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Contribution a la théorie des anneaux
et des demi-groupes

par GABRIEL THIERRIN

L’objet de ce travail est 1’étude de deux classes de complexes et d’idéaux
d’un anneau ou d’un demi-groupe, les complexes et les idéaux réflectifs et
complétement réflectifs. Un complexe ou un idéal H est réflectif, si la relation
abeH entraine baeH. Par exemple, un complexe H d’un groupe G est réflec-
tif, si et seulement si ’'on a Hx = xH pour tout xze@; en particulier un sous-
groupe de G est réflectif, si et seulement 8’il est invariant. Un complexe ou un
idéal H est complétement réflectif, s’il est réflectif et si la relation abceH
entraine cbaeH. Par exemple, un complexe H d’un groupe G est compléte-
ment réflectif, si et seulement si 'on a zHy = yHax pour tout couple x,
yeG; en particulier, un sous-groupe de G est complétement réflectif, si et
seulement s’il contient le groupe commutateur de G.

Aprés avoir établi au début du premier chapitre quelques propriétés des
complexes réflectifs, nous étudions les anneaux et les demi-groupes réflectifs.
Un anneau réflectif est un anneau dont l'idéal (0) est réflectif; pour qu'’il en
soit ainsi, il faut et il suffit que la relation axz = ay entraine za = ya et
inversement. Cette propriété des anneaux réflectifs nous permet de définir les
demi-groupes réflectifs. Les paragraphes suivants sont consacrés aux idéaux
réflectifs, au radical réflectif d’un idéal réflectif et aux anneaux et demi-groupes
dont tous les idéaux & droite sont réflectifs. Ce premier chapitre se termine par
I’étude de certaines classes d’anneaux isomorphes & une somme sous-directe
de corps.

Le second chapitre est consacré aux complexes et idéaux complétement ré-
flectifs, ainsi qu’a ’étude des décompositions d’un idéal comme intersection
d’idéaux complétement réflectifs primaires. Nous donnons en particulier une
caractérisation de l'intersection de tous les idéaux complétement premiers
minimaux appartenant 3 un idéal donné d’un anneau, ainsi qu'une condition
nécessaire et suffisante pour qu’un anneau soit isomorphe & une somme sous-
directe d’anneaux sans diviseurs de zéro.

CHAPITRE I
Complexes et idéaux réflectifs

1. Complexes réflectifs. Rappelons qu’un demi-groupe est un ensemble
dans lequel est définie une opération univoque associative. Un complexe H,
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c’est-d-dire une partie non vide, d’un demi-groupe D (d’'un anneau) sera dit
réflectif, si la relation abeH, avec aeD, beD, entraine baeH. La partie
vide @ sera considérée comme une partie réflective. Le demi-groupe D lui-
méme est évidemment un complexe réflectif.

Proposition 1. Pour qu’un complexe H soit réflectif, il faut et il suffit que U'on
ait H.ra = H-.a pour tout aeD.

Rappelons que H . a désigne ’ensemble des éléments xze¢D tels que axeH
et H-.a ensemble des éléments yeD tels que yaeH.

La condition est nécessaire. Si zeH . a, axeH et zxaecH; d’ou zeH"'.a
et H.-aSH:'.a. On montre de méme que H.aS H.'a. Donc H.'a = H".a.
La condition est suffisante, car si abeH, on a beH.a = H'.a et donc
baeH.

Cette proposition montre que tout complexe réflectif d’un demi-groupe est
symétrique (cf. [3], p. 22).

La réunion et, si elle n’est pas vide, I'intersection de complexes réflectifs
sont encore des complexes réflectifs. Si H et K sont des complexes réflectifs et
si HC K, le complexe K — H est réflectif. En particulier, 8’il n’est pas vide,
le complémentaire d’un complexe réflectif est réflectif. Nous avons par consé-
quent :

Théoréme 1. L’ensemble des parties réflectives d’un demi-groupe forme un
treillis de Boore.

Théoréme 2. Pour qu'un complexe H d’un groupe G soit réflectif, il faut et <l
suffit que U'on ait Hx = xH pour tout zeG.

La condition est nécessaire. Soit heH. De hxx'leH suit xhxeH et
hzexH. Donc HxCS xH. On a de méme zHCSHx et par conséquent
Hz = zH. La condition est suffisante. En effet, si zyeH, zeHy ! =y 'H
et donc yzeH.

Corollaire. Pour qu'un sous-groupe d’un groupe soit réflectif, il faut et il suffit
qu’tl soit invariant.

Remarquons que le centre d’'un groupe G est I’ensemble des éléments réflec-
tifs de G.

Théoréme 3. Pour qu’un complexe 8 d’un groupe G soit un sous-groupe in-
vartant, il faut et il suffit que les relations aeS et bceS entrainent ab—lc—'eS.

La condition est nécessaire. En effet on a ¢c-1b—'eS; d’oli, d’apres le corol-
laire du théoréme 2, b—1¢c1eS et donc adb—1c1eS.

La condition est suffisante. Si xeS, yeS et si e est I’élément-unité de @,
ona yeeS. Donc zyle! = xyleS et S est un sous-groupe de . Si rseS,
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on a, puisque eeS, erls! = r~1s71eS§, c’est-d-dire sreS. Par conséquent,
S est réflectif, donc invariant.

Théoréme 4. Tout élément x d’un demi-groupe D est contenu dans un com-
plexe réflectif minimal de D et les complexes réflectifs minimaux de D sont les
classes d’une équivalence de D .

L’intersection H de tous les complexes réflectifs de D contenant x est un
complexe réflectif. Si K est un complexe réflectif tel que K CH, K ne contient
pas z. Par suite, H — K est un complexe réflectif contenant =, ce qui est
impossible. Par conséquent H est un complexe réflectif minimal de D. La
seconde partie du théoréme découle du fait que I'intersection de deux com-
plexes réflectifs minimaux distincts est vide.

Proposition 2. Les complexes réflectifs minimaux d’un groupe G sont les
classes d’éléments conjugués de G .

Soit H une classe d’éléments conjugués de G'.Si abeH, ona ab = b-1(ba)b;
donc baeH et H est réflectif. Si K est un complexe réflectif tel que KcH,
il existe pour ceH — K un élément x tel que zcx—'eK; d’ou ceK, ce qui
est contradictoire. Par conséquent, H est un complexe réflectif minimal.

Inversement, si H est un complexe réflectif minimal et si hAeH, la classe
d’éléments conjugués contenant % est un complexe réflectif minimal, donec
coincide avec H.

Rappelons qu’un semi-groupe est un demi-groupe vérifiant la regle de sim-
plification des deux c6tés.

Théoréme b. Pour qu'un semi-groupe S puisse étre plongé dans un groupe G
tel que S soit réflectif dans G, il faut et il suffit que Uon art a8 = Sa pour tout
aeS.

