considérations de dimension et de rang. Ceci se généralise au cas O-analytique,
grâce aux notions de O-dimension et de (7-rang. Quelques exemples illustrant
les différences entre le cas complexe, le cas réel et le cas algébrique sont donnés
à la fin.

Pour toutes les définitions et résultats relatifs aux sous-ensembles
analytiques-complexes et analytiques-réels généraux, nous renverrons à [5], [6] et [8].

1. Complexification d'une variété analytique-réelle

Soit Q une variété analytique-réelle de dimension n: une complexification
de Q est le couple formé d'une variété analytique-complexe de dimension

n, !2* et d'un isomorphisme cp (analytique-réel) de Q sur une sous-variété
analytique-réelle de £?* tels que, pour tout point x de Q*, il existe un isomorphisme
(analytique-complexe) d'un voisinage ouvert £7* de x sur un ouvert U' de Cn,
transformant <p (Q) ^ [/*. en Rn ^ U'.

La proposition suivante assure l'existence et en quelque sorte l'unicité d'une
telle complexification :

Proposition 1. Si Q est paracompacte, elle possède des complexifications. Si
(Q* cpi) et (Q2 <p2) sont deux complexifications de Q ,il existe un isomorphisme
analytique-complexe d'un voisinage ouvert de (pxiQ) dans Q* sur un voisinage
ouvert de cp2{O) dans Q2 prolongeant Visomorphisme (p2o(pï1 de <px{Q) sur

Démonstration : l'unicité est facile : l'isomorphisme cp2 ° (pï1 se prolonge en
une application analytique tpt d'un voisinage ouvert Ax de (pt(Q^ dans Q%

et on peut supposer que tpt est de rang n en tout point de Aly donc que
B2 \px(A^) est un voisinage ouvert de ç?2(û). On construit de même A2, y)2,

et Bt. Posons Cx — \p^(A2rs B2)\ Ct est un ouvert sur lequel %p2o yx est
définie. Comme xp2o %px est l'identité sur <p1(Q), il existe un voisinage ouvert
D3 de ç?x(û) sur lequel y)2o\p1= 1. On construit de même D2: il est alors
immédiat que xpx et %p2 sont deux isomorphismes réciproques entre Dx^%p2{D2)
et D2r^ ^(Di).

Démontrons maintenant l'existence d'une complexification : d'après les

propriétés des variétés paracompactes, on peut trouver trois recouvrements ouverts
de type fini de Q, (F^), (U^) et (î7^), dépendant du même ensemble
d'indices /, tels que Y\ (resp. U[) soit relativement compact dans U^ (resp. Tf{)

et qu'il existe un isomorphisme (pour les structures de variétés analytiques-
réelles) <p{ de T\ sur un ouvert Tt de Rn. Nous poserons:
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Ut <pAU'%) Vt 9l{V[) (1)

L'isomorphisme 99, ° 92Î1 de Tt^ sur î7^ t se prolonge en un isomorphisme
analytique-complexe iptt) d'un voisinage ouvert T*t9 de Ttti dans Cn sur un
voisinage ouvert T*t% de Tut. On peut supposer que T*t9 est vide si T%i
l'est, que î7*, ^ R" 2\%, et que:

V,.. <, • (3)

Pour tout couple (i, j), choisissons un ouvert U * de Cw, relativement compact

dans T*tJ, tel que y>tt,(U*j) Ï7*, et que:

U*,~R*=Util ET*,-Jï» Û,,, (4)

Comme F, <-> y,it(Fj^ ^j,t) es^ un compact contenu dans Z7,,, on peut
choisir un ouvert W*i} de Cn relativement compact dans U*i}, tel que

V..,(JC)=ïC et que:

Vt"V,.*iV,~Û,it)cW*t. (5)

De plus, les complémentaires de W*t9 dans F4 et dans y)ut(V3<^ Ujt) sont
des compacts disjoints de Gn, donc sont contenus dans des ouverts disjoints
A*, et B*t$. On a:

F, c (4*, - ÏF*,) ^,.(^ - ^..) c iK, " Kf) ' (6)

Soit A* un ouvert de Cn tel que :

ilf r,Bn= V, A* ~Rn=Vx (7)

^* c (Al, - <,) (8)

pour tous les indices j (en nombre fini) tels que Tt 3 ^ 0
On a:

Vi.,(A*"O - J?w c Vffi(Ff - ÊTti/) (9)

car .4* r> Î7*? est un compact contenu dans T*tJ: par suite, ip%9J(A* r\ U*i9)

est contenu dans y>lfj(A? ^ #*,). Or on a

d'après (4) et (7).
Pour tout point # de Ut9 choisissons un ouvert U*tX, contenant x, et

satisfaisant aux quatres conditions suivantes :

(10) pour tous les indices ; (en nombre fini) tels que x appartienne à Ut 3,

on a 17*. c 17*,;



Quelques propriétés fondamentales des ensembles analytiques-réels 135

(11) pour tous les indices j (en nombre fini) tels que x e ^ »(F, o Ui t),
on a (cf. (6)) E7t% c (W*? - J3*,);

(12) pour tout indice j tel que ^(x) $ Fj, on a U*tX ^ ip)tt(A* ^ 17*%) 0
(cette condition est trivialement satisfaite si £7*}l 0 ; pour les indices j
(en nombre fini) tels que U*t% ^ 0 elle est réalisable parce que, d'après (9),

y;1 (a?) £ F; entraine x ^JA? ~ U*%)) ;

(13) pour tous les couples (j, le) (en nombre fini) tels que x € U%tir\ U%tk

(c'est-à-dire tels que y\l(x) c U[^ U9 ^ Ufk) on a

K
et de plus, on a y)t3 y)k3oy)tk sur U*tX (cette dernière condition étant
réalisable, car on a tpt } y)k3 o tplk sur Utt3 rs Ulk).

Soit alors U* la réunion des L7*^ pour x décrivant Ut et soit V* un voisinage
ouvert de Vt dans Cn, contenu dans A* et relativement compact dans U*.
D'après (7), on a Ff ^ i?n Vt et Ff ^ R" Ft. Posons:

F*? VÏ~Wut(V; ~ Ul%) et Vtuk F*, - F*t. (14)

On a F*
7 c Î7ff, et ip%t9 est un isomorphisme de Pr*

; sur F*f t. D'autre part,
un point y de F*;fc est contenu dans un ouvert U*i% pour un X€Ut et
cet ouvert U*tX rencontre y)3tt(V* ^ U*t%) et ipk%t(V% ^ Ukl) donc a fortiori
y,t%(A* r> 17*J et y*,•(-*!* ^ C/^J. Ceci entraine (d'après (12) et (2)) que
x € Î7*; ^ [7**, donc que %tk(y) c 17^, * Vt et que y>k>}oy)t>k{y) tpt,,(y).
Par suite le point z yt^(y) appartient à V9* ,ky)ttJ(V* ^ U?t9) e^ aussi à

fk,3(F^ ^ Î7^>7), c'est-à-dire finalement appartient à F* 11fc.

Parsiute,onay,f,(F*,>ib)cF*ifJfc et de même, W^CF*,^)^ F*?>jfe, ce

qui entraine (cf. (3)) que ipt3 est un isomorphisme de V*t9tJk sur F*>tjt,
d'inverse ipjt. D'autre part, on a y>t3 ^^o^^ sur Ff>?ijt.

Considérons alors l'espace somme des F* (remarquons que F*t V*) et
disons que deux points x e V* et y € F * sont équivalents si x e V*tJiy e F *t t
et y ^t.^aO1 il est immédiat d'après ce qui précède que la relation ainsi
définie est bien une relation d'équivalence sur l'espace somme des V* L'espace
topologique quotient, c'est-à-dire l'espace topologique jQ* obtenu par recollement

des V* le long des F*? au moyen des isomorphismes iptt9 est alors une
«variété» analytique-complexe, a priori non nécessairement séparée. De plus,
les isomorphismes q?t définissent un isomorphisme (analytique-réel) q> de Q
sur une sous-variété y{Q) de X2* et on vérifie facilement que <p(Q) est fermée
et satisfait aux conditions imposées. La démonstration de la proposition 1

sera donc terminée quand nous aurons montré que i3* est séparée.
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Montrons tout d'abord que F*, ^ t/*; et pour cela, que F*7 c: W*tf.
Il suffit naturellement de faire la démonstration quand Ttj =£ 0 Soit
y € V*t9: comme F*, c: V* c [7*, il existe un x*XJ% tel que t/€ ï/*^.
Si ^£^j,t(^i^ ^*,t)> a^ors 9~%{X)$V\ et Par su^e (condition (12))
y $ y>3t(A* r> U*9%) et a fortiori, y $ %ps t(F* ^ U*%), ce qui est contradictoire

avec «/ « F*, et la définition (14) de V*t7. On a donc # e y>9,t(V} ^ Ujt), ce

qui entraine d'après (11), y c (W*tJ ^ ¦#*,)• Comme, d'après (8),

t/€ Ft* ci* c (A*t ^ W*7) et que A*9 et jBt*? sont disjoints, on a bien

y*w*,.
Soient alors x' et y' deux points distincts de fi* et soient x e Ft* et y c F*

tels que #' (resp. t/') soit l'image canonique de x (resp. y). Il est clair qu'il
suffit de trouver un voisinage A de x dans V* et un voisinage B de y dans
F* tels qu'aucun point de A ne soit équivalent à un point de jB. Or si cela
n'était pas possible, on pourrait trouver deux suites (xk) et (yk) de points de

Cn, convergeant respectivement vers x et y, avec xh e V*t y, yk c F?* t et

** V*,t(y*)- Comme F*, c 17*,, on a X€U*,,y€Uf9% et x y,^t(y),
l'application xp3% étant continue dans J7*ft. Par suite, y e F* ^ C/*jt, et
x e Ff ^ y,,t(^,* ^ ^t) F*;' donc V € F*t et comme y y,f,(«), les

points x et î/ sont équivalents et on a x' y1 contrairement à l'hypothèse.
La démonstration est achevée.

