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Uber die Normaltorsion von Flâchen
im vierdimensionalen euklidischen Raum

von Wai/ter Fâssler, Zurich

Einleitung

In der vorliegenden Arbeit untersuchen wir gewisse Eigenschaften zwei-
dimensionaler Flâchen des vierdimensionalen euklidischen Raumes. Schon
ôfters1) wurde darauf hingewiesen, daB bei zweidimensionalen Flâchen des

n-dimensionalen Raumes n — 2 Krummungen auftreten. Man spricht dann
(fur n > 3) von tordierten oder gewundenen Flâchen.

DaB bei zweidimensionalen Flâchen des vierdimensionalen Raumes eine
zweite Krûmmung auftritt, ersehen wir aus den folgenden Betrachtungen. Er-
weitert man die Kurventheorie vom zweidimensionalen auf den dreidimensio-
nalen Raum, so fuhrt man eine zweite Kriimmung, die Torsion, ein. Die Aus-
dehnung auf einen n-dimensionalen Raum bedingt die Einfûhrung von n — \
Krummungen. In der Flâchentheorie des dreidimensionalen Raumes wird der
Begriff der Kriimmung von Flâchen eingefuhrt. Man kann nun vermuten, daB
bei einer zweidimensionalen Flâche des vierdimensionalen Raumes eine zweite
Kriimmung auftreten wird.

Diesen Gedanken wollen wir etwas ausfûhrlicher verfolgen. In der gewôhn-
lichen Differentialgeometrie benutzt man den Begriff der Kurvenkrûmmung,
um die Krûmmung einer Flâche zu definieren. Um in einem bestimmten Punkt
der Flâche die Krûmmungsverhâltnisse zu untersuchen, legt man durch diesen
eine Ebene. Der Schnitt dieser Ebene mit der Tangentialebene ergibt im all-
gemeinen eine Gerade, die eine Richtung festlegt. Die Ebene schneidet, wenn
sie nicht mit der Tangentialebene zusammenfâllt, aus der Flâche eine ebene
Kurve. Dreht man die Ebene um ihre Schnittgerade mit der Tangentialebene,
so erhâlt man verschiedene Schnittkurven. Diejenige Kurve, welche durch den
senkrechten Schnitt erzeugt wird, hat die grôBte Kriimmung. Dièse Krummung
kann man als Normalkrûmmung der Flâche in der gegebenen Richtung
definieren. Der Satz von Meusnier zeigt den Zusammenhang mit der Krûmmung
der Kurven der anderen Schnitte. Wie die Normalkrûmmung in einem Punkt
von der Richtung abhângt, zeigt der EuLERsehe Satz der Flâchentheorie.

Âhnlich kônnen wir vorgehen, wenn wir zweidimensionale Flâchen im
vierdimensionalen Raum untersuchen. Der Einfachheit halber nennen wir drei-

*) Vgl. zum Beispiel Kiixing, S. 264, Finslbr, (2) S. 4.
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dimensionale Gebilde des vierdimensionalen Baumes Hyperflâchen und, wenn
sie eben sind, Hyperebenen. Die zweidimensionalen Gebilde nennen wir Flâchen
bzw. Ebenen. Eine gegebene Flàche kônnen wir mit einem ebenen Gebilde
schneiden. Der Schnitt mit einer Ebene ergibt im allgemeinen jedoch nur einen

Schnittpunkt, so da6 wir mit einer Hyperebene schneiden miissen, um eine
Schnittkurve zu erhalten. Da dièse Schnittkurve in einem dreidimensionalen
ebenen Raum liegt, so ist sie in der Regel gekrummt und tordiert.

Beschrânken wir uns vorerst auf die erste Krûmmung der Kurve, so gelan-
gen wir zur Krûmmungstheorie dieser Flâchen. Analog zur gewôhnlichen Flâ-
chentheorie existiert eine Verallgemeinerung des MEUSNiEBsehen Theorems.
Mit Hilfe dièses Satzes, oder durch den Normalschnitt kônnen wir die Normal-
krummung definieren. Zwischen den Normalkrximmungen der verschiedenen
Richtungen in einem Punkt gibt es âhnliche Zusammenhânge, wie sie in der
gewôhnlichen Flâchentheorie durch den Satz von Etjler gegeben werden2).
Mit diesen Sâtzen werden wir uns in dieser Arbeit nicht befassen.

Da die oben hergeleitete Schnittkurve im allgemeinen tordiert ist, liegt es

nahe, dièse Torsion fur die Définition der zweiten Krummung zu benutzen. Die
Torsion, die durch einen Normalschnitt erzeugt wurde, bezeichnen wir als
Normaltorsion der Flâche. Es besteht allerdings die Môglichkeit, die Normal-
torsion auf andere Art zu definieren3).

In den ersten vier Paragraphen beschrânken wir uns auf Untersuchungen
in einem bestimmten Punkt der Flâche und suchen durch geeignete Wahl des

Koordinatensystems zu einfachenFormeln zu gelangen und geometrischeEigen-
schaften zu finden, die nicht vom Koordinatensystem abhângen. Im ersten
Paragraphen leiten wir die Formeln fur die Berechnung der Normaltorsion her.

Gleichzeitig erhalten wir den Ausdruck fur die Normalkrummung. Dann wer-
fen wir die Frage auf, in wieviel Richtungen die Normaltorsion verschwindet.
Wir machen die Feststellung, daB in jedem Punkt einer Flâche des vierdimensionalen

Raumes die Normaltorsion in mindestens einer Richtung verschwindet.
An Hand von Beispielen zeigen wir im zweiten Paragraphen, daB die Normaltorsion

in zwei, drei, vier oder funf Richtungen verschwinden kann. Ist sie in
mehr als funf Richtungen null, so ist dies fur allé Richtungen der Fall. DaB es

auch Flâchen gibt, auf welchen die Normaltorsion nur in einer Richtung
verschwindet, wird spâter gezeigt.

