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Groupes de Lie compacts de transformations de l'espace
euclidien et les sphères comme espaces homogènes

par Jean Poncet, Zurich

1. Introduction

C'est un problème ouvert de savoir ce qui caractérise topologiquement les

groupes de transformations linéaires parmi les groupes de Lie compacts de
transformations de l'espace euclidien En. Les résultats les plus complets dans
ce sens, pour les petites dimensions, ont été énoncés par Montgomeby et
Zippin et prennent une signification particulière pour les fondements de la
géométrie en termes de groupes de congruences (voir [7], chap. VI) : un groupe
compact opérant sur En, n fg 3, - on démontre d'abord qu'il est de Lie -
est équivalent topologiquement à un groupe orthogonal si l'on suppose seulement

qu'il est connexe. Si G n'est pas connexe, il n'opère pas nécessairement
linéairement sur j?3, comme le montre un exemple de Bing [1] d'une
transformation involutive de Ez qui possède des points fixes et qui n'est différen-
tiable, à plus forte raison linéaire, pour aucune structure différentiable de Ez.
Si n > 3, la connexion de G ne suffit plus pour qu'il soit équivalent à un
groupe compact de Lie de transformations différentiables de En: [8] donne
un exemple de groupe isomorphe à S0(2), le groupe des rotations de E2, qui
opère sur 2?4 et qui n'est différentiable pour aucune structure différentiable
de J54. Il s'ensuit que pour n> 3 d'autres conditions topologiques que la
connexion et la compacité de G seront nécessaires pour qu'il soit#linéaire sur
En. Dans ce qui suit, nous montrons que G est linéaire sur En si G est compact
et connexe et s'il existe au moins une orbite de dimension n — 1, ou, sous
les mêmes hypothèses pour G, si les orbites de En sont des sphères 8n_2 et
des points fixes. Nous utiliserons pour cela les résultats de [7] et de [9]. De
plus G opère aussi linéairement s'il est isomorphe à 80(n — 1) et s'il existe
des orbites de dimension n — 2.

Dans [7], Montgomery et Zippin étudient les groupes compacts et connexes
de transformations de En sous l'hypothèse qu'il existe une orbite de dimension

n — 1. Ils montrent que toutes les orbites sauf un point fixe sont de
dimension n — 1, qu'elles possèdent le même groupe d'isotropie et sont donc
homéomorphes entre elles. En outre, les orbites de dimension n — 1 ont
même homologie entière qu'une sphère 8n_x. Comme une orbite (n — 1)-
dimensionnelle d'un espace w-dimensionnel localement euclidien est locale-
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ment connexe ([7], chap. VI, corollaire de la p. 248) et qu'un groupe compact

et effectif de transformations d'un tel espace est de Lie si ses orbites sont
localement connexes ([7], chap. VI, Th. 1, p. 244), G est de Lie. La structure

de En comme espace de transformations de G est assez simple puisque le
complémentaire du point fixe est un espace fibre trivialement en orbites, d'où
l'existence d'un rayon qui est une section pour toutes les orbites. Tout ceci
fait conjecturer que G opère linéairement sur En, ce que nous démontrerons
en utilisant un théorème de A. Borel ([2] et non publié; voir aussi [3]),
d'après lequel les orbites de dimension n — 1, ayant même homologie
entière que des sphères $w_! et étant simplement connexes pour n — 1 > 1

(pour n — 1 1 il n'y a rien à démontrer), sont nécessairement des sphères
#„_!. Ceci pourrait être établi sans considérations d'homologie si l'on supposait
que G opère différentiablement. En effet, d'après le théorème de Bochner
([7], chap. V), G agit alors linéairement dans un voisinage invariant du point
fixe; les orbites de ce voisinage sont sur des sphères 8n_± et doivent se
confondre avec ces sphères si elles sont de dimension n — 1. Cela est vrai globalement

puisque les orbites différentes du point fixe sont des espaces homogènes
isomorphes.

