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Contribution à la théorie des anneaux
et des demi-groupes

par Gabriel Thierrin

L'objet de ce travail est l'étude de deux classes de complexes et d'idéaux
d'un anneau ou d'un demi-groupe, les complexes et les idéaux réflectifs et
complètement réflectifs. Un complexe ou un idéal H est réflectif, si la relation
abcH entraîne baeH. Par exemple, un complexe H d'un groupe G est réflectif,

si et seulement si l'on a Hx=xH pour tout xeG; en particulier un sous-

groupe de G est réflectif, si et seulement s'il est invariant. Un complexe ou un
idéal H est complètement réflectif, s'il est réflectif et si la relation abccH
entraîne cbacH. Par exemple, un complexe H d'un groupe G est complètement

réflectif, si et seulement si l'on a xHy yHx pour tout couple x,
yeG; en particulier, un sous-groupe de G est complètement réflectif, si et
seulement s'il contient le groupe commutateur de G.

Après avoir établi au début du premier chapitre quelques propriétés des

complexes réflectifs, nous étudions les anneaux et les demi-groupes réflectifs.
Un anneau réflectif est un anneau dont l'idéal (0) est réflectif; pour qu'il en
soit ainsi, il faut et il suffit que la relation ax ay entraîne xa ya et
inversement. Cette propriété des anneaux réflectifs nous permet de définir les

demi-groupes réflectifs. Les paragraphes suivants sont consacrés aux idéaux
réflectifs, au radical réflectif d'un idéal réflectif et aux anneaux et demi-groupes
dont tous les idéaux à droite sont réflectifs. Ce premier chapitre se termine par
l'étude de certaines classes d'anneaux isomorphes à une somme sous-directe
de corps.

Le second chapitre est consacré aux complexes et idéaux complètement
réflectifs, ainsi qu'à l'étude des décompositions d'un idéal comme intersection
d'idéaux complètement réflectifs primaires. Nous donnons en particulier une
caractérisation de l'intersection de tous les idéaux complètement premiers
minimaux appartenant à un idéal donné d'un anneau, ainsi qu'une condition
nécessaire et suffisante pour qu'un anneau soit isomorphe à une somme sous-
directe d'anneaux sans diviseurs de zéro.

CHAPITRE I
Complexes et idéaux réflectifs

1. Complexes réflectifs. Rappelons qu'un demi-groupe est un ensemble

dans lequel est définie une opération univoque associative. Un complexe H,
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c'est-à-dire une partie non vide, d'un demi-groupe D (d'un anneau) sera dit
réflectif, si la relation abcH, avec açD, beD, entraîne baeH. La partie
vide 0 sera considérée comme une partie réflective. Le demi-groupe D lui-
même est évidemment un complexe réflectif.

Proposition 1. Pour qu'un complexe H soit réflectif, il faut et il suffit que Von
ait H.'a H\a pour tout acD.

Rappelons que H /a désigne l'ensemble des éléments xcD tels que axeH
et H\a l'ensemble des éléments yeD tels que yaeH.

La condition est nécessaire. Si xeH/a, axeH et xaeH; d'où xeH'.a
et H /aÇiH\a. On montre de même que H\a£LH /a. Donc H:a H\a.
La condition est suffisante, car si abcH, on a beH /a H'.a et donc

Cette proposition montre que tout complexe réflectif d'un demi-groupe est

symétrique (cf. [3], p. 22).
La réunion et, si elle n'est pas vide, l'intersection de complexes réflectifs

sont encore des complexes réflectifs. Si H et K sont des complexes réflectifs et
si HcK, le complexe K — H est réflectif. En particulier, s'il n'est pas vide,
le complémentaire d'un complexe réflectif est réflectif. Nous avons par conséquent

:

Théorème 1. L'ensemble des parties réflectives d'un demi-groupe forme un
treillis de Boole.

Théorème 2. Pour qu'un complexe H d'un groupe G soit réflectif, il faut et il
suffit que Von ait Hx xH pour tout xeG.

La condition est nécessaire. Soit h*H. De hxx^eH suit x^hxcH et
hxcxH. Donc Hx^xH. On a de même xHSLHx et par conséquent
Hx xH. La condition est suffisante. En effet, si xyeH, xeHy1 y1H
et donc yxeH.

Corollaire. Pour qu'un sous-groupe d'un groupe soit réflectif, il faut et il suffit
qu'il soit invariant.

Remarquons que le centre d'un groupe G est l'ensemble des éléments réflectifs

de G.