Im nâchsten Abschnitt erklâren wir, was wir unter gleichwinkligen Ebenen
verstehen. Mit ihrer Hilfe definieren wir die Âquigonen. Dièse Flâchen genugen
Differentialgleichungen, die âquivalent mit den CAUCHY-RiEMANNschen Dif-
ferentialgleichungen der Funktionentheorie sind.

a) Vgl. KOMMBBELL, S. 552ff.
8) FlNSLEB, (1) S. 92.
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Im vierten Paragraphen wenden wir unsere Formeln fur die Berechnung der
Normaltorsion bei den Âquigonen an und erhalten ein Gesetz, welches uns
erlaubt, mit Hilfe zweier GrôBen, r0 und oc, die Normaltorsion in jeder Rieh-
tung zu bestimmen. Dièses Résultat lôst fur die Normaltorsion die gleiche Auf-
gabe, wie der Satz von Etjleb in der Differentialgeometrie fur die Normal-
krtimmungen.

Im fûnften Paragraphen bringen wir die Torsion in Zusammenhang mit dem
GAussschen KrummungsmaB. Wir zeigen, daB man bei den Âquigonen die
Normaltorsion aus dem GAussschen KrummungsmaB berechnen kann. Dièses

Ergebnis erlaubt uns nun, die Normaltorsion auch in einem allgemeinen Punkt
berechnen zu kônnen.

Im letzten Paragraphen zeigen wir an Hand von zwei Beispielen aus der
Funktionentheorie, wie man die Ergebnisse praktisch anwenden kann.

In dieser Arbeit wurde der Ricci-Kalkul nicht verwendet. Man kann also
auch bei Verwendung geometrischer Ùberlegungen ohne allzugroBen rechne-
rischen Aufwand mit den gewôhnlichen Methoden der alten Kurven- und
Flâchentheorie zu neuen Ergebnissen gelangen, was in einer Arbeit von Fins-
ler4) schon angeregt wurde.

§ 1. Bestimmung der Normalkrûmmung und Normaltorsion

Eine Flâche des vierdimensionalen Raumes kônnen wir in der Form
xi: xt (u, v), (i 1, 2, 3, 4) oder kùrzer : x X (u, v) darstellen. Der Ein-
fachheit halber legen wir das Koordinatensystem so, daB die xlf #2-Ebene
die Flàche im Punkte xx x2 0 berûhrt. Als spezielle Parameter wàhlen
wir die Koordinaten xx und x2 (u und v werden spâter fur andere Bezeichnungen
verwendet). Die Flâche wird dann durch die beiden Gleichungen*

#3 X9\Xl9 X2), #4 X/i(X1, X2) (1)

bestimmt. Soll eine Gleichung nur im Nullpunkt der xl9 a;2-Ebene gelten, so
deuten wir dies durch das Zeichen an. Nach unseren Annahmen folgt:

^T^, *4ÏfO. (2)
Ferner ist :

^={1,0,0,0}, ï,,^ {0,1,0,0}. (3)

Wir wollen nun die Formeln fur die Berechnung der Normalkrûmmung und
Normaltorsion der Flâchen des vierdimensionalen Raumes herleiten. Zu diesem
Zwecke schneiden wir unsere Flâche mit einer durch den Nullpunkt gehenden
und auf der xl9 #2-Ebene senkrecht stehenden Hyperebene. Die Torsion der

*) FlNSLEB, (2) S. 17.
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Schnittkurve in diesem Punkt bezeichnen wir als «Normaltorsion» der Flâche
in der durch die Kurventangente gegebenen Richtung5). Die Krummung der
Kurve bestimmt die Normalkrûmmung der Flâche.

Die Gleichung
x% xx tg <p (4)

stellt fur die verschiedenen Werte des Parameters q> eine Schar von Normal-
hyperebenen zum Flâchenelement im Nullpunkt dar. Die Beziehung (4) kôn-
nen wir auch in Parameterform schreiben :

xx t cos (p, #2 £ sin (p (5)

Setzen wir dièse Gleichungen in (1) ein, so erhalten wir eine neue Darstellung
der Flâche mit den Parametern <p und t. Mit (5) zusammen ergibt sich:

x3

xx t cos <p, x2 t sin cp
(6)

Fur <p const. stellt dièses Gleichungssystem eine Kurve im vierdimen-
sionalen Raum dar. Zur Berechnung der Torsion benutzen wir die Formel6):

(7)

(8)

Fur die Krummung gilt die Beziehung :

kl M%IM\
Unter

1 2 3 4

JiV) rÀP) rr(P) /*•<?)
•&1 *t/2 *^Z 4

verstehen wir dabei die Summe der Quadrate der p-reihigen Determinanten
(p 1, 2, 3) der obigen Matrix. Die x€ sind Funktionen des Parameters t,
und die Striche bedeuten die Ableitungen nach t.

Die GrôBen M9 lassen sich geometrisch einfach deuten : Mx ist das Quadrat
der Lange des Vektors x', M2 das Quadrat der Flâche des durch die Vektoren
Xr und %" aufgespannten Parallélogrammes und Mz das Quadrat des Volumens
des durch die Vektoren xf, %" und xm gegebenen Parallelepipeds7). Somit ist
der Zusammenhang mit den Formeln fur den dreidimensionalen Raum8) ge-
funden.