Dans [9] Montgomery, Samelson, Yang montrent que G compact,
connexe, de Lie, est équivalent, comme groupe de transformations de Eni à un
groupe linéaire s'il existe des orbites de dimension n — 2 et si les transformations

de G sont différentiables une fois sur En. Une partie de leur raisonnement

n'utilise pas l'hypothèse de différentiabilité et montre que les orbites
de dimension n — 2 ont même groupe d'isotropie, leur réunion R est un
ouvert dense dans En, l'espace quotient EJG est homéomorphe à une cellule
à deux dimensions diminuée d'un point frontière, l'intérieur homéomorphe à
JB2 et la frontière homéomorphe à Et étant respectivement RjG et S/G, S

désignant le complémentaire de R dans En. Ceci nous permet de démontrer
sans hypothèses de différentiabilité que G opère linéairement si ses orbites
sont des sphères Sn_2 et des points fixes, et aussi, sans hypothèses sur les
orbites de dimension n — 2, si G est isomorphe à 80(n — 1).

Il n'est pas impossible que seule l'existence d'orbites $w_2 soit suffisante

pour que G soit linéaire; nous comptons reprendre la question ailleurs. Toutefois

nous montrons par des considérations d'homologie que le complémentaire

8 de la réunion des orbites 8n_2 se réduit à des points fixes s'il ne possède
qu'un nombre fini de «singularités».

Le théorème cité de Montgomery et Zippin sur les groupes compacts et
connexes qui opèrent sur En, n ^ 3, est une conséquence immédiate des

deux premiers résultats de ce travail.
Je remercie ici Monsieur A. Borel pour les conseils qu'il m'a donnés.
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2. Les sphères comme espaces homogènes

Nous allons vérifier qu'un groupe compact, connexe et transitif sur 8n
opère sur 8n comme un sous-groupe de rotations, autrement dit qu'un tel
groupe, rendu effectif, est un sous-groupe de 80(n -f- 1) opérant naturellement

sur Sn. Ceci est évident pour les groupes classiques, mais l'est moins

pour les groupes non classiques transitifs sur une sphère.

Si G est compact, transitif et effectif sur Sn, il est de Lie ([7], chap. VI,
Th. 1, p. 244). On a alors le théorème suivant (voir [10]):

Si n est pair, G est simple. Si n est impair, G est de la forme (H x K)jN,
où N est un sous-groupe invariant fini de H xK, H un groupe simple qui
est transitif sur Sn comme sous-groupe de H x K ; K est soit réduit à l'unité,
soit 80(2), soit le groupe Sp(l).

Supposons d'abord n pair. D'après A. Borel [3], G doit être localement
isomorphe à S0(n + 1), à une exception près: pour n 6, G peut être
encore G2, groupe exceptionnel de la classification de Killing-Cartan qu'on
peut représenter par les automorphismes de l'algèbre de Cayley et qui est
transitif sur la sphère 86 G2IA2 des nombres imaginaires de Cayley de

norme un. G opère comme un sous-groupe de rotations de $6 puisqu'il
conserve la norme. Cela est aussi évident si G est localement isomorphe à

80(n + 1), car les transformations assez rapprochées de l'unité laissent
invariante la métrique naturelle de Riemann sur 8n, et celle-là seulement, elles
sont donc des rotations de Sn. Il en est de même de toute transformation de

G, qui est engendré par tout voisinage de l'unité.
Pour n impair supposons d'abord G simple. D'après A. Borel encore [4],

6? est ou bien un groupe classique transitif sur Sn comme un sous^groupe de

rotations, ou bien est isomorphe à l'un des groupes 8pin(l) et 8pin(9)
transitifs respectivement sur 8pin(l)jG2 81 et Spin(9)l8pin(l) S15. Pour
vérifier que Spin(l) et Spin (9) opèrent comme des sous-groupes de
rotations sur S7 respectivement $15, nous établirons d'abord que le premier ne
contient qu'une classe de sous-groupes conjugés (?2 et le second qu'une classe de

sous-groupes conjugés 8pin(l) tels que les quotients correspondants soient
des sphères $7 et 8lb.

