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Quelques propriétés fondamentales des
ensembles analytiques-réels

par H. WHITNEY et F. BRUHAT

Ce n’est que depuis peu de temps que les ensembles analytiques dans le
domaine réel ont fait I’objet d’études approfondies. La théorie des variétés de
STEIN vient d’étre transportée au cas des ensembles analytiques-réels «cohé-
rents» par H. CARTAN [6], qui a montré que, dans R", un ensemble lieu des
zéros d’un faisceau cohérent d’idéaux est «C-analytique», c’est-a-dire est la
partie réelle d’'un ensemble analytique-complexe, et est globalement définis-
sable par I'annulation d’'un nombre fini de fonctions analytiques-réelles. Par
ailleurs, F. BRUHAT et H. CARTAN ont étudié dans [2] et [3] le cas général des
ensembles analytiques-réels qui ne sont pas C-analytiques et ont montré que,
si ces ensembles ont toujours de bonnes propriétés «locales» (i. e. sur un com-
pact), ils peuvent avoir un comportement global trés pathologique: en parti-
culier, il n’existe pas toujours de «bonne» décomposition en composantes
irréductibles.

Le but de ce travail est d’étudier la structure d’un ensemble C-analytique
E (remarquons que localement, tout ensemble analytique-réel est C-analyti-
que). Le premier théoréme fondamental (prop. 6) donne une propriété mini-
male de E dans un voisinage fixe d’un point arbitraire de . La démonstra-
tion repose sur une étude des propriétés de connexion locale de £ (prop. 2).
Comme conséquence, nous montrons d’une part que l'intersection d’une fa-
mille quelconque d’ensembles C-analytiques est C-analytique, d’autre part
qu’'un ensemble C-analytique E dans R™ est la partie réelle d’un plus petit
ensemble analytique-complexe E* dans un voisinage suffisamment petit de

R™ dans O™, ce qui nous permet de définir la «complexification» £ de E.
Enfin, ceci entraine I'existence et 1'unicité d’une décomposition de £ en com-
posantes C-irréductibles, correspondant 3 la décomposition de E*.

Ces résultats seront obtenus comme conséquences de 1’étude, un peu plus
générale, des germes.d’ensembles analytiques-complexes au voisinage d’un
sous-ensemble analytique-réel arbitraire.

Dans ces considérations, R® peut étre remplacée par n’importe quelle variété
analytique-réelle paracompacte £2: pour cela, nous montrons au n° 1 comment
construire une complexification Q* de £2. Par ailleurs, H. GRAUERT vient de
montrer que toute variété analytique-réelle peut étre plongée analytiquement
dans un espace euclidien [7]. Ceci montre en particulier que le résultat d’H.
CARTAN rappelé ci-dessus est valable dans .
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L’un des auteurs a récemment montré [9] comment une variété algébrique
réelle peut étre décomposée en réunion de sous-variétés plongées, par des
considérations de dimension et de rang. Ceci se généralise au cas C-analytique,
grace aux notions de C-dimension et de C-rang. Quelques exemples illustrant
les différences entre le cas complexe, le cas réel et le cas algébrique sont donnés
a la fin.

Pour toutes les définitions et résultats relatifs aux sous-ensembles analy-
tiques-complexes et analytiques-réels généraux, nous renverrons a [5], [6] et [8].

1. Complexification d’une variété analytique-réelle

Soit 2 une variété analytique-réelle de dimension n: une complexification
de Q est le couple formé d’une variété analytique-complexe de dimension
n, Q* et d’un isomorphisme ¢ (analytique-réel) de 2 sur une sous-variété ana-
lytique-réelle de 2* tels que, pour tout point x de £2*, il existe un isomorphisme
(analytique-complexe) d’un voisinage ouvert U* de x sur un ouvert U’ de C",
transformant ¢(2)~ U* en R*"~ U'.

La proposition suivante assure I’existence et en quelque sorte 'unicité d’une
telle complexification:

Proposition 1. St Q est paracompacte, elle posséde des complexifications. Si
(QF, @,) et (2, ;) sont deux complexifications de Q, il existe un isomorphisme
analytique-complexe d’un voisinage ouvert de ¢,(2) dans Q) sur un voisinage
ouvert de @q(R2) dans Q) prolongeant Uisomorphisme @yo @' de @,(2) sur

P2 (£2).

Démonstration : 'unicité est facile: I'isomorphisme @, o ¢;' se prolonge en
une application analytique v, d’un voisinage ouvert 4, de ¢, (¥ dans Q)
et on peut supposer que p, est de rang n en tout point de A4,, donc que
B, = v,(4,) est un voisinage ouvert de @4(£2). On construit de méme 4,, y,,
et B,. Posons O, = y['(4,~ B,); C, est un ouvert sur lequel u,o0y, est
définie. Comme v, 0, est I'identité sur ¢, (), il existe un voisinage ouvert
D, de ¢,(R) sur lequel 09, = 1. On construit de méme D,: il est alors
immédiat que y, et p, sont deux isomorphismes réciproques entre D,~y,(D,)
et Dy~ y,(Dy).

Démontrons maintenant 1’existence d’'une complexification: d’apres les pro-
priétés des variétés paracompactes, on peut trouver trois recouvrements ouverts
de type fini de 2, (V}), (U;) et (T;), dépendant du méme ensemble d’in-
dices I, tels que V; (resp. U}) soit relativement compact dans U} (resp. T';)
et qu’il existe un isomorphisme (pour les structures de variétés analytiques-
réelles) @, de T, sur un ouvert 7'; de R*. Nous poserons:
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Uiz%(U;{) Vi::q?i(V':) (1)
Ui,i = ‘Pi(U:; N U;) Vi,i = ‘Pi(V:z ~ V;) Ti,;' = %‘(Tg ~ T;) . (2)

L’isomorphisme ¢;o¢;' de T, ; sur T, ; se prolonge en un isomorphisme

analytique-complexe y, ; d’un voisinage ouvert 7} ; de 7', ; dans C" sur un
voisinage ouvert 7';; de T, ;. On peut supposer que T; ; est vide si T ,
’ * .
Pest, que T'; ,~ R" =T, ; et que:

Vi,i = Vi - (3)

Pour tout couple (¢, j), choisissons un ouvert U,-*' ; de O™, relativement com-
pact dans 7' ;, tel que v, ;(US;) = U], et que:

U'l".k,ijani,j l—];’k’,'f\anﬁz,,. (4:)

Comme T7in 1p,-,,~(17,n ﬁ,,,-) est un compact contenu dans U, ;, on peut
choisir un ouvert W/, de C» relativement compact dans U;, tel que
v (W) = W;k,,- et que:

Vin ’Pi,z’(Vj" Uj,i) c Wi*,j . (5)
De plus, les complémentaires de W;; dans V, et dans y)j,,-(ﬁj ~ ﬁ,,,-) sont
des compacts disjoints de C*, donc sont contenus dans des ouverts disjoints

A;",,. et B;'i,-. On a:
V. c (A7 WE5) 'P5,¢(75“ 51.:’) C (W ;v B . (6)
Soit A un ouvert de O" tel que:
Af¥~R"=V, Af~Rr=17, (7)
Af <Al v W) (8)

pour tous les indices j (en nombre fini) tels que T, ; # & .
On a:

'pi,i(A;k % Uz'*,j)f‘ k" C '/)i,j(?i"‘ [7;:) (9)

car A} ~ U}, est un compact contenu dans 7" ;: par suite, v, ,(4F ~ UF;)
est contenu dans y, ,(47 ~ U ;). Orona

'pi,i(A: ~ U:,i)" R" = ‘l’i,f(A: ’\ Ui*,i ~RY) =1y, ;(Vin U, )
d’apres (4) et (7).

Pour tout point « de U,, choisissons un ouvert U;”, »» contenant x, et satis-
faisant aux quatres conditions suivantes:

(10) pour tous les indices j (en nombre fini) tels que x appartienne & U, ,,
ona Uf, c U;;
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(11) pour tous les indices j (en nombre fini) tels que x e w,,i(ﬁ,n —(7“),
on a (cf. (6)) U:‘,, c (W}",,- uBf,,-);

(12) pour tout indice j tel que ¢ (z) ¢ V), ona U, ~ vy, (4F ~UF)=2
(cette condition est trivialement satisfaite si U, = @ ; pour'les indices j
(en nombre fini) tels que U ,* . # @, elle est réalisable parce que, d’apres (9),

o () ¢ 17; entraine z ¢ zpj,,-(A;" A U,-*,i));

(13) pour tous les couples (7, k) (en nombre fini) tels que ze U, ;~ U, ;
(c’est-d-dire tels que ¢;'(z) e U;~ U;~ U), ona

Ui*,z c ’Pa‘,i(Uj*,i A Uj*,k) ~ Yi,i (U:,i" U:,j)

et de plus, on a y, ; = y, ;oy, i sur U, (cette derniére condition étant ré-
alisable, car on a o, ; =y, oy, ; sur U, ;~ U, ;).

Soit alors U} la réunion des Ui*, » pour x décrivant U, et soit V| un voisinage
ouvert de V, dans C", contenu dans A et relativement compact dans U;".

D’aprés (7),ona Vi~ Rr= TV, et I_/:" ~ R = 17, Posons:

Vii=Vicy (ViU et Vi =V ~V. (14)

1,5,k —

Ona V,cUf,; ety ;est unisomorphisme de V", sur V} ;. D’autre part,
un point y de V j.& est contenu dans un ouvert U:‘, , pour un zeU; et
cet ouvert U, rencontre y, ,(V) ~ UJ,) et y, (Vi ~ Uy ;) donc a fortiori
tp,-’i(A;‘ o U,-*,,-) et zpk,,-(A,’: ~ U,’:,i). Ceci entraine (d’apres (12) et (2)) que
X € U;k,y' a Ui*,k’ done que y; .(y) € Ult,;i ~ Vi et que Vi,i° i x(Y) = vi,5(y).
Par suite le pointz = y, ;(y) appartient & V;-" Jay (VA Uf,) et aussi a
¥ (VanU ,’:,,-), c’est-a-dire finalement appartient & V' ;.

Par suite, on a y, ;(V{; )C VY, et de méme, v, (VS W=V, ;, ce
qui entraine (cf. (3)) que y; ; est un isomorphisme de Vi*, j. & Sur V;k, ik d'In-
verse y, ;. D’autre part, on a v, ; =y, ;o9 , sur V', ;.

Considérons alors 1’espace somme des V. (remarquons que V:‘, =V et
disons que deux points z e V| et y e V' sont équivalents si x e V},;, ye V],
et y =y, ;(x): il est immédiat d’aprés ce qui précede que la relation ainsi
définie est bien une relation d’équivalence sur 'espace somme des V. L’espace
topologique quotient, c’est-a-dire ’espace topologique 2* obtenu par recolle-
ment des V' le long des V[, au moyen des isomorphismes y; ; est alors une
«variété» analytique-complexe, a priori non nécessairement séparée. De plus,
les isomorphismes @, définissent un isomorphisme (analytique-réel) ¢ de £2
sur une sous-variété ¢(Q2) de Q* et on vérifie facilement que ¢(£2) est fermée
et satisfait aux conditions imposées. La démonstration de la proposition 1
sera donc terminée quand nous aurons montré que Q* est séparée.
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Montrons tout d’abord que V[ ; € U, et pour cela, que V{, c W},.
Il suffit naturellement de faire la démonstration quand 7' ;# @. Soit
yeV ;: comme V', c V! c U, il existe un zeU, tel que ye U,.
Si xfy, (V,~U,,), alors ¢;'(x)¢ V; et par suite (condition (12))
y &y, (A ~ U} ;) et afortiori, y ¢ v, (VS ~ UJ,), ce qui est contradictoire
avec ye V', et la définition (14) de V" ,. On a donc z ey, ,(V;~ .ﬁ,"), ce
qui entraine d’aprés (11), y e (W] ; v B} ;). Comme, d’aprés (8),
yeVic Al c(A]; v W],) et que A, et B, sont disjoints, on a bien
Ye W,* i

Soient alors z' et ¥’ deux points distincts de Q2* et soient x ¢ V. et y ¢ v
tels que z' (resp. y') soit 'image canonique de z (resp. y). Il est clair qu’il
suffit de trouver un voisinage 4 de x dans V. et un voisinage B de y dans
V;‘ tels qu’aucun point de 4 ne soit équivalent & un point de B. Or si cela
n’était pas possible, on pourrait trouver deux suites (x,) et (y,) de points de

C*, convergeant respectivement vers z et y, avec x,e¢ V,f", j» Yre€ V;-", ; et

z, = y; ;(y,). Comme V;"’,- = Uf,,-, ona e U.;",,-, Y e U,-*,i et =y, (v),
Papplication y; ; étant continue dans U;‘, ;- Par suite, ye V]~ U ,* ; et
xeVimnyp, (ViaUS)="V},; donc yeV], et comme y =y, ;(x), les
points x et y sont équivalents et on a 2’ = y’' contrairement & I’hypothése.
La démonstration est achevée.