6) FlNSLBB, (1) S. 92 ff.
•) Bbtjnel, S. 42 f.
7) Spbbner, S. 195ff.
8) Blaschke, S. 27.
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Wir setzen voraus, daB die Funktionen (1) dreimal stetig differenzierbar
seien. Wir kônnen sie deshalb nach Taylor entwickeln und schreiben :

~2Ï

i?34 und jB44 sind die Restglieder der Reihenentwicklungen. Wir setzen

xx t cos <p tp x2 t sin cp tq (10)

in (9) ein und erhalten fur t 0 :

*' =5= (P> ï. °> 0)> ^ (0, 0, P, Q), ïw (0, 0, R, 8), (11)

wobei fur P, Q, R und $ die folgenden Ausdrucke einzusetzen sind :

P «0P2 + 2alPg + a2g2, Q - &0p2 + 26l2>g + 62g2, (12)

R co2?3 + 3cl2)2g + 3c2Î>g2 + c3g3, S d0p3 + 3dlP2g + *d2pq* + d3q*.

Da p2 + g2 cos2 9 + sin2 99 1 ist, so wird Jft p2 + q2 1,

^2 b2 + g2)(P2 + G2) P2 +^ J^
Nach Formel (8) ergibt sich fur die Krummung der Kurve:

kl P2 + Q2 (13)

und somit fur die Normalkrûmmung k in der durch den Winkel <p bestimmten
Richtung k2 P2 + «2.

*
(14)

Fur die Torsion der Kurve erhalten wir nach Formel (7) h\ (PS — QR)2/
(P2 + Q2)2' Somit ist das Quadrat der Normaltorsion r der Flâche:

_ (PS -_ (PS QR)
r ~ (P» + Q»)«

' '

Bei der Diskussion des Vorzeichens der Normaltorsion erinnern wir uns an
die Festlegung des Vorzeichens der Torsion einer Raumkurve im Dreidimen-
sionalen. Dort kann man das begleitende Dreibein einer Kurve so definieren9),
dafi die Binormale nach jener Richtung zeigt, in welcher sich die Kurve von
der Schmiegungsebene entfernt. Je nachdem die Orientierung des begleitenden
Dreibeins mit der des Koordinatensystems ubereinstimmt oder nicht, gibt
man der Torsion das positive oder négative Vorzeichen. Àhnlich gehen wir in

•) Finslbb, (1) S. 57.
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unserem Falle vor. Fur ein festes q? stellt (6) eine Kurve dar, die in einer
Hyperebene liegt. Die Tangente der Kurve, die xz- und #4-Achse bilden zu-
sammen ein orthogonales Dreibein, durch welches die Hyperebene eine be-
stimmte Orientierung erhâlt. Wir untersuchen, ob das begleitende Dreibein
dieselbe Orientierung hat. Da beide Dreibeine die Kurventangente als erste
Achse gemeinsam besitzen und Haupt- und Binormale in die x3, #4-Ebene
fallen, so brauchen wir nur zu entscheiden, ob die Hauptnormale mit der Bi-
normalen ein positives oder négatives Koordinatensystem bildet. Zu diesem
Zweck bestimmen wir das Vektorprodukt ft), b] (t) Hauptnormalenvektor,
b Binormalenvektor, beide im xz, #4-Koordinatensystem ausgedrûckt).
%" und tm liegen ebenfalls in der xz, #4-Ebene und bilden im allgemeinen
ein schiefwinkeliges Koordinatensystem, das jedoch dieselbe Orientierung be-
sitzt wie I), b. Wir brauchen also lediglich das Vorzeichen von

P Q
PS-QR

R S

zu bestimmen, um dasjenige der Normaltorsion zu erhalten.
Ersetzen wir den Winkel <p durch cp + 180°, so wechselt PS — QR und

damit auch die Normaltorsion das Vorzeichen. Geometrisch lâBt sich dies
leicht erklâren. Bei beiden Winkeln erhaJten wir dieselbe Schnittkurve. Dièse
wird jedoch im entgegengesetzten Sinne durchlaufen, so daB die Tangente in
die entgegengesetzte Richtung zeigt. Da jedoch auch die Binormale die Rich-
tung wechselt, ândert sich die Orientierung des begleitenden Dreibeins nicht.
Zufolge der Richtungsânderung der Tangente hat aber die Hyperebene nicht
mehr dieselbe Orientierung.

Unter Berucksichtigung des Vorzeichens erhalten wir fur die Normaltorsion
die Formel :

PS-QR

Die Normaltorsion der Flâche verschwindet, wenn PS — QR 0 ist. Wir
setzen nun die Ausdrûcke (12) in dièse Formel ein und dividieren noch durch
p6. Wenn wir die Abkiirzung q/p sin çp/eos (p tg ç? y einfuhren, lautet
die Bedingung fur das Verschwinden der Normaltorsion: (a0 + 2aty + »a2/2)

(d0 + 3diy + Zd2y* + dzy*) - (b0 + 2b,y + b^) (c0 + Zcxy + 3c2t/2 + c32/3) 0.
Eine einfache Umformung fuhrt zur folgenden Bedingung :

a2d0 — 360c2 — 66^! — b2c0)y2

(Zaodt + 2atd0 - U^ - 2b1c0)y + aQd0 - boco 0
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Wenn der Koeffizient (a2dz — 62c3) von Null verschieden ist, so besitzt
dièse Gleichung mindestens eine réelle Lôsung. Das bedeutet, da6 in min-
destens einer Richtung des Flàchenpunktes die Normaltorsion verschwindet.
Ist jedoch (a2d3 — 62c3) 0, so multiplizieren wir die obige Gleichung mit
y~b und haben dann eine Bestimmungsgleichung fur cotgç?. Da jedoch das
konstante Glied dieser Gleichung null ist, erhalten wir die Lôsung cotg q> 0,
das heiBt y 90°.