Théorème 3. Pour qu'un complexe 8 d'un groupe G soit un sous-groupe
invariant, il faut et il suffit que les relations aeS et bccS entraînent ab^c^eS.

La condition est nécessaire. En effet on a c^b^eS; d'où, d'après le corollaire

du théorème 2, b^c^cS et donc ab^c^cS.
La condition est suffisante. Si xeS, y*8 et si e est l'élément-unité de G,

on a yec#. Donc xy*1^1 xy~1€8 et 8 est un sous-groupe de G. Si
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on a, puisque ec8, er^s"1 r^s^eS, c'est-à-dire sreS. Par conséquent,
8 est réflectif, donc invariant.

Théorème 4. Tout élément x d'un demi-groupe D est contenu dans un
complexe réflectif minimal de D et les complexes réflectifs minimaux de D sont les
classes d'une équivalence de i).

L'intersection H de tous les complexes réflectifs de D contenant x est un
complexe réflectif. Si K est un complexe réflectif tel que KczH, K ne contient
pas x. Par suite, H — K est un complexe réflectif contenant x, ce qui est
impossible. Par conséquent H est un complexe réflectif minimal de D. La
seconde partie du théorème découle du fait que l'intersection de deux
complexes réflectifs minimaux distincts est vide.

Proposition 2. Les complexes réflectifs minimaux d'un groupe G sont les

classes d'éléments conjugués de G.
Soit H une classe d'éléments conjugués de G. Si abcH, on a ab b"1 (6 a) 6 ;

donc baeH et H est réflectif. Si K est un complexe réflectif tel que KczH,
il existe pour ceH — K un élément x tel que xcx^tK', d'où ceK, ce qui
est contradictoire. Par conséquent, H est un complexe réflectif minimal.

Inversement, si H est un complexe réflectif minimal et si heH, la classe

d'éléments conjugués contenant h est un complexe réflectif minimal, donc
coïncide avec H.

Rappelons qu'un semi-groupe est un demi-groupe vérifiant la règle de
simplification des deux côtés.

Théorème 6. Pour qu'un semi-groupe 8 'puisse être plongé dans un groupe G

tel que 8 soit réflectif dans G, il faut et il suffit que l'on ait a8 8a pour tout

La condition est nécessaire. De a~lax€S, avec a, xcS
axeSa; d'où a8£L8a. On a de même SaSîLaS et donc a8 8a.

La condition est suffisante. Le semi-groupe 8 est régulier à droite, car pour
tout couple a, beS il existe xeS tel que ax ba ; par conséquent, 8 peut être

plongé dans un groupe G tel que tout élément gcG est de la forme g xy1,
avec x, yeS (cf. [4]). Montrons que 8 est réflectif dans G. Soit ghcS, avec
h rs-1, reS, scS. De xy^rs*1 acS suit xjr1 asr-1. Il existe £€#

tel que as st. D'où xy1 str"1 et rs^xy1 rtr~x. Il existe veS tel
que rt vr. D'où hg rs^1xy1 vrr*1 veS.

Par anneau sans diviseurs de zéro, nous entendons un anneau non réduit à

zéro tel que la relation «6 0 entraîne a 0 ou 6 0. Par corps, nous
entendons un anneau sans diviseurs de zéro tel que l'ensemble des éléments

différents de zéro forme un groupe pour la multiplication.
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Théorème 6. Pour qu'un anneau A sans diviseurs de zéro puisse être plongé
dans un corps K tel que A soit réflectif dans K, il faut et il suffit que Von ait
aA Aa pour tout aeA.

La démonstration de ce théorème est analogue à celle du théorème précédent.

2. Anneaux et demi-groupes réflectifs. Un anneau A sera dit réflectif, si la
relation ab 0 entraîne ba 0, c'est-à-dire si l'idéal (0) est réflectif.

Théorème 7, Pour qu'un anneau A soit réflectif, il faut et il suffit que la relation

ax ay entraîne xa — ya.
La condition est nécessaire, car de ax ay suit a(x — y) 0, donc

(a; — y)a 0, c'est-à-dire xa ya. La condition est suffisante. En effet, si
ab 0, on a ab a-0; d'où ba 0-a 0.

On démontre de même le théorème symétrique.
Remarquons qu'un idéal M d'un anneau quelconque A est réflectif, si et

seulement si l'anneau-quotient A/M est réflectif.
Un élément a d'un demi-groupe ou d'un anneau sera dit réflectible à droite

si la relation xa y a entraîne ax ay. On a la définition symétrique. Un
élément réflectible des deux côtés sera dit réflectible. Tout élément appartenant
au centre est réflectible. Dans un demi-groupe, tout élément simplifiable (à
droite, à gauche) est réflectible (à droite, à gauche).

