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Groupes de Lie compacts de transformations de P’espace
euclidien et les sphéres comme espaces homogénes

par JEAN PoONCET, Zurich

1. Introduection

C’est un probléme ouvert de savoir ce qui caractérise topologiquement les
groupes de transformations linéaires parmi les groupes de LIt compacts de
transformations de I’espace euclidien E, . Les résultats les plus complets dans
ce sens, pour les petites dimensions, ont été énoncés par MONTGOMERY et
Z1PPIN et prennent une signification particuliére pour les fondements de la
géométrie en termes de groupes de congruences (voir [7], chap. VI): un groupe
compact opérant sur E,, n < 3, — on démontre d’abord qu’il est de Lie —
est équivalent topologiquement & un groupe orthogonal si I’on suppose seule-
ment qu’il est connexe. Si G n’est pas connexe, il n’opére pas nécessairement
linéairement sur K,, comme le montre un exemple de Bing [1] d’une trans-
formation involutive de E; qui posséde des points fixes et qui n’est différen-
tiable, & plus forte raison linéaire, pour aucune structure différentiable de Ej.
Si n> 3, la connexion de G ne suffit plus pour qu’il soit équivalent & un
groupe compact de LIk de transformations différentiables de E,: [8] donne
un exemple de groupe isomorphe & SO(2), le groupe des rotations de E,, qui
opere sur E, et qui n’est différentiable pour aucune structure différentiable
de E,. Il s’ensuit que pour » > 3 d’autres conditions topologiques que la
connexion et la compacité de @ seront nécessaires pour qu’il soit’linéaire sur
E, . Dans ce qui suit, nous montrons que @ est linéaire sur &, si G est compact
et connexe et 8’il existe au moins une orbite de dimension » — 1, ou, sous
les mémes hypothéses pour @, si les orbites de E, sont des sphéres S,_, et
des points fixes. Nous utiliserons pour cela les résultats de [7] et de [9]. De
plus G opére aussi linéairement s’il est isomorphe & SO(n — 1) et §’il existe
des orbites de dimension »n — 2.

Dans [7], MoNTGOMERY et ZIPPIN étudient les groupes compacts et connexes
de transformations de E, sous I’hypothése qu’il existe une orbite de dimen-
sion n — 1. Ils montrent que toutes les orbites sauf un point fixe sont de
dimension n — 1, qu’elles possédent le méme groupe d’isotropie et sont donc
homéomorphes entre elles. En outre, les orbites de dimension n — 1 ont
méme homologie entiére qu’une sphére 8, ;. Comme une orbite (n — 1)-
dimensionnelle d’un espace n-dimensionnel localement euclidien est locale-
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ment connexe ([7], chap. VI, corollaire de la p.248) et qu’un groupe com-
pact et effectif de transformations d’un tel espace est de LIE si ses orbites sont
localement connexes ([7], chap. VI, Th. 1, p. 244), @ est de Lie. La struc-
ture de E, comme espace de transformations de G est assez simple puisque le
complémentaire du point fixe est un espace fibré trivialement en orbites, d’ou
Pexistence d’un rayon qui est une section pour toutes les orbites. Tout ceci
fait conjecturer que G' opére linéairement sur £,, ce que nous démontrerons
en utilisant un théoréme de A. BorReL ([2] et non publié; voir aussi [3]),
d’apreés lequel les orbites de dimension » — 1, ayant méme homologie en-
tiére que des spheéres S,_; et étant simplement connexes pour n — 1> 1
(pour n — 1 =1 il n’y a rien & démontrer), sont nécessairement des spheéres
8,._1. Ceci pourrait étre établi sans considérations d’homologie si I’on supposait
que G opére différentiablement. En effet, d’aprés le théoréme de BocHNER
([7], chap. V), G agit alors linéairement dans un voisinage invariant du point
fixe; les orbites de ce voisinage sont sur des spheres §,_, et doivent se con-
fondre avec ces spheres si elles sont de dimension » — 1. Cela est vrai globale-
ment puisque les orbites différentes du point fixe sont des espaces homogénes
isomorphes.