Verschwindet mit PS—QR gleichzeitig P2 + Q2, so ist (16) unbe-
stimmt. Die Schnittkurve ist nicht gekrummt und die Torsion ist nicht de-

finiert. Wir durfen sie deshalb gleich Null setzen. Unter dieser Annahme haben
wir den Beweis fur den folgenden Satz erbracht :

In jedem Punkt einer zweidimensionalen Flàche des vierdimensionalen
Raumes gibt es mindestens eine Richtung mit verschwindender Normaltorsion.

DaB jedoch auch 2, 3, 4 oder 5 Richtungen mit verschwindender Normaltorsion

auftreten kônnen, zeigen wir im folgenden Paragraphes

§ 2. Beispiele

Wenn wir in (9) die Konstanten geeignet wâhlen, so kônnen wir erreichen,
daB die oben besprochene Gleichung funf réelle Wurzeln besitzt. Setzen wir
beispielsweise

a0 — 1, ax 0, a2 1,

60 -1, bt 0, 62 3,

c0 =0, Cl 2/3, c2 0, c3 0,
dQ 0, dx - 1, d2 0, d, 1

in Gleichung (17) ein, so erhalten wir y (y* — 10y% + 5) 0. Dièse
Gleichung hat die folgenden Wurzeln yk mit den zugehôrigen Winkeln cpk.

Vi 0^<px 0°,

2]/6, <p2= 36°,

2]/5, <pz= 72°,

+ 2]/5, n 108°,

yê - y5 - 2]/5, n 144°

In diesem Beispiel liegt eine regelmàBige Verteilung der Richtungen vor.
Weiter geben wir ein Beispiel fur einen Flâchenpunkt, in welchem die

Normaltorsion in vier Richtungen verschwindet. Setzen wir in (12) fur P, Q, R
und 8 folgende Ausdrucke ein: P p2, Q g2, R pq2, S pq2, so

wird PS — QR pq2(p2 — q2). Die Normaltorsion verschwindet fur p bzw.
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q 0, das heiBt fur q> 0° oder ç> 90°, und desgleichen ftir p2 g2,
das heiBt wenn 9 45° oder ç> 135° ist.

Setzen wir hingegen P p2, Q q2, R pz, S qz, so erhalten wir
ein Beispiel, in welchem die Torsion in drei Richtungen versehwindet, denn
es ist PS — RQ p2q2(q — p). Dieser Ausdruck wird fur 9? 0°, tp 45°
und q> 90° gleich NulL

Wird aber P p2, Q p2, R qz, S 2g3, so versehwindet P£ — JSQ

p2g3 nur fur ç? 0° und cp 90°.
Flâehen, auf denen die Normaltorsion nur in einer Richtung gleich Null ist,

werden in den folgenden Paragraphen behandelt.
Soll jedoch die Normaltorsion in mehr als fûnf Richtungen verschwinden,

so miissen die Koeffizienten der Gleichung (17) gleich Null sein. Dies ist nach
(11) der Fall, wenn x" und %r" fur jeden Wert des Winkels <p linear abhângig
sind. Dies trifft zum Beispiel zu, wenn die Flàche in einen dreidimensionalen
ebenen Raum gelegt werden kann.

§ 3. Gleichwinklige Ebenen und Âquigonen

Nach diesen allgemeinen Betrachtungen spezialisieren wir uns auf eine be-
sondere Flàchenklasse des vierdimensionalen Raumes. Um dièse zu definieren,
fûhren wir den Begriff der «gleichwinkligen Ebenen» ein10). Unter den beiden
Winkeln zweier Ebenen verstehen wir den grôBten und den kleinsten Winkel,
den ein Strahl der einen Ebene mit seiner Orthogonalprojektion auf die andere
einschlieBt. Liegen beide Ebenen speziell in einer Hyperebene (in einem
dreidimensionalen, ebenen Raum), dann haben sie im allgemeinen eine Gerade

gemeinsam, und der kleinste Winkel ist in jedem Falle gleich NulL Ist im
vierdimensionalen Raum der grôBte Winkel zweier Ebenen gleich dem kleinsten,
so nennen wir die beiden Ebenen gleichwinklig;

Aile Geraden einer Ebene schlieBen mit ihren Projektionen auf eine
gleichwinklige Ebene denselben Winkel ein. Ist umgekehrt bei zwei Ebenen dièse

Eigenschaft vorhanden, so sind die beiden Ebenen gleichwinklig. Zwischen
einer Strecke a auf der einen Ebene und ihrer Projektion a auf der anderen
besteht die Beziehung â a cos oc, wobei oc der Winkel zwischen beiden
Ebenen ist.

Eine Figur auf der einen Ebene wird also durch die Orthogonalprojektion
auf die andere Ebene âhnlich abgebildet.