Commençons par 8pin(9).
Comme le centre de 80(9) se réduit à l'unité, celui de 8pin(9) ne peut

être que d'ordre deux. De même le centre de 8pin(l) est d'ordre deux. Un
sous-groupe isomorphe à 8pin(l) de 8pin(9) ne peut pas contenir le centre
de 8pin(9) si l'espace homogène correspondant est 81S. Sinon on aurait
80(9)180(1) $15, ce qui est impossible puisque S0(9) n'est transitif que
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sur 88. L'image d'un tel sous-groupe 8pin(l) dans le quotient S0(9) de

8pin(9) par son centre est donc isomorphe à 8pin(l).
Les représentations linéaires irréductibles de Spin(l), c'est-à-dire les

représentations bivalentes de 80(1), sont de degré 8 ou supérieur à 9 comme
le montre la formule de Weyl ([12], p. 349). On déduit de cela qu'une
représentation fidèle du groupe 8pin(l) dans 80(9) doit être réductible et
laisser fixe un sous-espace à une dimension complexe de l'espace complexe à
9 dimensions. La valeur propre correspondante doit être 1 et le vecteur propre
correspondant peut être choisi réel. Mais ceci signifie simplement que tout
sous-groupe 8pin(l) de 80(9) est conjugué par un automorphisme intérieur
de 80(9) à un sous-groupe de la représentation somme 1 -f 80(S).

Dans 80(S), deux représentations de 8pin(l) étant irréductibles doivent
être conjuguées par une transformation de 0(8); dans 1 + 80 (S) deux
telles représentations sont donc conjuguées par une transformation de 1 -f- 0(8),
c'est-à-dire de 0 (9). Ceci est un cas particulier d'un fait général connu de la
théorie des représentations linéaires : si deux représentations irréductibles d'un
groupe compact ont des images dans 80(n) qui sont équivalentes par une
transformation de 0L(n, G), elles le sont aussi par une transformation de

0(n). Mais comme tout automorphisme intérieur de 0(9) induit un
automorphisme intérieur de 80(9), on voit que deux sous-groupes 8pin(l) de
1 + $0(8) sont conjugués par un automorphisme intérieur de 80(9).

En définitive deux sous-groupes 8pin(l) de S0(9) sont conjugués par un
automorphisme intérieur. En remontant à 8pin(9), on a finalement que
deux sous-groupes 8pin(l) de Spin(9) qui ne contiennent pas le centre
sont conjugués par un automorphisme intérieur et ceci démontre qu'il n'y a

qu'une classe de sous-groupes Spin(l) conjugués dans Spin(9) par les

automorphismes intérieurs et tels que 8pin(9)j8pin(l) Sn.
Par un raisonnement analogue au précédent, on montre que les sous-groupes

G2 de 80(1) sont conjugués par les automorphismes intérieurs de 80 (1) en
s'appuyant sur le fait qu'une représentation irréductible non triviale de Ot
de degré au plus égal à 7 est nécessairement de degré 7 et déterminée à une
équivalence près, et de là, en remontant à 8pin(l), que les sous-groupes 02
de Spin(l) tels que 8pin(l)IO2 87 sont conjugués par les automorphismes

intérieurs de 8pin(l).
On peut maintenant vérifier que 8pin(l) et 8pin(9) opèrent sur $7

respectivement 815 comme des groupes de rotations de ces sphères.

Spin(l) a une représentation fidèle, unitaire unimodulaire qui opère sur
l'espace des spineurs de J?7; c'est un espace vectoriel complexe à 8 dimensions.

Spin(l) possède ainsi une représentation orthogonale fidèle de degré
16. Mais il existe dans l'espace des spineurs de E1 une involution ([5], pp. 30
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et 31) qui commute avec les opérations de 8pin(l). Les spineurs qui sont
fixes par cette involution, appelés réels par E. Cabtan, forment un sous-

espace réel de dimension 8 de l'espace des spineurs. Il s'ensuit que la représentation

de Spin(l) dans $0(16) est réductible et équivalente à la somme de
deux représentations de degré 8. On voit alors que l'une de ces représentations
est fidèle et précisément transitive sur les spineurs réels de norme hermitienne
égale à 1, qui forment une sphère 87.

De même on verra que Spin (9) opère sur S15 comme un groupe de
rotations de cette sphère. Les spineurs de l'espace E9 forment un espace vectoriel
complexe à 16 dimensions, ou un espace réel à 32 dimensions. Il existe aussi

une involution comme précédemment, et les spineurs fixes par cette involution

qui sont de norme hermitienne égale à 1 forment une sphère 815, sur
laquelle est transitive, comme groupe de rotations, une représentation
orthogonale fidèle, de degré 16, de Spin(§).

