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Uber die Normaltorsion von Flichen
im vierdimensionalen euklidischen Raum

von WALTER FASSLER, Ziirich

Einleitung

In der vorliegenden Arbeit untersuchen wir gewisse Eigenschaften zwei-
dimensionaler Flichen des vierdimensionalen euklidischen Raumes. Schon
ofters!) wurde darauf hingewiesen, dal bei zweidimensionalen Flachen des
n-dimensionalen Raumes 7 — 2 Kriimmungen auftreten. Man spricht dann
(fiir » > 3) von tordierten oder gewundenen Flichen.

Dafl bei zweidimensionalen Flachen des vierdimensionalen Raumes eine
zweite Kriimmung auftritt, ersehen wir aus den folgenden Betrachtungen. Er-
weitert man die Kurventheorie vom zweidimensionalen auf den dreidimensio-
nalen Raum, so fiihrt man eine zweite Krimmung, die Torsion, ein. Die Aus-
dehnung auf einen n-dimensionalen Raum bedingt die Einfithrung von n — 1
Kriimmungen. In der Flichentheorie des dreidimensionalen Raumes wird der
Begriff der Kriimmung von Flichen eingefiihrt. Man kann nun vermuten, dafl
bei einer zweidimensionalen Fliche des vierdimensionalen Raumes eine zweite
Krimmung auftreten wird.

Diesen Gedanken wollen wir etwas ausfiihrlicher verfolgen. In der gew6hn-
lichen Differentialgeometrie benutzt man den Begriff der Kurvenkriimmung,
um die Kriimmung einer Fliche zu definieren. Um in einem bestimmten Punkt
der Flidche die Kriimmungsverhiltnisse zu untersuchen, legt man durch diesen
eine Ebene. Der Schnitt dieser Ebene mit der Tangentialebene e?gibt im all-
gemeinen eine Gerade, die eine Richtung festlegt. Die Ebene schneidet, wenn
sie nicht mit der Tangentialebene zusammenfillt, aus der Fliche eine ebene
Kurve. Dreht man die Ebene um ihre Schnittgerade mit der Tangentialebene,
so erhdlt man verschiedene Schnittkurven. Diejenige Kurve, welche durch den
senkrechten Schnitt erzeugt wird, hat die gréte Krimmung. Diese Kriimmung
kann man als Normalkrimmung der Fliche in der gegebenen Richtung de-
finieren. Der Satz von MEUSNIER zeigt den Zusammenhang mit der Kriimmung
der Kurven der anderen Schnitte. Wie die Normalkriimmung in einem Punkt
von der Richtung abhéingt, zeigt der EvrLERsche Satz der Flidchentheorie.

Ahnlich kénnen wir vorgehen, wenn wir zweidimensionale Flichen im vier-
dimensionalen Raum untersuchen. Der Einfachheit halber nennen wir drei-

1) Vgl. zum Beispiel KiLring, S. 264, FINSLER, (2) S. 4.
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dimensionale Gebilde des vierdimensionalen Raumes Hyperflichen und, wenn
sie eben sind, Hyperebenen. Die zweidimensionalen Gebilde nennen wir Fldchen
bzw. Ebenen. Eine gegebene Fliche kénnen wir mit einem ebenen Gebilde
schneiden. Der Schnitt mit einer Ebene ergibt im allgemeinen jedoch nur einen
Schnittpunkt, so dal wir mit einer Hyperebene schneiden miissen, um eine
Schnittkurve zu erhalten. Da diese Schnittkurve in einem dreidimensionalen
ebenen Raum liegt, so ist sie in der Regel gekrimmt und tordiert.

Beschrianken wir uns vorerst auf die erste Krimmung der Kurve, so gelan-
gen wir zur Krimmungstheorie dieser Flichen. Analog zur gewohnlichen Fla-
chentheorie existiert eine Verallgemeinerung des MEuUsNIERschen Theorems.
Mit Hilfe dieses Satzes, oder durch den Normalschnitt konnen wir die Normal-
krimmung definieren. Zwischen den Normalkriimmungen der verschiedenen
Richtungen in einem Punkt gibt es dhnliche Zusammenhénge, wie sie in der
gewohnlichen Flichentheorie durch den Satz von EULER gegeben werden?).
Mit diesen Sétzen werden wir uns in dieser Arbeit nicht befassen.

Da die oben hergeleitete Schnittkurve im allgemeinen tordiert ist, liegt es
nahe, diese Torsion fiir die Definition der zweiten Kriimmung zu benutzen. Die
Torsion, die durch einen Normalschnitt erzeugt wurde, bezeichnen wir als
Normaltorsion der Fliache. Es besteht allerdings die Moglichkeit, die Normal-
torsion auf andere Art zu definieren3).

In den ersten vier Paragraphen beschrinken wir uns auf Untersuchungen
in einem bestimmten Punkt der Fliche und suchen durch geeignete Wahl des
Koordinatensystems zu einfachen Formeln zu gelangen und geometrische Eigen-
schaften zu finden, die nicht vom Koordinatensystem abhidngen. Im ersten
Paragraphen leiten wir die Formeln fiir die Berechnung der Normaltorsion her.
Gleichzeitig erhalten wir den Ausdruck fiir die Normalkrimmung. Dann wer-
fen wir die Frage auf, in wieviel Richtungen die Normaltorsion verschwindet.
Wir machen die Feststellung, dafl in jedem Punkt einer Flache des vierdimen-
sionalen Raumes die Normaltorsion in mindestens einer Richtung verschwindet.

An Hand von Beispielen zeigen wir im zweiten Paragraphen, dal die Normal-
torsion in zwei, drei, vier oder fiinf Richtungen verschwinden kann. Ist sie in
mehr als fiinf Richtungen null, so ist dies fiir alle Richtungen der Fall. DaB3 es
auch Flichen gibt, auf welchen die Normaltorsion nur in einer Richtung ver-
schwindet, wird spiter gezeigt.

Im néchsten Abschnitt erklidren wir, was wir unter gleichwinkligen Ebenen
verstehen. Mit ihrer Hilfe definieren wir die Aquigonen. Diese Flichen geniigen
Differentialgleichungen, die dquivalent mit den CavcHY-RiEMANNschen Dif-
ferentialgleichungen der Funktionentheorie sind.