Dans [9] MONTGOMERY, SAMELSON, YANG montrent que G' compact, con-
nexe, de LiE, est équivalent, comme groupe de transformations de E,, & un
groupe linéaire s’il existe des orbites de dimension n — 2 et si les transfor-
mations de G sont différentiables une fois sur E, . Une partie de leur raisonne-
ment n’utilise pas 'hypothése de différentiabilité et montre que les orbites
de dimension n — 2 ont méme groupe d’isotropie, leur réunion R est un
ouvert dense dans K, , ’espace quotient E,/G est homéomorphe & une cellule
8 deux dimensions diminuée d’un point frontiére, I’intérieur homéomorphe a
E, et la frontiére homéomorphe & E, étant respectivement R/G et S/G, S
désignant le complémentaire de R dans E,. Ceci nous permet de démontrer
sans hypotheses de différentiabilité que G opére linéairement si ses orbites
sont des spheres S,_, et des points fixes, et aussi, sans hypothéses sur les
orbites de dimension n — 2, si @ est isomorphe &4 SO(n — 1).

Il n’est pas impossible que seule l'existence d’orbites S,_, soit suffisante
pour que @ soit linéaire; nous comptons reprendre la question ailleurs. Toute-
fois nous montrons par des considérations d’homologie que le complémen-
taire S de la réunion des orbites S,,_, se réduit & des points fixes s’il ne posséde
qu’un nombre fini de «singularités».

Le théoréeme cité de MoNTGOMERY et ZIPPIN sur les groupes compacts et
connexes qui opérent sur E,,n < 3, est une conséquence immédiate des
deux premiers résultats de ce travail.

Je remercie ici Monsieur A. BoreL pour les conseils qu’il m’a donnés.
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2. Les sphéres comme espaces homogénes

Nous allons vérifier qu’'un groupe compact, connexe et transitif sur S,
opére sur S, comme un sous-groupe de rotations, autrement dit qu’un tel
groupe, rendu effectif, est un sous-groupe de SO(n + 1) opérant naturelle-
ment sur §,. Ceci est évident pour les groupes classiques, mais 1’est moins
pour les groupes non classiques transitifs sur une sphere.

Si G est compact, transitif et effectif sur S,, il est de Lie ([7], chap. VI,
Th. 1, p. 244). On a alors le théoreme suivant (voir [10]):

Si » est pair, @ est simple. Si n est impair, G est de la forme (H x K)/N,
ou N est un sous-groupe invariant fini de H XK, H un groupe simple qui
est transitif sur 8, comme sous-groupe de H x K; K est soit réduit & 'unité,
soit SO(2), soit le groupe Sp(1).

Supposons d’abord n pair. D’apres A. BoreL [3], G doit étre localement
isomorphe & SO(n + 1), & une exception prés: pour n = 6, @ peut étre
encore (,, groupe exceptionnel de la classification de KiLring-CARTAN qu’on
peut représenter par les automorphismes de I'algébre de CAYLEY et qui est
transitif sur la sphére Sg = G,/4, des nombres imaginaires de CAYyLEY de
norme un. G' opére comme un sous-groupe de rotations de Sg puisqu’il con-
serve la norme. Cela est aussi évident si G est localement isomorphe a
SO(n + 1), car les transformations assez rapprochées de 'unité laissent in-
variante la métrique naturelle de RIEMANN sur S,,, et celle-la seulement, elles
sont donc des rotations de S,. Il en est de méme de toute transformation de
G, qui est engendré par tout voisinage de I'unité.

Pour n impair supposons d’abord G simple. D’apres A. BOREL encore [4],
G est ou bien un groupe classique transitif sur S, comme un sousgroupe de
rotations, ou bien est isomorphe & l'un des groupes Spin(7) et Spin(9)
transitifs respectivement sur Spin (7)/G,=2S, et Spin(9)/Spin(7)=8,;. Pour
vérifier que Spin(7) et Spin(9) opérent comme des sous-groupes de rota-
tions sur §, respectivement S,;, nous établirons d’abord que le premier ne con-
tient qu'une classe de sous-groupes conjugés G, et le second qu’une classe de
sous-groupes conjugés Spin(7) tels que les quotients correspondants soient
des spheres S, et S,;.

Commengons par Spin(9).

Comme le centre de SO(9) se réduit & 1'unité, celui de Spin(9) ne peut
étre que d’ordre deux. De méme le centre de Spin(7) est d’ordre deux. Un
sous-groupe isomorphe & Spin(7) de Spin(9) ne peut pas contenir le centre
de Spin(9) si I'espace homogéne correspondant est S,;. Sinon on aurait
80(9)/80(7) = 8,5, ce qui est impossible puisque SO(9) n’est transitif que
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sur S3. L’image d’un tel sous-groupe Spin(7) dans le quotient SO (9) de
Spin(9) par son centre est donc isomorphe & Spin (7).