La condition est nécessaire. De alazxeS, avec a, xeS, suit axa'eS et
axeSa; d'ot aSSSa. On a de méme SaSal et donc a8 = Sa.

La condition est suffisante. Le semi-groupe 8 est régulier & droite, car pour
tout couple a, beS il existe zeS tel que ax = ba; par conséquent, S peut étre
plongé dans un groupe G tel que tout élément geG est de la forme g = xy~1,
avec x, yeS (cf. [4]). Montrons que § est réflectif dans G. Soit gheS, avec
h=1rs1 reS, seS. De zylrs! = aeS suit zy! = asr-'. Il existe feS
tel que as = st. Dol zy~! = str—! et re~lzy! = rir-1. Il existe veS tel
que 7t = vr. Dol hg = rs oyt = vrr! = veS.

Par anneau sans diviseurs de zéro, nous entendons un anneau non réduit &
zéro tel que la relation ab = 0 entraine @ = 0 ou b = 0. Par corps, nous
entendons un anneau sans diviseurs de zéro tel que ’ensemble des éléments
différents de zéro forme un groupe pour la multiplication.
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Théoréme 6. Pour qu'un anneau A sans diviseurs de zéro puisse étre plongé
dans un corps K tel que A soit réflectif dans K, il faut et il suffit que U'on ait
aAd = Aa pour tout aed.

La démonstration de ce théoreme est analogue & celle du théoréme précé-
dent.

2. Anneaux et demi-groupes réflectifs. Un anneau A4 sera dit réflectif, si la
relation ab = 0 entraine ba = 0, c’est-a-dire si I'idéal (0) est réflectif.

Théoréme 7. Pour qu’un anneau A soit réflectif, il faut et il suffit que la rela-
tion ax = ay entraine za = ya.

La condition est nécessaire, car de ax = ay suit a(x — y) = 0, donc
(x — y)a = 0, c’est-a-dire xza = ya. La condition est suffisante. En effet, si
ab=0, ona ab=a-0; dou ba = 0.-a = 0.

On démontre de méme le théoréme symétrique.

Remarquons qu’'un idéal M d’un anneau quelconque A est réflectif, si et
seulement si I’anneau-quotient 4 /M est réflectif.

Un élément a d’un demi-groupe ou d’'un anneau sera dit réflectible @ droite
si la relation za = ya entraine ax = ay. On a la définition symétrique. Un
élément réflectible des deux cotés sera dit réflectible. Tout élément appartenant
au centre est réflectible. Dans un demi-groupe, tout élément simplifiable (&
droite, & gauche) est réflectible (& droite, & gauche).

Proposition 3. S’il n’est pas vide, U'ensemble S des éléments réflectibles a
droite (& gauche, des deux cités) d’un demi-groupe D (d’un anneau) est un sous-
demi-groupe de D.

En effet, si a, beS et si zab = yab, ona bxa = bya et abx = aby.

On voit facilement qu’un élément a d’un anneau est réflectible a droite si et
seulement si la relation xa = 0 entraine ax = 0. D’aprés le théoréme 7 et
son symétrique, un anneau est réflectif si et seulement si tous ses éléments
sont réflectibles (& droite, & gauche).

Un demi-groupe sera dit réflectif, si tous ses éléments sont réflectibles, c’est-
a-dire si les relations za = ya et bv = bt entrainent respectivement az = ay
et vb=1tb.

Théoréme 8. Si a est un élément réflectrble d’un demi-groupe D, Uidéal a
droite a D est tsomorphe & U'idéal @ gauche Da .

A Délément b = axeaD faisons correspondre 1’élément &' = zaeDa.
Nous définissons ainsi une application de a D dans Da, car si b = ay = ax,
ona ya = xa = b'; c’est de plus une application de a D sur Da. Cette appli-
cation est biunivoque, car si b’ est I'image de az et az, on a za = za et donc
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ax = az. Enfin, cette application est un isomorphisme, car si ax — za et
ay > ya, ona aray —> xay-a = ra-ya.

Corollaire. St D est un demi-groupe réflectif, I'idéal & droite x D est isomorphe
a I'idéul & gauche Dz, quel que soit xeD.

Théoréme 9. 8t a est un élément réflectible de Uanneauw A, U'idéal & droite a A
est tsomorphe a l'idéal & gauche Aa.

A la suite du théoreme 8, il suffit de montrer que a4 et 4a sont isomorphes
pour ’addition. De ax — za et ay — ya suit

ar+ay=a(x+y)>(x+y)a==za+ ya .

Corollaire. 87 A est un anneau réflectif, 'idéal & droite xA est isomorphe @
Uidéal a gauche Az, quel que sott xeA.

Proposition 4. Tout élément idempotent réflectible e d’un demz-groupe ou d’un
anneau est un élément du centre.

De ex = eex suit xe =—cxe; de xe = xee suit ex = exe. Do ex = zxe.

Corollaire. 7Tout élément idempotent d’un demi-groupe réflectif ou d’um an-
neau réflectif est un élément du centre.

Proposition 5. S¢ a et b sont deux éléments réflectibles d’un anneauw ouw d’un
demi-groupe, la relation ab = a entraine ba = a, et inversement.

De ab=a suit bab=ba et ab®>=ab. Dol b’a =ba et bab = ab
= @ = ba. On montre de méme que ba = a entraine ab = a.

Proposition 6. Dans un demi-groupe réflectif D ou un anneaw réflectif A avec
élément-unité 1, la relation ab = 1 entraine ba = 1. De plus, dans A, la rela-
tion ab +a -+ b =0 entraine ab = ba; de méme la relation ab + a = 1
(ba + a = 1) entraine ab = ba.

De a-ba=a-1 suit ba?=1-a =a et ba%b =ba =ab=1.

De ab+a-+b=0 suit @+ 1)b+1)=1. Dou b+ 1)(a+1)=1
et ba+a4b=0; donc ab=0ba. De ab+a=1 suit a(b+ 1) = 1.
Dot b+ 1)a=1, ba+a=1 et ab= ba.

Théoréme 10. Pour qu’un demi-groupe D soit un groupe, il faut et il suffit
que D soit réflectif et que Uon ait aD = D pour tout aeD.

La condition est évidemment nécessaire. Elle est aussi suffisante. En effet,
il existe e tel que ae = a et z tel que ax = e. De la proposition § suit ea = a
et I'on a eaxr = ax, c'est-d-dire e? = e. L’élément e, étant idempotent,
appartient au centre de D, d’aprés le corollaire de la proposition 4. Comme
eD = D, e est élément neutre de D et D est un groupe.



98 GABRIEL THIERRIN

Théoréme 11. Tout demi-groupe réflectif D possédant un idéal & droite minsi-
mal M est un homogroupe.