%) Vgl. KoMMERELL, S. 55621f.
3) FINSLER, (1) S. 92.
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Im vierten Paragraphen wenden wir unsere Formeln fiir die Berechnung der
Normaltorsion bei den Aquigonen an und erhalten ein Gesetz, welches uns
erlaubt, mit Hilfe zweier Gréflen, 7, und «, die Normaltorsion in jeder Rich-
tung zu bestimmen. Dieses Resultat 16st fiir die Normaltorsion die gleiche Auf-
gabe, wie der Satz von EULER in der Differentialgeometrie fiir die Normal-
kriimmungen.

Im fiinften Paragraphen bringen wir die Torsion in Zusammenhang mit dem
Gavussschen KriimmungsmaB. Wir zeigen, daB man bei den Aquigonen die
Normaltorsion aus dem Gaussschen Kriimmungsma@ berechnen kann. Dieses
Ergebnis erlaubt uns nun, die Normaltorsion auch in einem allgemeinen Punkt
berechnen zu konnen.

Im letzten Paragraphen zeigen wir an Hand von zwei Beispielen aus der
Funktionentheorie, wie man die Ergebnisse praktisch anwenden kann.

In dieser Arbeit wurde der Riccr-Kalkiil nicht verwendet. Man kann also
auch bei Verwendung geometrischer Uberlegungen ohne allzugroBen rechne-
rischen Aufwand mit den gewohnlichen Methoden der alten Kurven- und
Flachentheorie zu neuen Ergebnissen gelangen, was in einer Arbeit von FINs-
LERY) schon angeregt wurde.

§ 1. Bestimmung der Normalkriimmung und Normaltorsion

Eine Fliache des vierdimensionalen Raumes konnen wir in der Form
x;, = x;(u,v), (t =1,2,3,4) oder kiirzer: ¥ = x(u, v) darstellen. Der Ein-
fachheit halber legen wir das Koordinatensystem so, daB die z,, x,-Ebene
die Fliche im Punkte z, = x, = 0 beriihrt. Als spezielle Parameter wihlen
wir die Koordinaten x, und z, (v und v werden spéter fiir andere Bezeichnungen
verwendet). Die Fliche wird dann durch die beiden Gleichungen

Ty = X3(%y, Zp), 7y = 4(2;, Z) (1)

bestimmt. Soll eine Gleichung nur im Nullpunkt der z,, x,-Ebene gelten, so
deuten wir dies durch das Zeichen = an. Nach unseren Annahmen folgt:

x3 % O, x4 ? O % (2)
Ferner ist:

le% {1’090:0}’ Ixzf{O,I,O,O}. (3)

Wir wollen nun die Formeln fiir die Berechnung der Normalkriimmung und
Normaltorsion der Flachen des vierdimensionalen Raumes herleiten. Zu diesem
Zwecke schneiden wir unsere Fldche mit einer durch den Nullpunkt gehenden
und auf der z,, x,-Ebene senkrecht stehenden Hyperebene. Die Torsion der

4) FINSLER, (2) S. 17.
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Schnittkurve in diesem Punkt bezeichnen wir als « Normaltorsion» der Flache
in der durch die Kurventangente gegebenen Richtung?). Die Kriimmung der
Kurve bestimmt die Normalkriimmung der Fléche.

Die Gleichung

x, =z, tg @ (4)

stellt fiir die verschiedenen Werte des Parameters ¢ eine Schar von Normal-
hyperebenen zum Flidchenelement im Nullpunkt dar. Die Beziehung (4) kon-
nen wir auch in Parameterform schreiben:

x, =tcosp, z,=1sing. (5)

Setzen wir diese Gleichungen in (1) ein, so erhalten wir eine neue Darstellung
der Fliche mit den Parametern ¢ und ¢. Mit (5) zusammen ergibt sich:

%, =tcosp, x,=1sing,
T3 = (2, (8, @), 2(t, @), %= z4(2,(¢, @), Talt, 9)) .

Fiir ¢ = const. stellt dieses Gleichungssystem eine Kurve im vierdimen-
sionalen Raum dar. Zur Berechnung der Torsion benutzen wir die Formel$):

k2 = M,/M?. (7)

(6)

Fiir die Kriimmung gilt die Beziehung:

I"f = MZ/m . (8)
Unter

!/ / / / 2

M,=

x(1p) x(zp) xgp) xflp)

verstehen wir dabei die Summe der Quadrate der p-reihigen Determinanten
(p=1,2,3) der obigen Matrix. Die z; sind Funktionen des Parameters ¢,
und die Striche bedeuten die Ableitungen nach ¢.

Die GrofSen M, lassen sich geometrisch einfach deuten: M, ist das Quadrat
der Linge des Vektors x', M, das Quadrat der Fliche des durch die Vektoren
3’ und " aufgespannten Parallelogrammes und M, das Quadrat des Volumens
des durch die Vektoren %', " und x” gegebenen Parallelepipeds?). Somit ist
der Zusammenhang mit den Formeln fiir den dreidimensionalen Raum?) ge-
funden.

) FINSLER, (1) S. 92 ff.
¢) BRUNEL, S. 42f.