Proposition 3. S'il n'est pas vide, l'ensemble S des éléments réfUctibles à
droite (à gauche, des deux côtés) d'un demi-groupe D {d'un anneau) est un sous-
demi-groupe de D.

En effet, si a, b*8 et si xab yab, on a bxa bya et abx aby.
On voit facilement qu'un élément a d'un anneau est réflectible à droite si et

seulement si la relation xa 0 entraîne ax 0. D'après le théorème 7 et
son symétrique, un anneau est réflectif si et seulement si tous ses éléments
sont réflectibles (à droite, à gauche).

Un demi-groupe sera dit réflectif, si tous ses éléments sont réflectibles, c'est-
à-dire si les relations xa ya et bv bt entraînent respectivement ax ay
et vb tb.

Théorème 8. Si a est un élément réflectible d'un demi-groupe D, l'idéal à
droite aD est isomorphe à l'idéal à gauche Da.

A l'élément 6 ax€aD faisons correspondre l'élément V xaeDa.
Nous définissons ainsi une application de aD dans Da, car si b ay ~ ax,
on a ya xa b' ; c'est de plus une application de aD sur Da. Cette
application est biunivoque, car si 6' est l'image de ax et az, on a xa za et donc
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ax az. Enfin, cette application est un isomorphisme, car si ax -> xa et
ay-+ya, on a axay-+xaya xaya.

Corollaire. Si D est un demi-groupe réflectif, Vidéal à droite xD est isomorphe
à Vidéal à gauche Dx, quel que soit

Théorème 9. Si a est un élément réflectible de Vanneau A, V idéal à droite aA
est isomorphe à Vidéal à gauche A a.

À la suite du théorème 8, il suffit de montrer que aA et A a sont isomorphes
pour l'addition. De ax -> xa et ay -*ya suit

ax + ay a(x + y) -> (x + y) a xa + ya

Corollaire. Si A est un anneau réflectif, Vidéal à droite xA est isomorphe à
Vidéal à gauche Ax, quel que soit x*A.

Proposition 4. Tout élément idempotent réflectible e d'un demi-groupe ou d'un
anneau est un élément du centre.

De ex eex suit xe exe; de xe xee suit ex exe. D'où ex xe.
Corollaire. Tout élément idempotent d'un demi-groupe réflectif ou d'un

anneau réflectif est un élément du centre.

Proposition 5. Si a et b sont deux éléments réflectibles d'un anneau ou d'un
demi-groupe, la relation ab a entraîne ba a, et inversement.

De ab a suit bab ba et ab2 ab. D'où b2a ba et bab ab

a ba. On montre de même que ba a entraîne ab a.

Proposition 6. Dans un demi-groupe réflectif D ou un anneau réflectif A avec

élément-unité 1, la relation ab 1 entraîne ba 1. De plus, dans A, la relation

ab + a + b 0 entraîne ab ba; de même la relation ab -\- a l
(ba + a 1) entraîne ab — ba.

De a*ba a-1 suit 6a2 1-a a et ba2b ba ab 1.
De ab + a + b 0 suit (a + l)(b + 1) 1. D'où (b + l)(a + 1) 1

et ba + a + b 0; donc ab ba. De ab + a l suit a(6 + 1) 1.
D'où (6 + l)a 1, 6a + a 1 et a6 ba.

Théorème 10. Pour qu'un demi-groupe D soit un groupe, il faut et il suffit
que D soit réflectif et que l'on ait aD D pour tout aeD.

La condition est évidemment nécessaire. Elle est aussi suffisante. En effet,
il existe e tel que ae a et a; tel que ax e. De la proposition 5 suit ea a
et l'on a eax ax, c'est-à-dire e2 c. L'élément e, étant idempotent,
appartient au centre de D, d'après le corollaire de la proposition 4. Comme
eD D, c est élément neutre de D et D est un groupe.
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Théorème 11, Tout demi-groupe réflectif D possédant un idéal à droite mini-
mal M est un homogroupe.

Par homogroupe, nous entendons un demi-groupe possédant un groupe
comme idéal (cf. [1], [12]).

L'idéal à droite M étant minimal, on a mM — M pour tout me M. D'autre
part, M est un demi-groupe réflectif. Par conséquent, M est un groupe, d'après
le théorème 10. Si e est l'élément neutre de M, e appartient au centre de D et
l'on a M eD De. Donc M est un idéal de D.