Les représentations linéaires irréductibles de Spin(7), c’est-a-dire les re-
présentations bivalentes de SO(7), sont de degré 8 ou supérieur & 9 comme
le montre la formule de WEYL ([12], p. 349). On déduit de cela qu’une re-
présentation fidéle du groupe Spin (7) dans SO(9) doit étre réductible et
laisser fixe un sous-espace & une dimension complexe de I’espace complexe &
9 dimensions. La valeur propre correspondante doit étre 1 et le vecteur propre
correspondant peut étre choisi réel. Mais ceci signifie simplement que tout
sous-groupe Spin(7) de SO(9) est conjugué par un automorphisme intérieur
de SO(9) & un sous-groupe de la représentation somme 1 4 SO(8).

Dans SO(8), deux représentations de Spin(7) étant irréductibles doivent
étre conjuguées par une transformation de O(8); dans 1 4 SO(8) deux
telles représentations sont donc conjuguées par une transformationde 14+ O(8),
c’est-a-dire de 0(9). Ceci est un cas particulier d’un fait général connu de la
théorie des représentations linéaires : si deux représentations irréductibles d’un
groupe compact ont des images dans SO(n) qui sont équivalentes par une
transformation de GL(n, C), elles le sont aussi par une transformation de
O(n). Mais comme tout automorphisme intérieur de O(9) induit un auto-
morphisme intérieur de SO(9), on voit que deux sous-groupes Spin (7) de
1 + SO(8) sont conjugués par un automorphisme intérieur de SO (9).

En définitive deux sous-groupes Spin(7) de SO(9) sont conjugués par un
automorphisme intérieur. En remontant a Spin(9), on a finalement que
deux sous-groupes Spin(7) de Spin(9) qui ne contiennent pas le centre
sont conjugués par un automorphisme intérieur et ceci démontre qu’il n’y a
qu'une classe de sous-groupes Spin(7) conjugués dans Spin (9) par les
automorphismes intérieurs et tels que Spin(9)/Spin(7) = Sy;.

Par un raisonnement analogue au précédent, on montre que les sous-groupes
G, de S80(7) sont conjugués par les automorphismes intérieurs de SO (7) en
s’appuyant sur le fait qu’une représentation irréductible non triviale de G,
de degré au plus égal & 7 est nécessairement de degré 7 et déterminée & une
équivalence pres, et de 13, en remontant & Spin(7), que les sous-groupes G,
de Spin(7) tels que Spin(7)/G, = 8; sont conjugués par les automorphis-
mes intérieurs de Spin (7).

On peut maintenant vérifier que Spin(7) et Spin(9) opeérent sur 8,
respectivement §,; comme des groupes de rotations de ces spheres.

Sptn(7) a une représentation fidéle, unitaire unimodulaire qui opére sur
Pespace des spineurs de E,; c’est un espace vectoriel complexe & 8 dimen-
sions. Spin(7) posséde ainsi une représentation orthogonale fidéle de degré
16. Mais il existe dans 1’espace des spineurs de £, une involution ([5], pp. 30
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et 31) qui commute avec les opérations de Spin(7). Les spineurs qui sont
fixes par cette involution, appelés réels par E. CArTAN, forment un sous-
espace réel de dimension 8 de ’espace des spineurs. Il s’ensuit que la représen-
tation de Spin (7) dans SO(16) est réductible et équivalente & la somme de
deux représentations de degré 8. On voit alors que I'une de ces représentations
est fidéle et précisément transitive sur les spineurs réels de norme hermitienne
égale a 1, qui forment une sphére §,.

De méme on verra que Spin (9) opére sur 8;; comme un groupe de rota-
tions de cette sphére. Les spineurs de 1’espace E, forment un espace vectoriel
complexe & 16 dimensions, ou un espace réel & 32 dimensions. Il existe aussi
une involution comme précédemment, et les spineurs fixes par cette involu-
tion qui sont de norme hermitienne égale & 1 forment une sphere 8,5, sur la-
quelle est transitive, comme groupe de rotations, une représentation ortho-
gonale fidele, de degré 16, de Spin(9).