Remarque: On peut choisir Q* de telle sorte qu’il existe une involution anti-

holomorphe z — 2z de Q* sur elle-méme, ¢(2) étant le lieu des points fixes

de cette involution. On peut en effet supposer que v, ;(x) = y, ;(x) dans
T!; (x désignant le point de C" de coordonnées complexes conjuguées de celles
de z), et il suffit alors (ce qui est possible) de choisir tous les ensembles envi-
sagés dans C™ invariants par passage aux complexes conjugués.

2. Systémes de coordonnées et standardisations propres

Soient * une variété analytique-complexe de dimension n, @ un point de
Q* et (x,...,x,) un systeme de coordonnées valables dans un voisinage U*
de a et nulles en a. Une standardisation au voisinage de a, subordonnée & ce
systéeme de coordonnées, est la donnée de n applications F,; (pour 0 <j < n — 1)
de (R,)! dans R, ou R, désigne I’ensemble des nombres réels > 0: 'applica-
tion F, est donc une constante > 0. Un voisinage V* de a sera dit standar-
disé 8’il est contenu dans U* et y est défini par les inégalités |z,| < ¢; (pour
1 < ¢ < n), oules nombres réels strictement positifs ¢, satisfont aux inégalités:

ei < Fn——i(8i+1= e ey 8,,,) . (15)
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Soit maintenant £ une variété analytique-réelle de dimension n, plongée
dans une de ses complexifications Q*, Q étant le lieu des points fixes d’une in-
volution antiholomorphe z —2z de Q*. Soit E* un sous-ensemble analytique-
complexe au voisinage d’'un point a de 2. Un systéme de coordonnées
@ = (%4, ..., ,) dans un voisinage U* de a, nulles en a, sera dit p-propre
pour E* au point a si les p premiéres coordonnées d’un point quelconque de
E* ~ U* distinct de a ne sont pas toutes nulles.

On sait (voir p. ex. [8]) que, si E* est de dimension < p, on peut trouver
des systémes de coordonnées p-propres pour E* au point a!). On peut méme
se restreindre aux systémes de coordonnées (que nous appellerons réels) pour
lesquels toutes les coordonnées z; sont réelles si et seulement si le point cor-
respondant de U* est dans .

Dans ce qui suit, nous identifierons C? (pour 0 << q << n) avec le sous-
espace de C™ formé des points dont les » — ¢ derniéres coordonnées sont
nulles et nous désignerons par =, la projection (x,,...,x,) > (2, ..., ;)
de C™ sur (9.

Soit U* un voisinage ouvert de a dans 2* dont I'image dans C™ par I’appli-
cation qui a un point fait correspondre ses coordonnées soit un polydisque
| ;| <mn,;. On sait [8] que, si ¢ est p-propre pour E* au point a et si les 7,
sont suffisamment petits, I’'on a les résultats suivants:

a) pour chaque indice j =1, ...,n — p, il existe un polynome distingué
Q;(X;x,...,2,) a coefficients analytiques en (z,,...,x,) dans =, (U*),
sans facteurs multiples, tel que

Q;(%pys; Xyy..., ) =0 sur E*X~ U*. (16)

On désignera par E* le sous-ensemble analytique-complexe de U* défini par
les équations (16)32). .

b) si @ est réel et si E* est invariant par 'involution z — z, on peut choisir
les @, eux aussi invariants, c’est-a-dire & coefficients réels quand les z,, ...,z
sont réels.

c) il existe une standardisation subordonnée au systéme de coordonnées

V4

1) Cette propriété est prise comme définition de la dimension dans [8]. Ici, nous conservons
la définition usuelle de la dimension d’un ensemble analytique-complexe (cf. p.ex. [5]): E*
est de dimension < p si ’ensemble de ses points réguliers est une variété dont toutes les com-
posantes connexes sont de dimension < p.

%) Les polynomes @; ne sont pas uniques, méme en se restreignant aux polynomes de plus
petit degré possible, sauf cependant si E* est purement p-dimensionnel au voisinage de @, cas
auquel les @; de degré minimum sont uniques ([8], Zusatz II, p. 273). Par suite, la définition de

e dépend non seulement de E* et de ¢, mais aussi du choix des @;. Il en est de méme de la
notion de standardisation p-propre pour E* en a et des ensembles D*(E*) et S*(E*) intro-
duits plus bas. Par abus de langage, nous utiliserons souvent ces notions sans rappeler qu’elles
dépendent du choix des polynomes @; .
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donné, telle que F(e;y,...,6,) <m; si e;<m, pour j>+¢ et que, pour
tout voisinage standardisé V* de a, les racines du polynome @,;(X;z,..., z,)
pour (x,,...,%,) em,(V*) soient toutes inférieures en module & ¢,,,. Une

telle standardisation sera dite p-propre pour E* au point a.

d) supposons E* de dimension p en a et soit E'* (resp. E"*) la réunion des
composantes irréductibles de dimension p (resp. de dimension < p) de
E* ~ U*. Soit D} le sous-ensemble analytique lieu des zéros dans z,(U*) du
produit des discriminants des polynomes ¢),. Posons:

D* (E*) = Df v, (E"™) et S*(E*) = E* ~n;(D* (%) ~ U*. (17)

D*(E*) et S*(E*) sont des sous-ensembles analytiques-complexes de di-
mension < p — 1 dans U* et (BE* ~ U*) — S*(£*) est ouvert et fermé dans
B* — (B* ~ n; (D*(BY))) .