Reste à examiner, pour n impair, le cas où G n'est pas simple et de la forme
(H x K)/N, H étant simple et transitif sur 8n. Il suffira de montrer que
(?* H x K, qui est localement isomorphe à opère sur 8n comme un
groupe de rotations.

G* opère comme un groupe de rotations de 8n s'il laisse invariante la
métrique riemannienne naturelle de Sn. Nous savons déjà que H laisse invariante
la métrique naturelle de 8n ; mais il n'est pas évident qu'il doit en être ainsi

pour G* H x K. Si généralement HJhx H2/h2i Hx c H2, hx c fe2,

les métriques de Riemann de Ux\hx invariantes par Ht (il peut y en avoir
plusieurs) ne le sont pas nécessairement par H2. Ainsi Sp(l) c$0 (4) laisse
invariante toute métrique de Riemann sur son homéomorphe 8$ obtenue par
transport dans Sp(l) d'une forme quadratique définie positive sur l'espace
tangent en l'élément neutre, alors que la seule métrique de RieïAnn de 8Z

qui soit invariante par 80(4:) est la métrique naturelle.
Généralement, une métrique riemannienne invariante sur H/h, où H est

compact et de Lie, se définit par transport dans H/h d'une forme quadratique
définie positive, invariante par h sur l'espace tangent en un point de H\h
stable par h [6].

Plus précisément, soient p la projection x->xh, pr sa différentielle en
l'élément neutre e. Appelons h' la représentation linéaire de h qui opère sur
l'espace tangent au point eh de H/h. Deux vecteurs tangents en eh transformés

l'un dans l'autre par l'image a' c hf de a c: h sont images par p1 de

deux vecteurs tangents en c transformés l'un dans l'autre par ada, c'est-à-
dire pi o ad a a'o pf. Ainsi une forme définie positive sur l'espace tangent
en eh, invariante par h1, peut être considérée comme une forme sur l'algèbre
de Lie L(H) qui est invariante par adh, constante sur chaque classe oc + L(h)

8 Commentarii Mathematici Helvetici
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et définie positive sur un supplémentaire de L(h) dans L(H) qui est invariant
par adh', et réciproquement. Une métrique de Ribmann invariante sur H/h
ne dépend donc que de la donnée d'une telle forme sur L(H).

Faisons ici une remarque que nous utiliserons dans la suite. Supposons que
le sous-groupe H de G soit transitif sur les classes xg, autrement dit G/g
H/h, h H rx g. Tout vecteur tangent en eg est projection d'un vecteur qui
appartient à un supplémentaire, invariant par adh, de L(h) dans L(H).
Supposons donnée sur ce supplémentaire une forme quadratique définie positive
et invariante par adh, h laquelle correspond donc une métrique riemannienne
invariante par H sur H/h. Alors si ce supplémentaire et cette forme sont
aussi invariants par ad g, cette métrique sur Hfh G\g est invariante par

Revenons au groupe simple H qui opère sur 8n Hjh comme un sous-

groupe de rotations. H est localement isomorphe à un sous-groupe de

80(n-\- l), h est localement isomorphe à un sous-groupe de 80(n), et
on a L{H) c L(80(n+l)), L(h) c L(80(n)), adH c adSO(n + 1),
adh c ad80(n).

D(X) désignant une forme définie positive sur L(80(n -\- 1)), soit L le

sous-espace orthogonal à L(80(n)) relativement à D(X). L est un
supplémentaire de L(SO(n)). Soit E(X) la restriction de D(I) à L. Si D(X)
est invariante par ad80(n + l), L et E(X) sont invariants par adSO(n),
et il correspond à E(X) un ds2 invariant par 80(n + 1) sur 8n SO(n + 1)/
80 (ri) qui ne peut être que le ds2 naturel. Cela étant, soient L' L ^ L(H)
et Ef(X) la restriction de E(X) à L'. L' est un supplémentaire de L(h)
dans L(H) qui est invariant par adh et Ef(X) définit aussi le ds2 naturel de

Sn H\h. Notons que L1 et E'(X) sont invariants par adNQ, No désignant
le normalisateur de h dans H.