Corollaire, Tout demi-groupe fini réflectif est un homogroupe.
Un demi-groupe D est stationnaire, si les relations ac bc et ca cb

entraînent respectivement ax bx et xa xb, pour tout xeD (cf. [13]).
Un demi-groupe D est simple s'il ne possède que l'idéal D.

Théorème 12. Tout demi-groupe D simple et réflectif est soit un groupe, soit
un demi-groupe stationnaire sans torsion (c'est-à-dire sans éléments d'ordre fini).

Supposons que D ne soit pas un groupe. Si D contient un élément d'ordre
fini, il contient alors un élément idempotent e qui appartient au centre de D,
puisque D est réflectif. L'ensemble eD De est un idéal de D. Donc De D
et e est élément-unité de D. Soit G le groupe des éléments inversibles de D.
L'ensemble H D — G n'est pas vide. Si acH, axeH. En effet, si ax*Q,
il existe r tel que axr 1, et on a xra 1, d'après la proposition 6. Par
conséquent, a est inversible, contre l'hypothèse. On montre de même que
xaeH. Il suit de là que H est un idéal véritable de D, contre l'hypothèse. Le
demi-groupe D ne peut donc contenir des éléments d'ordre fini.

Montrons que D est stationnaire. Soit ac bc. L'ensemble X des éléments
x de D tels que ax bx est un idéal à droite de D. Comme D est réflectif,
on a aussi xa xb, et donc txa txb et atx btx pour tout teD. Par
conséquent, X est un idéal de D; d'où X D et ax bx pour tout xeD.
On montre de même la propriété symétrique.

Théorème 13. Tout anneau A de carré non nul, réflectif et sans véritable idéal
est un anneau sans diviseurs de zéro.

Supposons que l'on ait rs 0, avec r ^ 0, s ^= 0. L'ensemble R des
éléments x de A tels que r x 0 est un idéal à droite de A ; c'est aussi un
idéal à gauche, puisque A est réflectif. Comme seB, on a R A et rA 0.
Soit 8 l'ensemble des éléments y de A tels que yA 0. C'est un idéal de A
et comme reS, on a 8 A. Par conséquent, A2 — 0 contre l'hypothèse.

Proposition 7. Pour un demi-groupe réflectif D, les propriétés suivantes sont
équivalentes : 1. D est inversif. 2. D est inversif à droite. 3. D est inversif à gauche.

Pour la notion de demi-groupe inversif (à droite, à gauche), voir [2],
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1. entraîne 2. Si xcD, il existe a tel que xax x et l'élément xa est
idempotent, donc appartient au centre de D, puisque D est réflectif. Par
conséquent, on a x2a x et D est inversif à droite.

2. entraîne 3. Il existe a tel que x2a x. D'où, d'après la proposition 5,

xax x, ax2 x et D est inversif à gauche.
3. entraîne 1. Il existe a tel que ax2 x. D'où xa x x et D est inversif.

3. Idéaux réflectifs. Un idéal P d'un anneau J. est dit premier, si la relation

UVÇLP, oh U et V sont des idéaux de A, entraîne U£_P ou V£_P.
D'après [8], un idéal P est premier, si et seulement si la relation aAb£_P
entraîne aeP ou beP. Un idéal Q d'un anneau ou d'un demi-groupe est dit
complètement premier, si la relation abeQ entraîne aeQ ou b*Q. Un idéal 8
d'un anneau ou d'un demi-groupe est dit complètement semi-premier, si la relation

a2e8 entraîne ae8. Un idéal complètement premier est évidemment
complètement semi-premier. (Remarquons qu'un idéal complètement semi-

premier est aussi appelé idéal semi-premier.)

Proposition 8. Tout idéal complètement semi-premier 8 d'un anneau ou d'un
demi-groupe est réflectif.

Soit abeS. On a b(ab)a (ba)2€8. D'où baeS.

Corollaire. Tout anneau sans éléments nilpotents différents de zéro est réflectif.

Proposition 9. Pour qu'un idéal premier P d'un anneau A soit complètement
premier, il faut et il suffit qu'il soit réflectif.

La condition est évidemment nécessaire. Elle est aussi suffisante, car si

abcP, on a abAÇLP et donc bAa^_P\ d'où aeP ou beP.
Remarquons que tout idéal à droite (à gauche) réflectif M d'un anneau ou d'un

demi-groupe est un idéal bilatère. En effet, si me M, on a mxeM et donc

xmc M.