7) SPERNER, S. 1961f,
8) BLASCHEKE, S. 27.
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Wir setzen voraus, dafl die Funktionen (1) dreimal stetig differenzierbar
seien. Wir konnen sie deshalb nach TAyLor entwickeln und schreiben:

CL‘I = xl, x2 - xz,
1, o1
3 2

+ 3¢y, 22 + ¢y xd) + Ry,

(9)
Ty = ~§l—'— (boa? + 2b, 2,y + by2?) + —317 (do2 + 3d, 22 x,
+ 3dyx, 25 + dyxd) + Ry, .
Ry, und R, sind die Restglieder der Reihenentwicklungen. Wir setzen
x, =1tcosp =1tp, Z, = t Sin ¢ = tq (10)
in (9) ein und erhalten fiir ¢ = 0:
¥ =(p,9,0,0), ¥ =(0,0,P,Q), x"=(0,0,R,S), (11)
wobei fiir P, @, R und S die folgenden Ausdriicke einzusetzen sind:
P = ayp® + 2a,pq'+ a,¢*, @ = bp® + 2b,pq + byg?, (12)

B = cp® + 3¢,p*q + 36,04 + ,9°, 8 = dop® + 3d,p*q + 3dypg® 1 dyg°.
Da p? 4 ¢% = cos?e + sin?¢p =1 ist, so wird M, =p*+ ¢*2 =1,
M= (p*+¢*) (P*+ Q%) = P*+ @ My= (p*+¢*) (PS —QR)*=(PS —QR)*.
Nach Formel (8) ergibt sich fiir die Kriimmung der Kurve:

= P+ @2 (13)
und somit fiir die Normalkriimmung « in der durch den Winkel (p‘bestimmten
Richtung K? = P? 4 Q2. (14)

Fiir die Torsion der Kurve erhalten wir nach Formel (7) k2 = (PS — Q R)?/
(P2 + @?)2. Somit ist das Quadrat der Normaltorsion v der Fliche:
(PS — QR)*

(P*+ @2

Bei der Diskussion des Vorzeichens der Normaltorsion erinnern wir uns an
die Festlegung des Vorzeichens der Torsion einer Raumkurve im Dreidimen-
sionalen. Dort kann man das begleitende Dreibein einer Kurve so definieren?),
daf} die Binormale nach jener Richtung zeigt, in welcher sich die Kurve von
der Schmiegungsebene entfernt. Je nachdem die Orientierung des begleitenden
Dreibeins mit der des Koordinatensystems iibereinstimmt oder nicht, gibt
man der Torsion das positive oder negative Vorzeichen. Ahnlich gehen wir in

%) FINSLER, (1) S. 67.

2:

(15)
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unserem Falle vor. Fiir ein festes ¢ stellt (6) eine Kurve dar, die in einer
Hyperebene liegt. Die Tangente der Kurve, die z,- und z,-Achse bilden zu-
sammen ein orthogonales Dreibein, durch welches die Hyperebene eine be-
stimmte Orientierung erhilt. Wir untersuchen, ob das begleitende Dreibein
dieselbe Orientierung hat. Da beide Dreibeine die Kurventangente als erste
Achse gemeinsam besitzen und Haupt- und Binormale in die xz;, z,-Ebene
fallen, so brauchen wir nur zu entscheiden, ob die Hauptnormale mit der Bi-
normalen ein positives oder negatives Koordinatensystem bildet. Zu diesem
Zweck bestimmen wir das Vektorprodukt [h, b] (h = Hauptnormalenvektor,
b = Binormalenvektor, beide im z,, z,-Koordinatensystem ausgedriickt).
x" und x” liegen ebenfalls in der z,, z,-Ebene und bilden im allgemeinen
ein schiefwinkeliges Koordinatensystem, das jedoch dieselbe Orientierung be-
sitzt wie f), b. Wir brauchen also lediglich das Vorzeichen von

P Q

=P8 — @R
R 8 ¢

zu bestimmen, um dasjenige der Normaltorsion zu erhalten.

Ersetzen wir den Winkel ¢ durch ¢ -+ 180°, so wechselt PS8 — QR und
damit auch die Normaltorsion das Vorzeichen. Geometrisch laBt sich dies
leicht erkldren. Bei beiden Winkeln erhalten wir dieselbe Schnittkurve. Diese
wird jedoch im entgegengesetzten Sinne durchlaufen, so dafl die Tangente in
die entgegengesetzte Richtung zeigt. Da jedoch auch die Binormale die Rich-
tung wechselt, dndert sich die Orientierung des begleitenden Dreibeins nicht.
Zufolge der Richtungsinderung der Tangente hat aber die Hyperebene nicht
mehr dieselbe Orientierung.

Unter Beriicksichtigung des Vorzeichens erhalten wir fiir die Normaltorsion
die Formel:

__ PS8 —QR

= Pre
Die Normaltorsion der Fliche verschwindet, wenn PS — QR = 0 ist. Wir
setzen nun die Ausdriicke (12) in diese Formel ein und dividieren noch durch
p®. Wenn wir die Abkiirzung ¢/p = sin ¢/cos ¢ = tg ¢ = y einfiihren, lautet
die Bedingung fiir das Verschwinden der Normaltorsion: (a, + 2a,y + a,y?)
(do + 3y + 3day® + dyy®) — (b + 20,y + bay?) (¢o + 30,y + Beay® + ¢5°) = 0.
Eine einfache Umformung fiihrt zur folgenden Bedingung:

(ady — bycs)y® + (2a,d; + 3apdy — 2b,¢; — 3bycy)y?
+ (@od; + 6a,d; + 3ayd; — bycy — 66,0, — 3by0,)y?
+ (3aydy + 6a,d; + aydy — 3byc, — 6b,¢; — bycy) y?
+ (3ayd, + 2a,dy — 3byc; — 2b,¢0)y + apdy — bycy = 0.

(16)

(17)
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Wenn der Koeffizient (a,d; — b,c;) von Null verschieden ist, so besitzt
diese Gleichung mindestens eine reelle Losung. Das bedeutet, dafl in min-
destens einer Richtung des Flichenpunktes die Normaltorsion verschwindet.
Ist jedoch (a,d; — byc;) = 0, so multiplizieren wir die obige Gleichung mit
y~5 und haben dann eine Bestimmungsgleichung fiir cotg ¢. Da jedoch das
konstante Glied dieser Gleichung null ist, erhalten wir die Losung cotg ¢ = 0,
das heiflt ¢ = 90°.

Verschwindet mit PS — QR gleichzeitig P2 -+ @2, so ist (16) unbe-
stimmt. Die Schnittkurve ist nicht gekriimmt und die Torsion ist nicht de-
finiert. Wir diirfen sie deshalb gleich Null setzen. Unter dieser Annahme haben
wir den Beweis fiir den folgenden Satz erbracht:

In jedem Punkt einer zweidimensionalen Fliche des vierdimensionalen
Raumes gibt es mindestens eine Richtung mit verschwindender Normaltorsion.