Soit maintenant <?* le sous-groupe de G* H x K tel que (?*/(/* Sn.
On a h X ef H x er rs g* (e1 est l'élément neutre de K). On peut identifier

L' à un sous-espace de L(H x e') supplémentaire de L(h x er). Il est
alors évident que adg* laisse invariants L1 et Er(X). Car appelons s x t
(s c H, t c K) un élément de g*. Comme t commute avec H x ef, il suffit

de vérifier que L' et Ef (X) sont invariants par ads ou encore que s est
dans No. Soit u c h; on a (s x t) (u x e!) (s x t)-1 (sus*1) x ef c gr*,
donc sus*1 ah ou s c No. D'après la remarque faite plus haut il suit de

ce que Lf et E' (X) sont invariants par adg* que le ds2 naturel est invariant
par (?*.

3. Le cas où il existe des orbites de dimension n — 1 dans En

Nous désignerons généralement par (G, E) un groupe G de transformations
de l'espace E. G est un groupe topologique, qui dans la suite sera toujours
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supposé compact, de Lie, E est un espace topologique localement compact.
Si g est dans G, x dans E, le transformé g(x), que nous noterons aussi gx,
doit être par définition une fonction continue sur le produit G x E, à
valeurs dans E.

Si (Gf, E') est un autre groupe de transformations, une application continue

(p{x) de E dans E' et un homomorphisme h: S ~^-hs de G dans G'
seront dits définir une représentation de (G,E) dans (Gf, E') lorsque
q)(8x) hs<p(x) ; <p(x) transforme ainsi les orbites de (G, E) en orbites de

(h (G), (p{E)) h (G) désignant l'image par h de G dans G'. Si ç? est un homéo-

morphisme de JS? sur cp(E) et A un isomorphisme de G sur A (G), jE) et
(fe(6?), q>(E)) seront dits isomorphes.

Soient f(x) une fonction réelle continue sur E, hs une représentation
orthogonale du groupe G compact connexe, y (8) un vecteur réel tel que
y(ST) hsy(T) pour S, T dans G; alors ^ et y (a?) J f(Sx)y(S~1)dS, où

d$ est l'élément d'une mesure invariante sur 6?, définissent une représentation
de (G,E) dans (SO(n), En) ,n étant le nombre de composantes de y (S).

Si (G, Un) a des orbites de dimension n — 1, on sait, d'après ce qui a été
rappelé dans l'introduction, que G est de Lie, que toutes les orbites, à part un
seul point fixe p, sont des sphères £„_! et forment une même classe. Il existe
de plus un rayon de En qui est une section globale et que nous désignerons

par E. Je dis que (G,En) est isomorphe à un groupe de transformations
linéaires de En. Ceci peut être établi facilement si l'on montre d'abord qu'il
existe une section E telle que le sous-groupe de stabilité de ses points soit
constant. Mais on peut aussi procéder de la manière suivante.

D'après ce qui vient d'être démontré sous 2, G opère sur chaque orbite
Sn_1 comme un sous-groupe de rotations. Si G est effectif, on a un isomorphisme
hs de G dans 80(n). Nous noterons simplement par 8 la matrice orthogonale
hs et par y (8) l'une des colonnes de cette matrice. On a y(ST) Sy(T).

Soit F le sous-groupe de stabilité de y (E), E étant la matrice unité de

degré n: y (S) est constante sur chaque classe à gauche XF. Il existe un
voisinage de l'unité F F"1, invariant par les automorphismes intérieurs
de G, assez petit pour que l'une au moins des composantes de y (S) conserve
le même signe sur VF FV.

Le sous-groupe de stabilité Ga d'un point a différent du point fixe p est

conjugué à F: il existe une transformation Ma de G telle que MaF Jf"1 Ga,
et l'on peut supposer que Ma varie continûment avec a. E étant une section
quelconque, soient 6 sur E et x sur 6? (6). Choisissons une fonction h(x)
définie de la manière suivante: elle est positive et continue sur V(E), nulle sur
Ep — V{E) ; sa restriction à F (6) est constante, h(b) croît de 0 à oo lorsque
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b varie sur E à partir de p. Supposant toujours x sur l'orbite O(b), on voit
maintenant facilement que le vecteur <p(x) égal à ^h(Mb8M~b1x)Mby(S~1)d8

Q

pour x ^ pf nul pour x p, et la représentation orthogonale de G donnée
définissent un isomorphisme de (G, En) sur un groupe de transformations
linéaires de En. Comme <p(Tx) T(p(x), il suffit de vérifier que <p (x) est
un homéomorphisme.