Par homogroupe, nous entendons un demi-groupe possédant un groupe
comme idéal (cf. [1], [12]).

L’idéal & droite M étant minimal, ona mM = M pour tout me M. D’autre
part, M est un demi-groupe réflectif. Par conséquent, M est un groupe, d’aprés
le théoréme 10. Si e est I’élément neutre de M, e appartient au centre de D et
'ona M = eD = De. Donc M est un idéal de D.

Corollaire. Tout demi-groupe fini réflectif est un homogroupe.

Un demi-groupe D est stationnaire, si les relations ac = bc et ca = cb
entrainent respectivement ax = bx et xza = zb, pour tout xzeD (cf. [13]).
Un demi-groupe D est simple 8’il ne posséde que I’idéal D.

Théoréme 12. Tout demi-groupe D simple et réflectif est soit un groupe, soit
un demi-groupe stationnaire sans torsion (c’est-a-dire sans éléments d’ordre fing).

Supposons que D ne soit pas un groupe. Si D contient un élément d’ordre
fini, il contient alors un élément idempotent e qui appartient au centre de D,
puisque D est réflectif. L’ensemble eD = De est unidéalde D.Donc De = D
et e est élément-unité de D. Soit G le groupe des éléments inversibles de D.
L’ensemble H = D — G n’est pas vide. Si aeH, axzeH. En effet, si aze@,
il existe r tel que azr =1, et on a zra = 1, d’apres la proposition 6. Par
conséquent, a est inversible, contre I’hypothése. On montre de méme que
zaeH. 1l suit de 14 que H est un idéal véritable de D, contre ’hypotheése. Le
demi-groupe D ne peut donc contenir des éléments d’ordre fini.

Montrons que D est stationnaire. Soit ac = bec. L’ensemble X des éléments
z de D tels que ax = bz est un idéal & droite de D. Comme D est réflectif,
on & aussi xa = xb, et donc tza = txb et atx = btx pour tout teD. Par
conséquent, X est un idéal de D; d’ot X = D et ax = bz pour tout zeD.
On montre de méme la propriété symétrique.

Théoréme 13. Tout anneau A de carré non nul, réflectif et sans véritable idéal
est un anneau sans diviseurs de zéro.

Supposons que l'on ait rs =0, avec r %0, s # 0. L’ensemble R des
éléments x de A tels que rx = 0 est un idéal & droite de 4 ; c’est aussi un
idéal & gauche, puisque 4 est réflectif. Comme seR, ona BR= A4 et r4 = 0.
Soit S I’ensemhle des éléments y de A4 tels que y4 = 0. C’est un idéal de A
et comme re¢S, ona 8§ = A. Par conséquent, A% = 0 contre ’hypothése.

Proposition 7. Pour un demi-groupe réflectif D, les propriétés suivantes sont
équivalentes : 1. D est inversif. 2. D est inversif a droite. 3. D est inversif a gauche.
Pour la notion de demi-groupe inversif (& droite, & gauche), voir [2].
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1. entraine 2. Si zeD, il existe a tel que xax = x et 1’élément za est
idempotent, donc appartient au centre de D, puisque D est réflectif. Par con-
séquent, on a 2%a = xz et D est inversif & droite.

2. entraine 3. Il existe a tel que 2?e¢ = z. D’oli, d’aprés la proposition 5,
zxax = x, ax® = z et D est inversif & gauche.

3. entraine 1. Il existe a tel que a2? = 2. D’olt zax = z et D est inversif.

3. Idéaux réflectifs. Un idéal P d’'un anneau A est dit premier, si la rela-
tion UVEP, ou U et V sont des idéaux de 4, entraine USP ou VCP.
D’aprés [8], un idéal P est premier, si et seulement si la relation a AbS P
entraine aeP ou beP. Un idéal Q d’'un anneau ou d’un demi-groupe est dit
complétement premier, si la relation abef) entraine ae@) ou be@. Un idéal S
d’un anneau ou d’un demi-groupe est dit complétement semz-premier, si la rela-
tion a%eS entraine aeS. Un idéal complétement premier est évidemment
complétement semi-premier. (Remarquons qu’un idéal complétement semi-
premier est aussi appelé idéal semi-premier.)

Proposition 8. Tout idéal complétement semi-premier S d’un anneaw ou d’un

demi-groupe est réflectif.
Soit abeS. On a b(ab)a = (ba)?eS. D’ol baeS.

Corollaire. Tout anneau sans éléments nilpotents différents de zéro est réflectif.

Proposition 9. Pour qu’un tdéal premier P d’un anneau A soit complétement
premaer, il faut et il suffit qu’il soit réflectif.

La condition est évidemment nécessaire. Elle est aussi suffisante, car si
abeP, ona abASP etdonc bAaS P; d’oit aeP ou beP.

Remarquons que tout idéal a droite (a gauche) réflectif M d’un anneau ou d’un
demi-groupe est un idéal bilatére. En effet, si me M, on a mzxe M et donc
xme M.

Proposition 10. 87 A est un anneau réflectif et si e est un élément idempotent,
Uidéal & droite eA est un idéal réflectif.

Soit abeed. Comme A est réflectif, e appartient au centre de 4. On a
ed = Ae et e est élément-unité de ed.

De (@ — ae)(b — be) = ab — abe — aeb 4+ aebe = 0 suit

(b — be)(a —ae) =10,

c’est-a-dire ba — bae — bea + beae = 0. Comme bea = beae, on a
ba = baeede = eA.

Théoréme 14. Tout idéal & droite (& gauche) minimal et non nilpotent M d’un
anneaw réflectif A est un corps et un idéal réflectif.
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L’idéal & droite M, étant minimal et non nilpotent, est de la forme M = eA4
ou e est un élément idempotent. D’aprés la proposition 10, M est un idéal ré-
flectif et e est élément-unité de M. De plus, on a mM = M pour tout me M,
m % 0. Par conséquent, M est un corps.

L’intersection de tous les idéaux réflectifs contenant un idéal M d’un anneau
ou d’un demi-groupe est un idéal réflectif qui sera appelé le noyau réflectif de
M et noté par N(M). Le noyau réflectif de 1’idéal (0) d’un anneau sera appelé
le noyau réflectif de 4 et noté par RN.

Si M est un idéal d’un anneau 4 (d’'un demi-groupe D), nous désignerons
par R(M) I'ensemble des éléments a de 4 (de D) tels qu’il existe un entier
positif n (dépendant de a) vérifiant la relation a”e M.

Lemme 1. L’ensemble R(M) est un complexe réflectif.

Si zyeR (M), il existe un entier positif n tel que (zy)"e M. D’ou y(zy)"x
= (yx)"*le M. Donc yxeR(M).