Daf} jedoch auch 2, 3, 4 oder 5 Richtungen mit verschwindender Normal-
torsion auftreten kénnen, zeigen wir im folgenden Paragraphen.

§ 2. Beispiele

Wenn wir in (9) die Konstanten geeignet wéhlen, so kénnen wir erreichen,
daB3 die oben besprochene Gleichung fiinf reelle Wurzeln besitzt. Setzen wir
beispielsweise

a, = —1, a, = 0, a, =1,
by, = —1, b = O, by = 3,
G == U, ¢, = 2/3, c;, = 0, c; = 0,
d, = 0, d, = —1, d, = 0, d; =1

in Gleichung (17) ein, so erhalten wir y(y* — 10y® 4 5) = 0. Diese Glei-
chung hat die folgenden Wurzeln y, mit den zugehorigen Winkelh g,.

yl = O’ ¢1 == 00,

Yo = l 5 — 2VE, 2 36°,
¥ = |5+ 2|5, Py = T2,
yt = — |5+ 25, @s = 108°,
yo = — |/5— 2)/s, g5 = 144°

In diesem Beispiel liegt eine regelméflige Verteilung der Richtungen vor.
Weiter geben wir ein Beispiel fiir einen Flachenpunkt, in welchem die Nor-
maltorsion in vier Richtungen verschwindet. Setzen wir in (12) fiir P, @, R
und S folgende Ausdriicke ein: P = p?, Q = q*, R = pq?, S = pq®, so
wird PS — QR = pq?(p® — ¢?). Die Normaltorsion verschwindet fiir p bzw.

I



96 WALTER FASSLER

g = 0, das heilt fir ¢ = 0° oder ¢ = 90°, und desgleichen fiir p? = ¢2,
das heilt wenn ¢ = 45° oder ¢ = 135° ist.

Setzen wir hingegen P = p?, Q@ = ¢®, R = p®, S = ¢, so erhalten wir
ein Beispiel, in welchem die Torsion in drei Richtungen verschwindet, denn
esist PS — RQ = p?q%(q — p). Dieser Ausdruck wird fir ¢ = 0°, ¢ = 45°
und ¢ = 90° gleich Null.

Wird aber P = p?, @ = p?, R = ¢®, 8 = 243, so verschwindet PS — R(Q
= p?¢® nur fir ¢ = 0° und ¢ = 90°.

Flichen, auf denen die Normaltorsion nur in einer Richtung gleich Null ist,
werden in den folgenden Paragraphen behandelt.

Soll jedoch die Normaltorsion in mehr als fiinf Richtungen verschwinden,
so miissen die Koeffizienten der Gleichung (17) gleich Null sein. Dies ist nach
(11) der Fall, wenn x” und x” fiir jeden Wert des Winkels ¢ linear abhingig
sind. Dies trifft zum Beispiel zu, wenn die Fliche in einen dreidimensionalen
ebenen Raum gelegt werden kann.

§ 3. Gleichwinklige Ebenen und A quigonen

Nach diesen allgemeinen Betrachtungen spezialisieren wir uns auf eine be-
sondere Fliachenklasse des vierdimensionalen Raumes. Um diese zu definieren,
fithren wir den Begriff der «gleichwinkligen Ebenen» ein?). Unter den beiden
Winkeln zweier Ebenen verstehen wir den grofiten und den kleinsten Winkel,
den ein Strahl der einen Ebene mit seiner Orthogonalprojektion auf die andere
einschlieB3t. Liegen beide Ebenen speziell in einer Hyperebene (in einem drei-
dimensionalen, ebenen Raum), dann haben sie im allgemeinen eine Gerade
gemeinsam, und der kleinste Winkel ist in jedem Falle gleich Null. Ist im vier-
dimensionalen Raum der grofite Winkel zweier Ebenen gleich dem kleinsten,
so nennen wir die beiden Ebenen gleichwinklig.

Alle Geraden einer Ebene schliefen mit ihren Projektionen auf eine gleich-
winklige Ebene denselben Winkel ein. Ist umgekehrt bei zwei Ebenen diese
Eigenschaft vorhanden, so sind die beiden Ebenen gleichwinklig. Zwischen
einer Strecke a auf der einen Ebene und ihrer Projektion a auf der anderen
besteht die Beziehung @ = a cos x, wobei &« der Winkel zwischen beiden
Ebenen ist.

Eine Figur auf der einen Ebene wird also durch die Orthogonalprojektion
auf die andere Ebene dhnlich abgebildet.

Offenbar bleibt die Eigenschaft der Gleichwinkligkeit erhalten, wenn wir
die beiden Ebenen parallel verschieben. Um die analytische Bedingung fiir
gleichwinklige Ebenen herzuleiten, wiahlen wir das Koordinatensystem so, da@

10y KwiETNIEWSKI, S, 10.
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die eine Ebene mit der z;, z,-Ebene zusammenfillt. Die andere Ebene legen
wir durch den Koordinatenursprung. Ihre Gleichung sei: vy = A%, + p%,.
%, und 1, seien Vektoren mit den Komponenten:

xl = (1’0;A13A2)’

(18)
12 = (O: 1, Bl’ Bz) .

Die Projektionen dieser beiden Vektoren auf die xz,, z,-Ebene sind:
i, =(1,0,0,0), % =1(0,1,0,0).

Die Vektoren %, und %, schliefen einen rechten Winkel ein. Deshalb miissen
auch die beiden Vektoren (18) senkrecht aufeinander stehen, weshalb die
Bedingung

L, % =%3%=A4,B, + 4,B,= 0 (19)

erfiillt sein muf3. Bezeichnen wir den Winkel zwischen x, und seiner Projektion
X, mit «,, soist: cos?a; = (1 + 42 + A%)~1. Auf gleiche Weise kann man den
Winkel «, zwischen %, und ¥, berechnen. Wir erhalten: cos2xy, = (1 + B + B3)-1.
Sollen die beiden Ebenen gleichwinklig sein, so miissen die beiden Winkel «,
und «, gleich sein, was auf die Bedingung

A1+ 4; = B + B; (20)
fithrt.

