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Moyennes généralisées

par J. Delsarte et J. L. Lions (Nancy)

Introduction

Dans une note récente [1], l'un d'entre-nous a donné le théorème suivant:
Si f est une fonction indéfiniment dérivable dans Rn, désignons par u(x,r)

la moyenne de f sur la sphère de centre x et de rayon r. Soient alors a et b deux
nombres positifs fixes, distincts. Si Von a, pour tout x c R71:

u(x,a) u(x,b) f(x)
alors la fonction f est harmonique (sauf peut-être pour des valeurs exceptionnelles

de a et b en nombre fini).
On sait, depuis Poisson, que u(x,r) est solution d'un problème de

Cattchy hyperbolique singulier :

/*\ a
<Pu n — l du

(*) A + + °

(**) u(x,O) f(x);

(cf. en particulier A. Weinstein, [1], [2]).
Nous dirons qu'une solution u(x, r) de ce problème, possède la propriété

de moyenne pour le rayon a > 0, si l'on a :

u(x, a) u(x, 0)

pour tout x dans Rn. Plus généralement, on peut se proposer l'étude
systématique du problème suivant :

Etant donné un opérateur hyperbolique singulier

(où les variables d'espace et de temps sont séparées), on cherche les fonctions f
définies dans Rn, telles que, si u(x, t) est la solution de:

(***) Du 0; u(x,0) f(x); ^(s, 0) 0,

on ait: u(x,a) f(x) (a positif, fixe, donné).
On montrera dans cette note (théorème 5.1) que ce problème (et même un

problème un peu plus général) équivaut à un problème de moyenne périodicité à

une variable. Pour arriver à ce résultat, nous utilisons : (a) la théorie des péra-
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teurs de transmutations (n° 2), (b) la théorie des translations généralisées (de

Delsabtb-Lévitan) dans un cas singulier (n° 3) (cf.LÉviTAN [1] et Mabcenko
[1] pour des cas particuliers). On applique ces translations généralisées au
problème de Catjchy considéré (n° 4) ; le théorème devient alors immédiat.

Le premier paragraphe est consacré à la définition de quelques notations.

1. Notations

Soit x une variable parcourant un ensemble Q. Soit (E un espace vectoriel
de fonctions définies sur Q, à valeurs scalaires ou vectorielles. La valeur de

fe(£, en xeQ sera notée indifféremment f(x), ou fx9 ou encore/*.
Soit A un opérateur linéaire, de (£ dans (£. L'image g de f par A est notée

A f ou A [/]. La valeur de g au point x e Q sera notée, dans toute la suite
Ax[f] ou encore Ax[f], Nous excluons la notation Af(x), qui conduirait
ici à d'inextricables ambiguïtés. Il arrivera souvent que / dépende de
plusieurs variables et que l'on doive préciser sur laquelle de ces variables
«travaille» l'opérateur A. On écrira alors: g(x) Ax[f(Ç)]. Dans cette notation,
f est une variable muette, dont il est loisible de changer à volonté le nom,
sous la condition qu'on ne lui donne point la dénomination d'une autre
variable figurant dans le calcul. En particulier, il ne faut point la nommer x.
On adoptera systématiquement les lettres grecques pour les variables muettes.
Soit maintenant x, y ->f($9 y) une fonction du couple ordonné(#, y) € Q X Q,
f prenant toujours ses valeurs dans le même espace vectoriel. Supposons que

fx: x-+f(x9y) et /2: y-*f(x,y)
soient dans ©. On peut alors calculer

dont les valeurs en x, (resp. en y) seront notées:

gi(x) - A.\j(e, y)] ; gM A,\f{*. v)] •

Soient maintenant A et B deux opérateurs de (£ dans lui-même ; la valeur en
# de g AB[f] A[B\f\] s'écrira:

si l'on doit préciser les variables sur lesquelles travaillent A et B. Concurem-
ment on peut considérer aussi la fonction de deux variables :

qu'il faut soigneusement distinguer de :
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Soit enfin g un deuxième espace vectoriel de fonctions sur Q, et L((£, 3)
Fespace des applications linéaires de (£ dans Ç. Soit 0 une fonction définie
dans Q, à valeurs dans L((£, Ç). Il est commode de noter sa valeur au point
y de Q par (î^. Si alors / e (E, la valeur de &y[f], qui appartient à g, au
point # de Q sera notée #*[/], ou <&vx [/(£)] s'il fout préciser la variable sur
laquelle travaille &y.