Proposition 10. Si A est un anneau réflectif et si e est un élément idempotent,
l'idéal à droite eA est un idéal réflectif.

Soit abeeA. Comme A est réflectif, e appartient au centre de A. On a
eA Ae et e est élément-unité de eA.

De (a — ae)(b — be) ab — abe — aeb + aebe 0 suit

(6 — be)(a — ae) 0

c'est-à-dire ba — bae — bea + beae 0. Comme bea beae, on a
ba baeeAe eA.

Théorème 14. Tout idéal à droite {à gauche) minimal et non nïlpotent M d'un
anneau réflectif A est un corps et un idéal réflectif.
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L'idéal à droite M, étant minimal et non nilpotent, est de la forme M eA
où e est un élément idempotent. D'après la proposition 10, M est un idéal ré-
flectif et c est élément-unité de M. De plus, on a mM — M pour tout me M,
m ^ 0. Par conséquent, M est un corps.

L'intersection de tous les idéaux réflectifs contenant un idéal M d'un anneau
ou d'un demi-groupe est un idéal réflectif qui sera appelé le noyau réflectif de

M et noté par 9t (M). Le noyau réflectif de l'idéal (0) d'un anneau sera appelé
le noyau réflectif de A et noté par 9t.

Si M est un idéal d'un anneau A (d'un demi-groupe D), nous désignerons

par SR(Jf) l'ensemble des éléments a de A (de D) tels qu'il existe un entier
positif n (dépendant de a) vérifiant la relation an€ M.

Lemme 1. L'ensemble 9t (M) est un complexe réflectif.
Si xyc3{(M), il existe un entier positif n tel que (xy)neM. D'où y(xy)nx
(yx)n+l*M. Donc yx€${(M).

Si M est un idéal réflectif de A ou de D, 9t(Jf) sera dit le radical réflectif
de M. Si A est un anneau réflectif, le radical réflectif de l'idéal réflectif (0) sera
dit le radical réflectif de A et noté 9t.

Lemme 2. Soit M un idéal réflectif d'un demi-groupe D (d'un anneau A). Si
n nx + • —\- nr, oùlesni sont des entiers positifs, la relation ane M entraîne

anixanty... anrze M zanixan*... tanrc M
va"lxan*y anrz€ M anixan*y... anU M

quels que soient x, y, z, t,
De an ani+ " +flr~1 a*1*c M suit ani+'"+nr-1 anrz* M, et donc, puisque

M est réflectif, a^za"1* ' ' +nr~1 c M.
En recommençant le même raisonnement autant de fois qu'il le faut, on

obtient finalement anix... anrz* M. Les autres relations se démontrent de la
même manière.

Théorème 16. Le radical réflectif 91 (M) d'un idéal réflectif M d'un demi-

groupe D est un idéal complètement semi-premier (donc réflectif) contenu dans tout
idéal complètement semi-premier contenant M.

D'après le lemme 2, si aneM, on a (ax)ne M et (xa)n€ M pour tout
xcD. Donc 91 (M) est un idéal. La suite du théorème est immédiate.

Corollaire. Le radical réflectif du noyau réflectif d'un idéal quelconque M de

D est l'intersection de tous les idéaux complètement semi-premiers contenant M.
Théorème 16. Le radical réflectif 9i(M) d'un idéal réflectif M d'un anneau

A est un idéal complètement semi-premier (donc réflectif) contenu dans tout idéal
complètement sefni-premier contenant M.
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A la suite du théorème 15, il suffit de montrer que 91 (If) est un sous-groupe
additif de A. Si a^M) et 6e9t(Jf), on a aneM et bm€M. L'élément
(a — b)n+m~1 est la somme de termes de la forme ±xxx2... xn+m_x avec

xi a ou x{¦ b, et on a les deux possibilités suivantes : le nombre des x{
égaux à a est égal ou supérieur à n, ou le nombre des xt égaux à b est égal ou
supérieur à m. Dans les deux cas, le lemme 2 montre que xtx2... xm+n_1€ M.
Par conséquent (a — b)n+m~1e M, c'est-à-dire a —

Corollaire 1. Le radical réflectif du noyau réflectif d'un idéal quelconque M
de A est Vintersection de tous les idéaux complètement semi-derniers contenant M.