Reste & examiner, pour n impair, le cas ou G n’est pas simple et de la forme
(H x K)|N, H étant simple et transitif sur S,. Il suffira de montrer que
G* = H x K, qui est localement isomorphe & G, opére sur S, comme un
groupe de rotations.

G* opére comme un groupe de rotations de S, s’il laisse invariante la mé-
trique riemannienne naturelle de 8,,. Nous savons déja que H laisse invariante
la métrique naturelle de S, ; mais il n’est pas évident qu’il doit en étre ainsi
pour G* = H x K. Si généralement H,/h, = Hylh,, H, € H,, h, C h,,
les métriques de RiEMANN de H,/h, invariantes par H, (il peut y en avoir
plusieurs) ne le sont pas nécessairement par H,. Ainsi Sp(1) €80 (4) laisse
invariante toute métrique de RIEMANN sur son homéomorphe S; obtenue par
transport dans Sp(1l) d’une forme quadratique définie positive sur ’espace
tangent en 1’élément neutre, alors que la seule métrique de RIEMANN de S,
qui soit invariante par SO (4) est la métrique naturelle.

Généralement, une métrique riemannienne invariante sur H/h, ou H est
compact et de Lig, se définit par transport dans H/h d’une forme quadratique
définie positive, invariante par h sur ’espace tangent en un point de H/h
stable par & [6].

Plus précisément, soient p la projection x — zh, p' sa différentielle en
I’élément neutre e. Appelons ' la représentation linéaire de h qui opére sur
I’espace tangent au point eh de H/h. Deux vecteurs tangents en eh transfor-
més I'un dans l'autre par 'image a’ € b’ de a C h sont images par p' de
deux vecteurs tangents en e transformés 'un dans l'autre par ada, c’est-a-
dire p'oada = a’o p’. Ainsi une forme définie positive sur 1’espace tangent
en eh, invariante par k', peut étre considérée comme une forme sur ’algebre
de Lie L(H) qui est invariante par adh, constante sur chaque classe o + L(h)

8 Commentarii Mathematici Helvetici
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et définie positive sur un supplémentaire de L (k) dans L(H) qui est invariant
par adh; et réciproquement. Une métrique de RIEMANN invariante sur H/h
ne dépend donc que de la donnée d’une telle forme sur L(H).

Faisons ici une remarque que nous utiliserons dans la suite. Supposons que
le sous-groupe H de G soit transitif sur les classes xzg, autrement dit G/g =
H|h, h = H ~ g. Tout vecteur tangent en eg est projection d’un vecteur qui
appartient & un supplémentaire, invariant par adh, de L (k) dans L(H). Sup-
posons donnée sur ce supplémentaire une forme quadratique définie positive
et invariante par adh, a laquelle correspond donc une métrique riemannienne
invariante par H sur H/h. Alors si ce supplémentaire et cette forme sont
aussi invariants par adg, cette métrique sur H/h = G/g est invariante par G.

Revenons au groupe simple H qui opére sur 8, = H/h comme un sous-
groupe de rotations. H est localement isomorphe & un sous-groupe de
SO(n + 1), h est localement isomorphe & un sous-groupe de SO(n), et
on a L(H)yc L(SO(n+ 1)), L)< L(SO(n)), adH < adSO(n + 1),
adh < adSO(n).

D(X) désignant une forme définie positive sur L(SO(n + 1)), soit L le
sous-espace orthogonal a L(SO(n)) relativement & D(X). L est un sup-
plémentaire de L(SO(n)). Soit E(X) la restriction de D(X) & L. Si D(X)
est invariante par adSO(n + 1), L et E(X) sont invariants par adSO(n),
et il correspond & E (X) un ds? invariant par SO(n + 1) sur S, = SO(n + 1)/
SO(n) qui ne peut étre que le ds? naturel. Cela étant, soient L' = L ~ L(H)
et E’'(X) la restriction de E(X) & L'. L' est un supplémentaire de L(h)
dans L(H) qui est invariant par adh et E'(X) définit aussi le ds? naturel de
S, = H/h. Notons que L' et E'(X) sont invariants par adN,, N, désignant
le normalisateur de A dans H.