De plus, si 'on a un systéme de coordonnées ¢ = (x,,..., Z,) qui soit
p-propre en a relativement & un nombre fini de sous-ensembles analytiques-
complexes K. de dimension < p — 1, on peut, par un changement de va-
riables portant uniquement sur les p premiéres coordonnées, remplacer ¢ par
un systéme ¢’ qui soit (p — 1)-propre pour chaque E;. En effet, la projection
7, est, d’aprés b), une application propre3) de F* = (U E]) ~ U* sur z,(F*);
par suite (cf. [8bis]) z,(F*) est un sous-ensemble analytique de dimension
< p—1 dans #,(U*) et l'on peut trouver dans C? un systéme de coordon-
nées (x,...,%,) qui soit (p — 1)-propre pour z,(F*): il est clair que le
systéme ¢’ = (2,..., %, Tpyy, ..., %,) est (p — 1)-propre pour chacun des
E . Si ¢ est réel, on peut choisir ¢’ réel.

Soit maintenant E un sous-ensemble analytique-réel dans un voisinage de
a dans Q. On sait (voir [1], [6]) qu’il existe un plus petit germe d’ensemble
analytique-complexe (dans 2*) en a, dont I'intersection avec £ coincide avec
le germe de E en a. Par définition, la dimension de £ en a est la dimension
complexe de ce germe. Pour tout voisinage U* suffisamment petit de a dans
0% il existe un plus petit ensemble analytique-complexe E* dans U*, tel
que E*~ Q = E ~ U*; la dimension de E* est égale & la dimension de K
en ¢ et son germe en a est le complexifié du germe de E en a. Nous appellerons

E* le complexzizé de E dans U*: il est clair que E* = E* (si U* = U*).

Nous dirons qu’un systéme de coordonnées valable dans U* est p-propre pour
E au point a 8’il 'est pour E*. Si K est de dimension p (donc aussi £*), nous
poserons:
S(E) = 8*(E*) ~

S(Z) est un ensemble analytique-réel au voisinage de a dans . Enfin, si le

3 Rappelons qu'une application est dite propre si I’image réciproque d’un compact est com-
pacte.
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systéme de coordonnées est convenablement choisi et le voisinage U* suffisam-
ment petit, nous définirons par récurrence les ensembles analytiques-réels
S.(K) (avec Sy(E)=E et S,(E)= S(E)) par:

Sk(E) = S(Sk—l(E)) .

Nous aurons besoin par la suite d’utiliser des systémes de coordonnées qui
soient adaptés & 1’étude non seulement d’un sous-ensemble analytique (ou
méme d’une famille finie de sous-ensembles analytiques), mais aussi & 1’étude
d’un couple (K, F) de deux sous-ensembles analytiques, F' étant contenu
dans E, et a I’étude des points singuliers de E.

Soit donc (&, F') un couple d’ensembles analytiques-réels dans un voisinage
de a dans 2, F étant contenu dans E. Nous dirons que ce couple est réduit
si 'on a dim F < dim E. Dans le cas général, nous appellerons couple réduit
associé le couple obtenu ainsi: soit U* un voisinage de a dans Q*, suffisam-
ment petit pour que £ et F' aient des complexifiés E* et F* dans U*. Soit
E'* la réunion des composantes irréductibles de E* dans U* qui ne sont pas
contenues dans F*. On remplace le couple (E, F) par le couple (E', F')
avec B' = E*~Q et F'=E ~F et on vérifie immédiatement que le
couple (E', F') est réduit dans le voisinage U = U* ~ 2 de a.

Supposons donc le couple (£, F') réduit et posons p = dim E. Nous allons
définir par récurrence sur p les notions de systéme de coordonnées propre et de
standardisation propre pour ce couple. Pour p = 0, n’importe quel systéme
de coordonnées nulles en @ est propre; supposons donc la notion de systéme
propre définie pour les couples de dimension < p. Un systéme ¢ sera propre
s’il satisfait aux deux conditions suivantes:

(SP 1) ¢ est p-propre pour E, au point a.

Soit alors U* un voisinage polycylindrique de a dans Q*, %uffisamment
petit pour que E et F' aient des complexifiés E* et F* dans U* et que les con-
ditions a) & d) soient satisfaites (pour E*). Posons:

D(E, F) = (D*(E*) v n,(F*)) ~ Q (18)
T(E,F) = E ~ U*~n; (D(E, F)) . (19)

D(E,F) et T(E,F) sont des sous-ensembles analytiques-réels de dimension
<p—1 dans U = U*~ Q (remarquons que leur définition dépend du
choix des polynomes @; de a), du moins quand il n’y a pas de choix canonique
de ceux-ci, c’est-d-dire quand E* n’est pas purement p-dimensionnel). Nous
pouvons alors poser la deuxiéme condition:

(SP 2) g est propre pour les couples réduits associés aux couples (T (K, F),F)
e¢ (D(E,F),2).
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Remarque. Pour p = n, la condition (SP 1) est automatiquement satis-
faite et (SP 2) signifie que ¢ est propre pour le couple (F, ). D’autre part,
si @ est propre pour le couple (£, @), alors les ensembles S,(Z) (ou plus
exactement leurs germes en a) sont bien définis au voisinage de @ (moyennant
toujours des choix successifs pour les polynomes Q) et le systéme ¢ est propre
pour les couples (S, (%), @).

Reste & démontrer 'existence de systémes propres. Plus précisément, nous
allons démontrer par récurrence sur p le Lemme suivant, qui est évident pour

= 0:

Lemme 1. Soit ((E,, F;));,; une famille finie de couples réduits au voisinage
de a; posons p = sup dim E,. Soit ¢ un systéme de coordonnées p-propre pour
chacun des E,;. On peut en déduire, par un changement de variables portant uni-
quement sur les p premiéres coordonnées et en restreignant au besoin le voisinage
considéré du point a, un systéme de coordonnées propre pour chacun des couples
(E;, F,;) pour vel.

Soit en effet J (resp. K) ’ensemble des indices i ¢ I pour lesquels dim K; = p
(resp. dim E,; < p): d’apres ce que nous avons vu plus haut, on peut, par un
changement de variables portant uniquement sur les p premiéres coordonnées,
déduire de ¢ un systéme de coordonnées qui soit p-propre pour les E,(j € J)
et (p — 1)-propre pour les E, (ke K) ainsi que pour les D(E,, F,) (donc
les T(E,, F;)) pour jeJ, quitte naturellement a restreindre le voisinage
considéré de a. Il suffit alors d’appliquer ’hypothese de récurrence.