Offenbar bleibt die Eigenschaft der Gleichwinkligkeit erhalten, wenn wir
die beiden Ebenen parallel verschieben. Um die analytische Bedingung fur
gleichwinklige Ebenen herzuleiten, wâhlen wir das Koordinatensystem so, daB

10) KWIBTNIEWSKI, S. 10.
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die eine Ebene mit der xlt #2-Ebene zusammenfàllt. Die andere Ebene legen
wir dureh den Koordinatenursprung. Ihre Gleichung sei : t) A xx + /n x2 •

tt und x2 seien Vektoren mit den Komponenten :

Xx= (1,0,^!,^),
(18)

X2 (0,1,^,5,).
Die Projektionen dieser beiden Vektoren auf die xlf #2-Ebene sind:

^ (1,0,0,0), $, (0,1,0,0).
Die Vektoren ïx und ï2 schlieBen einen rechten Winkel ein. Deshalb mûssen
auch die beiden Vektoren (18) senkrecht aufeinander stehen, weshalb die
Bedingung

xtï2 xxx2 AXBX + A2B2 0 (19)

erfûllt sein mu8. Bezeichnen wir den Winkel zwisehen xx und seiner Projektion
Xt mit <xt, so ist : cos2 oct (1 -f- A\ + -4I)"1. Auf gleiche Weise kann man den
Winkel<x2zwisehenx2undï2berechnen.Wirerhalten: cos2oc2= (l -\- B[ + Bl)-1.
Sollen die beiden Ebenen gleichwinklig sein, so mûssen die beiden Winkel ax
und a2 gleich sein, was auf die Bedingung

Al + Al B{ + B\ (20)
fuhrt.

Sind (19) und (20) erfullt, so ist der Ausdruck cos2(X== (Xx1 + fiX2)2l
(kXi + f*X2)2 von A und fi unabhângig, so daB (19) und (20) hinreichende
Bedingungen fur die Gleichwinkligkeit der beiden Ebenen sind.

Die Gleichungen (19) und (20) werden genau dann befriedigt, wenn entweder

Ax B%, A2= -Bt (21a)
oder

Ax - B2, A2 Bx (21b)

ist. In diesen beiden Fâllen haben wir somit gleichwinklige Ebenen vor uns.
Wir wollen noch untersuchen, ob die Gleichwinkligkeit zweier Ebenen eine

transitive Eigenschaft ist. Als erste Ebene wàhlen wir die xl9 %-Ebene aus.
Eine zweite Ebene werde durch die Vektoren

XX - (1, 0, Al9 A2), x2 (0,1, -A2, A,) (22a)

und eine dritte Ebene durch die Vektoren

1)! (1,0, Dl5 Dt), X)2 (0,1, -D2, Dx) (22b)

aufgespannt. Nach (18) und (21a) sind die erste und zweite Ebene und auch

7 Commentarii Mathematici Helvetici
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die erste und dritte Ebene untereinander gleichwinklig. Wir zeigen, dafi auch
die zweite und dritte Ebene gleichwinklig sind. In der zweiten Ebene sei der
Vektor a %i + G 3t2 gegeben. Wir wollen nun diesen Vektor auf die dritte
Ebene projizieren. Wir projizieren ihn zuerst auf den t)r und auf den t)2-

Vektor. Da t)a senkrecht auf dem Vektor t)j steht, so ergibt die Summe der
beiden projizierten Vektoren den gesuchten Vektor. Es ist also

Weil x1xi tht)2 =0, x\ x\, xft X&, ï1l)I 3E2% und
ist, so wird

2C(3E11)2) (ï2tj2)

Da jedoch a2 xf(l + 02) ist, haben wir die von C unabhângige Beziehung
52 _. constû2. Aile Vektoren a schlieBen also mit ihren Projektionen â den
gleiehen Winkel ein. Somit sind auch die zweite und dritte Ebene
gleichwinklig.

Zum gleiehen Résultat waren wir gekommen, wenn wir fur die Festlegung
der Komponenten von (22a) und (22b) die Beziehung (21b) verwendet hatten.
Wenden wir jedoch (21b) nur fur die dritte Ebene an, ((22a) bleibe unverân-
dert), so sind die zweite und dritte Ebene nicht mehr gleichwinklig. Es gibt
also zu einer Ebene im vierdimensionalen Raum zwei Scharen gleichwinkliger
Ebenen. Die Ebenen derselben Schar sind aile untereinander gleichwinklig11).
Die Unterscheidung besteht in der Anwendung von (21a) oder (21b).

Nach diesen Betrachtungen kônnen wir nun die Âquigone definieren. Eine
Flàche, deren samtliche Tangentialebenen untereinander gleichwinklig sind,
nennen wir nach Kwietniewski eine Âquigone. Kommeeell nennt eine
Flâche mit dieser Eigenschaffc iî-Flâche12). Es ist nun einfach, die Bedingun-
gen aufzustéllen, damit (1) eine Âquigone darstellt. Die Gleichung der Tan-
gentialebene im Punkte x der Flâche (1) lautet (t) — x) XtXl + j^XXit,
wobei x) den laufenden Punkt bezeichnet. Die Gleichung der durch den Ur-
sprung gehenden parallelen Ebene ist : t) X XXl + \i XX2. Die Vektoren
XXi und xXi haben die Komponenten :

> dx

n) Kwibtnhjwski, S. 11.
12) KOBfMBBBLL, S. 568.



Ûber die Normaltorsion von Flâchen im vierdimensionalen euklidisehen Raum 99

Mit (18) und (21a) bzw. (21b) kônnen wir unmittelbar die analytische Bedin-
gung aufstellen, damit (1) eine Àquigone darstellt:

^

OXi UX2 OX2 OXi

^L _ i^i *?*. J^i (23b)
dxx dx2 ' dx2 dxx '

Wenn (1) eine Aquigone darstellen soll, so muB entweder (23a) oder (23b)
erfullt sein. Da (23b) durch Vertauschen der Koordinaten xz und x4 aus (23a)
hervorgeht, genugt es, Flâchen zu betrachten, die den Gleichungen (23a) ge-
niigen.