Remarque: On peut choisir i3* de telle sorte qu'il existe une involution anti-
holomorphe z -> z de fi* sur elle-même, (p (Q) étant le lieu des points fixes

de cette involution. On peut en effet supposer que iptj{x) %pti{x) dans
î7*

7 (x désignant le point de Cn de coordonnées complexes conjuguées de celles
de x), et il suffit alors (ce qui est possible) de choisir tous les ensembles
envisagés dans Cn invariants par passage aux complexes conjugués.

2. Systèmes de coordonnées et standardisations propres

Soient Q^ une variété analytique-complexe de dimension n, a un point de

fi* et {xx..., xn) un système de coordonnées valables dans un voisinage [7*
de a et nulles en a. Une standardisation au voisinage de a, subordonnée à ce

système de coordonnées, est la donnée de n applications Fi (pour 0 ^ j ^ n — 1)

de (R+Y dans R+, où R+ désigne l'ensemble des nombres réels > 0. l'application

Fo est donc une constante > 0. Un voisinage F* de a sera dit standardisé

s'il est contenu dans C7* et y est défini par les inégalités | x% \ < et (pour
1 ^ i ^ n), où les nombres réels strictement positifs et satisfont aux inégalités :
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Soit maintenant Q une variété analytique-réelle de dimension n, plongée
dans une de ses complexifications i2*, Q étant le lieu des points fixes d'une in-
volution antiholomorphe z -> z de «Q*. Soit E* un sous-ensemble analytique-
complexe au voisinage d'un point a de Q. Un système de coordonnées

(p (xl9 xn) dans un voisinage £7* de a, nulles en a, sera dit p-propre
pour E* au point a si les p premières coordonnées d'un point quelconque de
E* r\ U* distinct de a ne sont pas toutes nulles.

On sait (voir p. ex. [8]) que, si JE* est de dimension ^ p, on peut trouver
des systèmes de coordonnées p-propres pour 2£* au point a1). On peut même
se restreindre aux systèmes de coordonnées (que nous appellerons réels) pour
lesquels toutes les coordonnées xt sont réelles si et seulement si le point
correspondant de £7* est dans Q.

Dans ce qui suit, nous identifierons Cq (pour 0 ^ q ^ n) avec le sous-

espace de Cn formé des points dont les n — q dernières coordonnées sont
nulles et nous désignerons par nq la projection (xx, xn) -> (xl9 xq)
de Osur Cq.

Soit [7* un voisinage ouvert de a dans Q* dont l'image dans Cn par l'application

qui a un point fait correspondre ses coordonnées soit un polydisque
| x{ | < rji. On sait [8] que, si (p est p-propre pour E* au point a et si les rjj
sont suffisamment petits, l'on a les résultats suivants:

a) pour chaque indice j 1, n — p, il existe un polynôme distingué
Qj(X; xly... xp) à coefficients analytiques en (x19..., xp) dans ^([7*),
sans facteurs multiples, tel que

QMv+i; *i, • - • «,) 0 s™ E*~U*. (16)

On désignera par U* le sous-ensemble analytique-complexe de £7* défini par
les équations (16)2). •

b) si cp est réel et si JE?* est invariant par l'involution z -> i, on peut choisir
les Qj eux aussi invariants, c'est-à-dire à coefficients réels quand les xl9..., xp
sont réels.

c) il existe une standardisation subordonnée au système de coordonnées

1) Cette propriété est prise comme définition de la dimension dans [8]. Ici, nous conservons
la définition usuelle de la dimension d'un ensemble analytique-complexe (cf. p. ex. [5]): E*
est de dimension < p si l'ensemble de ses points réguliers est une variété dont toutes les
composantes connexes sont de dimension <I p.

*) Les polynômes Qj ne sont pas uniques, même en se restreignant aux polynômes de plus
petit degré possible, sauf cependant si E* est purement p-dimensionnel au voisinage de o, cas
auquel les Qj de degré minimum sont uniques ([8], Zusatz II, p. 273). Par suite, la définition de

E* dépend non seulement de E* et de (p, mais aussi du choix des Qj. Il en est de même de la
notion de standardisation p-propre pour E* en a et des ensembles £)*(£?*) et S*(E*) introduits

plus bas. Par abus de langage, nous utiliserons souvent ces notions sans rappeler qu'elles
dépendent du choix des polynômes Qj
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donné, telle que F{ (ei+1,..., en) < rji si g,. <r\i pour j>i et que, pour
tout voisinage standardisé F* de a, les racines du polynôme Qf(X ; xx..., xp)

pour (xl9..., x9) €7ip(V*) soient toutes inférieures en module à ep+i. Une
telle standardisation sera dite p-propre pour E* au point a.

d) supposons E* de dimension p en a et soit J?'* (resp. 1?"*) la réunion des

composantes irréductibles de dimension p (resp. de dimension < p) de
JJ* <-> Ï7*. Soit D* le sous-ensemble analytique lieu des zéros dans np(U*) du
produit des discriminants des polynômes Q^. Posons :

D*(E*) D? ^7tp{E"*) et S* (E*) E* ~ ti'^D* (E*)) ~ U*. (17)

D*(J5J*) et /S* (JE?*) sont des sous-ensembles analytiques-complexes de
dimension ^ p — 1 dans J7* et (2J* ^ £7*) — S*(E*) est ouvert et fermé dans

De plus, si l'on a un système de coordonnées <p (xl9... xn) qui soit

p-propre en a relativement à un nombre fini de sous-ensembles analytiques-
complexes E* de dimension ^ p — 1, on peut, par un changement de
variables portant uniquement sur les p premières coordonnées, remplacer çp par
un système <pr qui soit (p — l)-propre pour chaque Ef En effet, la projection
nv est, d'après b), une application propre3) de jP* U Ef ^ [7* sur nv(F*) ;

par suite (cf. [8bis]) np(F*) est un sous-ensemble analytique de dimension

^ p — 1 dans ^(C/*) et l'on peut trouver dans Cp un système de coordonnées

(x[,..., x'v) qui soit {p — l)-propre pour np(F*): il est clair que le
système 9/ (#{,..., x'p, xp+1,..., xn) est (p — l)-propre pour chacun des

E* Si <p est réel, on peut choisir cpf réel.
Soit maintenant E un sous-ensemble analytique-réel dans un voisinage de

a dans Q. On sait (voir [1], [6]) qu'il existe un plus petit germe d'ensemble

analytique-complexe (dans Q*) en a, dont l'intersection avec Q coïncide avec
le germe de E en a. Par définition, la dimension de E en a est la dimension
complexe de ce germe. Pour tout voisinage £7* suffisamment petit de a dans

£?*, il existe un plus petit ensemble analytique-complexe J5* dans £7*, tel
que E* <^ Q E rs U* \ la dimension de E* est égale à la dimension de E
en a et son germe en a est le complexifié du germe de E en a. Nous appellerons

£* le complexifié de E dans 17*: il est clair que Ë* JS7* (si Ï7* Ï7*).
Nous dirons qu'un système de coordonnées valable dans Î7* est p-propre pour
E au point a s'il l'est pour E*. Si JS est de dimension p (donc aussi E*), nous
poserons :

8(E) est un ensemble analytique-réel au voisinage de a dans Q. Enfin, si le

3 Rappelons qu'une application est dite propre si l'image réciproque d'un compact est
compacte.
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système de coordonnées est convenablement choisi et le voisinage 17* suffisamment

petit, nous définirons par récurrence les ensembles analytiques-réels
8k(E) (avec S0(E) E et 81(E) 8(E)) par:

Nous aurons besoin par la suite d'utiliser des systèmes de coordonnées qui
soient adaptés à l'étude non seulement d'un sous-ensemble analytique (ou
même d'une famille finie de sous-ensembles analytiques), mais aussi à l'étude
d'un couple (E, F) de deux sous-ensembles analytiques, F étant contenu
dans E, et à l'étude des points singuliers de E.

Soit donc (E, F) un couple d'ensembles analytiques-réels dans un voisinage
de a dans Q, F étant contenu dans E. Nous dirons que ce couple est réduit
si l'on a dim F < dim E. Dans le cas général, nous appellerons couple réduit
associé le couple obtenu ainsi : soit £7* un voisinage de a dans «Q*, suffisamment

petit pour que E et F aient des complexifiés E* et jF* dans E7*. Soit
E'* la réunion des composantes irréductibles de 15* dans £7* qui ne sont pas
contenues dans #*. On remplace le couple (E, F) par le couple (E', F')
avec E' JS7'* ^ Q et F' E' ^ F et on vérifie immédiatement que le

couple (E1, F') est réduit dans le voisinage U £7* ^ Q de a.
Supposons donc le couple (E, F) réduit et posons p dim E. Nous allons

définir par récurrence sur p les notions de système de coordonnées propre et de
standardisation propre pour ce couple. Pour p 0, n'importe quel système
de coordonnées nulles en a est propre ; supposons donc la notion de système

propre définie pour les couples de dimension < p. Un système q> sera propre
s'il satisfait aux deux conditions suivantes :

(SP 1) (p est p-propre pour E, au point a.
Soit alors 17* un voisinage polycylindrique de a dans .Q*, Suffisamment

petit pour que E et F aient des complexifiés jE* et F* dans [7* et que les
conditions a) à d) soient satisfaites (pour 25*). Posons:

D(E, F) (D*(E*) - tzp(F*)) r, Q (18)

(19)

D(E,F) et T(E,F) sont des sous-ensembles analytiques-réels de dimension

^ p — 1 dans U U* rs Q (remarquons que leur définition dépend du
choix des polynômes Q^ de a), du moins quand il n'y a pas de choix canonique
de ceux-ci, c'est-à-dire quand JS7* n'est pas purement p-dimensionnel). Nous

pouvons alors poser la deuxième condition :

(SP 2) (p est "propre pour les couples réduits associés aux couples (T (E, F), F)
et (D(E,F),0).
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Remarque. Pour p n, la condition (SP 1) est automatiquement satisfaite

et (SP 2) signifie que <p est propre pour le couple (F, 0). D'autre part,
si q> est propre pour le couple (E,0), alors les ensembles Sk(E) (ou plus
exactement leurs germes en a) sont bien définis au voisinage de a (moyennant
toujours des choix successifs pour les polynômes Q) et le système cp est propre
pour les couples (Sk(E), 0).