Si M est un idéal réflectif de 4 ou de D, R(M) sera dit le radical réflectif
de M. Si A est un anneau réflectif, le radical réflectif de I’idéal réflectif (0) sera
dit le radical réflectif de 4 et noté R.

Lemme 2. Soit M un idéal réflectif d’un demi-groupe D (d’un anneau A). St
n=mn, +---+ n,, oblesn, sont des entiers positifs, la relation a™e M entraine

amza™y...a"ze M , za™za™...ta™e M ,

va™za™y...a"ze M , aMzxa™y...a"e M

quels que sotent x,y,z,t, veD.

De a® = g™t thr-1g%e M suit o™t ttr-1g%ze M, et donce, puisque
M est réflectif, a™za™t trr-1¢ M,

En recommencgant le méme raisonnement autant de fois qu’il le faut, on ob-
tient finalement a™2z...a™ze M. Les autres relations se démontrent de la
méme maniére.

Théoréme 16. Le radical réflectif R(M) d’un idéal réflectif M d’un dems-
groupe D est un idéal complétement semi-premier (donc réflectif) contenu dans tout
idéal complétement semi-premier contenant M .

D’aprés le lemme 2, si a”¢ M, on a (az)"e M et (ra)*e¢ M pour tout
zeD. Donc R(M) est un idéal. La suite du théoréme est immédiate.

Corollaire. Le radical réflectif du moyau réflectif d’un idéal quelconque M de
D est Uintersection de tous les 1déaux complétement semi-premiers contenant M .

Théoréme 16. Le radical réflectif R(M) d’un idéal réflectif M d’un anneau
A est un idéal complétement semi-premier (donc réflectif) contenu dans tout idéal
complétement seini-premier contenant M .
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A la suite du théoréme 15, il suffit de montrer que R (M) est un sous-groupe
additif de 4. Si aeR(M) et beR(M), on a are M et bme M. L’élément
(@ — b)»t™-1 est la somme de termes de la forme -z ,...z,,.,, , avec
2, =a ou x; =0b, et on a les deux possibilités suivantes : le nombre des =z,
égaux a a est égal ou supérieur & », ou le nombre des z, égaux a b est égal ou
supérieur & m. Dans les deux cas, le lemme 2 montre que z,%y... %, 1¢ M.
Par conséquent (a — b)*t™—1e M, c’est-a-dire a — beR(M).

Corollaire 1. Le radical réflectif du noyau réflectif d’un idéal quelconque M
de A est Uintersection de tous les idéaux complétement semi-premiers contenant M .

Corollaire 2. L’ensemble des éléments nilpotents d’un anneau réflectif A est
un 1déal complétement semi-premier, qua est le radical réflectif R de A .

Rappelons la définition du radical de N. H. McCoy d’un idéal quelconque M
d’un anneau 4 (cf. [8]). Un m-systéme X est un ensemble d’éléments de A tel
que pour tout couple a, beX, il existe reAd vérifiant la relation arbeX. Le
radical de N. H. McCoy de I'idéal M est I’ensemble de tous les éléments a de A
possédant la propriété que tout m-systéme contenant a contient au moins un
élément de M. Un idéal premier (complétement premier) P de 4 est dit un
idéal premier (complétement premier) minimal appartenant & M, si et seule-
ment si M S P et §’il n’existe pas d’idéal premier (complétement premier) P’
tel que M S P'cP. D’aprés [8], le radical de N. H. McCoy de l'idéal M est
Pintersection de tous les idéaux premiers minimaux appartenant & M .

Théoréme 17. Le radical réflectrf R(M) d’un idéal réflectif M de Vanneau A
coincide avec le radical R* de N. H. McCoy de M.

Si aeR*, il existe un entier positif n tel que a”e M, car le m-systéme
(@, a? ...) contient a. Par conséquent, R*S R (M).

Si zeR(M), il existe n tel que 2"e M. Soit X un m-systéme contenant x.
Il existe x,eA tel que xx,xze¢X; mais cette derniére relation entraine I’exis-
tence d’un élément 2,¢4 tel que zz,zz,xeX, et ainsi de suite. Par consé-
quent, il existe n éléments z,,...,z, tels que 'on ait zz,z...2z,reX.
Comme z"tle M, ona,d’apréslelemme 2, zz,2...2x,2¢ M et M~ X # @.
Donc zeR* et R* = R(M).

Lemme 3. Si un élément a d'un anneaw A est d’ordre fini pour la multiplica-
tion, il existe un entier n>1 tel que les éléments a — a™ et a™! sotent respecti-
vement nilpotent et idempotent.

Le demi-groupe cyclique engendré par a étant fini, il existe, d’aprés [11],
un entier m >0 tel que I’élément a™ = e est idempotent. Posons n = m + 1.
L’élément e étant permutable avec a, on vérifie facilement que (a — a™)®
= (@ —ae)" =a" — a"e = ae — aee = 0.

'8 Commentarii Mathematici Helvetici
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Lemme 4. Pour un anneau A, les propriétés suivantes sont équivalentes :
1. Pour tout aeA il existe un entier n>1, dépendant de a, tel que a™ = a.

2. Tout élément de A est d’ordre fini pour la multiplication et A ne contient pas
d’éléments nilpotents différents de zéro.

1. entraine 2., ¢’est immédiat.
2. entraine 1., d’apreés le lemme 1.

On sait que tout annean ayant la propriété 1 est commutatif (cf. [6]).
Par conséquent, tout anneau ayant la propriété 2 est commutatif.

Théoréme 18. St R(MN) est le radical réflectif du noyaw réflectif N d’un an-
neau A dont tous les éléments sont d’ordre fini pour la multiplication, I’anneau-
quotient A/R(N) est commutatif.

En effet, tous les éléments de 4/R(N) sont d’ordre fini pour la multiplica-
tion, Comme R(N) est complétement semi-premier, A/R(N) ne contient pas
d’éléments nilpotents différents de 0. Par conséquent, 4/R(N) est commu-
tatif.

Un idéal réflectif M d’un anneau ou d’un demi-groupe est dit primaire, si
les relations abe M et a ¢ M entrainent I’existence d’un entier positif n tel
que bre M.

Théoréme 19. Le radical réflectif R(M) d’un idéal réflectif primaire M d’un
anneaw ou d’un demi-groupe est un idéal complétement premier.

En effet, supposons que R(M) ne soit pas complétement premier. Il existe
alors deux éléments a et b tels que 'on ait abeR (M), a§ R(M), b¢ R(M). Soit
n le plus petit entier positif tel que (ab)"e M. On a »>1, car ab¢ M.
Comme (ab)"labe M et que am¢ M et bm¢ M, quel que soit I’entier positif
m,ona (ab)*lae M. Mais (ab)"1¢M; donc a™e M pour un certain entier
m, ce qui est contradictoire.