Le support de h{Mb8M~bb) comme fonction positive de 8 est VF — FV,
et une composante au moins de y (S"1) y conserve un même signe. Donc
<p(b) est un vecteur non nul. On a aussi q?(b) h(b)Mb J yfô^dS, donc la

vr
longueur de <p(b) est proportionnelle à h(b). Si x Xb parcourt la sphère
G(6), (p(x) X<p{b) parcourt une sphère Sn_x centrée à l'origine de En. Le
sous-groupe Gb des rotations de G qui laissent 6 c (?(&) fixe est conjugué au
sous-groupe G^^ des rotations de G qui laissent g>(b) c <p(G(b)) fixe, ce qui
entraîne par l'inclusion évidente Gb c G9^b) que 6?& GV(b), et ç>(#) est
biunivoque sur la sphère G(b). Mais comme le rayon de la sphère <p(G(b))
est proportionnel à h(b), <p(x) est finalement une application biunivoque de

En sur En, c'est donc un homéomorphisme en vertu du théorème de
l'invariance du domaine.

Ceci démontre le

Théorème a. Si G est compact et connexe et si (G, En) a une orbite de dimension

n — 1, G opère linéairement sur En.

4. Le cas des orbites de dimension n — 2 dans En

Soit (G, E) un groupe de transformations, où G est un groupe compact de

Lie, E un espace dont nous pouvons d'abord supposer qu'il est de Hatjsdobff
pour les définitions que nous allons donner, mais qui sera ensuite localement
compact.

En général, si le point x de E est assez rapproché de a, le sous-groupe de
stabilité Gx est conjugué à un sous-groupe de Ga ([7], chap. V). Nous appellerons

une orbite G (a) régulière si, pour tout point x assez rapproché de (?(a),
Gz est conjugué à Ga, ce qui revient à dire que toute orbite assez proche de
G (a) est dans la même classe que G (a). Si au contraire tout voisinage de G (a)
contient un point x tel que Gx soit conjugué à un sous-groupe propre de Ga,
G (a) sera dite singulière. On montre facilement que la réunion des orbites
régulières est un ouvert dense dans E. Enfin l'existence de sections locales

sur les orbites régulières ([7], chap. V) fait de tout sous-espace connexe
réunion d'orbites régulières un espace fibre en orbites.
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Dans (9), Montgomeby, Samelson et Yang ont montré, sans hypothèse de

différentiabilité, que si (G,En) a des orbites de dimension n — 2, celles-ci
ont même groupe d'isotropie, leur réunion R est un ouvert dans En; elles
sont donc régulières. Le complémentaire 8 de R est de dimension au plus
égale à n — 2, donc R est dense dans En, toute orbite de 8 est singulière et
de dimension strictement inférieure à n — 2. RjG est homéomorphe à E%i

donc l'espace R fibre en orbites est trivial. Il existe ainsi une section a des

orbites de R. S/O est homéomorphe à Ex ; c'est la frontière de EJG, qui est
homéomorphe à une cellule à deux dimensions diminuée d'un point frontière.

Nous allons démontrer le

Théorème b. Si les orbites de (G, En) sont des sphères Sn_2 et des points
fixesy G opère linéairement sur En.

Si G est effectif sur Eni il Test aussi sur chaque orbite régulière 8n_2. Il
possède alors une représentation fidèle, transitive sur Sn_2, dans le groupe
80(n — 1). Soient y (S), F, V définis de la même manière que précédemment

sous 3. Soit E la fermeture de la section a dans En. E est une section
de En. Prenons maintenant deux fonctions q(x), r(x), réelles, définies sur
En, constantes sur les orbites, donc définies sur EJG, et telles que la paire
(q(x), r(x)) soit un homéomorphisme de EJG sur un demi-plan fermé par
une droite Ex. Nous supposerons que r(x) est strictement positive sur R et
nulle sur 8, que la restriction de q(x) h S est un homéomorphisme sur la
droite Ex.