Sind (19) und (20) erfiillt, so ist der Ausdruck cos?2a = (1%, + p¥,)?/
(A%, + ux)? von A und px unabhingig, so daB (19) und (20) hinreichende
Bedingungen fiir die Gleichwinkligkeit der beiden Ebenen sind.

Die Gleichungen (19) und (20) werden genau dann befriedigt, wenn entweder

4, = B, 4y = — B, (21a)

oder

Al = = Bg s A2 = ‘Bl (21b)

ist. In diesen beiden Féllen haben wir somit gleichwinklige Ebenen vor uns.

Wir wollen noch untersuchen, ob die Gleichwinkligkeit zweier Ebenen eine
transitive Eigenschaft ist. Als erste Ebene wihlen wir die z,, zy-Ebene aus.
Eine zweite Ebene werde durch die Vektoren

£1=(1,0,A1,A2), xﬁz(o’la "Az:Al) (223’)
und eine dritte Ebene durch die Vektoren
», = (1,0, D,, D), Y, =(0,1, —D,, D) (22b)

aufgespannt. Nach (18) und (21a) sind die erste und zweite Ebene und auch

7 Commentaril Mathematici Helvetici
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die erste und dritte Ebene untereinander gleichwinklig. Wir zeigen, da auch
die zweite und dritte Ebene gleichwinklig sind. In der zweiten Ebene sei der
Vektor a = x, + Cx, gegeben. Wir wollen nun diesen Vektor auf die dritte
Ebene projizieren. Wir projizieren ihn zuerst auf den 1y,- und auf den 1),-
Vektor. Da 1, senkrecht auf dem Vektor 1), steht, so ergibt die Summe der
beiden projizierten Vektoren den gesuchten Vektor. Es ist also

)

A= (59, + C50) 2 + (1,0, + Cxp15) 2.
oF n;
Weill 5, =10 =0, 5i=1%, D=1, H = %Y, und 1Y = — %Y,

ist, so wird
via? = (5,9, + C£,)? + (5,9, + C x5,1,)?
= (£,91)% + 2C(x,9,) (%,1,) + C*(x,1,)?
+ (£,92)% + 20 (2,1) (%:10) + C%(%,1.)?
= ((£;91)? + (x:92)%) (1 + C?) .

Da jedoch a2 = #2(1 4+ C?) ist, haben wir die von C unabhiingige Beziehung
a2 = const-a?. Alle Vektoren a schlieBen also mit ihren Projektionen a den
gleichen Winkel ein. Somit sind auch die zweite und dritte Ebene gleich-
winklig.

Zum gleichen Resultat wiren wir gekommen, wenn wir fiir die Festlegung
der Komponenten von (22a) und (22b) die Beziehung (21b) verwendet hétten.
Wenden wir jedoch (21b) nur fiir die dritte Ebene an, ((22a) bleibe unverin-
dert), so sind die zweite und dritte Ebene nicht mehr gleichwinklig. Es gibt
also zu einer Ebene im vierdimensionalen Raum zwei Scharen gleichwinkliger
Ebenen. Die Ebenen derselben Schar sind alle untereinander gleichwinklig!?).
Die Unterscheidung besteht in der Anwendung von (21a) oder (21b).

Nach diesen Betrachtungen konnen wir nun die Aquigone definieren. Eine
Fliche, deren simtliche Tangentialebenen untereinander gleichwinklig sind,
nennen wir nach KWIETNIEWSKI eine Aquigone. KOMMERELL nennt eine
Flidche mit dieser Eigenschaft R-Fliche!2?). Es ist nun einfach, die Bedingun-
gen aufzustellen, damit (1) eine Aquigone darstellt. Die Gleichung der Tan-
gentialebene im Punkte x der Fliche (1) lautet (y — x) = A%y + pig,,
wobei 1 den laufenden Punkt bezeichnet. Die Gleichung der durch den Ur-
sprung gehenden parallelen Ebene ist: 1= 4%, + pux, . Die Vektoren
x,, und x, haben die Komponenten:

. ox; Oz, _ ox, Ox,
me(Log m) m-la a)

11) KwiETNIEWSKI, 8. 11,
13) KOMMERELL, S. 568.
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Mit (18) und (21a) bzw. (21b) kénnen wir unmittelbar die analytische Bedin-
gung aufstellen, damit (1) eine Aquigone darstellt:

or, Oz, oxr; ox,

ox, 0%, dox, Oz, (23a)
bzw.

9z _ 0% 0% Om, (23b)

ox, ox, = 0x, ox,

Wenn (1) eine Aquigone darstellen soll, so muBl entweder (23a) oder (23b)
erfiillt sein. Da (23b) durch Vertauschen der Koordinaten x, und z, aus (23a)
hervorgeht, geniigt es, Flichen zu betrachten, die den Gleichungen (23a) ge-
niigen.

Die Gleichungen (23a) sind nichts anderes als die CAucHY-RIEMANNschen
Differentialgleichungen der Funktionentheorie. Ist nidmlich w = f(z), z =
x + 1y, w=u -+ 1v, eine analytische Funktion, so sind bekanntlich die
Caucry-RiEmanNnschen Differentialgleichungen %, =v,, u, = — v, erfiilt.
Diese stimmen mit (23a) iiberein. Man braucht nur =, =2, 2, =y, ¥, =u
und x, = v zu setzen. Die analytische Funktion w = f(z) 148t sich im vier-
dimensionalen Raum als Flache darstellen. Wir nehmen ein rechtwinkliges
Koordinatensystem mit den Achsen z, y, u, v. Die Funktion f(z) sei in
einem bestimmten Gebiet der z-Ebene regulir. Einen beliebigen Wert z des
Gebietes stellen wir in der x, y-Ebene als Punkt dar. In unserem Koordi-
natensystem hat er die Koordinaten (z, y, 0, 0). Die Funktion w = f(2)
ordnet jedem Punkt z einen oder mehrere Funktionswerte w zu, je nachdem
die Funktion ein- oder mehrdeutig ist. Wir stellen w als Punkt mit den Ko-
ordinaten (z, y, u, v) dar. Ist die Funktion mehrdeutig, so tragen wir auf
gleiche Weise die iibrigen Werte ein, so da@3 «iiber » demselben Punkt z mehrere
zugeordnete Punkte liegen. Durchlduft der Punkt z seinen Definitionsbereich,
so beschreibt der zugeordnete Punkt eine Flidche, die im Falle der Mehrdeutig-
keit aus verschiedenen Blidttern besteht. KoMMERELL!®) nennt diese Fliche
Riemannsche Fliche im R,, oder kurz R-Fliche, weil man sie durch homéo-
morphe Verformung in eine RiEmannsche Fliche im iiblichen Sinn iiber-
filhven kann; mit anderen Worten: Beide Flidchen haben die gleichen Zusam-
menhangsverhéltnisse.