Reste à démontrer l'existence de systèmes propres. Plus précisément, nous
allons démontrer par récurrence sur p le Lemme suivant, qui est évident pour
p 0:

Lemme 1. Soit ((Ei} F^j)UI une famille finie de couples réduits au voisinage
de a ; posons p sup dim E{. Soit q> un système de coordonnées p-propre pour
chacun des E{. On peut en déduire, par un changement de variables portant
uniquement sur les p premières coordonnées et en restreignant au besoin le voisinage
considéré du point a, un système de coordonnées propre pour chacun des couples

(E^Fi) pour i c/.
Soit en effet J (resp. K) l'ensemble des indices ici pour lesquels dim E{ p

(resp. dim Et < p) : d'après ce que nous avons vu plus haut, on peut, par un
changement de variables portant uniquement sur les p premières coordonnées,
déduire de ç? un système de coordonnées qui soit ^-propre pour les Ei (j e J)
et (p — l)-propre pour les Ek(1c e K) ainsi que pour les DiE^Fj) (donc
les T (Ej, Fj)) pour j c J, quitte naturellement à restreindre le voisinage
considéré de a. Il suffit alors d'appliquer l'hypothèse de récurrence.

On voit que, pour vérifier qu'un système de coordonnées est propre, on est
amené à introduire une famille finie de sous-ensembles analytiques-réels O8

de dimension Jcs (0 ^ ks ^ p), le système <p étant propre si et seulement si il
est &g-propre pour chacun des G8. Mais la définition même des G8 dépend de

q> et de ses propriétés (ainsi que de choix pour les polynômes Q) et se fait par
récurrence descendante sur la dimension. Par exemple, les Gs de dimension

p — 1 seront définis en supposant cp p-propre pour tous les E{ et seront d'une
part les Ek de dimension p — 1, d'autre part les D (Ej, F^ de dimension

p — 1 et enfin les ensembles de dimension p — 1 obtenus en réduisant les

couples {TiE^F^F,).
Si q> est propre, une standardisation subordonnée à <p sera dite propre pour

la famille donnée si elle est fcs-propre pour chaque G8. L'existence de telles
standardisations est claire: il suffit de choisir pour chaque indice s une
standardisation subordonnée à cp et &8-propre pour G8 et de prendre la borne
inférieure de ces standardisations.
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3. Un résultat de connexion locale

Soit Q une variété analytique-réelle et soient a et 6 deux points de Q. Dans
la suite de cet article, nous appellerons «arc analytique joignant a à 6» une
application continue F de l'intervalle [0,1] dans Û telle que F(0)=a,
F(l) b et telle que F soit analytique dans l'intervalle semi-ouvert [0,1[.
Un tel arc sera dit «contenu» dans un sous-ensemble X de Q si F(t) e X pour
0 <*< 1.

Le but de ce numéro est de démontrer le résultat suivant:

Proposition 2 4). Considérons une famille finie de couples (Et, Ft) de sous-ensembles

analytiques-réels de Q, Ft étant contenu dans Et. Soit a un point de Q. Il
existe un voisinage ouvert V de a dans Q tel que, pour tout indice i, tout point
de (Et — Ft) rs V puisse être joint à a par un arc analytique contenu dans

(Et-Ft)~V.
Cette proposition étant purement locale, on peut supposer que Q est un

ouvert de Bn et qu'il existe un ouvert i3* de Cn, avec Q fi* ^ Rn, tel que
tous les Et et les Ft admettent des complexifiés E* et F* dans fi*. De plus
on peut supposer la famille (Et, Ft) réduite. Posons p sup dim Et. Nous
allons, par récurrence sur le couple (n, p), démontrer le résultat plus précis
suivant: pour toute standardisation propre pour la famille (Et, Ft), on peut
prendre pour F l'intersection avec Q de n'importe quel voisinage standardisé
assez petit. Ceci est évident pour p 0, quel que soit n. Supposons donc ce

résultat démontré pour les couples (m, q) avec m < n ou avec m n et
q < p, et démontrons-le pour le couple (n, p): on peut se borner au cas d'un
seul couple (E, F), avec dim E p et dim F < p.

1er cas : p <n.
Par hypothèse, le système de coordonnées donné est p-propre pour E au

point a ; soit alors C7* un voisinage polycylindrique de a dans Q* assez petit
pour que les conditions a) à d) du n° 2 soient satisfaites. Soit F* un voisinage
standardisé de a contenu dans [7*, posons F F* ^ Q et soit x € (E — F)^ F.
Considérons les ensembles D(E,F) et T(E,F) définis par les formules (18)
et (19). Si # € T(E, F), il suffit d'appliquer l'hypothèse de récurrence, puisque

par définition, la standardisation est propre pour le couple (T (E, F), F)
et que dim T (E, F) < p — 1.

Supposons donc x$T(E,F) et par suite nv(x) i D(E, F). Comme la
standardisation donnée est propre pour le couple (D(E, F),0), sa restric-

4) Cette proposition est à rapprocher du Théorème 1 de [2] et le principe de la démonstration
en est analogue.
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tion à Cp est propre pour le couple (7tP(U), D(E, F)) (n° 2, Remarque).
Puisque p <n, on peut appliquer l'hypothèse de récurrence et trouver un
arc analytique y joignant nv(x) à a, contenu dans nP(V) et ne coupant pas
D(E, F). Comme D{E, F) contient !)*(£*) ^ Q, les discriminants des

polynômes Qj ne s'annulent pas le long de y, donc leurs racines réelles sont simples,
en nombre constant, donc analytiques le long de y. On en déduit immédiatement

l'existence d'un arc analytique unique F joignant x à a, contenu dans

E*~V et tel que 7tv{F) y. Mais comme x * E* et que (E* ~ U*) - S* (E*)
est ouvert et fermé dans E* — (2?*^ 7t£(D*(E*))), cet arc F est contenu
dans E* m V E ^ V et comme y ^ nv{F) 0 on a F^ F 0 et F
répond à la question.

2ième cas: p n (autrement dit, E est une composante connexe de Q).

Montrons d'abord le résultat auxiliaire suivant: soit G un sous-ensemble

analytique-réel au voisinage de a, de dimension q<n. Supposons la
standardisation donnée propre pour le couple (0,0) et soit £7* un voisinage
standardisé suffisamment petit pour que G ait un complexifié (?* dans £7*,
satisfaisant aux conditions a) à d) du n° 2 (en remplaçant jE7* par 6?* et p par q).
Soit # un point de U C7* ^ Q tel que x$G, que nk(x) c nk(G*) pour un
entier Je avec q^k<n et que nq(x) $ D(G) D*(C?*) ^ U. Dans ces

conditions, il existe un arc analytique F joignant x à a dans U et tel que
nk(F) c nk{Q*), que nq{F) * D(G) 0 et que F~G 0. En effet, puisque

:rcg(#) $ D(G) et que la standardisation donnée est propre par hypothèse
pour le couple (D{G), 0) donc pour le couple (nq(U), D(G)) il existe par
hypothèse de récurrence un arc analytique joignant nq(x) à a dans tzq(U)—D(G).
Le long d'un tel arc y, les racines réelles des polynômes Q;- sont simples, en
nombre constant, analytiques et tendent vers zéro quand t -> 1. Par suite

wfc(#*) ^ n"q(v) ^ & se compose d'un nombre fini d'arcs analytiques
disjoints joignant les différents points de nk(G*) o n~^{nq(x)) ^ Q à a. Soit y'
celui de ces arcs qui est d'origine nk(x). On voit de même que G^^n^iy') ^ Q
se compose d'un nombre fini d'arcs analytiques disjoints Fx,..., Fr avec
TtjciFiit)) y1 (t). Si r 0, n'importe quel arc analytique F joignant x à

a tel que nk(F) y' répond à la question. Supposons r > 0: pour tout
entier m Je + 1,... ,n, les m-ièmes coordonnées de r4(t) et de F^t) sont,
pour i î^j, ou bien toujours distinctes ou bien toujours égales. Soient
Xx,..., ks ces m-ièmes coordonnées rangées dans l'ordre croissant ; posons
^0(£) — em et As+1(£) em. Il y a un indice j et un seul (0 ^ j ^ s) tel
que ^(0) < xm < Am(0): nous poserons:

*•(*) MO + (1 - Oc(A,+1(O - A,(t)) Pour > 0
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et:

*«W hit) - (1 - tMW) - *o(l)) pour j 0

la constante c étant déterminée par la condition xm(0) xm (on a 0 ^ c < 1).
Il est alors immédiat que l'arc t->y(t) défini par 7ik(y(t)) y'(t) et
ym(t) xm (t) pour k < m < n répond à la question. Notons que nous avons
utilisé la condition c) du n° 2.