4. Idéaux réflecteurs. Un idéal M d’un anneau ou d’un demi-groupe sera
dit réflecteur & droite (& gauche), si tout idéal & droite (& gauche) M’', tel que
MCE M, est réflectif. Tout idéal & droite contenant un idéal réflecteur & droite
est évidemment aussi un idéal réflecteur & droite.

Théorédme 20. Dans un anneau (un demi-groupe) A vérifiant la condition de
chaine ascendante pour les idéaux réflecteurs & droite, tout idéal irréductible et ré-
flecteur & drovte M est primaare.

Nous nous dispensons de donner la démonstration de ce théoréme qui est
analogue & celle du cas des anneaux et des demi-groupes commutatifs (cf. [4],

[15]).
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Corollaire. Tout idéal réflecteur & droite de Uannean (du demi-groupe) A est
intersection d’un nombre fint d’idéaux réflecteurs & drotte primatres.

Un anneau (un demi-groupe) 4 dont tous les idéaux & droite sont réflectifs,
sera dit un anneau (un demi-groupe) réflecteur & droite. Tous les idéaux & droite
de 4 sont alors des idéaux bilatéres réflecteurs & droite. Tout anneau réflecteur
a droite est réflectif.

Proposition 11. Pour qu’un demi-groupe D soit réflecteur & droite, il faut et il
suffit que pour tout couple d’éléments a, beD, tels que ab +# ba, il existe xeD
vérifiant la relation ab = bazx.

La condition est nécessaire. L’élément ba appartient & 1'idéal & droite
bavbaD qui est réflectif. Donc abebavbaD et, puisque ab # ba, il existe
x tel que ab = bax.

La condition est suffisante. Soit M un idéal & droite de D et soit rse M. Si
rs #* sr, 1l existe z tel que sr = rsxe M.

Proposition 12. Pour qu'un anneau A soit réflecteur & droite, il faut et il
suffit que pour tout couple d’éléments a, beA, il existe un entier relatif m et un
élément xeA tel que U'on ait ab = mba + bax.

La condition est nécessaire. Si (ba) est 1'idéal & droite engendré par ba, on
a abe(ba), c’est-a-dire ab = mba + bax.La condition est suffisante. Soit M
un idéal & droite de 4 et soit rse M. Il existe m et z tel que sr = mrs + rsz.
Comme mrs + rsxe M, ona sre M.

Tout semi-groupe S réflecteur & droite non commutatif posséde un élément-
unité.

En effet, il existe @, beS tels que ab 7 ba. Done, d’aprés la proposition 11,
il existe x tel que ab = bax et y tel que ba = aby. D’olt ab = abyz.
Comme § est un semi-groupe, I’élément y x est élément-unité de S.

Proposition 13. Tout anneau régulier et réflectif A est réflecteur & drorte.

Soit @, beA. Comme A4 est régulier, il existe = tel que ba = bazba. L’élé-
ment bax est idempotent, donc appartient au centre de 4, puisque 4 est ré-
flectif. De ba = baxzba suit ab = abaxzb = bazab. Par conséquent, 4 est
réflecteur & droite, d’aprés la proposition 12.

Corollaire. 7Tout idéal réflectif d’un anneau régulier est réflecteur & droite.

b. Somme directe et sous-directe de corps. Pour les notions de somme di-
recte et sous-directe d’anneaux, voir [9] et [10].

Théoréme 21. Pour qu'un anneau A (non réduit & zéro) soit tsomorphe & une
somme directe d’un nombre fini de corps, il faut et il suffit qu’il ast les trois pro
priétés suivantes : ’
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1. A vérifie la condition minimale pour les idéaux & gauche.

2. A me contient pas d’idéal a gauche nilpotent différent de 0.

3. A est réflectif.

La condition est nécessaire, c’est immédiat. Elle est aussi suffisante. En
effet, des propriétés 1 et 2 suit que I’anneau A est, considéré comme groupe
additif, la somme directe d’un nombre fini d’idéaux & gauche minimaux non
nilpotents M,. D’apreés le théoréme 14, les M, sont des idéaux bilatéres et des
corps. Par conséquent, 4 est isomorphe a la somme directe des corps M.

Théoréme 22. Pour qu'un anneau régulier A (non réduit a zéro) soit iso-
morphe & une somme sous-directe de corps, il faut et il suffit qu’il soit réflectif.

D’apres [5], il faut et il suffit de montrer que A ne contient pas d’éléments
nilpotents différents de zéro.

Si A ne contient pas d’éléments nilpotents % 0, A est réflectif d’apres le
corollaire de la proposition 8. Inversement, si 4 est réflectif et si a?2 = 0, il
existe x tel que 'on ait axa = a. De la proposition 5 suit alors za?=a,
c’est-a-dire a = 0.

Un anneau A est dit primatif (cf. [7]), 8’il existe dans 4 un idéal & droite
maximal M tel que M. 4 = 0.

Théoréme 23. 7Tout anneau réflectif et primatif A est un anneau sans divi-
seurs de zéro.

L’idéal (0) d’un anneau primitif est un idéal premier. Comme 4 est réflectif,
I’idéal (0) est réflectif, donc complétement premier d’apres la proposition 9.
Par conséquent, 4 est un anneau sans diviseurs de zéro.

Corollaire. Tout anneau primitif, réflectif et possédant un idéal & droite mini-
mal est un corps.

Théoréme 24. Pour qu’un anneau A soit un corps, il faut et il suffit qu’il soit
réflecteur & droite et primitif.

La condition est évidemment nécessaire. Elle est suffisante. En effet, 4 con-
tient un idéal & droite maximal M tel que M. 4 = 0. Comme 4 est réflec-
teur & droite, M est un idéal bilatére et 'on a MCS M. A; dou M =0.
L’anneau 4 ne posséde par conséquent pas de véritable idéal & droite. D’apres
le théoréme 23, 4 est un anneau sans diviseurs de zéro. Donc 4 est un corps.

Si le radical de JAcoBsSoON (cf. [7]) d’un anneau réflectif A se réduit & 0, 4 ne
contient pas d’éléments nilpotents £0. En effet, d’aprés le corollaire 2 du .
théoréme 16, I’ensemble des éléments nilpotents de A4 est un nilidéal qui,
d’aprés [7], est contenu dans le radical de JacoBsonN de 4.

Théoréme 25. Tout anneau A (non réduit & zéro) réflecteur & droite, dont le
radical de J acoBson se réduit & 0, est 1somorphe & une somme sous-directe de corps.
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D’apres [7], 4 est isomorphe & une somme sous-directe d’anneaux primitifs
P;. Les anneaux P; sont homomorphes & 4. On voit facilement que tout an-
neau homomorphe & un anneau réflecteur & droite est réflecteur & droite. Par
conséquent, les anneaux primitifs P; sont réflecteurs & droite, donc des corps
d’apreés le théoréme 24.

