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Moyennes généralisées

par J. DELSARTE et J. L. Lioxs (Nancy)

Introduction

Dans une note récente [1], I'un d’entre-nous a donné le théoréme suivant:

Si f est une fonction indéfiniment dérivable dans R™, désignons par wu(z,r)
la moyenne de f sur la sphére de centre x et de rayon r. Sotent alors a et b deux
nombres positifs fixes, distincts. S8t Uon a, pour tout x e R™:

u(x,a) = u(x, b) = f(x) ,

alors la fonction f est harmonique (sauf peut-étre pour des valeurs exception-
nelles de a et b en nombre fini).

On sait, depuis Poisson, que wu(x,r) est solution d’un probleme de
CAucHY hyperbolique singulier:

2u n—1 ou

) —dut gyt =0
() u(z,0)=f(x); —o-ulz,0) =0

(cf. en particulier A. WEINSTEIN, [1], [2]).
Nous dirons qu’une solution u(x,r) de ce probleme, posséde la propriété
de moyenne pour le rayon a > 0, sil’on a:

u(x, a) = u(x, 0) .

pour tout z dans R™. Plus généralement, on peut se proposer ’étude systé-
matique du probléme suivant:
Etant donné un opérateur hyperbolique singulier

0 0 0% 1 0
D= = X5 (ayle) o) + 5 + 900 55 + 70

(ot les variables d’espace et de temps sont séparées), on cherche les fonctions f
définies dans R™, telles que, st u(x,t) est la solution de:

(***) Du=0; u(z,0)=f(x); —%u(x,O):-O,

on ait: u(x,a) = f(x) (a positif, fixe, donné).

On montrera dans cette note (théoréme 5.1) que ce probléme (et méme un
probléme un peu plus général) équivaut & un probléme de moyenne périodicité a
une variable. Pour arriver & ce résultat, nous utilisons: (a) la théorie des péra-
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teurs de transmutations (n° 2), (b) la théorie des translations généralisées (de
DELSARTE-LEVITAN) dans un cas singulier (n° 3) (cf. LEVITAN [1] et MARCENKO
[1] pour des cas particuliers). On applique ces translations généralisées au
probléme de CAucHY considéré (n° 4); le théoréme devient alors immédiat.
Le premier paragraphe est consacré a la définition de quelques notations.

1. Notations

Soit # une variable parcourant un ensemble £. Soit € un espace vectoriel
de fonctions définies sur 2, & valeurs scalaires ou vectorielles. La valeur de
fe€, en z e sera notée indifféremment f(x), ou f,, ou encore f=.

Soit A un opérateur linéaire, de € dans €. L’image g de f par A est notée
Af ou A[f]. La valeur de g au point z ¢ 2 sera notée, dans toute la suite
A,[f] ou encore AZ=[f]. Nous excluons la notation Af(x), qui conduirait
ici & d’inextricables ambiguités. Il arrivera souvent que f dépende de plu-
sieurs variables et que I’on doive préciser sur laquelle de ces variables «tra-
vaille» ’opérateur A. On écrira alors: g(z) = 4,[f(£)]. Dans cette notation,
& est une variable muette, dont il est loisible de changer & volonté le nom,
sous la condition qu’on ne lui donne point la dénomination d’une autre va-
riable figurant dans le calcul. En particulier, il ne faut point la nommer z.
On adoptera systématiquement les lettres grecques pour les variables muettes.
Soit maintenant x, y — #(z, ) une fonction du couple ordonné(x, ) e 2 X 2,
f prenant toujours ses valeurs dans le méme espace vectoriel. Supposons que

h:z—>f(x,y) et fi: y—>fz,y)
soient dans €. On peut alors calculer

g, = Alf,] g: = Alf,]

dont les valeurs en z, (resp. en y) seront notées:

g1(x) = A [f(&,9)];  g2(y) = A, [f(x,n)] .