2. Transmutations

On désigne par (Ê^ l'espace des fonctions indéfiniment différentiables paires
sur R, à valeurs dans C ; (S* est muni de la topologie de la convergence
uniforme sur tout compact, pour les fonctions et chacune de leurs dérivées. On

posera D -=—. Soient q et r deux fonctions de (£*. On considère l'opérateur

différentiel :

Jf 1)2 _[_ x~1q(x)D + r(#) (2.1)

II est commode de poser :

q(x) 2p+ 1 + xm(z), (p * C) (2.2)

où m est indéfiniment différentiable impaire. Sauf si p — |, l'opérateur
Jf est singulier à Vorigine. On admet ici le théorème suivant (cf. Lions [2]):

Théorème 2.1. Si p =fi — 1, — 2,..., il existe un isomorphisme X, et un
seul, de (£* sur lui-même, tel que:

(2.3)

pour tout /€<£*. (2.4)

En fait, comme Jf dépend, entre-autres, de p, l'opérateur X, (opérateur
de transmutation) dépend aussi de p. Ecrivons-le iP)X. La fonction p -> {P)X

est entière à valeurs dans £ ((g*, (£*).
Si X~x désigne l'inverse del,ona:

Z-XD2 MX-1 (2.5)

^[/(Dl^/CO). (2.6)

Si s est un nombre réel ou complexe, et si l'on pose

î,«) (2.7)

ona: Mjed.^j + ^e^.sj^o (2.8)

0(0,5) 1; (2.9)
d (x, s) est paire en x.
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Remarque 2.1. D'après le théorème des noyaux de Schwabtz [3],
l'opérateur X~x est représenté par un noyau K(x)f. la fonction x -> K (x)ç est
indéfiniment différentiable, à valeurs dans l'espace des distributions en |,
paires et à support compact. On a:

et la formule (2.7) peut s'écrire:

e**>= 0{x,s). (2.10)

3. Translations généralisées

II est utile d'introduire les opérateurs de « translation » dans (Ê^, qui
conservent la parité. On posera, pour tout y e R :

*(/(* + y) + /(* - y)) • (s.i)
On définit ainsi ay €#((£*;(£#). La fonction y -> av est indéfiniment

différentiable paire. On a :

or» opérateur identité (3.2)

DJO1»] ^-D2 (3.3)

Vérifions ce dernier point; g o^f/] est la fonction

*->*[/(* +y) +/(*--y)]
Dérivant deux fois en y on obtient la fonction

*-**[/'(* +y)+ /*(*-y)]
qui n'est autre que la fonction <r| [D|[/]].

Utilisons maintenant les opérateurs de transmutations définis au n° 2. On

suppose p fixé et différent de —1,-2,... Posons :

On définit ainsi une fonction y -> Uv, indéfiniment différentiable, paire,
définie dans R, à valeurs dans £((£* ; (£*), et on a, par (3.2):

JJ° opérateur identité. (3.5)

De plus, on peut écrire

UUf(i)] \X~x\i(x + f}) + f{x - r?)] (3.6)

d'où, pour a réel quelconque
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Donc, pour tout y, Uv commute avec les translations. C'est donc un opérateur

de convolution.

