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Uber eine spezielle Klasse von Nabelpunkten

von K. Voss in Miinchen
Herrn Professor H. KNESER zum 60. Geburtstag gewidmet

Auf einem differentialgeometrischen Fliachenstiick F im Euklidischen z, y,
z-Raum sei o ein isolierter Nabelpunkt. Die zur grofleren Hauptkriimmung
von F gehorigen Kriimmungsrichtungen bilden auf F — o ein stetiges Feld
nicht orientierter Linienelemente, dessen Homotopieklasse durch den Index §
von o beschrieben wird. Definiert man § in noch ndher zu erliuternder Weise
als die durch 2z dividierte Winkeldnderung bei Umlaufung von o, so wird j
eine ganze oder halbganze Zahl, je nachdem, ob das Feld orientierbar oder
nicht orientierbar ist. Offenbar gibt es Richtungsfelder mit isolierter Singu-
laritét, bei denen 24 eine beliebige ganze Zahl ist; dagegen kann der Index
eines Nabelpunktes nicht beliebige Werte annehmen: nach einem Satz von
HAMBURGER ist auf reell-analytischen Flichen stets 7 << 1. Bei der Unter-
suchung der Nabelpunkte auf Weingartenschen Flichen (vgl. H. Hopr [1],
ferner K. Voss [2]) hat sich gezeigt, dall das Verhalten der Hauptkriimmun-
gen von F in der Umgebung von o einen Einflu auf den Index haben kann.
Hier wird in dieser Beziehung folgender Satz bewiesen:

Satz 1. Ist I stetig differenzierbar, F — o zweimal stetig differenzierbar und
gilt fiar die Hauptkrimmungen k,, k, auf F — o die Ungleichung (k, — c)
(kg — ¢) < 0 mit konstantem c, so ist der Index § < 0.

Hierbei kann o Nabelpunkt sein mit &, = k, = ¢; es ist aber agch zugelas-
sen, dafl die k, in o gar nicht existieren. Bei Flachpunkten auf negativ ge-
krimmten Flidchen, also im Spezialfall ¢ = 0 des Satzes 1, ist die Eigen-
schaft § < 0 wohlbekannt. Sie wurde von CoHN-V0SSEN [3] beim Beweis des
Kongruenzsatzes fiir isometrische Eiflichen entdeckt und von ScHILT[4] neu
begriindet ; ein anderer Beweis stammt von H. HorF und SAMELSON [5].

Der Satz 1 148t sich auf ein Lemma von COHN-VOSSEN iiber gewisse Abbil-
dungen von Richtungsfeldern zuriickfithren. Die betreffenden Sétze werden im
folgenden zunichst formuliert und mit Beweisen versehen, die sich zum Teil
an die ScHILTsche Darstellung, zum Teil enger an die urspriingliche CoHN-
Vossensche Idee anschliefen. Dann wird ein Satz iiber zwei sich beriithrende
Flachen hergeleitet, der den Satz 1 enthilt. Die ScHILTschen Ergebnisse iiber
das Verhalten der Fldche relativ zur Tangentialebene werden ebenfalls auf
diesen Fall verallgemeinert. Schlieflich wird noch die umgekehrte Ungleichung
(ky — ¢) (k3 — ¢) > 0 untersucht.
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Abbildung von Richtungsfeldern

In der z, y-Ebene sei U eine Umgebung des Punktes o, ferner I' eine stetige
geschlossene Kurve in U — o, bezogen auf die orientierte Parameterkreis-
linie S, und y die Umlaufzahl von I' um o. Ein stetiges Feld ebener Einheits-
vektoren v = {v,, v,} lings I" induziert in folgender Weise eine Abbildung ¢
von S in sich: man realisiere S als positiv durchlaufenen Einheitskreis einer
v,, vs-Ebene und trage v in dieser Ebene ab. Der Abbildungsgrad von ¢ werde
als Drehzahl d von v lings I' bezeichnet (d-2x ist die Gesamtdrehung von v
bei Durchlaufung von I'). Die beiden Felder p und — p haben dieselbe Dreh-
zahl.