Die Gleichungen (23a) sind nichts anderes als die CAUCHY-RiEMANNschen

Differentialgleichungen der Funktionentheorie. Ist nâmlich w f(z), z

x + iy, w u + iv, eine analytische Funktion, so sind bekanntlich die
CAUCHY-RiEMANNschen Differentialgleiehungen ux vy, uy — vx erfullt.
Dièse stimmen mit (23a) uberein. Man braucht nur xx x, x2 y, xz — u
und x4 v zu setzen. Die analytische Funktion w f(z) lâBt sich im
vierdimensionalen Raum als Flâche darstellen. Wir nehmen ein rechtwinkliges
Koordinatensystem mit den Achsen x, y, u, v. Die Funktion f(z) sei in
einem bestimmten Gebiet der z-Ebene regulâr. Einen beliebigen Wert z des
Gebietes stellen wir in der x, i/-Ebene als Punkt dar. In unserem
Koordinatensystem hat er die Koordinaten (a;, y, 0, 0). Die Funktion w f(z)
ordnet jedem Punkt z einen oder mehrere Funktionswerte w zu, je nachdem
die Funktion ein- oder mehrdeutig ist. Wir stellen w als Punkt mit den
Koordinaten (x, y, u, v) dar. Ist die Funktion mehrdeutig, so trasen wir auf
gleiche Weise die ubrigen Werte ein, so da8 «uber » demselben Punkt z mehrere
zugeordnete Punkte liegen. Durchlâuft der Punkt z seinen Definitionsbereich,
so beschreibt der zugeordnete Punkt eine Flâche, die im Falle der Mehrdeutig-
keit aus verschiedenen Blâttern besteht. Kommerell13) nennt dièse Flâche
RiEMANNsche Flâche im i?4, oder kurz R-Flâche, weil man sie durch homôo-
morphe Verformung in eine RiEMANNsche Flâche im ublichen Sinn iiber-
fuhren kann ; mit anderen Worten : Beide Flâchen haben die gleichen Zusam-
menhangsverhâltnisse.

13) KOMMERELL, S. 568.
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§ 4. Normalkriimmiing und Normaltorsion der Âquigonen

Fur die Berechnung der Normalknimmung und Normaltorsion leiten wir
aus (23a) die folgenden Beziehungen ab

dxxdx2 dx\

d2x3 32#4

dxl dxxdx2 dx\ '

xz und #4 sind harmonische Funktionen (Potentialfunktionen), das heiBt sie

geniigen der LAPLACEschen Differentialgleichung :

* - ^ 4- **' - 0

Die geometrischen Eigenschaften der Flâche sind allein schon durch eine der
beiden Funktionen gegeben, denn die andere ist durch sie bis auf eine Kon-
stante bestimmt14). Wir stellen unsere Formeln fur Normalkriimmung und
Normaltorsion so auf, da8 sie nur die Funktion xz enthalten.

Aus (24) und (25) folgt weiter :

(26)

Gehen wir wieder zu den in (9) eingefuhrten Abkûrzungen fur die Koeffi-
zienten der Taylorentwicklung liber und schreiben :

__ d2xz __ d2xs

dx\dx2

dxt dx\

dxl '

dxidx2 '

dxl

dx2dx2

dxl

dxxdx\

Vx%

dxl '

dxl

So erhalten wir aus (24), (25) und (26) die Beziehungen : a2 —• a0, 60 — ax,
Ox CLq O2 &i, C2 Cq C3 Cx, U/q Cx, Cfj Co, Cfg Cj,
d3 — c0. Beriieksichtigen wir dièse Zusammenhânge in (12), so wird:

- g2) + clP(3g* - p2)

14) Behnke-Sommes, S. 156.
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Fur die Normalkriimmung erhalten wir nach Formel (14) unmittelbar:
K2 _ P2 + Q2 _ a2 + a2 (2g)

Auf einer Âquigone hàngt somit die Normalkrûmmung in einem Punkt
nicht von der Richtung ab. Die Âquigonen bestehen aus lauterNabelpunkten16).

Nach den Formeln (16) und (27) kônnen wir die Normaltorsion der Flâche
berechnen. Es ist zunâchst :

P8 —QR q(aocQ + axcx)

Nach Einfuhrung der Abkùrzungen: atc0 — aoc1 A, aoco -\- a^ B,
wird nach (16):

t -^(A cos cp + B sin <p) (29)

q> ist der Winkel zwischen der a^-Achse und der Tangentenrichtung der Schnitt-
kurve. Wir tragen nun die nach Formel (29) berechneten Werte der Normaltorsion

auf dem durch den Winkel y bestimmten Tangentenvektor auf, und
zwar die positiven x in Richtung des Tangentenvektors, die negativen in der
entgegengesetzten Richtung. Fur die Winkel <p und <p + 180° hat t denselben

Absolutbetrag, jedoch das entgegengesetzte Vorzeichen, so dafi also die zu-
gehôrigen Punkte zusammenfallen. Lassen wir cp von 0 bis 360° wachsen, so
durchlaufen die aufgetragenen Punkte zweimal denselben Kreis.Umdies zu zei-

gen, setzen wir: (A cos cp + B sin ç?)/*2 r0 cos (cp — a). t0 und <x lassen sich
durch Anwendung des Additionstheorems auf cos (<p — oc) und Vergleich der
Koeffizienten von cos <p und sin <p bestimmen. Es ist:

A
— r0 cos oc,
K

B
—y r0 sm oc

(30)

Aus (30) folgt zunâchst: i/ j2 » #2
r0 ± J (31)

Einer Ânderung des Vorzeichens in (31) entspricht nach den Gleichungen (30)
eine Ânderung des Winkels oc um 180°. Statt t0 ein festes Vorzeichen zu geben,
machen wir fur oc die Einschrânkung :

— 90° ^oc< + 90°. (32)

Der Winkel oc ist zusammen mit (32) durch die Gleichung

tgoc -f- (33)

u) KOMMEBKLIi, S. 580.
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eindeutig festgelegt. Durch (32) und (30) ist das Vorzeichen von (31) bestimmt.

sgnr0 sgnA fur A ^ 0
(34)

sgnr0 — sgnB fur ^4 0.
Auf den ersten Blick scheint es naheliegender, t0 als positive GrôBe (maximale

Torsion) zu definieren und oc nicht einzuschrânken. Wenn wir jedoch die
Torsionsverhâltnisse auf einem Bereich einer Flâche statt in einem speziellen
Punkt untersuchen, so zeigt es sich, da8 mit unserer Festlegung Unstetig-
keiten vermieden werden kônnen (vgl. die Beispiele des § 6).