Soient maintenant A et B deux opérateurs de € dans lui-méme ; la valeur en
xde g = A B[f] = A[B[f]] s’écrira:
g(x) = A[Be[f(&)]]

si I’on doit préciser les variables sur lesquelles travaillent A et B. Concurem-
ment on peut considérer aussi la fonction de deux variables:

g(x,y) = A, B,[f (&, n)]
qu’il faut soigneusement distinguer de:

h(z,y) = A,B,[f(n, £)].
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Soit enfin § un deuxiéme espace vectoriel de fonctions sur Q, et L(CE, §)
Pespace des applications linéaires de € dans §. Soit @ une fonction définie
dans Q, & valeurs dans L (€, §). Il est commode de noter sa valeur au point
y de Q2 par @Y. Si alors fe €, la valeur de @¥[f], qui appartient & §, au
point x de 2 sera notée DY[f], ou DY[f(&£)] #’il faut préciser la variable sur
laquelle travaille @v.

2. Transmutations

On désigne par €, 'espace des fonctions indéfiniment différentiables paires
sur R, & valeurs dans C'; €, est muni de la topologie de la convergence uni-
forme sur tout compact, pour les fonctions et chacune de leurs dérivées. On

posera D = TZ% Soient g et » deux fonctions de €,. On considere I'opéra-
teur différentiel : M= D* + 2-1g(z)D + r(x) . 2.1)
I1 est commode de poser:

g(x) =2p+ 14 xzm(x), (peC) (2.2)
ou m est indéfiniment différentiable impaire. Sauf si p = — }, V'opérateur

M est singulier & Uorigine. On admet ici le théoreme suivant (cf. Lions [2]):

Théoréme 2.1. Si p = — 1, — 2,..., il existe un isomorphisme X, et un
seul, de €, sur lui-meme, tel que:
DX = XM (2.3)
X, [f(&)] = f(0) pourtout f G, . (2.4)
»

En fait, comme M dépend, entre-autres, de p, 'opérateur X, (opérateur
de transmutation) dépend aussi de p. Ecrivons-le X . La fonction p - X
est entiére & valeurs dans £ (C,, €,).

Si X-! désigne l'inverse de X, on a:

XD*=MX? (2.5)
X F(&)] = (0 (2.6)

Si 8 est un nombre réel ou complexe, et si ’on pose
X '[cos(s&)] = O(x, s) (2.7)
on & M [0(£, )] + s*0(z, 8) = O (2.8)
6(0,8) = 1; (2.9)

0 (x, 8) est paire en x.
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Remarque 2.1. D’aprés le théoréme des noyaux de SCEWARTZ [3], 'opé-
rateur X! est représenté par un noyau K(z);: la fonction z — K(x); est
indéfiniment différentiable, & valeurs dans l’espace des distributions en §,
paires et & support compact. On a:

XZHAE)] = (K(z)g; (&)
et la formule (2.7) peut s’écrire:
(K (x)g; €*y = O(x, s) . (2.10)

3. Translations généralisées

Il est utile d’introduire les opérateurs de «translation» dans €, , qui con-
servent la parité. On posera, pour tout y e R:

oz f (Ol =31+ y) + [z —y) . (3.1)

On définit ainsi o% € (€, ; €,). La fonction y — o¥ est indéfiniment
différentiable paire. On a:
a® = opérateur identité (3.2)

Di[¢"] = o¥-D?. (3.3)
Vérifions ce dernier point: g = o¥[f] est la fonction
z—>3[f(x+y + flx —y)]

Dérivant deux fois en y on obtient la fonction

x> 3" (x+y) + {"(x — )]

qui n’est autre que la fonction o [D;[f]].
Utilisons maintenant les opérateurs de transmutations définis au n° 2. On
suppose p fixé et différent de —1, —2,... Posons:

Uv = X;'[e" . (3.4)

On définit ainsi une fonction y — U?, indéfiniment différentiable, paire, dé-
finie dans R, & valeurs dans (€, ; €,), et on a, par (3.2):

U° = opérateur identité. (3.5)
De plus, on peut écrire

ULH(O)] =3 X' [f(= + n) + f(z — n)] (3.6)

d’ol1, pour a réel quelconque

U of(O)]=3Xf(x +a+n) + f(z+a—n]=Uilf(¢ +a)].
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Done, pour tout y, UY commute avec les translations. C’est donc un opéra-
teur de convolution.