13) KoMMERELL, S. 568.
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§ 4. Normalkriimmung und Normaltorsion der Aquigonen

Fir die Berechnung der Normalkriimmung und Normaltorsion leiten wir
aus (23a) die folgenden Beziehungen ab

®x; iz, = 0x
dz2 oz, 0x, = 0at ’ (24)
0%x, ?xy oz,
ox* = om0z, = 02t (25)

z; und z, sind harmonische Funktionen (Potentialfunktionen), das heiBt sie
geniigen der Larraceschen Differentialgleichung:

otm, | w, om0z,
i T 0 Ammm T s

Ax, == -+ =0.

Die geometrischen Eigenschaften der Flidche sind allein schon durch eine der
beiden Funktionen gegeben, denn die andere ist durch sie bis auf eine Kon-
stante bestimmt14). Wir stellen unsere Formeln fiir Normalkrimmung und
Normaltorsion so auf, daf3 sie nur die Funktion z, enthalten.

Aus (24) und (25) folgt weiter:

3 3 3 3
o’wxy, 0w, By 03z,

0x20x,  0xd ’ 0z~ Oz, 0%’
Pr, P P, P (26)
ox2 0220z,  Ox20wx, ox3 ’

B, 0%, Pr, Pz

dx, 022~ 0x?ox, dx3 ~  0ad

Gehen wir wieder zu den in (9) eingefiihrten Abkiirzungen fiir die Koeffi-
zienten der Taylorentwicklung iiber und schreiben:

= 25 4 = 0y = L0 usw
0 & axi ’ 1 0 axlaxz ’ 2 0 ax‘g ’ .
So erhalten wir aus (24), (25) und (26) die Beziehungen: ay, = — a,, by = —a,,
b1=ao, b2=a1, 02::-' —"‘00, 63’:—" “—Cl, doz ——61, d] 260, dzzcl,
d; = — ¢,. Beriicksichtigen wir diese Zusammenhinge in (12), so wird:

P = ao(p* — ¢*) + 2a,p4,
Q = a,(® — p?) + 2a,p9,
R = cp(p? — 3¢%) + ¢,9(3p% — ¢¥),
S = 6q(3p* — ¢®) + ¢,p(3¢® — p?) .

(27)

1) BEHNKE-SOMMER, S. 156.
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Fiir die Normalkriimmung erhalten wir nach Formel (14) unmittelbar:
xz-o—sz—i—ero——ag—{—ai. (28)
Auf einer Aquigone hiingt somit die Normalkrimmung in einem Punkt
nicht von der Richtung ab. Die Aquigonen bestehen aus lauter Nabelpunkten5).

Nach den Formeln (16) und (27) kénnen wir die Normaltorsion der Fliache
berechnen. Es ist zunéchst:

PS — QR = q(aycy + a,¢y) + p(a 6o — aycy) -
Nach Einfiihrung der Abkiirzungen: a,c, — ao¢;, = A, ay,c, + a,¢, = B,
wird nach (16): 1
r?F(Acosqa-}—Bsin(p). (29)

@ ist der Winkel zwischen der xz,-Achse und der Tangentenrichtung der Schnitt-
kurve. Wir tragen nun die nach Formel (29) berechneten Werte der Normal-
torsion auf dem durch den Winkel ¢ bestimmten Tangentenvektor auf, und
zwar die positiven v in Richtung des Tangentenvektors, die negativen in der
entgegengesetzten Richtung. Fiir die Winkel ¢ und ¢ + 180° hat 7 denselben
Absolutbetrag, jedoch das entgegengesetzte Vorzeichen, so dafl also die zu-
gehorigen Punkte zusammenfallen. Lassen wir ¢ von 0 bis 360° wachsen, so
durchlaufen die aufgetragenen Punkte zweimal denselben Kreis. Um dies zu zei-
gen, setzen wir: (A4 cos ¢ + B sin ¢)/«* = 1, co8 (p — «). T, und « lassen sich
durch Anwendung des Additionstheorems auf cos (p — «) und Vergleich der
Koeffizienten von cos ¢ und sin ¢ bestimmen. Es ist:

A

e Ty COS & ,

K

B » (30)
Y Thae To SIN & .
K

Aus (30) folgt zunéchst:

Vi T B
5

K

To = + (31)

Einer Anderung des Vorzeichens in (31) entspricht nach den Gleichungen (30)
eine Anderung des Winkels & um 180°. Statt 7, ein festes Vorzeichen zu geben,
machen wir fiir & die Einschrénkung:

— 90° S < + 90°. (32)
Der Winkel « ist zusammen mit (32) durch die Gleichung
tg o — .gi (33)

15) KOMMERELL, S. 580.
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eindeutig festgelegt. Durch (32) und (30) ist das Vorzeichen von (31) bestimmt.
s ks sgnt, = sgnd fir 4 #£0, (34)
sgnty = — sgnB fir 4 =0.

Auf den ersten Blick scheint es naheliegender, 7, als positive Grofie (maxi-
male Torsion) zu definieren und « nicht einzuschréinken. Wenn wir jedoch die
Torsionsverhéltnisse auf einem Bereich einer Fliache statt in einem speziellen
Punkt untersuchen, so zeigt es sich, dal mit unserer Festlegung Unstetig-
keiten vermieden werden konnen (vgl. die Beispiele des § 6).