SchlieBlieh fûhren wir noch den Winkel \p, der durch die Beziehung

y> (p -oc
definiert ist, ein, und sehreiben statt (29)

T To COS %p

(35)

(36)

Fig. 1 gibt eine anschauliche Deutung der Formeln (29) bis (33) und zeigt die
Lage des oben erwàhnten Kreises. Der Winkel oc bestimmt die Richtung, in wel-
cher r den extremalen Wert r0 annimmt. In dieser Richtung ist der Winkel %p

gleich null.

Fig. 1

§ 5. Zusammenhang zwischen der Normaltorsion und dem

OAUSSschen KrûmmungsmaB auf Âquigonen

In diesem Abschnitt berechnen wir das GAirsssche KjummungsmaB K und
zeigen den Zusammenhang mit der Normaltorsion. Dadurch erhalten wir die

Môglichkeit, die Normaltorsion in einem allgemeinen Flâchenpunkt zu be-

stimmen. Zunâchst berechnen wir die FundamentalgrôBen erster Ordnung:
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E =4,,
Aus (23a) folgt unmittelbar

F=xmxxmt, 0=4, (37)

\dxj ' \dx,)' ' (38)

Wie Gaxjss gezeigt hat, Ià8t sich das GAusssche KrummungsmaB K aus E,
F und G und deren partiellen Ableitungen berechnen. Wir verwenden eine

von Fbobenitjs hergeleitete Formel18), welche sich fur unseren Fall sofort
wesentlich vereinfacht. Sie lautet :

1
E Eu
F
G

Fu
Gtl

Fv
G.,

2W\ dv

a e.-f.
w du

wobei W + vEG — F2 ist und die in (39) verwendeten Parameter u und
v durch xx und x2 zu ersetzen sind. Wie man sofort bemerkt, verschwindet

wegen F 0 die Déterminante, und da E G ist, so wird W + Vif2 E.
Somit geht (39) ûber in:

2E E x E
oder

K= - 1

2E» (40)

Zur Berechnung der Ableitungen von E benùtzen wir die in § 4 hergeleiteten
Beziehungen. Es wird:

dx1 dx\ dx2 dxxt

dx3 dxz

dxx dx\ J
'

- 9

dx\ J

i2
_

3a;3 83^3

Setzen wir dièse Ausdrticke in (40) ein, so erhalten wir nach einer einfachen
Zwischenrechnung :

lf) Bulsohkb, S. 117.
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Dieser Ausdruck stellt das GAUsssche KrummungsmaB in einem beliebigen
Punkt dar. Es hat ein négatives Vorzeichen, trotzdem die Normalkrûmmung,
wie wir in § 4 gezeigt haben, fur aile Riehtungen den gleichen Wert hat. Zwei-
dimensionale Flâehen des vierdimensionalen Raumes verhalten sich nicht
gleich wie solche, die sich in einen dreidimensionalen Raum einbetten lassen17).

Fur den Nullpunkt folgt aus (41) und (28) :

Auf einer Âquigone gilt somit allgemein :

K - 2k2 (42)

Wir fragen nun, wie sich das GAUsssche KrummungsmaB ândert, wenn wir
zu einem benachbarten Punkt ubergehen. Es sei: xx x1{s), x2 x2(s) eine
durch den Nullpunkt gehende, stetig differenzierbare Kurve aufunserer Flache.
Als Parameter verwenden wir die Bogenlànge s. Die Ableitungen nach s be-
zeichnen wir mit xx und i2. Leiten wir K{xx, x2) in Richtung der Kurven-
tangente nach s ab, so erhalten wir:

K KXi xx + KX2 x2. (43)

Zur Berechnung von Kx% und Kx^ leiten wir (41) nach xt bzw. x2 ab. Es folgt:

k 2 LFjd*x3 8**3 3^ d*x3 i f/y^x' / y», |
-0-*! - E* y \ dx\ dx\

"*" dx^ dx\dx%\ z* \\dxj • [
2 lpfatt3 dxs Px, Px,} p¦

Im Nullpunkt unseres Koordinatensystems vereinfachen sich dièse Aus-
drûcke ; da dort E 1 und EXi jE?at2 0 ist, so wird

° dx\ dx\
'

dxtdx2 dx\dx2] '

und (44)

K- — 4

(45)

I 3a;* dx\dx% dx^x^ dx\)'
Fiihren wir wieder die in § 4 eingefûhrten Bezeichnungen ein, so folgt :

+

") Kommebbix, S. 579ff.
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Setzen wir dièse Beziehungen in Formel (31) ein und dnicken k2 unter Benut-
zung von (42) durch K aus, so kônnen wir r0 aus KXl, Kx% und K berechnen:

(46)

(47)
sgn *o =5= sgn KXi fiir If^ 0

Zur Bestimmung des Vorzeichens von t0 folgt aus (34) und (45) :

t0 sgn Kx% fur Kx% ^ 0

Die Formel (33) geht iiber in:

tg«=--^-. (48)

Der Vektor mit den Komponenten KXi, 7?^ ist im Nullpunkt identisch mit
dem Gradienten der Funktion K(xt, x2). Statt Formel (46) durfen wir deshalb

schreiben, wo | grad K \ die Lange des Gradienten der Funktion K bedeutet.
Dièse Formel gilt fur jeden Punkt des Definitionsbereiches. Die Vorzeichen-
regel (47) fur r0 làBt sich noch einfaeher formulieren. r0 ist positiv, wenn
grad K in der obern Halbebene, die négative a^-Achse ausgeschlossen, liegt.