Corollaire 2. L'ensemble des éléments nilpotents d'un anneau réflectif A est

un idéal complètement semi-premier, qui est le radical réflectif 9t de A.
Rappelons la définition du radical de N. H. McCoy d'un idéal quelconque M

d'un anneau A (cf. [8]). Un m-système X est un ensemble d'éléments de A tel
que pour tout couple a, beX, il existe reA vérifiant la relation arbeX. Le
radical de N. H. McCoy de l'idéal M est l'ensemble de tous les éléments a de A
possédant la propriété que tout m-système contenant a contient au moins un
élément de M. Un idéal premier (complètement premier) P de A est dit un
idéal premier (complètement premier) minimal appartenant à M, si et seulement

si MSHP et s'il n'existe pas d'idéal premier (complètement premier) P'
tel que MSLP'cP. D'après [8], le radical de N. H. McCoy de l'idéal M est
l'intersection de tous les idéaux premiers minimaux appartenant à M.

Théorème 17. Le radical réflectif 91 (M) d'un idéal réflectif M de Vanneau A
coïncide avec le radical 91* de N. H. McCoy de M.

Si ae9î*, il existe un entier positif n tel que ancM, car le m-système
(a, a2,...) contient a. Par conséquent, 9t*SL9î(ilif).

Si #e9l(Jf), il existe n tel que xneM. Soit X un m-système contenant x.
Il existe xxeA tel que xxxX€X\ mais cette dernière relation entraîne l'existence

d'un élément x2eA tel que xxxxx2X€X, et ainsi de suite. Par
conséquent, il existe n éléments zl9...,zn tels que l'on ait xxxx... xxnX€X.
Comme xn^eM, on a, d'après le lemme 2, xxxz... xxnxe M et Mr^X ^ 0.
Donc #c9l* et 91* »(Jf).

Lemme 3. Si un élément a d'un anneau A est d'ordre fini pour la multiplication,

il existe un entier n>\ tel que les éléments a — an et a""1 soient respectivement

nilpotent et idempotent.
Le demi-groupe cyclique engendré par a étant fini, il existe, d'après [11],

un entier m > 0 tel que l'élément am e est idempotent. Posons n m + 1 •

L'élément c étant permutable avec a, on vérifie facilement que (a — an)n

(a — ae)n an — ane ae — aee 0.

8 Commentarii Mathematici Helvetici
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Lemme 4. Pour un anneau A, les propriétés suivantes sont équivalentes :

1. Pour tout aeA il existe un entier n> 1, dépendant de a, tel que an a.
2. Tout élément de A est d'ordre fini pour la multiplication et A ne contient pas

d'éléments nilpotents différents de zéro.

1. entraîne 2., c'est immédiat.
2. entraîne 1., d'après le lemme 1.

On sait que tout anneau ayant la propriété 1 est commutatif (cf. [6]).
Par conséquent, tout anneau ayant la propriété 2 est commutatif.

Théorème 18. Si 91(91) est le radical réflectif du noyau réflectif 91 d'un
anneau A dont tous les éléments sont d'ordre fini pour la multiplication, Vanneau-
quotient A /9t(9î) est commutatif.

En effet, tous les éléments de ^4/5R(9l) sont d'ordre fini pour la multiplication.

Comme 91(91) est complètement semi-premier, -4/91(91) ne contient pas
d'éléments nilpotents différents de 0. Par conséquent, ^L/9î(9l) est commutatif.

Un idéal réflectif M d'un anneau ou d'un demi-groupe est dit primaire, si
les relations abeM et aî M entraînent l'existence d'un entier positif n tel
que bn*M.

Théorème 19. Le radical réflectif 9Î {M) d'un idéal réflectif primaire M d'un
anneau ou d'un demi-groupe est un idéal complètement premier.

En effet, supposons que 91 (M) ne soit pas complètement premier. Il existe
alors deux éléments a et 6 tels que l'on ait ab c9î (M), a $ 91 (M), b $ 9t (M). Soit
n le plus petit entier positif tel que (ab)ne M. On a n>l9 car ab$M.
Comme (ab)n~1ab€ M et que am$M et bm$M, quel que soit l'entier positif
m, on a (ab)n-1a€ M. Mais (ab^^^M; donc ameM pour un certain entier
m, ce qui est contradictoire.

4. Idéaux réflecteurs. Un idéal M d'un anneau ou d'un demi-groupe sera
dit réflecteur à droite (à gauche), si tout idéal à droite (à gauche) M1, tel que
M£lM'9 est réflectif. Tout idéal à droite contenant un idéal réflecteur à droite
est évidemment aussi un idéal réflecteur à droite.