SchlieBlich fithren wir noch den Winkel y, der durch die Beziehung
py=¢—« (35)
definiert ist, ein, und schreiben statt (29)
T = T,CO8 9. (36)
Fig. 1 gibt eine anschauliche Deutung der Formeln (29) bis (33) und zeigt die
Lage des oben erwihnten Kreises. Der Winkel « bestimmt die Richtung, in wel-

cher 7 den extremalen Wert 7, annimmt. In dieser Richtung ist der Winkel v
gleich null.

Fig. 1

§ 6. Zusammenhang zwischen der Normaltorsion und dem
GAussschen Kriimmungsma8 auf Aquigonen

In diesem Abschnitt berechnen wir das Gausssche Kriimmungsmaf3 K und
zeigen den Zusammenhang mit der Normaltorsion. Dadurch erhalten wir die
Moglichkeit, die Normaltorsion in einem allgemeinen Flichenpunkt zu be-
stimmen. Zundchst berechnen wir die Fundamentalgrofien erster Ordnung:
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E=4%, F=x,z%,, G =1z . (37)
Aus (23a) folgt unmittelbar
oy ox, \2 o0z, \? .

Wie Gauss gezeigt hat, 148t sich das Gausssche Kriimmungsmafl K aus E,
F und @ und deren partiellen Ableitungen berechnen. Wir verwenden eine
von FRrROBENIUS hergeleitete Formel!¢), welche sich fiir unseren Fall sofort
wesentlich vereinfacht. Sie lautet:

E E, E
1 ool 1 (0 E,—F o F,—@
K=—— | F F, F,|— ( > £ — . “), (39)
4WH woor 2
W ¢ @ a. W\ ov w ou W

wobei W = + V'EG — F? ist und die in (39) verwendeten Parameter % und
v durch z, und z, zu ersetzen sind. Wie man sofort bemerkt, verschwindet
wegen F = 0 die Determinante, und da £ = @ ist,so wird W = + VE:=E.
Somit geht (39) iiber in:

1 (23 E, , o B,
K“‘“’zE(ax, E o, E)
oder
1
K = — 515 (EE,,, — B}, + EE,, —B,). (40)

Zur Berechnung der Ableitungen von £ beniitzen wir die in § 4 hergeleiteten
Beziehungen. Es wird:

ox, 0*x, = Ox, O0%x;
Bz, 2(6:1:1 ox? - 0, axlaxz) ’ »

I

g o(0% O 0m, ¥
#s  “\ox, 0x,0x, Oz, 0a? )’
. 0%x, \2 o*x, \2 Ox; 0%z, Oz, Oz,
B = 2 (ax§ ) T (6x18x2> * Gz, ozt T Oz, 0uidm,)’
E, . =2 0%z, 2+ ’z; \*  Oxy O%x; 0wy 0w,
ZsZy axf 0x, 02, ox, ax:} 0x, ax§6x2 ’
0%z, \2 ?x; \?
2 2 __ — 3 s
By + By =4 (B ”[( ax§)+<axlax2>}'

Setzen wir diese Ausdriicke in (40) ein, so erhalten wir nach einer einfachen
Zwischenrechnung :

1¢) BLASCHKE, S. 117.
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2 ([ 0%,;\? 0%z \?

K=\ (5] + (a2 | )
Dieser Ausdruck stellt das Gausssche Kriimmungsmaf3 in einem beliebigen
Punkt dar. Es hat ein negatives Vorzeichen, trotzdem die Normalkrimmung,
wie wir in § 4 gezeigt haben, fiir alle Richtungen den gleichen Wert hat. Zwei-
dimensionale Flichen des vierdimensionalen Raumes verhalten sich nicht
gleich wie solche, die sich in einen dreidimensionalen Raum einbetten lassen?).

Fiir den Nullpunkt folgt aus (41) und (28):

K= —2}+ a}) = — 2«2.

Auf einer Aquigone gilt somit allgemein :
K= — 2. (42)

Wir fragen nun, wie sich das Gausssche Kriimmungsma@ éndert, wenn wir
zu einem benachbarten Punkt iibergehen. Es sei: z, = x,(8), z, = ,(s) eine
durch den Nullpunkt gehende, stetig differenzierbare Kurve auf unserer Fliache.
Als Parameter verwenden wir die Bogenlinge s. Die Ableitungen nach s be-
zeichnen wir mit #, und z,. Leiten wir K (x,, x;) in Richtung der Kurven-
tangente nach s ab, so erhalten wir:

Ié = le il "|" K$2 3.32 . (43)

Zur Berechnung von K, und K, leiten wir (41) nach x, bzw. z, ab. Es folgt:

. 2 0%x,; 03z, 0%z, 0%, 0%x,\? o*x, \?
Koy = — {2E ox® 08 + 0x, 0z, 0x20x, — 3L, 0%, T 0x, 02, ) ||
2 oz, 0%, 2w, 03, 9%,\2 %z \2,
Koy = — 7 {2E [axg 0x20x, Ox,0x, 0x° 3, —a?c?)“*‘ axla%)t '

Im Nullpunkt unseres Koordinatensystems vereinfachen sich diese Aus-
driicke; da dort £ = 1 und E, = E, = 0 ist, so wird

(o} o

. 0%z, 0%x, d0*x, 03w,
Ko 5 4{ 2 a2 | 9,03, 0ui0x,|’
und (44)
K — _4 o’z Om, 0wy O
Z2 © 0x? 0a20x, Ox,0x, 0x3 |’

Fiihren wir wieder die in § 4 eingefiihrten Bezeichnungen ein, so folgt:
K, 5= — 4(ay¢, + a,¢,) = — 4B,
K — 4(agc, — a,¢) = + 44 .