Soit alors F* un voisinage standardisé de a ; tous les ensembles 8k Sk(F)
pour k ^ 0 ont des complexifiés 8% dans F* puisque la standardisation donnée
est propre pour tous les Sk (n° 2, Remarque). Comme Sk 8* (8^) ^ Q,
on a 8% c 8* (8^). Nous poserons q dim JF, et gA dim S^. pour
k ^ 1. On a, d'après (17), pour tout entier r avec g ^ r ^ w:

(20)

Montrons, par récurrence sur k, que:

Fr,7iî{nt{8Î))=8k. (21)

C'est évident pour k 0; supposons (21) vraie pour la valeur k — 1: on a

F ~ <K(S*)) cf.r/K^^tJ)) c^<(rcf(fl*J)=flfw, et

par suite F~ <(^(^*)) Sw. <K(S*)) cSM ^ <(^(«*(5f*J) Or
en remplaçant J7 par Sfc_x dans (20), on voit que Sjç^^ nr* (jrtf (/S* (8^))) =8k,
d'où immédiatement (21).

Soit enfin x un point de F F* ^ Q, n'appartenant pas à JP, et soit fc

le plus grand entier tel que nq(x) e 7tq(8^) (remarquons que l'on a
rca0S*) 7iq(F*) 3 7ra(F*)) Comme nq(x) Î nq{8Î+1), on a

n*h (*) t ™*ic (st+i) ^Û D^(St)^Q D (Sk)
#

et le résultat auxiliaire démontré plus haut s'applique. Soit donc F un arc
joignant x à a dans F, avec 7tq(F) <z 7tq(8^) et F<^ Sk 0 On a bien
F^F 0 car si y €T^ F, on a ^(s/) cjra(r) donc y * JF^ ^(^(/Sj)) 5fc

d'après (21) et y e F^ Sk, ce qui est impossible.
La démonstration est achevée.

4. Ensembles analytiques-complexes au voisinage

d'un ensemble analytique-réel

Soient i2* une variété analytique-complexe et A un sous-ensemble analyti-
qae-réel de û* : le cas le plus important est celui où A est une variété
analytique-réelle dont i2* est une complexification. Soit E* un sous-ensemble
analytique-complexe de Q* ; posons E A r> JJ* et soit a un point de A.
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Proposition 3. Il existe un voisinage ouvert V de a dans A tel que, quel que
soit le voisinage ouvert F* de F dans 12*, toute composante irréductible de E* r\ F*
dans F* qui rencontre F, passe par le point a.

Soit E* la réunion des composantes irréductibles de dimension p de U* et
soit <p un système de coordonnées au voisinage de a qui, pour tout p, soit
^-propre pour E*. Soit enfin U* un voisinage de a dans i2* tel que les conditions

a) à d) du n° 2 soient satisfaites pour chacun des E*. Nous désignerons

par Q1! les polynômes de la condition a) associés à E*, et poserons Ep E*^A.
Pour tout système S (rx,..., rn_p) de n — p entiers avec 1 ^ ri ^

degré de Q?, désignons par Ep,s le sous-ensemble analytique-réel de £7* formé
des points (xx,..., xn) de Ev rs E7* tels que xp+j soit racine multiple d'ordre

> rj de Q? (X ; xx,..., xp). Nous prendrons pour F un voisinage ouvert de

a dans J. tel que, pour tout p et tout système $, tout point de EpS<^ V
puisse être joint à a par un arc analytique contenu dans EPtS^ F, l'existence
d'un tel F résultant de la proposition 2.

Soit donc F* un voisinage ouvert de F dans 12* et soit JF* une composante
irréductible de E* ^ F*: si dim F* p, F* est aussi une composante
irréductible de E* rs F*. Supposons que F* rencontre F en un point 6

(&!,..., 6J. Soit r,- l'ordre de multiplicité de la racine bp+j de ($ (X ; bt,..., 6P)

et soit J1 un arc analytique joignant b k a dans EPtS, avec $ (rt,..., rn_p) :

il est clair qu'il suffit de démontrer que F(t) e F* pour t suffisamment petit,
car on aura par prolongement analytique, F c F* et par suite a c jF*

Or, pour tout indice j 1,..., n — p, il existe un voisinage convexe J5i
de (bt,..., bp) dans O et un nombre réel e^ > 0 tels que, pour (xx,..., xp) e Bi,
le polynôme Q^ (X ; xx,..., xp) ait exactement r^ racines satisfaisant à

| X — 6^-1 < Bj. Soit JS l'intersection des J3, et soit £ l'ouvert de Cn formé
des points x (xl5... xn) tels que np(x) «5 et | xp+i — bp+j \ < e/. on

peut supposer (quitte à diminuer les ti et les B^ que B c F* rs £7*. Comme
JF* est de dimension p et que, pour tout y c B, F* ^71^ {y) se compose d'un

•s.
nombre fini de points, nP(F* r\ B) est un sous-ensemble analytique-complexe
de dimension p de B, donc coïncide avec B, qui est connexe.

Soit alors /* un nombre réel > 0 tel que F(t) c B pour 0 ^ t < ju. Pour

tout £ avec 0 ^ t < /j, il existe un point z(£) € jP* ^ J5 tel que np(F(t))
nP(z(t)). Mais comme la (p + ;)-ième coordonnée de F(t) est racine
multiple d'ordre > ri de Qy (X; rcP(r(J))), elle est la seule racine de ce

polynôme qui appartienne au cercle | X — bp+j \ < e5 et par suite, elle est égale
à la (p + ;)-ième coordonnée de z(t), ce qui entraine que F{t) z(t) appartient

à F* et achève la démonstration.
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Remarquons que si le germe de E* en a est irréductible, il existe une seule

composante irréductible de E* ^ F* qui rencontre F.

Corollaire. Soit Q une variété analytique-réelle et soit f une fonction
analytique-réelle sur Q. Pour tout point a de Q, il existe un voisinage ouvert V de a
tel que, si g est une fonction analytique sur V telle que g\f soit analytique au
voisinage de a, alors gjf est analytique dans V.

En effet, on peut supposer que Q admet une complexification i3* et que /
se prolonge en une fonction holomorphe, notée encore /, sur £2*. Soit E* le
lieu des zéros de / dans D* et soit F un voisinage de a dans Q possédant les

propriétés exigées dans la proposition 3 (avec A Q). La fonction g se

prolonge en une fonction holomorphe, notée encore g, sur un voisinage ouvert F*
de F dans 42*. L'ensemble des points de F* au voisinage desquels la fonction
méromorphe g\f n'est pas holomorphe est un ensemble analytique-complexe
de dimension n — 1 contenu dans U* et ne contient aucune des composantes
irréductibles de E* r\ F* qui passent par a, donc ne rencontre pas F, et gif
est holomorphe au voisinage de tout point de F.

5. Germes d'ensembles analytiques-complexes au voisinage de A

Soient £2* une variété analytique-complexe paracompacte et soit A un sous-
ensemble analytique-réel de i2*. Nous désignerons par (5 (A) l'ensemble des

«germes d'ensemble analytique-complexe au voisinage de A», ou plus brièvement

des A-germes: un tel germe est représenté par un couple formé d'un
voisinage ouvert F* de A dans ,0* et d'un sous-ensemble analytique-complexe
E* dans F*, deux tels couples (F*,J0*) et (F*,$*) définissant le même
A -germe si et seulement si il existe un voisinage F* de A danf JQ*, tel que
E* ^ V* E* r* F*. Nous dirons que le A -germe F est de dimension ^ p
s'il existe un couple (F*, U*) définissant F, avec E* de dimension (complexe)

< p, et que Y est de dimension p s'il est de dimension ^ p et n'est pas de
dimension < p — 1. On désignera par %V{A) l'ensemble des ^4-germes de
dimension p.

Soit Y e (S(A) et soit F* un voisinage de A suffisamment petit pour que
la famille g des ensembles analytiques-complexes F* tels que le couple (F* ,F*)
définisse Y ne soit pas vide. Soit T* l'intersection des JF* pour F* e 5- Les

germes des .F* en un point x € A sont tous égaux, donc sont égaux au germe
en x de l'ensemble analytique-complexe F*, ce qui montre que le couple
(F*, Y*) définit aussi F. Autrement dit, pour tout voisinage F* suffisamment

petit de A, il existe un plus petit ensemble analytique-complexe F*
dans F* tel que le couple (F*, F*) définisse F. On a dim F dim F*.

10 Commentarii Mathematici Helvetici
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Posons en effet p dim Y*. Il est clair que dim Y < p ; supposons
dim Y < p et soit (W*, U*) un couple définissant Y avec dim E* <p. En
tout point x e A, le germe de F* en x est égal au germe de J57* en a;, donc
est de dimension < p. Par suite, le couple (F*, .F*), où F* est la réunion
des composantes irréductibles de dimension < p de Y* dans F*, définit
lui aussi Y, ce qui contredit la minimalité de Y*.

Soient Y{ (i 1, 2) des éléments de © (A) et soient (F*, E*) des couples
représentant Yt. La réunion Yt ^ Y2 (resp. l'intersection Yt ^ Y2) est le
^4-germe défini par le couple (F*^> V*, (E* ^ E*) r» F*^ F*) (respectivement

(F* rs F*, -E* ^ E*)) : il est clair que cette définition ne dépend pas des

représentants choisis. On dira que Yt c Y2 si Y2 Yt ^ Y2, ou encore si
E* cz E* au voisinage de A. Enfin Y est irréductible si on ne peut pas l'écrire
comme réunion de deux A -germes Yx et F2, tous les deux distincts de Y.

Par ailleurs, nous désignerons par GP(Q*) l'espace des germes analytiques-
complexes irréductibles de dimension p aux différents points de Q*, muni de

sa topologie habituelle (voir [5], [8]): rappelons qu'un système fondamental
d'ensembles ouverts rv(U*\E*) est obtenu comme suit: pour tout couple

([/*, E*) formé d'un ouvert [7* de 42* et d'un sous-ensemble analytique-complexe

E* dans [7*, /^(C/*, E*) est l'ensemble des composantes irréductibles
de dimension p des germes de JE?* aux différents points de [7*. Soit G(Q*)
la somme topologique des GP(Q*): on sait [5] que (?(£?*) est un espace
topologique séparé, localement compact et localement connexe.