Appelons h(x) une fonction continue sur F (27), nulle sur En — F(27),
définie sur V(Z) de la manière suivante: b étant un point de 27, elle est
constante et égale à r(b) sur F (6). Soit cp(x) un vecteur à n — 1 composantes,
nul sur 8 et égal à J h(MbTMl1x)Mby(T~1)dT pour x sur l'orbite régulière

G

G{b) par un point b de a, Mh étant une transformation orthogonale de G qui
varie continûment sur a et telle que MhFM~^ Gb. On a <p(Ux) U<p(x)

pour tout U de et y>(x) est une application continue de En sur En_lf bi-
univoque sur chaque orbite, qui applique S sur l'origine de En_1 et chaque
orbite régulière G(b) sur une sphère Sn_1 centrée à l'origine, de rayon
proportionnel à r(b). On a ainsi représenté (G, En) sur un groupe de transformations

orthogonales (G, J57n-i)- Enfin si l'on définit un vecteur y>(x) de En en

prenant q (x) pour l'une de ses composantes et celles de cp(x) pour les n — \
autres, il applique biunivoquement En sur En ; c'est donc un homéomorphisme
qui rend (G, En) isomorphe à un groupe de transformations orthogonales de

En laissant un axe fixe.
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5. Remarques sur le cas des orbites de dimension n — 2 dans En

1. Dans la note [11], nous avons annoncé un résultat équivalent au suivant:
{G, En) est un groupe de transformations linéaires s'il existe des orbites de
dimension n — 2 et si G est effectif et isomorphe à 80(n — 1).

Montrons que ceci se ramène au théorème b, autrement dit que les orbites
de dimension n — 2 sont des sphères et les autres des points fixes.

Comme les orbites de dimension n — 2 sont régulières et forment une
seule classe d'orbites de réunion dense dans En, G doit être effectif sur chaque
orbite de dimension n — 2. Soit M GfH l'une de ces orbites. H est
aussi effectif et a une représentation orthogonale de degré n — 2 qui opère
sur l'espace tangent en un point a de M fixe par H. Cette représentation est
fidèle; sinon il y aurait un sous-groupe non trivial de H qui laisserait fixe
toute géodésique par a d'une métrique de Riemann invariante par ce qui
est impossible si H est effectif. H est donc isomorphe à un sous-groupe de

O(n — 2); étant de même dimension que O(n — 2), ce ne peut être que
O(n — 2) ou 80 (n — 2). Mais il n'existe dans 80 (n — 1) qu'une classe
de sous-groupes isomorphes au groupe 80(n — 2), conjugués par les
transformations de 0(n — 1). Le calcul des plus petits degrés des représentations
fidèles irréductibles de 80(n — 2) montre en effet ([12], p. 349) qu'une
représentation fidèle de degré n — 1 de ce groupe est équivalente à
1 + 80 {n — 2). Il s'ensuit immédiatement qu'un sous-groupe O(n — 2)
de O(n — 1) est équivalent à la réunion de 1 + 80(n — 2) et de

(— l) -\- A. SO(n — 2), où A est une matrice orthogonale de degré n — 2

et de déterminant — 1. L'orbite M est ainsi un espace projectif Pn_2 on
une sphère $w_2. Mais seul le dernier cas est possible. En effet, comme les

orbites singulières sont de dimension < n — 2, elles ne peuvent être que des

points fixes, car il n'y a pas de sous-groupe de 80(n — 1) de dimension
supérieure à celle de 80(n — 2), qui contienne SO(n — 2) et qui soit différent

de 80{n — 1); la réunion R des orbites régulières M et la réunion S
des points fixes forment ainsi une décomposition de En en deux sous-espaces
homéomorphes à E2 X M et à Et, donc JB a même homologie mod 2 que
tout complémentaire dans En d'un homéomorphe à Ex d'après le théorème
de dualité d'ALEXANDEB, ce qui entraîne M Sn_2 puisque le complémentaire

d'une droite de En est un produit E2 x Sn_2 qui n'a pas la même homologie

que E2 X Pn_2 pour n > 3. Ceci ramène à b pour n > 3. Pour
n 3, il n'y a rien à démontrer.

2. L'hypothèse du théorème b que les orbites singulières de (G,En) sont
des points fixes est peut-être superflue, mais nous n'avons pas pu le prouver
en général. Toutefois, si Ton suppose que les orbites singulières du groupe de
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transformations (C?, 8) induit sur S par (G, En) sont en nombre fini, alors 8
ne contient que des points fixes ; autrement dit :

Théorème c. Si (G, En) a des orbites Sn__2 >
Ie complémentaire 8 En — R

de leur réunion R est ou bien formé de points fixes, ou bien les orbites singulières
de (G y 8) sont en nombre infini.