Ein stetiges Vektorfeld in U — o erzeugt lings jeder Kurve ein Feld;
homotope Kurven induzieren homotope Abbildungen von S, also dieselbe
Drehzahl. Zwei geschlossene Kurven sind dann und nur dann homotop in
U — o, wenn sie dieselbe Umlaufzahl y um o haben. Daher hingt 4% ()
nur von y ab, und es gilt

d? () = yd™(v). (1)

d® heiflit Drehzahl von v schlechthin.

Ist 0 Nabelpunkt auf F, so entsteht durch Projektion der Kriimmungsrich-
tungen auf die Tangentialebene in o ein Linienelementfeld in U — o, welches
sich lings jeder Kurve I' mit y = 2 auf zwei Arten orientieren l4t, wobei
Vektorfelder » und — v lings I" entstehen. Der Index von o sei definiert durch

j = $d®(v).

Nun sei o: (z,y) - (', y’) eine stetige Abbildung von U in eine 2', y'-
Ebene mit der Eigenschaft: in U — o st o stetig differenzierbar, und die
Funktionaldeterminante

(', y')
4= :
d (x, y)

18t positiv. (Im Punkt o darf zum Beispiel 4 = 0 sein). Dann wird behauptet:

Es gibt Kreisscheiben V um o und V' um o' = o(0) und eine natiirliche Zahl
g mit folgenden EHigenschaften: Der Punkt o' hat aufer o keinen weiteren Urbild-
punkt in V ; jeder Punkt p' # o' von V' hat in V genau g Urbildpunkte.

Demnach ist ein Teil von V vermoge o verzweigte g-blittrige Uberlagerung
von V'’ mit einem Windungspunkt iiber o’.

Beweis!): Da jeder Punkt p von U — o eine Umgebung besitzt, die ein-
eindeutig abgebildet wird, kénnen sich die Urbildpunkte von o’ in p nicht

1) Vgl. ScriLr (4], S. 260-251.
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hdufen. Ein Kreisringgebiet mit Zentrum o enthilt daher nur endlich viele
Urbilder von o'; also gibt es eine Kreislinie L um o, die kein Urbild von o’
enthilt. A sei die Umlaufzahl von ¢(L) = L' um o', W die von L berandete
Kreisscheibe und W' eine Kreisscheibe um o', die von L’ nicht getroffen wird.
Dann ist h zugleich Abbildungsgrad von ¢ in den Punkten von W': da die
Punkte p’ # o’ bei o nur eineindeutig und positiv bedeckt werden, besitzt
jeder Punkt von W' — o’ genau h Urbilder in W (und da es in W' — o
Bildpunkte von W gibt, ist 2 > 0). Dann kann aber o' in W — o hochstens
h Urbildpunkte haben, denn jede positive Bedeckung von o’ fiihrt auch zu
einer Bedeckung in der Néhe von o'. Somit gibt es eine Kreisscheibe V um o,
die auBer o kein Urbild von o' enthilt. Ist K der Randkreis von V, g die Um-
laufzahl von ¢(K) = K' um o' und V’ eine zu K’ fremde Kreisscheibe um
o', so sind alle behaupteten Eigenschaften erfiillt.

Jetzt sei o eine Abbildung der betrachteten Art, I' eine geschlossene Kurve
in V — o mit der Umlaufzahl y um o und o(I') = I"" die Bildkurve mit der
Umlaufzahl 9’ um o’ . Dann gilt folgende Form des CorN-VossENschen Lemmas:

Ist v ein Vektorfeld lings I' und o(v) = v’ das durch die Richtungsabbildung
wn jedem Punkt entstandene Bildfeld lings I'', so gilt fiir die Drehzahlen
d =d?(v) und d' = d?)(v'):
d —d=9y" —y. (2,)
Der Beweis erfolgt in 3 Schritten:
1. d — d hat fir jedes Feld denselben Wert: Sind v,, v, zwei Felder, « der
Winkel von v, nach v, als stetige Funktion ldngs I', so ist die Gesamtédnderung

von « lings I
ox = (dy — d,)27 . »

Sind v;, v;, ' die entsprechenden GroBen im Bild, so gilt
O — &) = {(d3 — dg) — (dy — dy)}2=.