Soit n l'application canonique de (?(i2*) sur i3*, qui à un germe au point
a, fait correspondre le point a lui-même. Nous désignerons par G (A) le sous-

espace n~1(A) de G (Q*): comme n est continue, c'est un sous-espace fermé
donc localement compact de G(Q*). On posera GP(A) G (A) ^ GV(Q*):
G (A) est la somme topologique des GP(A).

Soit Y un élément de © (A), provenant d'un couple (F*, E*)\ il est immédiat

que le sous-ensemble FV(Y) F9(V* ; E*) ^ n^iA) est un sous-ensemble

ouvert et fermé de GP(A), qui ne dépend que de Y et non du couple
(y*9E*) choisi. Nous poserons F(Y) U FP(Y). Si rx et 72 sont deux
éléments de ®(Jl),ri=Y2 est équivalent à F(YX) =-F{Y%). D'autre
part, si f et r\ sont deux points distincts de J'(F) tels que n(^) Tr(^), on
ne peut pas avoir | c rj, car deux composantes irréductibles du germe de
JB* au point 7i(£) ne peuvent pas être contenues l'une dans l'autre, par définition

même des composantes irréductibles.
Remarque: En un certain sens, ©(-4) et G {A), avec toutes leurs structures,

ne dépendent que de A et non de i3* : plus précisément, si l'on a une autre
variété analytique-complexe £?* et un sous-ensemble analytique-réel Ax de
jQ*, tels qu'il existe un isomorphisme <p d'un voisinage de A sur un voisinage
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de At, avec q>(A) Al9 il est clair que ç? définit un isomorphisme naturel
de (&(A) sur (5(^i) et un isomorphisme naturel de G (A) sur G(At), compatibles

avec les applications F et n et avec toutes les opérations définies ci-
dessus et ci-dessous. En particulier, si A est une variété analytique-réelle
paracompacte Q, on peut parler des espaces ©(£?) et O(Q) sans spécifier
quelle complexification on a considérée pour les construire.

Proposition 4. Pour qu'un sous-ensemble X de GP(A) soit de la forme F(Y)
pour un Y e(S>v(A), il faut et il suffit que X soit ouvert et fermé et que la
restriction de n a X soit propre*).

La nécessité de la condition est évidente, compte tenu de ce qui précède
et du fait que la restriction de n à FP(V* 9 E*) est propre. Réciproquement,
soit X un ouvert et fermé de GP(A) sur lequel n est propre. Soit x un point
de A et soient el9... er les éléments (en nombre fini) de X r> jr~1(x). Puisque

X est ouvert, il existe un voisinage ouvert 31* de x et des ensembles

analytiques-complexes jE* de dimension p dans î7* tels que E* induise le germe
et au point x et que Fp(T*9E*)r* n~x{A) c X. On peut même trouver un
voisinage ouvert U* de x dans 42* tel que:

x - tz'HU*) u jyr*, <)) - ^(P,* - £). (22)

Sinon, il existerait une suite de points fa € X telle que fq n'appartienne pas
à la réunion des FP(T*, E*) et que la suite des n(£q) converge vers x. Comme

n est propre sur X, on peut supposer que la suite fq converge vers un point
|eX:ona n(t;) x, donc | est l'un des et, ce qui entraine que Çq€Fv(T*,E*)
pour q assez grand, contrairement à l'hypothèse.

Comme 42* est paracompacte, on peut trouver deux recouvrements {U*)
et (F*) de type fini, plus fins que le recouvrement de i2* formé des [7* et de

l'ouvert £?* — A et tels que F* soit relativement compact dans U*. Nous
ne considérerons dans la suite que les ouverts F* et [7* tels que Vt F* ^ A
ne soit pas vide : ces ensembles Ft forment un recouvrement ouvert de A et
dans chaque [7* (rencontrant A, donc contenu dans un ouvert U*), il existe
d'après (22) un sous-ensemble analytique-complexe F* de dimension p tel
que:

X ~ nrHU*) r(JÎ) - w-M-4) • (23)

En tout point x e A ^ U* ^ U*, les germes induits par F* et F* sont les

mêmes, l'ensemble de leurs composantes irréductibles étant X ^ jt^ix). Il
existe donc un voisinage U*fJ c: U* ^ U* de A <^ U* <^ U* tel que
F*~ U*9 F*r, U*f (on prend 17*, F*4). Soit alors V[* un ouvert
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de 12*, contenu dans F*, et tel que F** ~ A F< et Fj* ^ il F< (l'existence

d'un tel ouvert est une conséquence immédiate de la régularité de

l'espace topologique £?*). Pour tout point x c Vi9 il existe un voisinage ouvert
TF* de x dans i3* possédant les propriétés suivantes:

W*x c F^* (24)

si a; $ Vj, alors ÏF*^ Fj* 0 (25)

(en effet, si U* ^ U* 0 c'est une conséquence de (24) et pour les indices

j (en nombre fini) tels que U* ^ U* =£ 0 l'existence d'un tel voisinage
résulte de ce que x $ Fj*) ;

si xe Vj (avec j ^i), alors TF* c U*f (26)

(car E7*?- est un voisinage de V{ r\ F,).
Soit W* la réunion des IF* pour a? décrivant Ft: on a W* c F^* c £7*

et TF*^ TF* c ?7*;-, ce qui entraine l'existence d'un sous-ensemble

analytique-complexe de dimension p, F*, dans TF* U TF* (qui est un voisinage

de A) tel que F* r, W* F* ^ W*, donc tel que X^n^iJi)
r{F*) o rc-1^), d'où Z r(7), F étant le .4-germe défini par JP*.

Corollaire 1. Soit Y un élément de (&(A), et soit X un sous-espace de F (Y).
Pour qu'il existe un A-germe Z e (&(A) tel que X F(Z), il faut et il suffit
que X soit ouvert et fermé dans F( Y).

La nécessité de la condition est évidente. Réciproquement si X est ouvert
et fermé dans F(Y), il existe pour tout entier p un germe Zp tel que F(ZP)
X r> 09(A). Soit Z la réunion des Zv: on a F(Z) c u F(ZP) et même F(Z)
U r(^) (donc F(Z) X) car, pour tout point x e A, F(Z)^ tt-1(x) est
la réunion des F(ZP) ^ 7T~1(o;) puisque deux germes distincts au point x
appartenant tous les deux à F( Y), ne peuvent pas être contenus l'un dans l'autre.

Corollaire 2. Pour qu'un A-germe Y c(5(A) soit irréductible, il faut et il
suffit que F(Y) soit connexe.

En effet, si Y Y1 ^ 72 avec Yx et 72 distincts de 7, alors F (Y) est
réunion des deux ouverts et fermés distincts de lui-même F (Y) ^ Jrr(71) et
F(Y) r, F(Y2). Inversement, si F (Y) X1^X2,X1 et X2 étant des ouverts
et fermés, distincts de F(Y), il existe des germes Zx et Z2 distincts de Y tels

que F{ZX) Xt et F(Z2) X% et l'on a 7 Zx ^ Z2.

Proposition 5. Soit Y un A-germe, irréductible de dimension p. Si un A-
germe Z est contenu dans Y, ou bien Z 7 ou bien Z est de dimension < p.



Quelques propriétés fondamentales des ensembles analytiques-réels 149

En effet, FP(Z) est un ouvert et fermé contenu dans F(Y), qui est connexe:
donc ou bien cet ouvert est vide, et Z est de dimension < p, ou bien
rp(Z) F(Y) et par suite Z Y (remarquons que l'on a F (Y) rp(T))

Soit U un ouvert de A et soient ©(£7) et G(U) les espaces de germes
construits à partir de U considéré comme sous-ensemble analytique-réel d'un
voisinage ouvert [7* de U dans 42* tel que £7* ^ A U : ces espaces ne dépendent

pas du choix de [7*. L'espace G(U) s'identifie à un sous-espace ouvert
de G (A) et on a une application canonique de %(A) dans ©(£7), qui, à un
A -germe défini par un couple (V*, E*) fait correspondre le [7-germe défini
par le couple (F* ^ C7*, JE* o [/*).

Proposition 6. Soit Y un élément de © (A) et soit x un point de n(F(Y)).
Il existe un voisinage ouvert U de x dans A tel que, si le germe au point x d'un
élément Z de ©(£7) contient le germe de Y au point x, alors Z contient Vimage
canonique de Y dans ©(£7).

En effet, soit (F*, i?*) un couple définissant le A -germe Y. D'après la
proposition 3, il existe un voisinage ouvert £7 de x dans A tel que, pour tout
voisinage ouvert [7* de £7 dans 42*, toutes les composantes irréductibles de
jE* ^ [7* qui rencontrent [7, passent par x. Soit alors (C7*,-F*) un couple
définissant Z : toutes les composantes irréductibles de E* ^ £7* qui rencontrent

U sont contenues dans jP* ce qui entraine que le germe de J5* en un
point quelconque de U est contenu dans le germe de F* en ce point, d'où la
proposition.

Corollaire. Soit a un élément de G (A). Il existe un voisinage de oc qui est

contenu dans tout ensemble ouvert et fermé de G (A) contenant oc.

En effet, soit F un voisinage ouvert de x te (a) dans A tei qu'il existe
un élément Te ©(F) avec F (Y) ^ n~1(x) {oc}. Soit U un voisinage
ouvert de x dans F satisfaisant aux conditions exigées dans la proposition 6

(en remplaçant A par F). Pour tout ensemble X ouvert et fermé dans G (A),
contenant a, X ^ F (Y) est de la forme F(Z) avec Z € ©(F) (Corollaire 1 à

la proposition 4) et le germe de Z en x contient le germe de Y en x. Par suite,
X contient le voisinage fixe F (Y) ^ n"1^) de a dans G (A).