CHAPITRE II

Complexes et idéaux complétement réflectifs

1. Complexes complétement réflectifs. Un complexe H d’un demi-groupe
(d’un anneau) sera dit complétement réflectif, s’il est réflectif et si la relation
abceH entraine cbaeH.

Proposition 14. Pour qu’un complexe réflectif H d’un demi-groupe soit com-
plétement réflectif, il faut et il suffit que la relation abceH entraine acbeH
(abceH entraine baceH).

La condition est nécessaire, car de abceH suit cbaeH et donc acbeH,
puisque H est réflectif. La condition est suffisante. En effet de abceH suit
acbeH et donc cbaeH.

St D est un demi-groupe possédant un élément-unité a droite (& gauche) e, tout
complexe H tel que la relation abceH entraine cbaeH est complétement réflectif.
11 suffit de montrer que H est réflectif. Or si abeH, on a aebeH et donc
bea = baeH.

La réunion et, si elle n’est pas vide, 'intersection de complexes compléte-
ment réflectifs d’'un demi-groupe D sont encore des complexes complétement
réflectifs. Si H et K sont des complexes complétement réflectifs et si Hc K,
le complexe K — H est complétement réflectif. En particulier, s’il n’est pas
vide, le complémentaire d’un complexe complétement réflectif est compléte-
ment réflectif, car D lui-méme est un complexe complétement réflectif. En con-
sidérant la partie vide comme partie complétement réflective, nous avons alors
le théoréme suivant :

Théoréme 26. L’ensemble des parties complétement réflectives d’un demi-
groupe forme un treillis de BooLe.

Soit n éléments a,...,a, dun demi-groupe D, plusieurs de ces éléments
pouvant étre égaux. Nous désignerons par S(a,,...,a,) l'ensemble des élé-
ments de D formés en permutant de toutes les maniéres possibles les facteurs
a,...,a, du produit a,a,...a,.

Théoréme 27. Si H est un complexe complétement réflectif du demi-groupe D,
la relation S(a,,...,a,)~H # @ entraine S(a,,...,a,)=H.
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Le théoréme est vrai évidemment pour n = 1 et n = 2. La proposition 14
montre qu’il est vrai aussi pour » = 3. Soit alors »>3 et supposons le théo-
reme vrai pour n — 1. Soit

z=a;...a,¢8@a,;,...,a,)~nH
et soit

Yy =a;a;...a,¢eSa,,...,a,) .
L’élément z est de 'une des trois formes suivantes a; 7, sa; , ta; v. Comme
zeH, qui est complétement réflectif, il existe un élément zeS(a,,...,a,)~H

de la forme z = a; a,,...a;,. L’élément z est de I'une des trois formes sui-
vantes a, a,d, a;ea;, a;fa; 9. De zeH suit alors a; a, ecH, a;a; gfeH.
Il existe par conséquent un élément weS(a,,...,a,)~H de la forme

W= ;. ...y
Posons b = a;a;. Ona w=ha, ...q, cH, c'est-d-dire
Sh,ay,,...,a,)~nH #6 .
Comme on a supposé le théoréme vrai pour » — 1, on a donc
Sh,ay,,...,a,,)EH .
Mais S(h,a,,,...,a,) = S(h,a,s, ...,a5). D’ou

haj. oo aj = ajlaj‘aja PP / EH .

n *Yin

Par conséquent S(a,,...,a,)SH.

Théordme 28. Pour qu’un sous-groupe S d’un groupe G contienne le groupe
commutateur de G, il faut et il suffit qu’il sott complétement réflectif.

La nécessité de la condition découle immédiatement du fait que S est in-
variant et que le groupe-quotient G/S est abélien. La condition est suffisante,
car de abb~'a1eS suit, d’aprés la proposition 14, aba—156-1¢S.

Corollaire. Pour qu’un sous-groupe S d’un groupe G contienne le groupe com-
mutateur de G, il faut et il suffit que la relation abceS entraine cbaeS.

Théoréme 29. Pour qu’un complexe S d’un groupe G soit un sous-groupe con-
tenant le groupe commutateur de G, il faut et il suffit que les relations aeS et
becdeS entrainent ab-lc1d-1eS.

La condition est nécessaire. De bcdeS suit, d’apres le théoréme 28, dcbeS.
D’ot b-1c2d-1eS et ab-lc1d-1eS.

La condition est suffisante. Soit e ’élément-unité de @ et soient », seS. De
reS et eseeS suit res~le = rs~1eS. Donc S est un sous-groupe de G. Soit
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zyzeS. De eeS et z7ly—lz—lel§ suit ezyx = zyxzeS. Par conséquent,
d’aprés le corollaire du théoréme 28, S contient le groupe commutateur de @.

Théoréme 30. Pour qu'un complexe H d’un groupe G soit complétement ré-
flectif, il faut et <l suffit que Pon att xHy = yHx, quels que sotent z, yeQ.

La condition est nécessaire. Soit heH. De y-lyhzax—'eH suit, d’apres le
théoréme 27, y~laxhyx—leH. D'ou zhyeyHx et xHySyHx. On montre
de méme que yHxSxHy. Donc xHy = yHx.

La condition est suffisante. Soit abceH. On a bea'Hc!=c'Ha™!,
D’ol cbaeH et H est completement réflectif, puisque G posséde un élément-
unité.

Remarquons qu’un groupe est akélien si et seulement 8’il posséde au moins
un élément complétement réflectif.

Théoréme 31. 7Tout élément x d’un demi-groupe D est contenu dans un com-
plexe complétement réflectif minimal de D et les complexes complétement réflectifs
minimaux de D sont les classes d’une équivalence de D.

La démonstration de ce théoréme est analogue & celle du théoréme 4.

2. Idéaux complétement réflectifs. Un anneau A4 sera dit complétement ré-
flectif, si 'idéal (0) est complétement réflectif. Par exemple, tout anneau sans
diviseurs de zéro est complétement réflectif.

Théordme 32. Pour qu’'un anneau réflectif A soit complétement réflectif, il faut
et il suffit que la relation axb = ayb entraine bxa = bya.

La condition est nécessaire, car de azb = ayb suit a(z — y)b = 0, done
b(x — y)a = 0, c’est-d-dire bza = bya. La condition est suffisante. En
effet, si abc =0, ona abc =a-0.¢; d’olt cba =c-0.a = 0.

Remarquons qu’un idéal M d’un anneau quelconque A4 est complétement
réflectif, si et seulement si ’anneau-quotient A/ M est complétement réflectif.

Tout idéal complétement premier d’un anneau ou d’'un demi-groupe est
complétement réflectif.

Proposition 15. Le radical réflectif R(M) d’un idéal complétement réflectif M
d’un anneau ou d’un demi-groupe est un idéal complétement réflectif.