Définition 3.1. On appelle opérateur de translation généralisée, de longueur
y, attaché à M, l'opérateur:

jS* X-iWX (3.7)
On peut aussi écrire :

S%if] ÏX?X?\.Xt+nW + *,_,[/]] (3.8)

Remarque 3.1. Comme X et X"1 sont univoquement définis par l'opérateur

différentiel M, il en est de même de Sy.
Les propriétés de Uv, signalées ci-dessus ont les conséquences suivantes:

Proposition 3.1. Pour tout y e R, Sv c £((£*, (£*) ; la fonction y ~> Sv est

indéfiniment différentiable paire à valeurs dans £((£*, ©*), et 8° est Videntité.

Il résulte aussi de la définition (3.8) la

Proposition 3.2. Pour tout f e £* on a:

Sît/] fljt/] • (3.9)

De plus, pour x 0, (3.9) implique

8SW M. (3.10)

Les propriétés essentielles de Sv sont contenues dans le

Théorème 3.1. Les translations généralisées Sv vérifient les identités:

(3.11)

• (3.12)

Démonstration. 1°) à partir de (3.7), on a

et comme Uv est un opérateur de convolution, il permute avec D2, donc

x-1 zjyD*x x-1 ijvxm s*m

ce qui établit (3.11).
2°) On a, par dérivation sous le signe somme:

Mais
MV[U"] Jf.CZ-1

et par (3.3), il vient :
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donCy M ] X-1 U*D*X X-1 U*XM
ce qui établit (3.12).

Le théorème 3.1 entraîne le

Théorème 3.2. Pour f donnée dans (g*, on pose

S*f u(x,y). (3.13)

La fonction u(x,y) est solution de:

Mx[u(Çiy)] My[u(*,v)] (3.14)

avec les conditions aux limites

u(x, 0) f(x) -A- u(x, 0) 0 (3.15)

Remarque 3.2. Par utilisation des opérateurs X et X~l on voit que le
problème (3.14), (3.15) admet une solution unique, de sorte que (3.13) peut
servir de définition pour les translations généralisées Sv.

Remarque 3.3. Comme X et X~l, on peut regarder Sv comme une fonction du
nombre complexe p. Cette fonction est méromorphe à valeurs dans £((E*, (£*).

Exemple 3.1. (Delsarte [3], Lévitan [1]).
Si Ton prend q(x) 2p -f 1, r(x) 0, on a

n

~ 2xy °0S

avec Re. p >
Cette formule peut se prolonger analytiquement (comme dans Lions [1])

pour p^-1,-2,...
4. Problèmes de Cauchy abstraits et translations généralisées

Soient E et F deux espaces vectoriels topologiques, localement convexes,
séparés, complets. On suppose que E c F algébriquement et topologique-
ment. Enfin Eo est un sous-espace de E.

On donne un opérateur A
A€&(E,F) (4.1)

Problème 4.1. On cherche une fonction u(t) indéfiniment différentiable en

t, à valeurs dans E, possédant les propriétés suivantes :
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^(O) C€jE7o (4.3)

u (t) est paire en t. (4.4)

L'opérateur M est défini comme au n° 2, avec p — 1, — 2,... Le
problème (4.1) est dit: Problème de Cauchy abstrait (singulier), à variables
séparées.

Définition 4.1. Le problème 4.1 est dit bien posé dans Eo si, pour tout
e e EOi il admet une solution unique.

Par utilisation des transmutations, on voit aussitôt que le problème 4.1
équivaut au problème analogue obtenu en remplaçant M par D2 ; il suffit en
effet d'introduire la nouvelle fonction ux(t) Xt[u(r)] (cf. Lions [1]).

Théorème 4.1. On suppose le problème (4.1) bien posé. Soit u sa solution.
Si a est un nombre > 0 fixé, posons:

v(t) Sat[u(r)l (4.5)

où Sv est la translation généralisée introduite par la définition (3.1). La fonction
v(t) vérifie:

A[v(t)] + Mt[v(r)] O (4.6)

v(0) u(a) (4.7)

v(t) est paire en t. (4.8)

(4.8) est évident. On a, par (3.11);

Mt[Sau] Sat[Mu]
d0nC:

A[v(t)] + Mt[v(r)] S«t[A[u(t)] + Mt[u(r)]] 0

ce qui montre (4.6). Enfin, v(0) S%[u{t)] S°a[u{r)] u(a), d'où le
théorème.