Le théorème c sera une conséquence de cet autre

Théorème d. Soit généralement (G, En) un groupe de transformations de

En (G est un groupe de Lie compact, connexe) possédant des orbites de dimen-

sion n — 2, et soit 8 l'espace compact qu'on obtient en adjoignant un point
à la réunion S des orbites singulières de (G, En). Appelons m la dimension
maximum des orbites du groupe de transformations (G, S) induit sur S (m est
inférieur à n — 2) et Q la réunion des orbites de dimension m de 8. Si une
composante connexe Qo de Q est telle que le groupe de transformations (G, Qo)

induit sur Qo n'ait qu'un nombre fini d'orbites singulières, le groupe d'homo-
v /S.

logie de Cech Hm+1(8), à coefficients dans le groupe des nombres réels mo-
dulo 1, est non nul.

Remplaçons le groupe de transformations (G, En) par (G, 8n), qu'on
obtient en posant que Caun point fixe sur 8n et opère sur le complémentaire
En de ce point comme dans (G, En). Les orbites singulières de (G, 8n) ont
ainsi S pour réunion.

Il n'y a rien à démontrer si m est nul, supposons donc m non nul.
Comme le sous-groupe d'isotropie d'une orbite de dimension m contient des

sous-groupes conjugués aux sous-groupes d'isotropie des orbites assez
voisines, celles-ci sont aussi de dimension maximum m. Les orbites d# dimension

/v —
m de S forment donc un ouvert Q. Soit QQ — QQ la frontière de l'une des

composantes connexes Qo de Q. Cette frontière comprend deux orbites Ox, O2,

éventuellement confondues, de dimension inférieure à m. Je dis que Hm+1(Q0)
est ^0.

Appelons O'19O'2, Orf les orbites singulières, en nombre fini par
hypothèse, de Qo: ce sont des orbites de dimension m. Soit F l'ensemble fermé de
/s. —
8 réunion de 0x, O2 et des 0\, et soit U Qo — F. F comprend r + 2

variétés disjointes ou r + 1 seulement, suivant que Ox ^ O2 ou Ox O2,
dont r sont de dimension m, et deux ou une de dimension inférieure à m.
U est réunion de r + 1 variétés disjointes également, chacune homéomorphe
au produit d'un intervalle ouvert par une orbite de dimension m. Donc Hm(F)
est la somme directe de r groupes, isomorphes au groupe des nombres réels
modulo 1 ou au groupe des entiers modulo 2 suivant que l'orbite correspon-
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dante est une variété orientable ou non. De même Hm+1 U) Hm+1 (Qo mod F)
est la somme directe de r + 1 groupes isomorphes au groupe des nombres

réels modulo 1 ou au groupe des entiers modulo 2. Comme la dimension de S

est au plus m + 1> on a la suite exacte O -> Hm+1(Q0) -+Hm+1(U) -+Hm(F),
qui montre que Hm+l(Q0) O entraînerait Hm+1(U) c Hm(F), ce qui est

/\ — — /\
impossible. Une autre suite exacte O Hm+2(8 — Qo) ->Hm+1(Q0) ->Hm+1(8)

montre que Hm+1(Q0) c Hm+1(8), et ce dernier est non nul. Ainsi d est
démontré.

Supposons maintenant que les orbites régulières de (G, 8n) sont des sphères
/s. /\

Sn_2 et que (0,8) ne possède qu'un nombre fini d'orbites singulières. 8 est
le complémentaire dans 8n d'un produit E2 X Sn_2 et a donc la même homo-

logie que tout complémentaire dans 8n d'un tel produit, d'après le théorème
de dualité (TAlexander. Comme il existe une décomposition de 8n en un
produit E2 x $n__2 ^ un cercle (considérer précisément le groupe linéaire

(O y 8n) dont les orbites régulières sont des sphères 8n_2), 8 a l'homologie d'un
/s.

cercle. D'après d on a m O, les orbites de (G, 8) sont des points fixes,
et ceci démontre c.
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