In einem Punkt sei &« = &, mod 2z mit 0 < ux,< 27, so dafl «, in einem
der vier Bereiche oy =0, 0<oya <@, &y=x, T<o,<2m liegt. Nach
Ausiibung einer linearen Abbildung mit positiver Determinante folgt, daB o
jeweils in demselben Wertebereich liegt, also ist stets

&' — & F= wmod 27 .

Somit iiberschreitet &' — « kein ungerades Vielfaches von 7, bleibt also im
Innern eines Intervalls der Linge 2m. Daher ist |d(x' — x)| < 27, also
(' — o) = 0, das heillt

& —dy=d, —d,.
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2. d' — d hat fir homotope Kurven I" denselben Wert: v’ sei ein beliebiges
stetiges Feld in o(V — o), zum Beispiel v’ = {1, 0}. Das Urbildfeld p in
V — o, das bei der Richtungsabbildung im jeweiligen Punkt in p’ transfor-
miert wird, ist stetig. Homotope Kurven I" gehen bei ¢ in homotope Kurven
I" iiber, also hingen d und d' nur von der Homotopieklasse von I” ab.

Da man I' durch einen y-mal durchlaufenen Kreis um o ersetzen kann, ist

Y =v9. (3)

Wegen (1) geniigt es nun, den Spezialfall y = 1 von (2,) zu beweisen. Die-
ser lautet wegen (3):

Fir Kurven der Umlaufzahl 1 ist
d —d=g—12). (2

3. Konstruktion eines speziellen Feldes3): C' sei eine Kreislinie um o’ in V',
Jeder Punkt p’'eC’ besitzt eine Umgebung, deren g Urbilder zueinander
fremd sind; endlich viele dieser Umgebungen iiberdecken C'. Bei einem
festen Punkt p’ beginnend, konstruiert man einen glatten Bogen in V — o,
der zwei Urbilder von p’ verbindet und auf C’ abgebildet wird. Nach einer
endlichen Anzahl 9’ von positiven Umlédufen auf C’ erhélt man eine einfach
geschlossene glatte Kurve I'in ¥V — 0, deren Bild I der y'-mal durchlaufene
Kreis C' ist. Dabei ist entweder y = 0 oder y = 4 1, je nachdem, ob o
im AuBengebiet oder im Innengebiet von I" liegt. Wegen (3) und wegen '> 0
folgt y =1 und 9 =g.

Verwendet man zur Bestimmung von d’ — d die Kurve /" und ihre positiv
gerichteten Tangentenvektoren, so wird nach Konstruktion d' = ¢ und nach
dem Tangentensatz?) d = 1, q.e.d.

Im Falle einer Abbildung ¢ mit 4 <0 nimmt (2,) die Form an
d+d=g+1, (21)

2) g — 1 ist die Ordnung des Windungspunktes. Aus (2,) folgt leicht eine bekannte Verzwei-
gungsformel fiir geschlossene orientierbare Fliéchen: Ist F' vermoge ¢ eine n-blittrige verzweigte
Uberlagerung von F’ mit der Verzweigungsordnung Z = X(g — 1) und sind y, y’ die Euler-
schen Charakteristiken, so gilt

x=ny —2.
Bringt man némlich auf F’ ein Feld v’ an, das héchstens in den Grundpunkten der Win-
dungspunkte singulér ist, und ist p das Urbildfeld von p’ auf F, so gilt Xd = y, und wegen
d =d@(') =gdM(v) wird Zd' =ny'.
3) ScHILT [4], S. 252, verwendet hier ein Niveaulinienfeld, wobei die BENDIXsoNsche Theorie

herangezogen wird.
%) Vgl. H. Horr [6].
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denn bei der Abbildung (z, y) >(z*=2', y*=—y') ist 4*>0, g¥=—g>0
und, da p* durch Spiegelung von v’ an der z-Achse entsteht, d* = — d’.
Fiir den Index eines Linienelementfeldes in U — o folgt daher

jj—j=g—1 fir ¢>0, ()
i'+j=9g+1 fir g<o0.