Définition 3.1. On appelle opérateur de translation généralisée, de longueur
y, attaché & M, l'opérateur:

SY = X10vX . (3.7)
On peut aussi écrire:
Syl = X" X[ X, [f] + X, [ (3.8)

Remarque 3.1. Comme X et X-! sont univoquement définis par I’opéra-
teur différentiel M, il en est de méme de Sv.
Les propriétés de Uv, signalées ci-dessus ont les conséquences suivantes:

Proposition 3.1. Pour tout y e R, SY e (€, €,); la fonction y — SV est
indéfiniment différentiable paire o valeurs dans L(€,, €,), et S° est 'identité.
Il résulte aussi de la définition (3.8) la

Proposition 3.2. Pour tout feQ, ona:

SzIf1 = Sy (3.9)
De plus, pour =z = 0, (3.9) implique
Sy =1y . (3.10)

Les propriétés essentielles de S¥ sont contenues dans le
Théoréme 3.1. Les translations généralisées SY vérifient les identités:
M8y = SYM (3.11)
M, S8 = 8vM . *  (3.12)
Démonstration. 1°) & partir de (3.7;), on a
M8V =MX1UvX = X'D*UYX
et comme UV est un opérateur de convolution, il permute avec D2, donc
MSY = X1U0vD?*X = X 'UVXM = S'M

ce qui établit (3.11).
2°) On a, par dérivation sous le signe somme:
M8 =M/[XU"X]= XM, [UTX.
Mais
M, [U" = M,[X [o™]] = X' [D;[0™]]
et par (3.3), il vient:
M,[U" = X' [o"D*] = X [o"]D* = UvD?
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dOHC, My[sr)] — X-—-l U]lD2X — ;X’“1 UVXM == S’VM

ce qui établit (3.12).
Le théoréme 3.1 entraine le

Théoréme 3.2. Pour f donnée dans €, , on pose

SVf=u(x,y). (3.13)
La fonction w(x,y) est solution de:
M [u(é, )] = M,[u(z, n)] (3.14)
avec les conditions aux limites
u(z, 0) = f(x), —;y—/——u(x, 0)=0. (3.15)

Remarque 3.2. Par utilisation des opérateurs X et X-! on voit que le pro-
bléme (3.14), (3.15) admet une solution unique, de sorte que (3.13) peut
servir de définition pour les translations généralisées S¥.

Remarque 3.3. Comme X et X-1, on peut regarder 8¥ comme une fonction du
nombre complexe p. Cette fonction est méromorphe & valeurs dans £(€,, €,).

Exemple 3.1. (DErLSARTE [3], LEviTAN [1]).
Si l'on prend ¢g(z) =2p+ 1, r(x) =0, ona

i T+l [ in 2
SYf THIp+ D (;[f(l/x + y® — 2zy cos ¢) sin?pdy

(avec Re. p >__:éi) ;

Cette formule peut se prolonger analytiquement (comme dans Lions [1])
pour p # —1, —2,...

4. Problémes de CAucHY abstraits et translations généralisées

Soient Z et F' deux espaces vectoriels topologiques, localement convexes,
séparés, complets. On suppose que E c F algébriquement et topologique-
ment. Enfin E, est un sous-espace de K.

On donne un opérateur A

AeQ(E,F). (4.1)

Probléme 4.1. On cherche une fonction w(f) indéfiniment différentiable en
t, & valeurs dans ¥, possédant les propriétés suivantes:

Afu(®)] + M,[u(7)] = 0; (4.2)
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u(0)=8€Eo (4.3)
u(t) est paire en {. (4.4)
L’opérateur M est défini comme au n° 2, avec p = —1, —2,... Le pro-

bleme (4.1) est dit: Probléeme de CaucHy abstrait (singulier), ¢ wvariables
séparées.

Définition 4.1. Le probléme 4.1 est dit bien posé dans E, si, pour tout
e e Ky, il admet une solution unique.

Par utilisation des transmutations, on voit aussitot que le probleme 4.1
équivaut au probléme analogue obtenu en remplagant M par D?; il suffit en
effet d’introduire la nouvelle fonction wu,(t) = X,[u(7)] (cf. Lrons [1]).