Soit maintenant g* le sous-groupe de G* = H x K tel que G*/g* = §,,.
Ona h xe =H x e ng* (¢ est 'élément neutre de K). On peut identi-
fier L' & un sous-espace de L(H X e') supplémentaire de L(h X e'). Il est
alors évident que adg* laisse invariants L' et E'(X). Car appelons s X ¢
(8 € H,t < K) un élément de g*. Comme ¢ commute avec H x ¢, il suf-
fit de vérifier que L’ et E’(X) sont invariants par ads ou encore que s est
dans N,. Soit u C h; ona (s Xt)(u X €)(s Xt)! = (sus™1!) X e C g*,
donc sus~! € h ou 8 € N,. D’aprés la remarque faite plus haut il suit de
ce que L' et B’ (X) sont invariants par adg* que le ds? naturel est invariant
par G*.

3. Le cas ou il existe des orbites de dimension » —1 dans E,

Nous désignerons généralement par (G, E) un groupe G de transformations
de I’espace E. G est un groupe topologique, qui dans la suite sera toujours
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supposé compact, de Lig, E est un espace topologique localement compact.
Si g est dans ¢, x dans E, le transformé g(x), que nous noterons aussi gz,
doit &tre par définition une fonction continue sur le produit G x E, & va-
leurs dans £.

Si (@', E') est un autre groupe de transformations, une application conti-
nue ¢@(x) de E dans E’ et un homomorphisme A:S —hg de G dans G’
seront dits définir une représentation de (G, E) dans (G', E') lorsque
¢(Sxz) = hgp(x); @(x) transforme ainsi les orbites de (@, E) en orbites de
(h(G), p(E)), h(Q) désignant I'image par h de @ dans G'. Si ¢ est un homéo-
morphisme de £ sur @(F) et h un isomorphisme de G sur A(Q), (G, E) et
(R (@), ¢(E)) seront dits isomorphes.

Soient f(x) une fonction réelle continue sur E, hg une représentation
orthogonale du groupe G compact connexe, y(S) un vecteur réel tel que
y(8T) = hgy(T) pour S, T dans G ; alors hg et ¢(x j'f(Sx —1)dS, ou

dS est ’élément d’une mesure invariante sur G, deﬁmssent une representa'cion
de (G, E) dans (SO(n), E,),n étant le nombre de composantes de ¢(S).

Si (G, E,) a des orbites de dimension n — 1, on sait, d’aprés ce qui a été
rappelé dans 'introduction, que G est de LIE, que toutes les orbites, & part un
seul point fixe p, sont des sphéres S,_; et forment une méme classe. 1l existe
de plus un rayon de E, qui est une section globale et que nous désignerons
par 2. Je dis que (G, E,) est isomorphe & un groupe de transformations
linéaires de E,. Ceci peut étre établi facilement si I’on montre d’abord qu’il
existe une section X' telle que le sous-groupe de stabilité de ses points soit
constant. Mais on peut aussi procéder de la maniére suivante.

D’apres ce qui vient d’étre démontré sous 2, G opére sur chaque orbite
S,_, comme un sous-groupe de rotations. Si @ est eﬁectlf onaun 1somorphlsme
hg de G dans SO(n). Nous noterons simplement par S la matrice orthogonale
hg et par y(8) I'une des colonnes de cette matrice. On a y (ST) = Sy(T).

Soit I' le sous-groupe de stabilité de y (E), E étant la matrice unité de
degré n: y(S) est constante sur chaque classe & gauche X I'. Il existe un
voisinage de 'unité V = V-1, invariant par les automorphismes intérieurs
de @, assez petit pour que I’'une au moins des composantes de y(S) conserve
le méme signesur VI'=1IV.

Le sous-groupe de stabilité @, d’un point a différent du point fixe p est
conjugué & I': il existe une transformation M, de @ telle que M, I’ M;! = G,
et I’on peut supposer que M, varie continiment avec a. X' étant une section
quelconque, soient b sur X' et « sur G(b). Choisissons une fonction h(x) dé-
finie de la maniére suivante: elle est positive et continue sur V(X), nulle sur
E, — V(X); sa restriction & V (b) est constante, h(d) croit de O & oo lorsque
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b varie sur X' & partir de p. Supposant toujours x sur ’orbite G'(b), on voit
maintenant facilement que le vecteur ¢(x) égal & (h(M,SM;'z) M,y (S-1)dS
@

pour x = p, nul pour xz = p, et la représentation orthogonale de @ donnée
définissent un isomorphisme de (G, E,) sur un groupe de transformations
linéaires de E,. Comme ¢(Tz) = T¢(x), il suffit de vérifier que ¢(z) est
un homéomorphisme.