Identifiziert man die ', y'-Ebene mit der z, y-Ebene, so kann man die
Richtungsabbildung in einem Punkt p auch als lineare Abbildung des Rich-
tungsbiischels in sich auffassen, indem man die Bildvektoren p’ parallel nach
p verschiebt.

Bei einer Abbildung ¢ mit 4 <0 in U — o hat die Richtungsabbildung
in jedem Punkt reelle und verschiedene Eigenwerte ; die zum positiven Eigen-
wert gehorigen Eigenrichtungen bilden ein stetiges Linienelementfeld, fiir
dessen Index j nach (4) gilt

j=4%@+1)<0. (5)

Fir 4 > 0 stellt die Existenz eines stetigen Eigenrichtungsfeldes eine zu-
sitzliche Voraussetzung dar. Diese hat nach (4) zur Folge, da g = 1, also
o eineindeutig ist.

Beriihrung zweier Flichen

Jetzt werden Flachenstiicke F betrachtet, welche die x, y-Ebene im Punkt
o(x = y = 0) beriihren. F sei einmal, F — o zweimal stetig differenzierbar.
Als Flachenparameter w»f (¢ = 1, 2) konnen speziell z,y gewédhlt werden.
Mit den Abkiirzungen

L
2, =P, 2y =q, 1+ p*+qg= W, W>0, P=%, Q=%
haben Ortsvektor x und Normalvektor n die Darstellungen
= {x,y, 2}, —n={P,Q, — W}.
Fiir die Ableitungen von n nach «* gilt
—n, = Uz ; (6)

der gemischte zweite Fundamentaltensor I} hat als Eigenwerte die k; und als
Eigenrichtungen die Krimmungsrichtungen.

Satz 2. F und F seien Flichenstiicke, die sich im Punkt o berithren und durch
Geraden senkrecht zur Tangentialebene in o aufeinander bezogen sind. Auf
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F — o sei die Determinante A = |Ii — Ii| < 0. Dann ist der Index von o im
Feld der Eigenrichtungen des Tensors Ui — Ui kleiner oder gleich Null.

Beweis: F und F seien auf gemeinsame Parameter x, y bezogen. Aus (6)
liest man ab, daB der Tensor I} im z, y-System durch die Funktionalmatrix
von P, Q nach z, y reprisentiert wird. Die Funktionalmatrix der Abbildung

o =P —P
y =@ — @
ist somit I — /. Nach (5) ist also j < 0.

Als Spezialfall des Satzes 2 ergibt sich der Satz 1, wenn man fiir F die

Kugel vom Radius 1/| ¢| mit dem Zentrum {0, 0, 1/c} bzw. fiir ¢ = 0 die

Tangentialebene von F in o wihlt. Dann wird ndmlich I} =céi, A= (k, —c)
(kg — ¢), und die Eigenrichtungen sind die Kriimmungsrichtungen von F'.

(7)

Wendet man die BENDpixsoNsche Theorie®) auf die Niveaulinien einer stetig
differenzierbaren Funktion f(z,y) in der Umgebung einer isolierten Null-
stelle des Gradienten an, so 1af3t sich beweisen: Die Drehzahl d des Gradienten
ist <1. Fiir d =1 hat f in 0o ein Extremum. Fiir d < 0 laufen 2 — 2d
Niveaulinien in den Punkt o hinein, welche die Umgebung von o in Sektoren
mit abwechselnd positivem und negativem Vorzeichen von f — f, zerlegen;
die Zahl s = — d heiflt Ordnung des Sattelpunktes o.