Théoréme 4.1. On suppose le probléme (4.1) bien posé. Soit u sa solution.
St a est un nombre > 0 fixé, posons:

v(t) = Silu(7)] (4.5)

ou SY est la translation généralisée introduite par la définition (3.1). La fonction
v (t) vérifie:

Afv ()] + M [v(z)] = 0 (4.6)
v(0) = u(a) (4.7)
v(t) est parre en t. (4.8)

(4.8) est évident. On a, par (3.11);
M, [S3u] = S§[Mu]
Al @] + M [v(7)] = S;[Alu ()] + M,[u(z)]] =0

ce qui montre (4.6). Enfin, v(0) = 8%[u(r)] = 8°[u(z)] = u(a), d’ou le
théoreme.
Voici trois exemples de problémes bien posés:

done:

Exemple 4.1. E = F = E(R}), espace des fonctions indéfiniment diffé-
rentiables sur R}, avec la topologie habituelle. On prend pour A un opérateur
elliptique du deuxiéme ordre, & coefficients réels ¢ €(R}), indépendants de ¢,

de fagcon que A + -éa-; soit hyperbolique & variables séparées. Le probléme
est bien posé dans E(R7).
Exemple 4.2. On prend:
A=Z(—1)"D2(ay(@)DY) , |pl, lgl <m; m>1

les fonctions a,, ¢ B: espace des fonctions indéfiniment différentiables dans
R}, bornées ainsi que toutes leurs dérivées. On désigne par H™ l’espace des

5 Commentarii Mathematici Helvetici
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u e L2(R}) tels que D?u e L?(R}) pour |p| < m, les dérivées étant prises
au sens des distributions. Pour » ¢ H™, on pose:

lullm= & [[D"ufs

|pl<m

o ||f|I2= [|f(z)]*dx. L’espace H™ est alors un espace de HILBERT; son
R?

dual sera noté H™™; on prend £ =H™ et F=H™; AeQ(E,F). Pour

u, v, €K, on pose encore:

a(u,v) =2 [ a,(x)D?uD?vdzx ;
Rﬂ

et on fait I’hypothése que a(u,v) = a(v,u) pour tout u, v ¢ E, et que,
pour A réel convenable
a(v,v) + Alloll2 = ool (4.9)

avec x >0, et vel.

Soit enfin ®;, ’espace des fonctions «, indéfiniment différentiables dans
R", ¢ L? ainsi que toutes leurs dérivées.

Dans ces conditions, le probléeme (4.1) est bien posé dans E, = D,
(cf. Lioxs [1]). Notons que la solution est alors indéfiniment différentiable a
valeurs dans ®;,.

Exemple 4.3. Cet exemple est analogue au précédent, mais 'opérateur dif-
férentiel A est remplacé par un opérateur aux différences finies.

5. Propriété de moyenne et fonctions moyenne-périodiques

On donne un probléme de CaucHY abstrait, & variables séparées, bien posé
dans E,.

Définition 5.1. Un élément e e K, est dit avoir la propriété de a-moyenne
(relativement & A + M) si la solution % () du probléme 4.1 vérifie:

ua) =e. (5.1)
Cette terminologie est justifiée par les remarques de l'introduction.

Remarque 6.1. Dans le cas de ’'exemple 4.1, la solution du probléme 4.1

est de la forme:

u(z,?) = [6(z,y, t)e(y)dy (5.2)
ou l'intégrale est prise sur un compact (dépendant de x et t). La propriété
(5.1) 8’écrit:

e(z) = [G(z,y,a)e(y)dy . (5.3)
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Cette équation est une équation de convolution, dans R}, si, et seulement si,
A est & coefficients constants (par exemple A = — A4). Dans le cas parti-

culier M = D? i

-t— 1 D, A= — A4, (5.3) est la propriété de moyenne

usuelle sur la sphére de centre z, de rayon a.

Remarque 5.2. Dans le cas de ’exemple 4.2, on a une solution de la méme
forme (5.2), mais lintégrale est cette fois étendue a Uespace entier, ce qui est
compensé par ’hypothese e e Dj,.

Théoréme 5.1. Une condition nécessaire et suffisante pour que e e E, ait
la propriété de a-moyenne (relativement a A + M) est que la fonction w(t)
solutron de:

Aw(t) + w"(t) = 0 (5.4)
w(l) patre ent; w(0) =e (5.5)

vértifie:
K(a)*xw(t) = w(t) . (5.6)

(Rappelons que le noyau distribution K (a), a été défini & la remarque
(2.1).) La condition (5.6) est une condition de moyenne-périodicité vectorielle
a une seule variable, la variable ¢{. La transformée de FOURIER en ¢, de la dis-
tribution K(a), — 6 est O(a,s) — 1.