Wir berechnen jetzt den Gradienten von K in einem allgemeinen Punkt.
Die Parameterlinien xt const. bzw. x2 const. bilden ein orthogonales
Netz. Wir brauchen deshalb die Funktion K auf den Linien xt const. und
x2 — const. nach s abzuleiten und haben dann die Komponenten des
Gradienten :

x2 const. as I xx const.

Wegen ds2 E{dx\ + dx\) folgt unmittelbar

dx2 I __!
I
I ___!__ a ^ I

ds I xx const. ~~
YE ds I x2 const.

Somit ist in einem allgemeinen Punkt :

grad JC -p=-{*«,,*.,}, (50)

oder

grad K | + -p=- VKÏr + K'k ¦ (51)



106 Waltbr Fàssler

§ 6. Beispiele

Wir erlâutern den Inhalt des § 5 an Hand zweier Beispiele, die wir der
Funktionentheorie entnehmen. Wie wir in § 3 zeigten, lâBt sich eine Funktion
einer komplexen Variablen als Flâche im vierdimensionalen Raum darstellen,
und im Falle einer analytisehen Funktion ist die Flàche eine Âquigone. Ist
w u + iv f(z) eine analytische Funktion, so ist u2x + u2y |/'|2 und
u2 4- u2 \f\2

Femer sind nach (38) die FundamentalgrôBen erster Ordnung :

M-O-l + M.
F 0.

Statt (41) schreiben wir deshalb18):

2 I/" 12z==- d + |/'IV (53)

1. Beispiel: Als erstes Beispiel wàhlen wir die Exponentialfunktion :

w / (z) ez ex (cos y + i sin y)

Fur die erste und zweite Ableitung erhalten wir :

/'(s) =/"(*) *,
und ihre absoluten Betrâge sind: |/'| \f"\ ex. Nach (52) ist E 1 + cte.

Nach (53) erhalten wir fur das GAusssche KjrûmmungsmaB :

^=-(1+^
Weiterfolgt:

_

Die x-Komponente des Gradienten ist somit nach (50)

1 - 2e**
__ 4e2*-

p2x\

Fur x — flg2=— 0,3466 verschwindet der Gradient. Bei x > — \ lg 2

zeigt der Gradient in Richtung der positiven #-Achse ; bei x < — \ lg 2 in
Richtung der negativen o:-Achse. Damit ist auch das Vorzeichen von r0 fest-

gelegt. Unter Benûtzung der Formeln (49) und (54) erhalten wir:

(55)
(1 +

u) KOMMEREIX, S. 581.
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wobei bei der Quadratwurzel der positive Wert zu nehmen ist. Aus (48) und
unserer Vereinbarung (32) folgt, da8 oc — 90° ist. Wir sehen, daB fur
x > — | lg 2 die maximale Torsion bei y — 90° und fur x < — \ lg 2 bei
cp -\- 90° erreicht wird. Den Verlauf von r0 als Funktion von x haben wir
in Fig. 2 dargestellt. Das Maximum von r0 liegt bei x \ lg 3,5 0,6264

4 /—und betrâgt + -7rv2 + 0,6285. Fur groBe x kann r0 durch T0^2e-aî und
\j

fur stark négative x durch t0 «^ 3,56^ — 1 approximiert werden. Wir be-
merken noch, daB die Définition eines immer positiven t0 im Punkte x
— \ lg 2 zu einer Unstetigkeit der ersten Ableitung von r0 und einer Un-
stetigkeit beim Winkel <x, als Funktion von x dargestellt, gefûhrt hâtte. Durch
unsere Annahmen haben wir dièse scheinbaren Unstetigkeiten umgangen.

0,5

Fig. 2

2. Beis'piel: Wir betrachten die Funktion w f(z) \z*. Daraus folgt
unmittelbar: f(z) z und f"{z) 1. Setzen wir \z\ r, so ist |/'| r
und

E 1 + r2 (56)

Somit erhalten wir nach Formel (53) fur das GAusssche KrummungsmaB :

2K= - (1 +
(57)

Das GAtrsssche KrummungsmaB hângt also nur von \z\ r ab. Da K mit
wachsendem r immer zunimmt, zeigt der Gradient immer in Richtung des

Radiusvektors. Die GrôBe

12r
Kr

(1 + rr
(58)
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ist immer positiv, und da K\x + K\% K\ ist, folgt nach (51), (56) und (58):

r| _ 12r
L ' ~ + (1 + r2)3/2

"

Mit (49) und (57) folgt sehlieBlieh:

T0= ±
Sr

Fur Punkte, die in der obern Halbebene (die négative #-Achse ausgeschlossen)
liegen, hat r0 das positive, fur die ubrigen Punkte das négative Vorzeichen.

Fur den Winkel oc gilt: tg oc -^-, (z x + iy) und — 90° oc ^ + < 90°.
x

In Fig. 3 ist | to| als Funktion von r dargestellt.

6 r
Fig. 3

Das Maximum liegt bei r l/| 0,7071 und betrâgt 2/1/3 1,1548.
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