Théorème 20. Dans un anneau (un demi-groupe) A vérifiant la condition de

chaîne ascendante pour les idéaux réflecteurs à droite, tout idéal irréductible et

réflecteur à droite M est primaire.
Nous nous dispensons de donner la démonstration de ce théorème qui est

analogue à celle du cas des anneaux et des demi-groupes commutatifs (cf. [4],
[15]).
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Corollaire. Tout idéal réflecteur à droite de Vanneau (du demi-groupe) A est

intersection d'un nombre fini d'idéaux réflecteurs à droite primaires.
Un anneau (un demi-groupe) A dont tous les idéaux à droite sont réflectifs,

sera dit un anneau (un demi-groupe) réflecteur à droite. Tous les idéaux à droite
de A sont alors des idéaux bilatères réflecteurs à droite. Tout anneau réflecteur
à droite est réfleetif.

Proposition 11. Pour qu'un demi-groupe D soit réflecteur à droite, il faut et il
suffit que pour tout couple d'éléments a, beD, tels que ab^ba, il existe xcD
vérifiant la relation ab bax.

La condition est nécessaire. L'élément ba appartient à Fidéal à droite
ba^baD qui est réflectif. Donc abeba^baD et, puisque ab^ba, il existe
x tel que ab bax.

La condition est suffisante. Soit M un idéal à droite de D et soit rse M. Si

rs ^ sr, il existe x tel que sr rsxe M.

Proposition 12. Pour qu'un anneau A soit réflecteur à droite, il faut et il
suffit que pour tout couple d'éléments a, b*A, il existe un entier relatif m et un
élément x*A tel que l'on ait ab mba + bax.

La condition est nécessaire. Si (6a) est l'idéal à droite engendré par ba, on
a abe(ba), c'est-à-dire ab mba + ba x .La condition est suffisante. Soit M
un idéal à droite de A et soit rsc M. Il existe metx tel que sr mrs -f- rsx.
Comme mrs + rsxcM, on a sre M.

Tout semi-groupe S réflecteur à droite non commutatif possède un élément-
unité.

En effet, il existe a, beS tels que ab ^ba. Donc, d'après la proposition 11,

il existe x tel que ab bax et y tel que ba aby. D'où ab abyx.
Comme S est un semi-groupe, l'élément yx est élément-unité de 8.

Proposition 13. Tout anneau régulier et réflectif A est réflecteur à droite.
Soit a, beA. Comme A est régulier, il existe x tel que ba baxba. L'élément

b a x est idempotent, donc appartient au centre de A, puisque A est
réflectif. De ba baxba suit ab abaxb baxab. Par conséquent, A est
réflecteur à droite, d'après la proposition 12.

Corollaire. Tout idéal réflectif d'un anneau régulier est réflecteur à droite.

6. Somme directe et sous-directe de corps. Pour les notions de somme
directe et sous-directe d'anneaux, voir [9] et [10].

Théorème 21. Pour qu'un anneau A (non réduit à zéro) soit isomorphe à une

somme directe d'un nombre fini de corps, il faut et il suffit qu'il ait les trois
propriétés suivantes :
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1. A vérifie la condition minimale pour les idéaux à gauche.
2. A ne contient pas d'idéal à gauche nilpotent différent de 0.
3. A est réflectif.
La condition est nécessaire, c'est immédiat. Elle est aussi suffisante. En

effet, des propriétés 1 et 2 suit que l'anneau A est, considéré comme groupe
additif, la somme directe d'un nombre fini d'idéaux à gauche minimaux non
nilpotents M4. D'après le théorème 14, les -M, sont des idéaux bilatères et des

corps. Par conséquent, A est isomorphe à la somme directe des corps Mt.
Théorème 22. Pour qu'un anneau régulier A (non réduit à zéro) soit

isomorphe à une somme sous-directe de corps, il faut et il suffit qu'il soit réflectif.
D'après [5], il faut et il suffit de montrer que A ne contient pas d'éléments

nilpotents différents de zéro.
Si A ne contient pas d'éléments nilpotents ^ 0, A est réflectif d'après le

corollaire dç la proposition 8. Inversement, si A est réflectif et si a2 0, il
existe x tel que l'on ait axa a. De la proposition 5 suit alors xa2 a,
c'est-à-dire a 0.

Un anneau A est dit primitif (cf. [7]), s'il existe dans A un idéal à droite
maximal M tel que M.' A 0.

Théorème 23. Tout anneau réflectif et primitif A est un anneau sans
diviseurs de zéro.