Démonstration du théoréme 5.1. Soit » la solution du probléeme (4.1), sup-
posée vérifier (5.1). D’apres le théoréme (4.1) on a alors:

Se[u] = w . (5.7)

C’est nécessaire et suffisant. Remplacons S¢ par sa valeur, op voit que
(5.7) s’écrit X-1U*X[u] = u ou encore, posant X[u] = u, ,

Uelu,] = uy (5.8)
ce qui, moyennant (3.6) et la remarque (2.1), devient:
K(a), * u, (1) = uy(t) -

Or, on vérifie immédiatement que u, vérifie les conditions (5.4) et (5.5). On
a donc w, = w, ce qui termine la démonstration.

6. Applications

Théoréme 6.1. On suppose que M = D? 4 t-1q(t)D, et que, a et b étant
deux mombres positifs donnés, la seule racine commune aux deux équations:

O(a,8) —1=0; 06(b,s)—1=0, (seC) (6.1)



68 J. DELsarTE | J. L. L1oNs

soit 8 = 0. Dans ces conditions, si e e B, vérifie les propriétés de a-moyenne
et de b-moyenne, on a:
Ae =0

Démonstration. D’apres le théoréme (5.1), on a:
K(a), *w(t) = K(b), *w(t) = w() .
Si ¢ eE', dualde F, et si:

W () = <w(t); e,
on a
K(a),*w, = K@), *w, = w,, .

D’apres I’hypothése (6.1), (6.2) et le théoréme des moyenne-périodiques
(ScHEWARTZ [1]), on a nécessairement:

Wer (1) = ot + Bor

ou «, et B, sont deux constantes, car s = 0 est le seul point (d’ordre 2),
du spectre de la fonction moyenne-périodique w,. (). Comme cette fonction
est paire, on a «, = 0, donc w, (!) se réduit & une constante. Par suite
w(t) est un élément de E qui est indépendant de £, donc, nécessairement
w(t) = e, et (5.4) donne alors Ade = 0;

n—1

Exemple 6.1. Si A= —A4 et si M =D+

théoréme de DELSARTE [1]. Posons dans ce cas n = 2p + 2, on a alors:

D, on retrouve le

n

-1 2 I'l(p+1) : pp.
XHf(E)] = Ve Tin+ 3 6[0032 0-f(x cos 0)db
et O(x,s) = X '[cos (s&)] = j,(sx) en posant j, (z) = 21’1’(23190—}— 1)J,,(z)

la fonction 0(x, s) ne dépend alors que du produit sz, et les conditions (6.1)
reviennent & supposer que I’équation j,(z) — 1 = 0, (qui admet 2 = 0 comme
seule racine réelle, d’ordre deux) ne possede aucun couple de racines complexes
a
b
pour étre reproduite ici, montre par la considération des séries asymptotiques
classiques donnant les valeurs de la fonction de BEsserL J,(z) pour |2| trés
grand, que si cette circonstance se produit, cela ne peut étre que pour un

dont le rapport soit réel et égal & — . Une analyse facile, mais trop longue

.. a :
nombre fini de valeurs du rapport -, valeurs qu’on peut assigner & ’avance,

pour chaque indice p. En fait, on vérifie directement que cela ne se produit
pas pour n = 3, et il est vraisemblable que cette circonstance est générale.
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Remarque 6.1. (Note ajoutée a la correction des épreuves). Considérons le
probléme suivant: On cherche u(t) indéfiniment différentiable paire & valeurs
dans K, avec

Afu®)] + M,[u@] =0, (6.2)
u(a) = u(b) = g ou g est donné dans £ avec Ag = 0. (6.3)

St ¥ (a,s8) = 0 et & (b, s) = 0 n’ont aucun zéro commun, la seule solution de (6.2),
(6.3) est u(t)=g.

En effet, si v(f) =u () — g, on a
A[lv )]+ M, [v(r)] =0, v(a) = v(b) = 0.

Ceci équivaut (démonstration comme au § 5) & S@[v]=0, S®[v] = 0;
si Xv = v,, ceci équivant & K (a), * v, = 0, K (b),*v, = 0, d’ou v, = 0 grace
a la théorie des fonctions moyenne-périodiques. Donc v = 0. c.q.f.d.

En particulier, dans R?, si une fonction f a des moyennes sphériques égales
a une méme fonction harmonique g pour deux rayons a et b, de rapport ir-
rationnel, alors f = g¢.
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