6. Intersections, réunions et composantes irréductibles des A -germes

Proposition 7. Soit (Y{) une famille filtrante décroissante d'éléments de ©(J.).
La famille (Y{) est localement stationnaire, autrement dit, pour tout point x e A,
il existe un voisinage Ux de x dans A et un indice ix tels que les images canoniques
de Y{ et de Yi dans ©(C7J coïncident pour i,j ^ix- De plus, il existe un
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A-germe Y et un seul, appelé intersection des A-germes Y{, tel que le germe de

Y au point x c A soit Vintersection des germes des Y{ en x.

En effet, la famille filtrante décroissante des germes induits par les Y{ au

point x c A est stationnaire : soit ix un indice tel que les germes au point x
de Y{ et Yi coïncident pour i,j ^ ix. D'après la proposition 6, il existe un
voisinage ouvert Ux de x dans A tel que, pour i > ix, l'image canonique de

Y{ dans (ô(Ux) contienne donc soit égale à l'image de Ft Soit ax le germe de

Y{ en x, pour i ^ ix, et soit X l'ensemble des ax non vides. On a pour tout
x € A, X rs n"1^x) F(Yix) r> 7tr1[Ux)9 ce qui entraine immédiatement que
X est ouvert et fermé et que n est propre sur X. Par suite, pour tout entier p,
XrsGv(A) est de la forme F(YP) avec YP e <&9(A). Soit Y la réunion des

T9. Comme F(YP) - n^(Ux) F(Yf) - ^(PJn OP(A) pour i > im, et

que deux germes au point x distincts appartenant à r(Y{) ne sont pas
contenus l'un dans l'autre, on a F( Y) (J F( Yp) et le germe de Y au point x
est égal au germe de Y{ en # pour i ^ix, c'est-à-dire à l'intersection des

germes des F,- au point x.

Corollaire 1. Pour toute famille (Y{) d'éléments de (S>(A),il existe un A-germe
Y et un seul, appelé intersection des Y{, tel que le germe de Y en un point x de A
soit Vintersection des germes des Y{ en x.

Il suffit d'appliquer la proposition à la famille filtrante décroissante des

intersections finies d'éléments Ft.

Corollaire 2. Soit B un sous-ensemble de A. Il existe un plus petit A-germe
Y €®(A) tel que n(Y) 3 B.

Il suffit d'appliquer le Corollaire 1 à la famille des A -germes Y{ tels que
n(T€) 3 J5.

Nous dirons qu'une famille (Yt) de A -germes est localement finie si, pour
tout point x € A, il existe un voisinage U de x dans A tel que F( Y^^n'1 (U)

0 sauf pour un nombre fini d'indices.

Propositions. Soit (Y{) une famille localement finie d'éléments de ©(-4).
Il existe un A-germe Y et un seul, appelé réunion des Y€, tel que le germe de Y
en un point x de A soit la réunion des germes des Y{ en x.

Considérons la famille filtrante croissante (Z^) formée des réunions finies
de germes Yt: cette famille est localement stationnaire. Soit X l'ensemble
des points a € 0(A) tels que a appartienne à F(Z$) pour j assez grand. Pour
tout point x € A, il existe un voisinage Ux de x dans A et un indice jx tels

que X r\ tt-^C/J F{Z}) ^ n-"x(Ux) pour ; > j9. Par suite, X est ouvert



Quelques propriétés fondamentales des ensembles analytiques-réels 151

et fermé et n est propre sur X. Il existe donc des A -germes Yv tels que
F(T9) X rs 0p(A) et on voit comme plus haut que, si Y désigne la réunion
des YP, on a, F(Y) U F(YP) X, ce qui entraine que le germe de Y en
un point x est égal au germe de Zi pour j ^ jxi c'est-à-dire est la réunion des

germes des Y4 au point x.

Corollaire 1. Si un A-germe irréductible Y est réunion d'une famille localement

finie de A-germes Yi9 alors Y Yt 'pour au moins un indice i.
Soit en effet x un point de n (F( Y)) et soient Zx,..., Zr ceux des Ff

(en nombre fini) tels que x €7t(F(Yi)). Soit Z la réunion des Zk et soit T
la réunion de la famille (localement finie) formée par les autres Y{. On a
Y Z ^T et T i^Y d'où Y Z et même (par récurrence sur r) Y Zk
pour au moins un indice Je.

Corollaire 2. Soit Y e(S(A). Si Y est irréductible, il existe un couple F*, jB?*)

définissant Y tel que jB* soit irréductible dans F*.

Soit en effet (F*, F*) un couple définissant Y. Décomposons JF* en
composantes irréductibles E* dans F* et soit Ti le A -germe défini par J5*. La
famille (E*), donc la famille (Yt) sont localement finies et Y est réunion des

Yi. On a donc Y Ft pour au moins un indice i, ce qui montre que Y peut
être défini par l'un des 15*.

Remarque. Les opérations de réunion et d'intersection finies ou non dans
© (A) se traduisent par les mêmes opérations sur les germes en chaque point:
elles possèdent donc les mêmes propriétés de distributivité et d'associativité

que les opérations ensemblistes.

Nous pouvons maintenant démontrer l'existence, pour tout .4-germe, d'une
«bonne» décomposition en composantes irréductibles:

Proposition 9. Soit Y un élément de (5(^4). Il existe une famille localement

finie et une seule de A-germes irréductibles ^€©(^4) telle que Y U Yt
et Yt t Yj pour i ^j. Les F(Yi) sont les composantes connexes de F (Y)
et par suite F(Y) U F(Y{).

Naturellement, les T€ seront appelés les composantes irréductibles de Y.
L'unicité se démontre par un raisonnement purement latticiel classique,

compte tenu du Corollaire 1 à la proposition 8. Pour l'existence, nous aurons
besoin du Lemme suivant :

Lemme 2. (H. Cautan) Soit T un espace topologique. Les trois conditions
suivantes sont équivalentes :

a) les composantes connexes de T sont ouvertes (et fermées) ;
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b) pour tout point t e T, il existe un voisinage de t contenu dans tout ensemble

ouvert et fermé contenant t ;

c) pour tout point t e T, Vintersection des ensembles ouverts et fermés
contenant t est ouverte (et fermée).

Démonstration du Lemme: a) ~>b): il suffit de prendre pour voisinage de
t la composante connexe de t.

b) => c) : si s appartient à l'intersection des ouverts et fermés contenant t,
ces derniers sont exactement les ouverts et fermés contenant s et leur
intersection est un voisinage de s.

c) => a) : l'intersection des ouverts et fermés contenant t est un ensemble
ouvert et fermé connexe donc est la composante connexe de t.

Ceci étant, comme l'espace F (Y) satisfait à la condition b) du Lemme 2

(corollaire à la proposition 6), les composantes connexes de F (Y) sont ouvertes

et fermées, donc sont de la forme jT(F4) (corollaire 1 à la proposition 4)
et les Yt sont irréductibles (corollaire 2 à la proposition 4). Supposons que Yt
soit contenu dans Yi et soit a € /"(F,): il existe un 0 c F(Yi) tel que a c f}.
Mais comme a et /} appartiennent à F(Y), ceci entraine a jS, donc

F(Y{) r, r(Yé) ^ 0 et par suite F(Y{) F(Yj), Y, Ti9 donc i j.
Par suite Y{ t Yi pour i ^ j.

Pour tout compact K, F(Y) ^ n^iK) est compact, donc ne rencontre
qu'un nombre fini de composantes connexes (ouvertes) de F(Y), ce qui montre
que la famille (Y4) est localement finie, donc admet une réunion Z. Comme

pour tout point x e A, les composantes irréductibles des germes en x des

différents Y\ ne sont jamais contenus les unes dans les autres, on a F(Z)
U r(Yi) F(Y), et par suite Y Z, ce qui achève la démonstration.

7. Sous-ensembles 6"-analytiques

Soit Q une variété analytique-réelle paracompacte et soit Q* une complexi-
fication de Q, que nous supposerons munie d'une involution z -> z de lieu
de points fixes Q (n° 1, Remarque). Nous avon& vu que les espaces ©(.Q) et
0 (Q) associés à Q plongée dans £?* sont en réalité indépendants du choix de

.Q*. Par ailleurs, Finvolution z -> z de i2* donne une involution a -> oc dans

O(Q) et une involution Y ->T dans ©(fi). On a F(Y) F(Y), nÇx)

^r(a) et ces involutions respectent les opérations de réunion et d'intersection.

Définition. Un sous-ensemble E de Q est dit C-analytique s'il existe un
élément F €©(£?) tel que E 7t(F(Y)) (autrement dit E est Vensemble des

points x de Q tels que le germe de Y au point x ne soit pas vide).
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On peut encore dire que E est O-analytique si et seulement si il existe un
voisinage F* de Q dans fi* et un sous-ensemble analytique-complexe 2£* dans

F* tels que E E* ^ Q; on peut supposer (en remplaçant 2?* par E*<^E*)

que l'on a E* 25*. Par suite, un sous-ensemble C-analytique est analytique-
réel, la réciproque étant inexacte5).