On voit que, pour vérifier qu'un systeme de coordonnées est propre, oun est
amené & introduire une famille finie de sous-ensembles analytiques-réels G,
de dimension &, (0 < k, < p), le systéme ¢ étant propre si et seulement si il
est k,-propre pour chacun des @,. Mais la définition méme des G, dépend de
@ et de ses propriétés (ainsi que de choix pour les polynomes @) et se fait par
récurrence descendante sur la dimension. Par exemple, les G, de dimension
p — 1 seront définis en supposant ¢ p-propre pour tous les , et seront d’une
part les B, de dimension p — 1, d’autre part les D(E,, F,) de dimension
p — 1 et enfin les ensembles de dimension p — 1 obtenus en réduisant les
couples (T'(E;, Fj), F)).

Si @ est propre, une standardisation subordonnée & ¢ sera dite propre pour
la famille donnée si elle est k,-propre pour chaque G,. L’existence de telles
standardisations est claire: il suffit de choisir pour chaque indice s une stan-
dardisation subordonnée & ¢ et k,-propre pour G, et de prendre la borne 1n-
férieure de ces standardisations.
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3. Un résultat de connexion locale

Soit 2 une variété analytique-réelle et soient a et b deux points de 2. Dans
la suite de cet article, nous appellerons «arc analytique joignant a & b» une
application continue I' de lintervalle [0,1] dans Q telle que I'(0) =a,
I'(1) = b et telle que I' soit analytique dans 'intervalle semi-ouvert [0,1].
Un tel arc sera dit «contenu» dans un sous-ensemble X de 2si I'() e X pour
0<t<1.

Le but de ce numéro est de démontrer le résultat suivant:

Proposition 24). Considérons une famille finie de couples (E,, F;) de sous-ensem-
bles analytiques-réels de 2, F, étant contenu dans E,. Soit a un point de Q. 11
existe un vorsinage ouvert V de a dans Q tel que, pour tout indice v, tout point

de (B, — F,)~V opuisse étre joint a a par un arc analytique contenu dans
(B; —F)~ V.

Cette proposition étant purement locale, on peut supposer que 2 est un
ouvert de R™ et qu’il existe un ouvert 2* de C*, avec 2 = Q* ~ R*, tel que
tous les E; et les F; admettent des complexifiés BT et F; dans Q*. De plus
on peut supposer la famille (E,, F;) réduite. Posons p = sup dim E;. Nous
allons, par récurrence sur le couple (n, p), démontrer le résultat plus précis
suivant: pour toute standardisation propre pour la famille (E;, F',), on peut
prendre pour V l'intersection avec 2 de n’importe quel voisinage standardisé
assez petit. Ceci est évident pour p = 0, quel que soit n. Supposons donc ce
résultat démontré pour les couples (m,q) avec m <m ou avec m =n et
q < p, et démontrons-le pour le couple (n, p): on peut se borner au cas d’un
seul couple (E, F), avec dim £ = p et dim F < p.

*
Ier cas: p<m.

Par hypothese, le systéme de coordonnées donné est p-propre pour E au
point a; soit alors U* un voisinage polycylindrique de a dans Q* assez petit
pour que les conditions a) & d) du n° 2 soient satisfaites. Soit ¥* un voisinage
standardisé de a contenu dans U*, posons V = V* ~ Q etsoit xe(E — F)~ V.
Considérons les ensembles D(E, F) et T(E, F) définis par les formules (18)
et (19). Si 2z e T(H, F), il suffit d’appliquer I’hypothése de récurrence, puis-
que par définition, la standardisation est propre pour le couple (7' (%, F), F)
et que dm 7' (E, F) <p — 1.

Supposons donc z ¢ T'(E, F) et par suite =, (z) § D(E,F). Comme la
standardisation donnée est propre pour le couple (D(E, F),z), sa restric-

4) Cette proposition est & rapprocher du Théordme 1 de [2] et le principe de la démonstration
en est analogue.
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tion & C? est propre pour le couple (x,(U),D(E, F)) (n°2, Remarque).
Puisque p <n, on peut appliquer ’hypothése de récurrence et trouver un
arc analytique y joignant =z, (r) & @, contenu dans z,(V) et ne coupant pas
D(E, F). Comme D(E, F) contient D*(E*)~ Q, les discriminants des poly-
nomes ¢, ne s’annulent pas le long de y, donc leurs racines réelles sont simples,
en nombre constant, donc analytiques le long de . On en déduit immédiate-
ment 'existence d’un arc analytique unique I" joignant z & a, contenu dans

E* A~ V et tel que 7, (I') = y. Mais comme z ¢ E* et que (E*~ U*) — S*(E*)
est ouvert et fermé dans E* — (ﬁ* ~ 7, (D*(E*))), cet arc I' est contenu
dans E¥~ V=E~V et comme y~zn,(F)=¢g,ona I'nF=g et I
répond & la question.

2iéme cas: p = n (autrement dit, £ est une composante connexe de £2).

Montrons d’abord le résultat auxiliaire suivant: soit @ un sous-ensemble
analytique-réel au voisinage de a, de dimension ¢ < 7. Supposons la stan-
dardisation donnée propre pour le couple (@, @) et soit U* un voisinage stan-
dardisé suffisamment petit pour que G ait un complexifié G* dans U*, satis-
faisant aux conditions a) & d) du n°® 2 (en remplagant E* par G* et p par ¢).
Soit z un point de U = U* ~ 2 tel que « ¢ @, que m,(x) e m, (G*) pour un
entier £k avec ¢ <k<mn et que =m,(x)¢ D(G)= D*(G*)~ U. Dans ces
conditions, il existe un arc analytique I' joignant x & a dans U et tel que
7. (') € 7 (G*), que 7, (I')~n D(Q) =2 et que I'~ G = . En effet, puis-
que 7z, (x) § D(@) et que la standardisation donnée est propre par hypothése
pour le couple (D(@#), @) donc pour le couple (=,(U), D(@)), il existe par
hypothése de récurrence un arc analytique joignant =, (x) & a dans =, (U)—D(G).
Le long d’un tel arc y, les racines réelles des polynomes @, sont simples, en
nombre constant, analytiques et tendent vers zéro quand ¢ — 1. Par suite

nk(a*) ~ @, (y) ~ 2 se compose d'un nombre fini d’arcs analytiques dis-
joints joignant les différents points de nk(d*) ~ 7] (e (%)) ~ 2 & a. Soit 9’
celui de ces arcs qui est d’origine z,(x). On voit de méme que é*nn},‘ (y')~ R
se compose d’un nombre fini d’arcs analytiques disjoints I',,..., I, avec
7, (I's(¢)) = 9'(t). Si r =0, n’importe quel arc analytique I" joignant z &
a tel que =, (I') = 9’ répond & la question. Supposons r > 0: pour tout en-

tier m =4k -+ 1,...,n, les m-iémes coordonnées de I';(t) et de I';(t) sont,
pour ¢ #j, ou bien toujours distinctes ou bien toujours égales. Soient
Ay,..., A, ces m-iémes coordonnées rangées dans l’ordre croissant; posons
A(t)= —e¢, et A,,,() =¢,. Il y a un indice j et un seul (0 < j < s) tel

que 4,;(0) < x, < 4,,,(0): nous poserons:

Zalt) = A1) + (1 — 0)c(A4,(0) — A,()) pour j>0
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et:
Tp(t) = 2 (t) — (1 — t)c(A4(f) — A4 ()  pour j=0

la constante ¢ étant déterminée par la condition z,(0) = z, (ona 0 <c<1).
Il est alors immédiat que l'arc ¢ — y(t) défini par =, (y(t)) = y'(t) et
Ym(t) = x, (t) pour £ < m < n répond & la question. Notons que nous avons
utilisé la condition ¢) du n® 2.

Soit alors V* un voisinage standardisé de a ; tous les ensembles S, = S, (F)
pour k > 0 ont des complexifiés S} dans V* puisque la standardisation donnée
est propre pour tous les §, (n° 2, Remarque). Comme S, = S*(Sy,) ~ Q,
on a S} € 8*(87,). Nous poserons ¢ =dim F, et ¢, = dim S, pour
k>1. On a, d’aprés (17), pour tout entier r avec ¢ < r < n:

F ~ 3 (0, (8% (FX))) = S(F) . (20)
Montrons, par récurrence sur &k, que:
F ~al (7, (85)) = Sy . (21)

C’est évident pour k& = 0; supposons (21) vraie pour la valeur ¥ — 1: on a
F ~ nj (m, (8%)) € F ~ 7";1(”«1(‘8* (S%4)) € F n}l(:n:q(S;:_I)) =8y, et
par suite F ~ 7y (7, (Sg)) = Spe—y ~ 75 (74 (S5)) ©8py ~ 77 (7, (8% (S54)) ) - Or
en remplagant F par S,_, dans (20), on voit que S;_, ~ 7}t (7, (S* (Sz4)) ) = i
d’oll immédiatement (21).

Soit enfin z un point de V = V* ~ Q, n’appartenant pas & F, et soit k
le plus grand entier tel que = (x)en,(S;) (remarquons que l'on a
7,(Sy) = @, (F*) D m,(V*)). Comme n,(x)¢ 7,(Sy,,), on a

7y, () € 70, (Sps1) ~ 2 = D*¥(S5) ~ 2 = D(8,)

et le résultat auxiliaire démontré plus haut s’applique. Soit donc I' un arc
joignant x & a dans V, avec n,(I') € 7, (Sy) et '~ S, =@. On a bien
I'nF=g,carsiyel'~F, onamn,(y)en,(l')doncyek ~ n'ql(nq(S’,';)) = S
d’apres (21) et y e I'~ S, ce qui est impossible.

La démonstration est achevée.

4. Ensembles analytiques-complexes au voisinage
d’un ensemble analytique-réel

Soient 2* une variété analytique-complexe et 4 un sous-ensemble analyti-
que-réel de Q2*: le cas le plus important est celui ol A est une variété analyti-
que-réelle dont Q* est une complexification. Soit E* un sous-ensemble analy-
tique-complexe de Q*; posons £ = A ~ E* et soit @ un point de 4.
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Proposition 3. Il existe un voisinage ouvert V de a dans A tel que, quel que
soit le voisinage ouvert V* de V dans Q* , toute composante irréductible de E* ~ V*
dans V* qui rencontre V , passe par le point a.

Soit K} la réunion des composantes irréductibles de dimension p de E* et
soit @ un systéme de coordonnées au voisinage de a qui, pour tout p, soit
p-propre pour K. Soit enfin U* un voisinage de a dans 2* tel que les condi-
tions a) & d) du n° 2 soient satisfaites pour chacun des E}. Nous désignerons
par @7 les polynomes de la condition a) associés & E;,etposerons B, = E} ~A.

Pour tout systétme S = (r,,...,7r,_,) de n — p entiers avec 1 < r; <
degré de 7, désignons par E, ,; le sous-ensemble analytique-réel de U* formé
des points (x,,...,z,) de E,~ U* tels que x,,; soit racine multiple d’ordre
=>r; de Q7(X;x,,...,x,). Nous prendrons pour V un voisinage ouvert de
a dans A tel que, pour tout p et tout systéme S, tout point de B, g~ V
puisse étre joint & a par un arc analytique contenu dans E, ¢~ V, lexistence
d’un tel V résultant de la proposition 2.

Soit donc V* un voisinage ouvert de ¥V dans Q* et soit F'* une composante
irréductible de E* ~ V*: si dim F* = p, F* est aussi une composante irré-
ductible de Ej~ V*. Supposons que F* rencontre V en un point b=
(by,...,b,). Soit r;’ordre de multiplicité de la racine b, ,; de @7(X;b,,...,b,)
et soit I' un arc analytique joignant b & a dans K, 5, avec § = (ry,...,7,_,):
il est clair qu’il suffit de démontrer que I'(t) ¢ F'* pour ¢ suffisamment petit,
car on aura par prolongement analytique, I' € F* et par suite a ¢ F'*.

Or, pour tout indice j =1,...,n — p, il existe un voisinage convexe B,
de (by,...,b,) dans C? et un nombreréel ¢;> 0 tels que, pour (z,,...,x,)e By,
le polynome @%(X;w,,...,z,) ait exactement r; racines satisfaisant &

A\
| X — b,,;| <¢;. Soit B l'intersection des B, et soit B 'ouvert de C* formé
des points x = (2,,...,x,) tels que =, (x)eB et |z,,; — by ;| <g&: on
N\
peut supposer (quitte & diminuer les ¢; et les B,) que B € V* ~ U*. Comme
F* est de dimension p et que, pour tout y € B, F* ~ @' (y) se compose d’'un
A\

nombre fini de points, 7z,(F* ~ B) est un sous-ensemble analytique-complexe
de dimension p de B, donc coincide avec B, qui est connexe.