Le support de h(M,SM;'b) comme fonction positive de S est VI =TIV,
et une composante au moins de y(S-!) y conserve un méme signe. Donc
@(b) est un vecteur non nul. On a aussi ¢(b) = h(b)M, | y(S-1)dS, donc la

vr

longueur de @(b) est proportionnelle & A(b). Si z = Xb parcourt la sphére
G(b), p(x) = X¢(b) parcourt une sphere S,_, centrée & I'origine de E,. Le
sous-groupe @, des rotations de G qui laissent b C G (b) fixe est conjugué au
sous-groupe @, des rotations de G qui laissent ¢ (b) C @ (G (b)) fixe, ce qui
entraine par l'inclusion évidente G, C G, que G, = G ,;, et @(x) est
biunivoque sur la sphére G (b). Mais comme le rayon de la sphére ¢ (G (b))
est proportionnel & A(b), ¢(x) est finalement une application biunivoque de
E, sur E,, c’est donc un homéomorphisme en vertu du théoréme de I'in-
variance du domaine.
Ceci démontre le

Théoréme a. Si G est compact et connexe et st (G, E,) a une orbite de dimen-
sion n —1, @ opére linéairement sur E,,.

4. Le cas des orbites de dimension » — 2 dans E,

Soit (@, E) un groupe de transformations, ou @ est un groupe compact de
Lie, E un espace dont nous pouvons d’abord supposer qu’il est de HAUSDORFF
pour les définitions que nous allons donner, mais qui sera ensuite localement
compact.

En général, si le point x de E est assez rapproché de a, le sous-groupe de
stabilité G, est conjugué & un sous-groupe de G, ([7], chap. V). Nous appelle-
rons une orbite G (a) réguliére si, pour tout point x assez rapproché de G(a),
G, est conjugué & G, ce qui revient & dire que toute orbite assez proche de
G (a) est dans la méme classe que G'(a). Si au contraire tout voisinage de G (a)
contient un point x tel que @, soit conjugué & un sous-groupe propre de G,
G(a) sera dite singuliére. On montre facilement que la réunion des orbites
réguliéres est un ouvert dense dans E. Enfin 'existence de sections locales
sur les orbites réguliéres ([7], chap. V) fait de tout sous-espace connexe ré-
union d’orbites réguliéres un espace fibré en orbites.
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Dans (9), MONTGOMERY, SAMELSON et YANG ont montré, sans hypothése de
différentiabilité, que si (G, E,) a des orbites de dimension n — 2, celles-ci
ont méme groupe d’isotropie, leur réunion R est un ouvert dans E,; elles
sont donc réguliéres. Le complémentaire S de R est de dimension au plus
égale & n — 2, donc R est dense dans £, toute orbite de S est singuliére et
de dimension strictement inférieure & n — 2. R/G est homéomorphe & E,,
donc I'espace R fibré en orbites est trivial. Il existe ainsi une section o des
orbites de R. S/G est homéomorphe a E,; c’est la frontiére de £, /@, qui est
homéomorphe & une cellule & deux dimensions diminuée d’un point frontiére.

Nous allons démontrer le

Théoréme b. Stv les orbites de (G, E,) sont des sphéres S, _, et des points
fixzes, G opére linéairement sur E,, .

Si G est effectif sur E,, il 'est aussi sur chaque orbite réguliere S, ,. Il
possede alors une représentation fideéle, transitive sur S,_,, dans le groupe
SO(n — 1). Soient y(S), I', V définis de la méme maniére que précédem-
ment sous 3. Soit X la fermeture de la section ¢ dans E,. X est une section
de E,. Prenons maintenant deux fonctions q(zx), r(x), réelles, définies sur
E,, constantes sur les orbites, donc définies sur E, /G, et telles que la paire
(¢(x), r(x)) soit un homéomorphisme de E,/G sur un demi-plan fermé par
une droite £;. Nous supposerons que r(x) est strictement positive sur R et
nulle sur S, que la restriction de g(x) & S est un homéomorphisme sur la
droite K, .