17) KOMMERELL, S. 579ff,

(45)

Za ©
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Setzen wir diese Beziehungen in Formel (31) ein und driicken «2 unter Benut-

zung von (42) durch K aus, so kénnen wir 7, aus K, , K,, und K berechnen:

VK: + K2
To = T é?{- :. (46)
Zur Bestimmung des Vorzeichens von 7, folgt aus (34) und (45):
sen 1, =sgn K, fir K 0,
g 0 o g g T # (47)
sgn 1, z=sgn K, fir K, =
Die Formel (33) geht iiber in:
K,
$ = — L, 48
go K., (48)

Der Vektor mit den Komponenten K, , K, ist im Nullpunkt identisch mit
dem Gradienten der Funktion K (z,, x,). Statt Formel (46) diirfen wir deshalb

| grad K |

=T oK

(49)
schreiben, wo |grad K| die Lidnge des Gradienten der Funktion K bedeutet.
Diese Formel gilt fiir jeden Punkt des Definitionsbereiches. Die Vorzeichen-
regel (47) fir 7, 14Bt sich noch einfacher formulieren. 7, ist positiv, wenn
grad K in der obern Halbebene, die negative x,-Achse ausgeschlossen, liegt.

Wir berechnen jetzt den Gradienten von K in einem allgemeinen Punkt.
Die Parameterlinien z, = const. bzw. x, = const. bilden ein orthogonales
Netz. Wir brauchen deshalb die Funktion K auf den Linien z, = const. und

x, = const. nach s abzuleiten und haben dann die Komponenten des Gra-
dienten:

dz, / dx, /
Kz, ds |z, = const. bzw. K, ds |z, = const.

Wegen ds? = E(da} + da3) folgt unmittelbar

dx, / 1 und dx, / _

ds |z, = const. VR ds | xy=const. VE
Somit ist in einem allgemeinen Punkt:

1
grad K = —-l—/-—ﬁ‘{le . ng} 5 (50)

oder 1
‘ gra‘d K l = ﬁ V—Kix + Kg:a s (51)
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§ 6. Beispiele

Wir erliutern den Inhalt des § 5 an Hand zweier Beispiele, die wir der
Funktionentheorie entnehmen. Wie wir in § 3 zeigten, 1a83t sich eine Funktion
einer komplexen Variablen als Flidche im vierdimensionalen Raum darstellen,
und im Falle einer analytischen Funktion ist die Fliche eine Aquigone. Ist
w = u + v = f(2) eine analytische Funktion, so ist w2 + u} = |f'|? und
'u’iz + uiy = |f"]*.

Ferner sind nach (38) die Fundamentalgréfen erster Ordnung:

E=G=1+I|fP,

52
F=0. (52)
Statt (41) schreiben wir deshalb18):
nyg
K — 21 (53)

TR
1. Beispiel: Als erstes Beispiel wihlen wir die Exponentialfunktion:
w=f(z) =€ = e*(cosy + 1 8iny).

Fiir die erste und zweite Ableitung erhalten wir:

[2)=1f"()=¢,

und ihre absoluten Betréige sind: |f'| = |f'| = €*. Nach (562)ist £ = 1 4 e?*,
Nach (53) erhalten wir fiir das GAusssche KriimmungsmaB:

2e2
T+ =)
1 — 2e2=

Km=—4eum, K,’,:O.

Die z-Komponente des Gradienten ist somit nach (50)
1 — 2e%*
(1 + em=pn
Fir = — }1g2 = — 0,3466 verschwindet der Gradient. Bei 2 > — }1g 2
zeigt der Gradient in Richtung der positiven z-Achse; bei ¢ < — $1g2 in

Richtung der negativen z-Achse. Damit ist auch das Vorzeichen von 7, fest-
gelegt. Unter Beniitzung der Formeln (49) und (54) erhalten wir:

K= (54)

Weiter folgt:

— 46237

2e2* — 1
— 56
TO (1 "Jr' em)a/z 9 ( )

18) KOMMERELL, S. 581.
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wobei bei der Quadratwurzel der positive Wert zu nehmen ist. Aus (48) und
unserer Vereinbarung (32) folgt, da « = — 90° ist. Wir sehen, daB fiir
x> — $1g 2 die maximale Torsion bei ¢ = — 90° und fir < — }1g2 bei
@ = + 90° erreicht wird. Den Verlauf von 7, als Funktion von « haben wir
in Fig. 2 dargestellt. Das Maximum von 7, liegt bei = = }lg 3,5 = 0,6264

und betrigt -+ % V'2 =+ 0,6285. Fir grole x kann 7, durch 7, ~2e¢2 und

fiir stark negative x durch 7, ~ 3,5¢2* — 1 approximiert werden. Wir be-
merken noch, daB3 die Definition eines immer positiven 7, im Punkte z =
— 31g 2 zu einer Unstetigkeit der ersten Ableitung von 7, und einer Un-
stetigkeit beim Winkel &, als Funktion von x dargestellt, gefithrt hitte. Durch
unsere Annahmen haben wir diese scheinbaren Unstetigkeiten umgangen.

7,

Fig. 2

-1

2. Beisprel: Wir betrachten die Funktion w = f(z) = }22. i']')ara,us folgt
unmittelbar: f(z) =2z und f"(z) = 1. Setzen wir |2| =17, soist |f'| =7
und

E=1+4r%. (56)

Somit erhalten wir nach Formel (53) fiir das Gausssche Krimmungsmaf:

R
T+

Das Gausssche Kriimmungsmafl héngt also nur von |[z| = r ab. Da K mit

wachsendem » immer zunimmt, zeigt der Gradient immer in Richtung des
Radiusvektors. Die Grofle

K= (57)

127
= >
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ist immer positiv, und da K; + K3 = K} ist, folgt nach (51), (56) und (58):

12r

| grad K | = + R
Mit (49) und (57) folgt schlieBlich:

3r
—Ea e

To

Fiir Punkte, die in der obern Halbebene (die negative z-Achse ausgeschlossen)
liegen, hat 7, das positive, fiir die iibrigen Punkte das negative Vorzeichen.
Fiir den Winkel « gilt: tgo 2%—, (z==z+ty) und — 90°x < + < 90°.
In Fig. 3 ist |7,| als Funktion von r dargestellt.

A"n'

. - Fig. 3
1 2 3 4 6 r &

Das Maximum liegt bei 7 = V'} = 0,7071 und betrigt 2/}/3 = 1,1548.
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