Les sous-ensembles C-analytiques ont été introduits, dans le cas Q Rn,
par H. Cabtan, qui a démontré la proposition suivante ([6], proposition 15),
dont nous redonnerons la démonstration dans le cas général :

Proposition 10. Soit E un sous-ensemble de Q. Les trois conditions suivantes
sont équivalentes :

a) E est C-analytique ;

b) E est le lieu des zéros d'un faisceau cohérent d'idéaux $ ;

c) E est le lieu des zéros communs à un nombre fini {qu'on peut prendre égal
à 1) de fonctions analytiques-réelles sur û.

a) => b) : soit E* un sous-ensemble analytique-complexe dans un voisinage
F* de Q, tel que Ë* E* et que E E* * Q et soit, pour x c F*, /*($*)
l'idéal des germes de fonctions holomorphes et nulles sur 22* au voisinage de

x. On sait que les /*(£*) forment un faisceau cohérent d'idéaux (voir [4] ou
[5]). Pour xeQ, soit IX{E*) l'idéal des germes de fonctions analytiques-
réelles en x, qui se prolongent en des fonctions analytiques-complexes
appartenant à /*(!?*): il est immédiat que les IX{E*) forment un faisceau cohérent
d'idéaux 3(1?*) qui admet E comme lieu de zéros.

b) => a) : On peut en effet ([6], proposition 2 et 5) prolonger le faisceau g
en un faisceau cohérent (analytique-complexe) g* dans un voisinage F* de
Q. Le lieu des zéros de Qf* es^ un sous-ensemble analytique-complexe E* tel
que E E* r, Q.

a) => c) : On peut supposer d'après [7] que Q est une sous-variété plongée
dans un espace BN, et que £?* est une sous-variété analytique-complexe dans

un voisinage B de RN dans CN. On peut de plus choisir pour B un domaine
d'holomorphie ([6], proposition 1) et supposer qu'il existe un ensemble

analytique-complexe 2?* dans B avec JS?* JS7* et E E* ^ Q. Or tout
ensemble analytique-complexe dans une variété de Stein, donc dans un domaine
d'holomorphie, est définissable par un nombre fini d'équations globales d'où
immédiatement c).

c) => a) : Si JE est défini par un système fini d'équations analytiques f{ 0,
les f{ se prolongent simultanément en des fonctions analytiques-complexes sur

5) Par exemple, les sous-ensembles analytiques-réels définis aux exemples 1, 2 et 3 de [3]
ainsi que les ensembles Fk définis au no 11, ex. a), ne sont pas O-analytiques.
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un voisinage F* de Q et le lieu de leurs zéros communs dans F* est un sous-
ensemble analytique-complexe 2J* tel que E E* <-* Q.

Soit E un sous-ensemble C-analytique de Q. D'après le Corollaire 2 à la
proposition 7, il existe un plus petit germe Y € ©(£?) tel que E 7t(r(Y)) :

ce germe sera appelé complexifié de E et noté E. Comme n (F(E)) n (F(E))

on a E E. Soit E* un sous-ensemble analytique-complexe dans un voi-

sinage F* de 42, tel que le couple (F*, -E?*) définisse le germe E. Le faisceau

3(i?*) sur £? ne dépend que de E et non du choix de E*: nous le noterons

3(£). Soit alors g un faisceau cohérent d'idéaux sur Q, dont le lieu des zéros
contienne E: nous dirons que Ç est «nul sur JE». Le faisceau g se prolonge en
un faisceau cohérent g* sur un voisinage de Q et g* est nul sur J5* au voisinage

de Q. Donc, 5* es^ contenu dans 3*(^*) au voisinage de Q, et par
suite 5 c 3(^)- On v°ft donc que %(E) est le plus grand faisceau cohérent

d'idéaux nul sur E. Remarquons qu'en général 3 (i?) n'est pas le faisceau des

germes de fonctions analytiques-réelles nulles sur E: il faut et il suffit pour
cela que ce dernier faisceau soit cohérent, c'est-à-dire que E soit cohérent au
sens de [6], et il existe des ensembles (7-analytiques et même algébriques qui
ne sont pas cohérents (voir [6], n° 9).

8. Propriétés des ensembles Cy-analytiques

Uintersection E d'une famille quelconque d'ensembles (7-analytiques E€ est

encore (7-analytique. En effet, soit Y Ç\ Ei\ pour tout point x eÛy le

germe Yx de Y en x est l'intersection des germes (Et)x des E{ en x (Corollaire 1

à la proposition 7). Or, dire que x c E signifie qu'aucun des (Ei)x n'est vide,
ce qui équivaut à Yx non vide ou encore à x en (F( Y)) ; on a donc E n (F(Y))
et E est C-analytique. Remarquons que E est contenu dans l'intersection des
/s
E4 mais peut être distinct de cette intersection (voir n° 11, ex. b).

De même, la réunion E d'une famille localement finie d'ensembles C-analy-
tiques Et est C-analytique et l'on a :

y E<)* U Ê<. (27)

En effet, la famille (Et) est localement finie donc possède une réunion Y.
Dire que x c n (F( Y)) signifie que le germe de F en a; n'est pas vide, ou encore

que le germe en x de l'un au moins des E4 n'est pas vide (proposition 8), c'est-
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à-dire que x c E. Donc E est C- analytique et E c 7. Mais pour tout indice

i, on a Ei c E, donc 22t c E et par suite £ 3 7, d'où E 7.
Un ensemble C-analytique sera dit C-irréductible s'il n'est pas réunion de

deux ensembles C-analytiques distincts de lui-même: ceci rientraine pas qu'il
soit irréductible en tant qu'ensemble analytique-réel (voir n° 11, ex. a)).

Proposition 11. Soit E un ensemble C-analytique, II existe une famille localement

finie et une seule d'ensembles C-analytiques C-irréductibles Et (appelés
composantes C-irréductibles de E) telle que E soit la réunion des Et et que Ei ne

soit pas contenu dans Eô pour i =£ j. Les E{ sont les composantes irréductibles

de E, et E est C-irréductible si et seulement si E est irréductible.

Remarquons tout d'abord que E irréductible entraine E C-irréductible, car

E Etv E2 entraine E EX^E2 d'après (27). D'autre part, soient Y{
les composantes irréductibles de E, et posons E€ n (F( 7J) On a E U E{.
Le complexifié E{ de E{ est 7t: en effet, JE^ c Yt et par suite le germe
Z Ei ^ U Y,) est contenu dans Ê. Or on a n(r(Z)) .B, d'où Z Ê.

Comme les r(Y,) sont disjoints et que F{Z) 3 r(7t), on a r(E{) 3 r(7^
et par suite E{ Y{. Les E{ sont donc C-irréductibles et, comme 7i <f Yi
pour i ^ j, on a i?t £ 13, pour i ^ j, d'où l'existence de la décomposition
en composantes O-irréductibles. L'unicité est évidente. Enfin, si E est C-

irréductible, on a nécessairement E — E{ pour un indice i, d'où E Ei et
2? est irréductible.

Proposition 12. Soit E un ensemble C-analytique. La dimension*de E (en tant

qu'ensemble analytique-réel) est égale à la dimension du germe complexifié E.
•s,

On peut supposer que E est C-irréductible. Posons p dim E et soit

(F*, i?*) un couple définissant E, U* étant irréductible de dimension p
(Corollaire 2 à la proposition 8). Comme la dimension de E est, par définition, la
borne supérieure des dimensions complexes des germes complexifiés des
germes de E aux différents points de JE, on a dim E ^p. D'autre part, il y a
des points de E qui sont des points réguliers de E*, si non E serait contenu

dans le sous-ensemble analytique-complexe des points singuliers de E* et E
ne serait pas le plus petit germe contenant E. Or au voisinage d'un tel point,
E est une sous-variété de dimension exactement p ([1], p. 121 ou [6], p. 92).

Corollaire. Soit E un sous-ensemble C-analytique C-irréductible de dimension
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p et soit F un sous-ensemble C-analytique contenu dans E. Ou bien F E,
ou bien dim F < p.

Compte tenu de la proposition 12, c'est une traduction de la proposition 5.

Proposition 13. Soit E un ensemble C-analytique de dimension p et soit
VP{E) Vensemble des points de E au voisinage desquels E est une sous-variété

analytique-réelle de dimension p. Alors, E est réunion de VP(E) et d'un sous-
ensemble C-analytique S de dimension strictement inférieure à p.

Soit en effet (V*, E*) un couple définissant E, E* étant de dimension
complexe p. Soit V*(E*) l'ensemble des points de jB* au voisinage
desquels U* est une sous-variété analytique-complexe de dimension p et soit
S* — E* — F*(jB*). On sait [5] que $* est un sous-ensemble analytique-
complexe de dimension <p. Comme V*(E*)r^Q c VV(E), on a E
VP(E) v-» S avec S= S* ^ Q. Remarquons que l'on n'a pas nécessairement

Vp{E)r>8 0, bien que F*(#*) ^ £* 0 (voir n° 11, ex. c)).
Remarque 1. Les énoncés analogues au Corollaire à la proposition 12 et à la

proposition 13 sont inexacts pour les sous-ensembles analytiques-réels
généraux: pour des contre-exemples, voir [3].

Remarque 2. Nous donnerons au n° 10 un autre procédé de décomposition
de E en réunion de variétés.

9. Notion de rang pour les ensembles analytiques-complexes

Soient i2* une variété analytique-complexe de dimension n et E* un sous-
ensemble analytique-complexe de Q*. Nous désignerons comme au n° 7 par
J*(J3*) l'idéal des germes de fonctions holomorphes dans un voisinage de

x e Q* et nulles sur 22* et par 3*(^*) ^e faisceau cohérent des /*(£*). Le

rang rgx(E*) au point x e E* est par définition le rang de l'idéal Z*(jE*)5
c'est-à-dire le nombre maximum q de fonctions / €/*($*) dont les différentielles

df soient indépendantes en x (cf. [9]). En un point x régulier de dimension

r de jB* c'est-à-dire un point au voisinage duquel E* est une variété de
dimension r, on a rgx(E*) n — r. Un point régulier de J5* de dimension
la plus petite (respectivement la plus grande) possible sera appelé un point
régulier minimal (respectivement maximal). Si J5* est de dimension constante,
les points réguliers sont à la fois minimaux et maximaux.

Proposition 14. Si U* est de rang constant q dans un voisinage d'un point
x e E*, alors x est un point régulier de dimension n — g de E*.