Appelons k(z) une fonction continue sur V(X), nulle sur E, — V(X),
définie sur V (X) de la maniére suivante: b étant un point de X, elle est cons-
tante et égale & r(b) sur V(b). Soit ¢(x) un vecteur & n — 1 cdmposantes,
nul sur S et égal &  h(M,T My'z)M,y(T-Y)dT pour z sur I'orbite réguliére

¢

G (b) par un point b de o, M, étant une transformation orthogonale de G qui
varie continiment sur o et telle que M, I'M;'! = @,. On a ¢(Uz) = Ugp(z)
pour tout U de G, et ¢(x) est une application continue de E, sur K, ,, bi-
univoque sur chaque orbite, qui applique S sur l'origine de K, , et chaque
orbite réguliére G/(b) sur une spheére S,_, centrée a l'origine, de rayon pro-
portionnel & r(b). On a ainsi représenté (G, E,) sur un groupe de transforma-
tions orthogonales (G, E,_,). Enfin si I'on définit un vecteur y(x) de E, en
prenant g(x) pour I’'une de ses composantes et celles de ¢(x) pour les n — 1
autres, il applique biunivoquement E, sur E,; c’est donc un homéomorphisme
qui rend (@, E,) isomorphe & un groupe de transformations orthogonales de
E, laissant un axe fixe.
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b. Remarques sur le cas des orbites de dimension » —2 dans £,

1. Dans la note [11], nous avons annoncé un résultat équivalent au suivant:
(G, E,) est un groupe de transformations linéaires s’il existe des orbites de
dimension n — 2 et si G est effectif et isomorphe & SO(n — 1).

Montrons que ceci se ramene au théoréme b, autrement dit que les orbites
de dimension n — 2 sont des sphéres et les autres des points fixes.

Comme les orbites de dimension 7 — 2 sont réguliéres et forment une
seule classe d’orbites de réunion dense dans E,, @ doit étre effectif sur chaque
orbite de dimension n — 2. Soit M = G/H 1'une de ces orbites. H est
aussi effectif et a une représentation orthogonale de degré n — 2 qui opére
sur I’espace tangent en un point @ de M fixe par H. Cette représentation est
fidele; sinon il y aurait un sous-groupe non trivial de H qui laisserait fixe
toute géodésique par a d’une métrique de RIEMANN invariante par G, ce qui
est impossible si H est effectif. H est donc isomorphe & un sous-groupe de
O(n — 2); étant de méme dimension que O(n — 2), ce ne peut étre que
O(n — 2) ou SO(n — 2). Mais il n’existe dans SO(n — 1) qu’une classe
de sous-groupes isomorphes au groupe SO(n — 2), conjugués par les trans-
formations de O(n — 1). Le calcul des plus petits degrés des représentations
fideles irréductibles de SO(n — 2) montre en effet ([12], p. 349) qu’une re-
présentation fidéle de degré =n — 1 de ce groupe est équivalente &
1+ 80(n — 2). Il s’ensuit immédiatement qu’un sous-groupe O(n — 2)
de O(n — 1) est équivalent & la réunion de 14 SO(n —2) et de
(— 1)+ 4. SO(n — 2), ou 4 est une matrice orthogonale de degré n — 2
et de déterminant — 1. L’orbite M est ainsi un espace projectif P,_, ou
une sphére S,_,. Mais seul le dernier cas est possible. En effet, comme les
orbites singuliéres sont de dimension < n — 2, elles ne peuvent étre que des
points fixes, car il n’y a pas de sous-groupe de SO(rn — 1) de dimension
supérieure & celle de SO(n — 2), qui contienne SO(n — 2) et qui soit diffé-
rent de SO(n — 1); la réunion R des orbites régulieres M et la réunion S
des points fixes forment ainsi une décomposition de E, en deux sous-espaces
homéomorphes & E, x M et & E,, donc R a méme homologie mod 2 que
tout complémentaire dans E, d’'un homéomorphe & E; d’aprés le théoréeme
de dualité d’ALEXANDER, ce qui entraine M = §,_, puisque le complémen-
taire d’'une droite de K, est un produit E, x S,_, qui n’a pas la méme homo-
logie que E, x P,_, pour n>3. Ceci raméne &4 b pour n>3. Pour
n = 3, il n’y a rien & démontrer.