Soit alors x un nombre réel > 0 tel que I'(t) e B pour 0 <t < u. Pour

tout £ avec 0 <<t < u, il existe un point 2(t) e F* ~ ﬁ tel que =, (I'(t)) =
n,(2(t)). Mais comme la (p + j)-ime coordonnée de I'(f) est racine mul-
tiple d’ordre >r; de Q%(X;n,(I'(t))), elle est la seule racine de ce poly-
nome qui appartienne au cercle | X — b,,,| < ¢; et par suite, elle est égale
ala (p + j)-iéme coordonnée de z(t), ce qui entraine que I'(f) = z(!) appar-
tient & F* et achéve la démonstration.
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Remarquons que si le germe de E* en a est trréductible, il existe une seule
composante irréductible de E* ~ V* qui rencontre V.

Corollaire. Soit 2 une variété analytique-réelle et soit f une fonction analyti-
que-réelle sur Q. Pour tout point a de 2, il existe un voisinage ouvert V de a
tel que, si g est une fonction analytique sur V telle que g/f soit analytique aw voi-
sinage de a, alors g/f est analytique dans V .

En effet, on peut supposer que 2 admet une complexification Q* et que f
se prolonge en une fonction holomorphe, notée encore f, sur Q*. Soit E* le
lieu des zéros de f dans Q* et soit V un voisinage de a dans Q2 possédant les
propriétés exigées dans la proposition 3 (avec 4 = Q). La fonction g se pro-
longe en une fonction holomorphe, notée encore g, sur un voisinage ouvert V*
de V dans Q*. L’ensemble des points de V* au voisinage desquels la fonction
méromorphe g/f n’est pas holomorphe est un ensemble analytique-complexe
de dimension » — 1 contenu dans E* et ne contient aucune des composantes
irréductibles de E* ~ V* qui passent par a, donc ne rencontre pas V, et g/f
est holomorphe au voisinage de tout point de V.

5. Germes d’ensembles analytiques-complexes au voisinage de A4

Soient 2* une variété analytique-complexe paracompacte et soit 4 un sous-
ensemble analytique-réel de 2*. Nous désignerons par $(4) I'ensemble des
«germes d’ensemble analytique-complexe au voisinage de 4 », ou plus briéve-
ment des 4-germes: un tel germe est représenté par un couple formé d’un voi-
sinage ouvert V* de 4 dans Q* et d’'un sous-ensemble analytique-complexe
E* dans V*, deux tels couples (VY, ET) et (V;, E;) définissant le méme
A-germe si et seulement si il existe un voisinage Vi de A dan® Q*, tel que
EY~ Vi=E}~ V¥ Nous dirons que le A-germe Y est de dimension < p
s’il existe un couple (V*, E*) définissant Y, avec £* de dimension (complexe)
< p, et que Y est de dimension p s’il est de dimension < p et n’est pas de
dimension < p — 1. On désignera par $,(A4) 'ensemble des A-germes de
dimension p.

Soit Y e ®(A4) et soit V* un voisinage de 4 suffisamment petit pour que
la famille § des ensembles analytiques-complexes F* tels que le couple (V*,F*)
définisse Y ne soit pas vide. Soit Y* l'intersection des F* pour F* € §. Les
germes des F* en un point z € A sont tous égaux, donc sont égaux au germe
en z de I'’ensemble analytique-complexe Y*, ce qui montre que le couple
(V*, Y*) définit aussi Y. Autrement dit, pour tout voisinage V* suffisam-
ment petit de A, il existe un plus petit ensemble analytique-complexe Y*
dans V* tel que le couple (V*, Y*) définisse Y. On a dim ¥ = dim ¥Y*.

10 Commentarii Mathematici Helvetici
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Posons en effet p = dim Y*. Il est clair que dim Y < p; supposons
dim Y < p et soit (W*, E*) un couple définissant ¥ avec dim E* < p. En
tout point xz e A, le germe de Y* en x est égal au germe de E* en z, donc
est de dimension < p. Par suite, le couple (V*, F*), ol F* est la réunion
des composantes irréductibles de dimension < p de Y* dans V*, définit
lui aussi Y, ce qui contredit la minimalité de Y*.

Soient Y, (i = 1, 2) des éléments de & (4) et soient (V}, E}) des couples
représentant Y,. La réunion Y, v Y, (resp. Uintersection Y,~ Y,) est le
A-germe défini par le couple (Vi~ VY, (Efv E})~ VinV}) (respective-
ment (V¥~ V¥, E¥~ E})): il est clair que cette définition ne dépend pas des
représentants choisis. On dira que Y, C Y, si Y,= Y, v Y,, ou encore si
E¥ © E} au voisinage de A. Enfin Y est srréductible si on ne peut pas 1’écrire
comme réunion de deux A-germes Y, et Y,, tous les deux distincts de Y.

Par ailleurs, nous désignerons par G, (£2*) I'espace des germes analytiques-
complexes irréductibles de dimension p aux différents points de £2*, muni de
sa topologie habituelle (voir [5], [8]): rappelons qu’un systéme fondamental
d’ensembles ouverts I',(U*; E*) est obtenu comme suit: pour tout couple
(U*, E*) formé d’un ouvert U* de Q* et d’un sous-ensemble analytique-com-
plexe E* dans U*, I' (U*, E*) est ’ensemble des composantes irréductibles
de dimension p des germes de E* aux différents points de U*. Soit G (Q*)
la somme topologique des G, (£2*): on sait [5] que G (£2*) est un espace topo-
logique séparé, localement compact et localement connexe.

Soit = ’application canonique de G (£2*) sur 2*, qui & un germe au point
a, fait correspondre le point @ lui-méme. Nous désignerons par G'(4) le sous-
espace n~1(4) de G(Q*): comme n est continue, c’est un sous-espace fermé
done localement compact de G(2*). On posera G, (4) = G(4)~ G, (2*):
G(A) est la somme topologique des G, (A4).

Soit ¥ un élément de G (4), provenant d’'un couple (V*, E*): il est immé-
diat que le sous-ensemble I')(Y) = I')(V*; E*) ~ n~1(A4) est un sous-ensem-
ble ouvert et fermé de G,(4), qui ne dépend que de Y et non du couple
(V*, E*) choisi. Nous poserons I'(Y)=UTI,(Y). Si Y, et Y, sont deux
éléments de ®(A4),Y, =Y, est équivalent & I'(Y,) = I'(Yy). D’autre
part, si £ et n sont deux points distincts de I'(Y) tels que xn(&) = m(n), on
ne peut pas avoir £ C 7, car deux composantes irréductibles du germe de
E* au point (&) ne peuvent pas étre contenues I'une dans ’autre, par défini-
tion méme des composantes irréductibles.