Voici trois exemples de problèmes bien posés :

Exemple 4.1. E — F (E(JS£), espace des fonctions indéfiniment diffé-
rentiables sur iî", avec la topologie habituelle. On prend pour A un opérateur
elliptique du deuxième ordre, à coefficients réels e (£(!?£), indépendants de t,

d2
de façon que A + -^ soit hyperbolique à variables séparées. Le problème

et
est bien posé dans (£(I^).

Exemple 4.2. On prend :

|p|, |g|<m; m>\
les fonctions apq e 93 '. espace des fonctions indéfiniment différentiables dans

JB£, bornées ainsi que toutes leurs dérivées. On désigne par Hm l'espace des

5 Commentaril Mathematici Helvetici
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U€L2(B*) tels que Dpu € L2(R") pour \p\ <m, les dérivées étant prises
au sens des distributions. Pour u c Hm, on pose:

H«IIL= z

où ||/||5= J \f(x)\2dx. L'espace Hm est alors un espace de Hilbert; son

dual sera noté H~m; on prend E Hm et F H~m; At2,(E,F). Pour
u, v, € 22, on pose encore :

a(u, v) 27 J am{x)D*uïFvdx ;

et on fait l'hypothèse que a(%, v) a(v, w) pour tout u, v cE, et que,
pour A réel convenable

«(»,«) + A||t>||S>«lM|i (4.9)
avec oc > 0, et v e E.

Soit enfin tD^t l'espace des fonctions u, indéfiniment différentiables dans
Rn, e L2 ainsi que toutes leurs dérivées.

Dans ces conditions, le problème (4.1) est bien posé dans J5J0 J)Laj
(cf. Lions [1]). Notons que la solution est alors indéfiniment différentiable à

valeurs dans T>L%.

Exemple 4.3. Cet exemple est analogue au précédent, mais l'opérateur
différentiel A est remplacé par un opérateur aux différences finies.

5. Propriété de moyenne et fonctions moyenne-périodiques

On donne un problème de Catchy abstrait, à variables séparées, bien posé
dans Eo.

Définition 5.1. Un élément e e EQ est dit avoir la propriété de a-moyenne
(relativement à A -\- M) si la solution u(t) du problème 4.1 vérifie:

u(a) e (5.1)

Cette terminologie est justifiée par les remarques de l'introduction.

Remarque 6.1. Dans le cas de l'exemple 4.1, la solution du problème 4.1
est de la forme :

(5.2)

où l'intégrale est prise sur un compact (dépendant de x et t). La propriété
(5.1) s'écrit:

e(x) $<5(x)y,a)e{y)dy (5.3)
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Cette équation est une équation de convolution, dans Rnx, si, et seulement si,
A est à coefficients constants (par exemple A — A). Dans le cas particulier

M D2 H — D, A — A, (5.3) est la propriété de moyenne

usuelle sur la sphère de centre x, de rayon a.

Remarque 5.2. Dans le cas de l'exemple 4.2, on a une solution de la même
forme (5.2), mais l'intégrale est cette fois étendue à Vespace entier, ce qui est
compensé par l'hypothèse e € î)x2 •

Théorème 5.1. Une condition nécessaire et suffisante pour que eeE0 ait
la propriété de a-moyenne (relativement à A + M) est que la fonction w(t)
solution de:

Aw(t) + w"(t) 0 (5.4)

ta(t) paire en t ; w(0) e (5.5)
vérifie:

K(a)t*w(t) w(t). (5.6)

(Rappelons que le noyau distribution K(a)t a été défini à la remarque
(2.1).) La condition (5.6) est une condition de moyenne-périodicité vectorielle
à une seule variable, la variable t. La transformée de Fourieb, en t, de la
distribution K(a)t — ô est 6(a, s) — 1.