Fiir zwei Flichen F und F , die sich in o beriihren und bei denen
A= |l —1U| #0 auf F— o ist, folgt:

Satz 3. Ist g der Abbildungsgrad der Abbildung (7), so gilt: a) Fir g <0 hat
F in o relativ zu F einen Sattelpunkt der Ordnung lg|. b) Fiir g >0 ist g =1,
und F liegt ganz auf einer Seite von F.

Beweis: Sei f(z,y) = z(x,y) — z(x,y) fir (x,y) e U. Die Fille a) und
b) lassen sich zu einem vereinigen, wenn man ein Extremum von f als Sattel
der Ordnung — 1 auffaBit. Der in (7) gegebene Vektor v, = {z',y’'} ist in
V — o von Null verschieden und hat die Drehzahl g. Es ist zu zeigen, dafl

der Gradient v, von f in o eine isolierte Nullstelle und ebenfalls die Drehzahl
g hat. Hierzu sei

W,={1 +t”(292+612)}%, Pt="%:, Qtz‘i%/“:

gesetzt, so dafl
-2
1 — (P + @}) = W, (8)
8) Unter geeigneten Voraussetzungen wird die Theorie bei KaAMKE [7] § 22 durchgefiihrt.
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wird. Das Vektorfeld

o,={P,— P,,Q,—Q,} fir 0 <t <1
ist stetig in z, y, ¢, und bei festem tist v, %0 in V — o0, denn aus v, = o
folgt wegen (8) zunichst W, = W, und daher p = p, ¢ = ¢, also b, = 0,

was aber nur in o stattfindet. Somit ist v, eine stetige Deformation von v,
in vy, q. e. d.

Sei F eine Fldche mit Nabelpunkt o und 4 = (k;, —¢) (kg — ¢) > 0 auf
F —o, bei der auf F — o kein weiterer Nabelpunkt liegt. Wihrend im
Falle 4 <0 der Index j von o gemdB (5) durch g festgelegt ist, folgt fiir
A4>0, also g =1, aus (4) nichts iiber die Grée von 5. Man kénnte ver-
muten, daf} in diesem Falle stets j = 1 sei. Dies ist jedoch nicht der Fall;
vielmehr gilt (unter Beschrinkung auf den Fall ¢ = 0):

Es gibt Flichen F mit Flachpunkt o und K = k,ky; >0 auf F — o, be:
denen o isolierter Nabelpunkt ist und der Index 7 einen beliebigen zulissigen
Wert <1 annimmit.

Beisprele: F sei in Polarkoordinaten r, 9 gegeben durch
z = f(x,y) = r*g(@), g@®) =a — cosnd

mit einer natiirlichen Zahl n. Fiir k> 2 ist F' zweimal stetig differenzierbar
und o Flachpunkt. K > 0 ist gleichbedeutend mit

foafow — oy = 14k — 1) {k2g® + g'* + k(99" — g'®)} > 0. (9)
Diese Bedingung ist (fiir » > 0) sicher dann erfiillt, wenn *
a>1 und k(@ —1)2 —n2(a+1)>0 (9')

ist, was bei festem n durch grole a oder k erreicht werden kann. Die Kriim-
mungsrichtungen werden néherungsweise durch

— 2fgy(da? — dy?) + (for — fuv)2dady = 0
wiedergegeben. Wéhlt man
a<l4 nik(k — 2), (10)
also @ und k£ nicht zu grof3, so bekommt das Vektorfeld

fm,- - fw + i2faw = - rk—zeziﬂ{g” - k(k - 2)9 - '52(10 - 1)9,}
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eine isolierte Nullstelle in 0 und die Drehzahl d = 2 — n. Der Index des
Nabelpunktes o wird dann

j=4%4d=1—3}n.

Da sich die Bedingungen (9’) und (10) gleichzeitig erfiillen lassen, zum Beispiel
durch die Werte

k= — a=l+%n2,

erhilt man fiir » = 1, 2,... Beispiele der gewiinschten Art.
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