Remarque: En un certain sens, ® (4) et G(4), avec toutes leurs structures,
ne dépendent que de A et non de Q*: plus précisément, si I'on a une autre
variété analytique-complexe 0} et un sous-ensemble analytique-réel 4, de
QF, tels qu’il existe un isomorphisme ¢ d’un voisinage de A sur un voisinage
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de A4,, avec @(A4) = A,, il est clair que ¢ définit un isomorphisme naturel
de ®(4) sur ®(4,) et un isomorphisme naturel de G(4) sur G(4,), compa-
tibles avec les applications I' et & et avec toutes les opérations définies ci-
dessus et ci-dessous. En particulier, si 4 est une variété analytique-réelle
paracompacte 2, on peut parler des espaces ®({2) et G(2) sans spécifier
quelle complexification on a considérée pour les construire.

Proposition 4. Pour qu’un sous-ensemble X de G,(A) soit de la forme I'(Y)
pour un Y e ®,(A4), il faut et il suffit que X soit ouvert et fermé et que la res-
triction de w & X soit propre?d).

La nécessité de la condition est évidente, compte tenu de ce qui précede
et du fait que la restriction de = a I',(V*, E*) est propre. Réciproquement,
soit X un ouvert et fermé de G, (A4) sur lequel = est propre. Soit « un point
de A et soient e,,...,e, les éléments (en nombre fini) de X ~ z—1(x). Puis-
que X est ouvert, il existe un voisinage ouvert T'; de z et des ensembles ana-
lytiques-complexes E} de dimension p dans T tels que E; induise le germe
e; au point x et que I',(T}, EY)~w1(4) € X. On peut méme trouver un
voisinage ouvert U de x dans Q* tel que:

X ~aW(Ug) = (U L,(T;, EY)) ~ YU ~ A). (22)

Sinon, il existerait une suite de points &, X telle que &, n’appartienne pas
alaréunion des I' (T, ET) et que la suite des nm(&,) converge vers . Comme
7 est propre sur X, on peut supposer que la suite £, converge vers un point
(eX:ona n(&) = x, donc £ est 1'un des ¢;, ce qui entraine que £, eI’,,(Tz,Ef)
pour ¢ assez grand, contrairement & I’hypothese.

Comme OQ* est paracompacte, on peut trouver deux recouvrements (U¥)
et (V) de type fini, plus fins que le recouvrement de Q2* formé des U} et de
louvert Q* — A et tels que V' soit relativement compact dans U} . Nous
ne considérerons dans la suite que les ouverts V; et U} telsque V, = Vi~ 4
ne soit pas vide: ces ensembles V, forment un recouvrement ouvert de 4 et
dans chaque U} (rencontrant A, donc contenu dans un ouvert U%), il existe
d’aprés (22) un sous-ensemble analytique-complexe F; de dimension p tel
que:

X Aa(U})=T(F?)~at(4). (23)

En tout point e A~ U~ U}, les germes induits par F} et F; sont les
mémes, I’ensemble de leurs composantes irréductibles étant X ~ z~1(x). Il
existe donc un voisinage U, c U;~ U} de A~U}f~U; tel que
Ff~U}!;=F;~ U}, (on prend g = U*,). Soit alors V.* un ouvert
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de £2*, contenu dans V¥, et tel que Vi*~ A=V, et Vi*~ A =V, (lexis-
tence d'un tel ouvert est une conséquence immédiate de la régularité de I’es-
pace topologique 2%*). Pour tout point z e V,, il existe un voisinage ouvert
W% de x dans Q* possédant les propriétés suivantes:

Wk c v (24)
si x¢V,, alors Win Vi* =g (25)

(en effet, si Ui~ Uj = @, c’est une conséquence de (24) et pour les indices
j (en nombre fini) tels que U~ U} 3 @, Pexistence d’un tel voisinage ré-

sulte de ce que x ¢ I—’;-*);
si eV, (avec j #1), alors Wi C U}, (26)

(car U}, est un voisinage de V,~ V).

Soit W la réunion des W pour x décrivant V,: ona Wic Vix c U}
et Wi~ Wj;c Uf,;, ce qui entraine I'existence d’un sous-ensemble ana-
lytique-complexe de dimension p, F*, dans W* = U W} (qui est un voisi-
nage de A) tel que F*~ Wf=F;~ W}, donc tel que X~z 1(V,) =
L(F*)~a(V,), dou X =I'(Y), Y étant le A-germe défini par F*.

Corollaire 1. Soit Y un élément de ®(A), et soit X un sous-espace de I'(Y).
Pour qu’il existe un A-germe Z e ®(A) tel que X = I'(Z), il faut et il suffit
que X soit ouvert et fermé dans I'(Y).

La nécessité de la condition est évidente. Réciproquement si X est ouvert
et fermé dans I'(Y), il existe pour tout entier p un germe Z, tel que I'(Z,) =
X~ G, (A). Soit Z laréuniondes Z,:ona I'(Z) € U I'(Z,) et méme I'(Z) =
uI'(Z,) (donc I'(Z) = X) car, pour tout point xeAd, I'(Z) ~ n~2(x) est
la réunion des I'(Z,) ~ n~'(x) puisque deux germes distincts au point x ap-
partenant tous les deux & I'(Y), ne peuvent pas étre contenus I'un dans I’autre.

Corollaire 2. Pour qu’un A-germe Y € ®(A) soit irréductible, il faut et il
suffit que I'(Y) soit connexe.

En effet,si Y=Y, v Y, avec Y, et Y, distincts de Y, alors I'(Y) est
réunion des deux ouverts et fermés distincts de lui-méme I'(Y)~ I'(Y,) et
I'Y)~I'(Y,). Inversement,si I'(Y) = X, v X,, X, et X, étant des ouverts
et fermés, distincts de I'(Y), il existe des germes Z, et Z, distincts de Y tels
que I'(Z,) =X, et I'(Zy) = X, et’ona Y = 2Z,~ Z,.

Proposition . Soit Y un A-germe, irréductible de dimension p. Si un A-
germe Z est con