Démonstration du théorème 5.1. Soit u la solution du problème (4.1),
supposée vérifier (5.1). D'après le théorème (4.1) on a alors:

8a[u] u. (5.7)

C'est nécessaire et suffisant. Remplaçons Sa par sa valeur, op voit que
(5.7) s'écrit X~1UaX[u] — u ou encore, posant X[u] ux

[/«[%] ux (5.8)

ce qui, moyennant (3.6) et la remarque (2.1), devient:

Or, on vérifie immédiatement que ux vérifie les conditions (5.4) et (5.5). On
a donc ux w, ce qui termine la démonstration.

6. Applications

Théorème 6.1. On suppose que M D2 + t^q^D, et que, a et b étant
deux nombres positifs donnés, la seule racine commune aux deux équations:

0(a,«)-l O; 0(b,s) -1 0, (s € C) (6.1)



68 J. Delsabte / J. L. Lions

sait s 0. Dans ces conditions, si e c Eo vérifie les propriétés de a-moyenne
et de b-moyenne, on a:

Ae 0

Démonstration. D'après le théorème (5.1), on a:

K{a)t * w(t) K(b)t * w(t) w(t)

Si e'eE', dualdejB,etsi:
«VW <"(«); e'>>

on a
Jl (a), * we, K(b)t * we, we,

D'après l'hypothèse (6.1), (6.2) et le théorème des moyenne-périodiques
(Schwabtz [1]), on a nécessairement:

où oce, et /?e, sont deux constantes, car s 0 est le seul point (d'ordre 2),
du spectre de la fonction moyenne-périodique we, (t). Comme cette fonction
est paire, on a <xe, 0, donc we,(t) se réduit à une constante. Par suite
w(t) est un élément de E qui est indépendant de t, donc, nécessairement

w(t) e, et (5.4) donne alors Ae — 0 ;

n \
Exemple 6.1. Si A — A et si M D2 H —Z>, on retrouve le

t
théorème de Delsabte [1]. Posons dans ce cas n 2p + 2, on a alors:

KJxÏt Jeos 0/(xco
Vn Â \n \ 2/ o

et fl(«,«)== Z-^cos (si)] jp(«a?) en posant 7;(z) ^
la fonction 6(x, s) ne dépend alors que du produit sa:, et les conditions (6.1)
reviennent à supposer que l'équation jp(z) — 1 0, (qui admet z 0 comme
seule racine réelle, d'ordre deux) ne possède aucun couple de racines complexes

dont le rapport soit réel et égal à -j- Une analyse facile, mais trop longue

pour être reproduite ici, montre par la considération des séries asymptotiques
classiques donnant les valeurs de la fonction de Bessel Jv(z) pour \z\ très
grand, que si cette circonstance se produit, cela ne peut être que pour un

nombre fini de valeurs du rapport -j-, valeurs qu'on peut assigner à l'avance,

pour chaque indice p. En fait, on vérifie directement que cela ne se produit
pas pour n 3, et il est vraisemblable que cette circonstance est générale.
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Remarque 6.1. (Note ajoutée à la correction des épreuves). Considérons le
problème suivant: On cherche u(t) indéfiniment différentiable paire à valeurs
dans E, avec

A[u(t)] + Mt[u(r)] 0, (6.2)

u(a) u(b) g où g est donné dans E avec Ag 0. (6.3)

Si ê (a, s) 0 et & (b, s) 0 n'ont aucun zéro commun, la seule solution de (6.2),
(6.3) est u(t) g.

En effet, si v(t) u(t) — g, on a

A[v(t)] + Mt[v(t)] 0, v(a) v(b) 0.

Ceci équivaut (démonstration comme au § 5) à $(a)[V] 0, $(6)|V] 0;
si Xv vl9 ceci équivant à K{a)t * vx 0, if (6)f * v1 0, d'où Vj 0 grâce
à la théorie des fonctions moyenne-périodiques. Donc v 0. c.q.f.d.

En particulier, dans i23, si une fonction / a des moyennes sphériques égales
à une même fonction harmonique g pour deux rayons a et 6, de rapport
irrationnel, alors f — g.
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