D’aprés les théorémes 15 et 16 R (M) est un idéal réflect.f. Si abceR(H),
il existe n tel que (abc)*e M. L’on, d’aprés le théoréme 27. (cba)*e M, c’est-
a-dire cbaeR(M). Donc R(M) est complétement réflect.f.

Corollaire. L’ensemble des éléments nilpotents d’un anneau complétement ré-
flectif est un idéal complétement réflectif.

Proposition 16. Soient H un complexe quelconque et M un idéal complétement
réflectif d'un anneau ou d’un demi-groupe. L’ensemble M. H est un idéal com-
plétement réflectif et on a la relation M. H = M'.H.
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Si xeM.-H, on a HxSE M et, puisque M est réflectif, t HES M. D’ou
M-HEM-.H. On montre de méme que M .HEM. H. Doh M.H
= M-.H. De cette égalité suit que M. H est un idéal. Si abe M.-H, on a
HabS M. D’ol, puisque M est complétement réflectif, HbaS M et baeM. H.
Si abceM . H, ona HabcEM et donc, d’aprés le théoréme 27, Hcba S M.
Par conséquent, cbae M. H et M. H est complétement réflectif.

Théoréme 33. Tout anneau A de carré non nul, dont les seuls idéaux com-
plétement réflectifs sont (0) et A, est un anneau sans diviseurs de zéro.

En effet, si 4 n’est pas un anneau sans diviseurs de zéro, il existe a = 0 et
b # 0 tels que ab = 0. L’ensemble (0)."a est, d’aprés la proposition 16, un
idéal completement réflectif. Comme be(0).'a, on a (0)..a = 4, c’est-a-
dire ad = 0. L’ensemble (0)'.4 est également un idéal complétement ré-
flectif. Comme ae(0).4, on a (0).4 = A, c’est-a-dire A2 = 0, contre
I’hypothése.

Proposition 17, Tout idéal M d’un anneau (d’un demi-groupe) réflecteur a
droite A est un vdéal complétement réflectif.

L’anneau 4 étant réflecteur & droite, I'idéal M est réflectif. Soit abce M.
L’ensemble M..a est un idéal & droite, donc un idéal réflectif. Comme
bceM.ca, on a cbe M.-a, c’est-d-dire acbe M. Par conséquent, M est
complétement réflectif, d’aprés la proposition 14.

Soit H un complexe quelconque d’un demi-groupe (d'un anneau) D. Nous
désignerons par 7',(H) I’ensemble de tous les éléments xz de D de la forme
r=2x,...2, avec S(z,,...,2,)~nH #@. Ona HCT, (H). D’autre part, la
relation S(a,,...,a,)~H # @ entraine S(a,,...,a,)ET,(H). Nous désig-
nerons par Ty(H) l'’ensemble T,(H)= T,[T,(H)] et, d’'une maniére géné-
rale, par T,(H) lensemble 7,(H)=T,[T,_,(H)]. On a évidemment
T, ,(H)ET,(H). Posons -
TH)= UT,H) .

n=1
On voit facilement que 7' (H) est le complexe complétement réflectif engendré
par H . Si K est un complexede D,ona T,(H)KET,(HK), HT,(K)ET,(HK)
T,(H)T,(K)ET,(HK). Si H est un sous-demi-groupe de D, T,(H) est un
sous-demi-groupe de D et T (H) est le sous-demi-groupe complétement réflectif
engendré par H .

Proposition 18. St H est un idéal & droite (& gauche) du demi-groupe D, T, (H)
est un tdéal et T (H) est U'idéal complétement réflectif engendré par H .

Pour démontrer la proposition, il suffit d’établir que 7',(H) est un idéal.
T,(H) est un idéal & droite, car 7,(H)xCST,(Hz)ST,(H). Soit aeT,(H);
I’élément a est de la forme a =a,...a, avec S(a,,...,a,)~H # @ et 'on
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a S(a,...,a,)x~H # @, ce qui entraine S(ay,...,a,,2)~H # g. Par
conséquent, S(a,,...,a,,2)ST,(H) et zaeT,(H).

Si M est un idéal & droite (& gauche) d’un anneau 4, nous désignerons par
V(M) P'idéal engendré par T,(M). D’aprés ce qui précéde, on voit facilement
que tout élément de V,(M) est la somme d’un nombre fini d’éléments de
T,(M). Nous désignerons par V,(M) Iidéal V,(M)= V,[V,(M)], et,
d’une maniére générale, par V, (M) l'idéal V,(M)= V,[V,_,(M)]. Posons

V(M) = U V(M) .

n=1
Proposition 19. 87 M est un idéal & droite (& gauche) d'un anneau A, V(M)
est U'idéal complétement réflectif engendré par M .
La démonstration de cette proposition est immédiate.

Corollaire. Un anneau A de carré non nul, dont les seuls idéaux sont (0) et A,
est soit un anneaw sans diviseurs de zéro, soit un anneau de la forme A = V,(0).

En effet, si V,(0)c A4, on a, puisque V,(0) est un idéal, V,(0) = (0) et
donc V(0) = (0). Par conséquent, 1’idéal (0) est complétement réflectif et A4
est un anneau sans diviseurs de zéro, d’aprés le théoréme 33.

Rappelons qu’un idéal N d’un anneau 4 est dit compressif (cf. [14]), si la
relation ala...aeN entraine a,a,...a,eN. Nous avons montré dans [14]
que l'intersection (M) de tous les idéaux compressifs contenant un idéal
quelconque M de A4 est un idéal compressif, appelé le radical compressif de M
et que G (M) est l'intersection de tous les idéaux complétement premiers
minimaux appartenant & M. De 14 suit que pour qu’un anneau (non réduit &
zéro) soit isomorphe & une somme sous-directe d’anneaux sans diviseurs de
zéro, il faut et il suffit que 1’idéal (0) soit compressif.

Théoréme 34. Pour qu’un idéal N de U'anneau A sott compressif, il faut et il
suffit que N soit complétement réflectif et complétement semi-premier.

La condition est nécessaire. L’idéal N, étant compressif, coincide avec son
radical compressif. Par conséquent, NV est l'intersection d’idéaux complétement
premiers, et donc N est complétement semi-premier et completement réflectif.

La condition est suffisante. Soit afa2...a2eN. Du théoréme 27 suit
(a,ay...a,)%¢N et donc a,a,...a,eN, puisque N est complétement semi-
premier,

Corollaire. Pour qu’un idéal N soit compressif, il faut et il suffit que les rela-
lions a2eN et becdeN entrainent respectivement aeN et dcbeN.