2. L’hypothése du théoréme b que les orbites singulieres de (G, E,) sont
des points fixes est peut-étre superflue, mais nous n’avons pas pu le prouver
en général. Toutefois, si I’on suppose que les orbites singuliéres du groupe de
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transformations (G, 8) induit sur 8 par (G, E,) sont en nombre fini, alors S
ne contient que des points fixes; autrement dit:

Théoréme ¢. Si (G, E,) a des orbites S, _,, le complémentaire S = E, — R
de leur réunion R est ou bien formé de points fixes, ou bien les orbites singuliéres
de (@, S) sont en nombre infine.

Le théoréme c sera une conséquence de cet autre

Théoréme d. Soit généralement (G, E,) un groupe de transformations de
E, (G est un groupe de LIE compact, connexe) possédant des orbites de dimen-

sion n — 2, et soit S Pespace compact qu’on obtient en adjoignant un point
a la réunion S des orbites singuliéres de (G, E,). Appelons m la dimension
maximum des orbites du groupe de transformations (@, S) induit sur S (m est
inférieur &4 n — 2) et Q la réunion des orbites de dimension m de 8. Si une
composante connexe £2, de 2 est telle que le groupe de transformations (G, Q)
induit sur £, n’ait qu’un nombre fini d’orbites singuliéres, le groupe d’homo-
logie de Cecr H il (§), a coefficients dans le groupe des nombres réels mo-
dulo 1, est non nul.

Remplacons le groupe de transformations (@, E,) par (@, S,), qu’on ob-
tient en posant que G a un point fixe sur S, et opére sur le complémentaire
E, de ce point comme dans (@, E,). Les orbites singuliéres de (@, S,) ont
ainsi S pour réunion.

Il n’y a rien & démontrer si m est nul, supposons donc m non nul.

Comme le sous-groupe d’isotropie d’une orbite de dimension m contient des
sous-groupes conjugués aux sous-groupes d’isotropie des orbites assez voi-
sines, celles-ci sont aussi de dimension maximum m. Les orbites de dimension

/N —
m de S forment donc un ouvert 2. Soit 2, — 2, la frontiére de 1'une des
composantes connexes £, de 2. Cette frontiére comprend deux orbites O,, O,,

éventuellement confondues, de dimension inférieure & m. Je dis que H,,,, (§o)
est £0.

Appelons 0f, 0;, ...0O, les orbites singuliéres, en nombre fini par hypo-
these, de £,: ce sont des orbites de dimension m. Soit F ’ensemble fermé de

S réunion de 0,,0, et des 0, et soit U — @, — F. F comprend r -+ 2
variétés disjointes ou 7 + 1 seulement, suivant que O, £ 0, ou 0, = 0,,
dont r sont de dimension m, et deux ou une de dimension inférieure & m.
U est réunion de r + 1 variétés disjointes également, chacune homéomorphe
au produit d’un intervalle ouvert par une orbite de dimension m . Donc H,,(F)
est la somme directe de r groupes, isomorphes au groupe des nombres réels
modulo 1 ou au groupe des entiers modulo 2 suivant que l’orbite correspon-
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dante est une variété orientable ou non. De méme H,, . ,(U) =H,,, (ﬁo mod F')
est la somme directe de r 4+ 1 groupes isomorphes au groupe des nombres

réels modulo 1 ou au groupe des entiers modulo 2. Comme la dimension de S
est au plus m + 1, on a la suite exacte O — Hm+1([§;) - H, . ,(U)—>H,(F),
qui montre que Hm+1(!20) = 0 entrainerait Hm+1(U ) € H,(F), ce qui est
impossible. Une autre suite exacte O=H m+2(S .Qo) -H, ., (.Qo) —H, ., (S)

montre que H, ., (.Qo) CH,. (S), et ce dernier est non nul. Ainsi d est dé-
montré.

Supposons maintenant que les orbites réguliéres de (@, S,) sont des sphéres

S,_. et que (G, §) ne posséde qu’un nombre fini d’orbites singulieres. S est
le complémentaire dans S, d’un produit E, x S,_, et a donc la méme homo-
logie que tout complémentaire dans S, d’un tel produit, d’apres le théoréme
de dualité d’ALEXANDER. Comme il existe une décomposition de S, en un
produit E, x S,_, et un cercle (considérer précisément le groupe linéaire

(@, 8,,) dont les orbites réguliéres sont des sphéres S,,_,), S a I’homologie d’un

cercle. D’aprés d on a m = O, les orbites de (@, g’) sont des points fixes,
et ceci démontre c.
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