Soient en effet fl9..., fe des éléments de /*(i?*) dont les différentielles
soient indépendantes en x. Les équations f1 fQ 0 définissent
alors dans un voisinage de x une sous-variété analytique-complexe de dimen-
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si on n — g, soit M*. Le germe de M* en x est irréductible de dimension
n — q et contient le germe de jEJ* en x. Il est clair qu'il suffit de démontrer
que ces deux germes sont égaux. Or s'il n'en était pas ainsi, le germe de JS*

en x serait de dimension p strictement inférieure à n — q Or, il y a des points
de E* arbitrairement voisins de x qui sont des points réguliers de dimension

p de E*. En un tel point, le rang de E* serait n — p> q, contrairement à

l'hypothèse.

Proposition 15. Soit M* Vensemhle des points de E* où le rang de E*- est

égal à son maximum g et soit E* E* — M*. Alors, M* est une variété
analytique-complexe qui est Vensemble des points réguliers minimaux de E* et E*
est un sous-ensemble analytique-complexe.

Par définition même du rang, M * est ouvert dans 2S* et c'est une variété
d'après la proposition 14; il est alors clair que Jkf * est l'ensemble des points
réguliers minimaux.

Si jE7* est irréductible, ou plus généralement de dimension constante
(nécessairement égale à n — q), alors E* est l'ensemble des points singuliers de

E* donc est analytique. Dans le cas général, soit jF* (respectivement G*) la
réunion des composantes irréductibles de dimension n — q (respectivement
de dimension > n — q) de i?*: on a E* #* ^Q*. Soit N* (respectivement

jF*) l'ensemble des points réguliers (respectivement singuliers) de F*.
On a Jf* N* — (N* ^ (?*) et par suite E* F* ^ G* est analytique.

Corollaire. Si JEJ* est irréductible, ou plus généralement de dimension constante,
alors le rang de J57* est maximum aux points réguliers et strictement plus petit
aux points singuliers.

Remarque. Pour tout x e E*, choisissons un voisinage U* de m, un système
de coordonnées (xl9 xn) dans £/*, et des fonctions gl9..., gk analytiques

dans U* et engendrant I*(E*) en tout point y e U*. Soit Sx
l'ensemble des fonctions gj et des fonctions d(gVi, gVQ)ld(%\l, %\Q) pour
tous les choix possibles des deux systèmes (vl9 vQ) et (A1, Ae) de q
indices. Il est facile de montrer d'une part que E* <^ [7* est exactement le

lieu des zéros communs aux fonctions de 8X, ce qui prouve à nouveau que
23* est analytique, d'autre part que les idéaux engendrés par 8X et Sy en un
point z e C7*<^ U* sont les mêmes et forment donc un faisceau cohérent sur i2*.

Comme dans [9], § 9, nous avons donc deux méthodes pour décomposer 1?*,
suivant le rang ou suivant la dimension :

a) Ecrivons JB* Jf* ^ E* comme dans la proposition 15, puis E*
M* ^E*, etc. On exprime ainsi E* comme union de variétés analytiques
MX, .-.,MÎ et on a h < 2n - 1 (cf. [9]).
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b) Ecrivons £* M£* ^ Ex*, M(* étant l'ensemble des points réguliers
maximaux de 25*, puis de même E[* M£* ^ 2?2* » e*c- Alors, les JfJ* sont
des variétés analytiques de dimension décroissante.

10. Notion de rang pour les sous-ensembles C-analytiques

Reprenons les notations du n° 7. Soit E un sous-ensemble C-analytique de

Q, de complexifié E, et considérons le plus grand faisceau cohérent d'idéaux

nul sur E, soit %(E). Par définition le C-rang rgl(E) de E au point x c 2£

est le rang de l'idéal IX(E) du faisceau 3(2?) en x. Si (F*, 2?*) est un couple

définissant E et si a; est un point de E, l'idéal I*(E*) est engendré par IX(E)
et par suite, on a rgx(E*) rgl(E).

Remarquons qu'en général, le C-rang de E au point x n'est pas déterminé

par la partie de E située dans un voisinage de x (n° 11, ex. e)). D'autre part,
si Q Rn et si E est une variété algébrique réelle (qui est évidemment un
ensemble C-analytique), le C-rang et le rang défini algébriquement peuvent
ne pas être égaux (n° 11, ex. d)).

On peut de manière analogue, définir la C-dimension de E en un point x
de E comme étant la dimension du germe de E en x, ou encore la dimension
(complexe) de JE* en x. Cette C-dimension peut être plus grande que la dimension

de E en x en tant qu'ensemble analytique-réel (n° 11, ex. e)), mais les

bornes supérieures de ces dimensions quand x décrit E sont égales, d'après
la proposition 12.

Proposition 16. Soit Mx Vensemble des points de E où le C-rang de E est égal
à son maximum q et soit Et E — Mx. Alors Mx est une variété analytique-
réelle de dimension n — q et Ex est C-analytique. De plus, si (F*, E*) est un

couple définissant E, JE* étant le plus petit ensemble analytique-complexe dans

F* qui définisse E, et si E* M* ^ E* est la décomposition de JE* introduite
à la proposition 15, alors on a Mx Jf* ^ Q et Ex E* rs Q.

Cette proposition est une conséquence immédiate de la proposition 15 et
de l'égalité rgx(E*) rg*(E) entre rang de i?* et C-rang de E en un même

point x c E. En effet, E* n'a pas de points de rang > q car si non, on aurait
E<zE*, contrairement à l'hypothèse de minimalité de E*. Par suite, on a

M1 M*<^ Q et Et E* r\ jQ, ce qui entraine d'une part que Et est C-

analytique, d'autre part que Mx est une variété analytique-réelle de dimension

n — q (cf. proposition 12).
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Nous obtenons donc, comme dans le cas complexe, deux procédés de

décomposition en réunion de variétés, par le C-rang ou par la C-dimension. Ces

décompositions s'obtiennent exactement comme dans [9], § 11.

11. Quelques exemples

a) Le sous-ensemble (7-analytique E de l'espace jR3 défini par l'équation
x2 + 2(1 + sin z)xy + y2 0 est C-irréductible, mais est réductible en tant
qu'ensemble analytique-réel : il est en effet réunion des ensembles analytiques-
réels irréductibles Fki réunion de la droite x y 0 et du lieu des points
de E pour lesquels 2kn < z < (2k + \)n (avec k entier). On notera que la
famille (Fk) n'est pas localement finie: le résidu de E au sens de [3] est la
droite x y 0.

b) Considérons dans jR3 les deux sous-ensembles C-analytiques E défini par
l'équation x2 + y2 + z2 — 2 x 0 et F défini par x — 0. L'intersection

E rs F est réduite à l'origine et par suite {E ^ F) est distinct de E ^ F.
c) (H. Cartan) : Soit E le sous-ensemble C-analytique de Rz défini par

l'équation yz(x2 — zy2) -f- #4 0. On vérifie aisément que E — V2(E)
se compose de la droite x z 0 et de la demi-droite x t/ 0, z ^ 0,
donc n'est pas analytique. D'autre part, on montre facilement que le germe
de E à l'origine O est irréductible et que 0 est adhérent à chacune des

composantes connexes de V2(E), ce qui entraine que E est C-irréductible. Enfin,
le (7-rang de E est 0 sur les droites x y 0 et x z 0 et est 1 aux
autres points de J57, ce qui montre qu'il y a des points de V2(E) où le (7-rang
de E est 0.

d) Le sous-ensemble C-analytique E de R2 défini par l'équatign
f x2 + y2 — y3 0 se compose de l'origine O et d'une courbe 8, ne
passant pas par O. Bien que E soit algébriquement irréductible, il n'est pas C-

irréductible, car 8 est C-analytique et peut être défini par une équation de la
forme g y — \p(x) 0, où y) est analytique. Le rang algébrique de JE à

l'origine est 0, tandis que le C-rang est 2. Le germe E est défini par les deux
équations xg yg 0 et non pas par l'équation / 0.

e) (cf. [3], ex. 2): le sous-ensemble C-analytique E de Rs défini par l'équation

/ (x2 + y2)z — yz 0 se compose d'une surface /S passant par l'origine

O et de la droite Z d'équations x y 0. Il est C-irréductible : comme
Z — {0} et S — {0} sont des variétés connexes, il suffit de montrer que le

germe de E à l'origine est irréductible, ou encore que son complexifié l'est, ou
encore que / est irréductible dans l'anneau des fonctions holomorphes à l'origine,

ce qui est immédiat, / étant un polynôme homogène irréductible.
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On remarquera que, pour un point q <-Z — {0}, les ensembles E et Z
sont les mêmes dans un voisinage de q, mais E ^ Z dans tout voisinage
de q. L'idéal des fonctions nulles sur E au voisinage de q est engendré par x
et y, tandis que l'idéal Iq (E) est engendré par /.

La décomposition de E (par le rang ou par la dimension) est
E (S — {0}) ^ Z. Mais l'origine 0 est singulière par rapport à 8 et une
décomposition plus complète serait E (8 — {0}) ^ (Z — {0}) ^ {0}.

f) Appliquons la proposition 16 au sous-ensemble E de B? défini par l'équa-

tion (x2 -\- y2)2 — zz 0 ; on voit que Ex est strictement plus petit que le

germe défini par E*: cf. [9], § 12, (f).
g) Soit E le sous-ensemble (7-analytique de R2 défini par l'équation yz &2**1

avec k entier ^ 2. Alors E est une courbe différentiable, mais non analytique

au voisinage de l'origine 0. Il est de rang 0 à l'origine et de rang 1 ailleurs.
Note ajoutée à la correction des épreuves: l'existence de complexifications

d'une variété analytique-réelle (prop. 1) vient d'être indépendemment démontrée

par H. B. Shutbick, Complex extension, Quart. J. of Mech. and appl.
Math. Séries 2, t. 9, (1958), 189-201 et par A. Haefligee, Comment. Math.
Helv., 32 (1958), 248-329. Pour le cas compact, voir aussi C. B. Mobbey, The

analytic embedding of abstract real-analytic manifolds, Ann. of Math., 68, (1958),
159-201.
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