L’intersection de tous les idéaux complétement réflectifs contenant un idéal
M de A est un idéal complétement réflectif, qui sera appelé le noyau compléte-
ment réflectif de M .
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Théoréme 36. Le radical compressif C(M) d’un idéal quelconque M de A
coincide avec le radical réflectif R(M*) du noyau complétement réflectif M*
de M.

D’apreés le théoréme 16 et la proposition 15, R(M*) est un idéal compléte-
ment semi-premier et complétement réflectif, donc compressif d’aprés le théo-
reme 34. Par conséquent, C(M)SR(M*). L’idéal €(M) étant compressif,
donc complétement réflectif, on a M*SE(M). Si aeR(M*), il existe un en-
tier positif n tel que a"e M*CSE(M). Dol ae@ (M) et C(M) = R(M*).

Corollaire. Le radical réflectif du noyau complétement réflectif d’un idéal quel-
conque M de A est intersection de tous les tdéaux complétement premiers mini-
maux appartenant & M .

Théoréme 36. Pour qu’un anneau A (non réduit & zéro) soit isomorphe & une
somme sous-directe d’anneaux sans diviseurs de zéro, 1l faut et il suffit que les rela-
tions a* = 0 et bcd = 0 entrainent respectivement a = 0 et dcb = 0.

D’apres [14], il faut et il suffit que 1'idéal (0) soit compressif. Le théoréme
découle alors immédiatement du corollaire du théoréme 34.

3. Décomposition des idéaux complétement réflectifs. Un idéal complete-
ment réflectif M d’un demi-groupe (d’un anneau) D sera dit r-réductible, si M
est de la forme M = M,~ M,, ou M, et M, sont des idéaux completement
réflectifs de D, avec Mc M, e¢ McM,. Un idéal complétement réflectif,
qui n’est pas r-réductible, sera dit r-irréductible.

Théordme 37. Tout idéal complétement réflectif r-irréductible M d’un dems-
groupe D, vérifiant la condition de chaine ascendante pour les idéaux compléte-
ment réflectifs, est primaire.

Supposons que M ne soit pas primaire. Il existe alors deux éléments a et b
tels que l'on ait abe M, a¢ M, b*¢ M pour tout entier positif ». Posons
M, = M- .b*. D’aprés la proposition 16, M, est un idéal complétement réflec-
tif. D’autre part, on a les relations Mc M, S M,C ...,

Comme D vérifie la condition de chaine ascendante pour les idéaux compléte-
ment réflectifs, il existe un entier positif » tel que 'on ait M, = M, , =....

Soit B I'idéal complétement réflectif engendré par l'idéal & gauche Dd».
D’aprés la proposition 18, on a B = T'(Db*). L’idéal C = M v B est com-
plétement réflectif et 'on a M cC, car b»t1eC et b"+t'¢ M. Par conséquent,
MCM,~C. Soit ce M;~C. Ona cbe M, et ce M ou ceB. Si ceB, il
existe un entier positif m tel que ce7,,(Db") et ceT, (db"), ou d est un élé-
ment de D. Comme cbe M, ona T,(db")-b~ M +# @, ce qui entraine, puis-
que M est complétement réflectif, db™-b = db"t'e M. Par conséquent,
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deM, =M, et db®e M. Dou 7T,(db")SM et ceM. On a donc
M = M,~C et M est r-réductible, ce qui est contradictoire.

Théoréme 38. Tout idéal complétement réflectif M d’un demi-groupe D, véri-
fiant la condition de chaine ascendante pour les idéaux complétement réflectifs, est
tntersection d’un nombre fini d’idéaux complétement réflectifs primaires.

En effet, tout idéal completement réflectif de D est intersection d’'un nombre
fini d’idéaux complétement réflectifs r-irréductibles, donc primaires d’aprés le
théoreme 37.

Nous allons maintenant étudier les idéaux d’un anneau ou d’un demi-
groupe, qui sont intersections d un nombre fini d’idéaux complétement réflec-
tifs primaires. Comme exemples de tels idéaux, nous avons les idéaux compléte-
ment réflectifs d’'un demi-groupe vérifiant la condition de chaine ascendante
pour les idéaux complétement réflectifs (théoréme 38), ainsi que les idéaux d’'un
anneau réflecteur a droite vérifiant la condition de chaine ascendante pour les
idéaux (théoréme 20 et proposition 17). Nous nous dispensons de donner les
démonstrations des théorémes qui suivent, car ces démonstrations sont ana-
logues aux cas correspondants des anneaux et des demi-groupes commutatifs.

D’aprés le théoréme 19, le radical réflectif P d’un idéal complétement réflec-
tif primaire ¢ est un idéal complétement premier. Nous dirons que P est I'idéal
complétement premier associé & @ et que @ est un idéal compleétement réflectif
primaire appartenant & P.

Théoréme 39. Dans un anneau ou un demi-groupe, 'intersection
M = er\ oo e r\Qn

d’idéaux complétement réflectifs primaires appartenant & un méme idéal compléte-

ment premier P est un idéal complétement réflectif primaire appartenant a P.
Soit maintenant, dans un anneau ou un demi-groupe, un idéal M possédant

une représentation comme intersection d’un nombre fini d’idéaux compléte-

ment réflectifs primaires
M=Qn-nQ, . (1)

L’idéal M est lui-méme complétement réflectif.

Le théoréme 39 permet de remplacer dans la représentation (1) tous les
idéaux complétement réflectifs primaires appartenant & un méme idéal com-
plétement premier par un seul idéal complétement réflectif primaire. D’autre
part, si Q,, par exemple, contient I'intersection @y~ ---~@,, on peut le sup-
primer sans altérer le second membre et @, est dit superflu. En appliquant
autant que possible ces deux procédés, on aboutit & une représentation normée
ne comprenant aucun idéal complétement réflectif superflu, et dans laquelle
deux idéaux complétement réflectifs primaires appartiennent toujours & des



112  Gasrier TEierriN Contribution & la théorie des anneaux et des demi-groupes

idéaux complétement premiers différents. Les idéaux complétement réflectifs
primaires @, figurant dans une telle représentation normée seront appelés les
composants complétement réflectifs primaires de M et les idéaux complétement
premiers correspondants P, seront les idéaux complétement premiers essentiels
de M. On a par conséquent le théoréme suivant :

Théoréme 40. Tout idéal M d’un anneau ou d’un demi-groupe, qui est inter-
section d’un nombre fini d’idéauzx complétement réflectifs primaires, admet une
représentation normée.

Théoréme 41. Un idéal d’un anneaw ou d’un demi-groupe qui admet une re-
présentation normée comprenant plus d’un composant complétement réflectif pri-
maire n’est pas primaire.

Théoréme 42. Dans deux représentations normées d’un idéal d’un anneau ou
d’un demi-groupe, le nombre des composants complétement réflectifs primaires est
le méme et les idéaux complétement premiers essentiels sont les mémes.
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