L'idéal (0) d'un anneau primitif est un idéal premier. Comme A est réflectif,
l'idéal (0) est réflectif, donc complètement premier d'après la proposition 9.

Par conséquent, A est un anneau sans diviseurs de zéro.

Corollaire. Tout anneau primitif, réflectif et possédant un idéal à droite minimal

est un corps.

Théorème 24. Pour qu'un anneau A soit un corps, il faui et il suffit qu'il soit
réflecteur à droite et primitif.

La condition est évidemment nécessaire. Elle est suffisante. En effet, A
contient un idéal à droite maximal M tel que M.* A 0. Comme A est réflecteur

à droite, M est un idéal bilatère et l'on a M^M: A ; d'où M 0.
L'anneau A ne possède par conséquent pas de véritable idéal à droite. D'après
le théorème 23, A est un anneau sans diviseurs de zéro. Donc A est un corps.

Si le radical de Jacobson (cf. [7]) d'un anneau réflectif A se réduit à 0, A ne
contient pas d'éléments nilpotents ^0. En effet, d'après le corollaire 2 du
théorème 16, l'ensemble des éléments nilpotents de A est un nilidéal qui,
d'après [7], est contenu dans le radical de Jacobson de A.

Théorème 25. Tout anneau A (non réduit à zéro) réflecteur à droite, dont le

radical de Jacobson se réduit àO,est isomorphe à une somme sovs-directe de corps.
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D'après [7], A est isomorphe à une somme sous-directe d'anneaux primitifs
Pt. Les anneaux Pt sont homomorphes à A. On voit facilement que tout
anneau homomorphe à un anneau réflecteur à droite est réflecteur à droite. Par
conséquent, les anneaux primitifs P{ sont réflecteurs à droite, donc des corps
d'après le théorème 24.

CHAPITRE II

Complexes et idéaux complètement réflectifs

1. Complexes complètement réflectifs. Un complexe H d'un demi-groupe
(d'un anneau) sera dit complètement réflectif y s'il est réflectif et si la relation
abceH entraîne cbaeH.

Proposition 14. Pour qu'un complexe réflectif H d'un demi-groupe soit
complètement réflectif, il faut et il suffit que la relation abceH entraîne acbeH
(abceH entraîne baceH).

La condition est nécessaire, car de abceH suit cbaeH et donc acbeH,
puisque H est réflectif. La condition est suffisante. En effet de abceH suit
acbeH et donc cbaeH.

Si D est un demi-groupe possédant un élément-unité à droite (à gauche) e, tout
complexe H tel que la relation abceH entraîne cbaeH est complètement réflectif.
Il suffit de montrer que H est réflectif. Or si abeH, on a aebeH et donc
bea baeH.

La réunion et, si elle n'est pas vide, l'intersection de complexes complètement

réflectifs d'un demi-groupe D sont encore des complexes complètement
réflectifs. Si H et K sont des complexes complètement réflectifs et si HczK9
le complexe K — H est complètement réflectif. En particulier, s'il n'est pas
vide, le complémentaire d'un complexe complètement réflectif est complètement

réflectif, car D lui-même est un complexe complètement réflectif. En
considérant la partie vide comme partie complètement réflective, nous avons alors
le théorème suivant :

Théorème 26. L'ensemble des parties complètement réflectives d'un demi-

groupe forme un treillis de Boole.
Soit n éléments al9.. .9an d'un demi-groupe D, plusieurs de ces éléments

pouvant être égaux. Nous désignerons par 8(at,.. .,an) l'ensemble des

éléments de D formés en permutant de toutes les manières possibles les facteurs

ax,..., an du produit axa2... an.

Théorème 27. Si H est un complexe complètement réflectif du demi-groupe D,
la relation S(al9..., an)^H ^ 0 entraîne 8(al3..., an)ÇLH.
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Le théorème est vrai évidemment pour n 1 et n 2. La proposition 14

montre qu'il est vrai aussi pour n 3. Soit alors n>3 et supposons le théorème

vrai pour n — 1. Soit

x ah... ain€8(alf. ..,an)^H
et soit

L'élément x est de l'une des trois formes suivantes ajxr, sajx, tahv. Comme
xcH, qui est complètement réfleetif, il existe un élément Z€8{ax,.. ,,an)^H
de la forme z aixak% akn. L'élément z est de l'une des trois formes
suivantes ahahd, afleait, ahfahg. De zeH suit alors ahaheçH, ahahgfeH.
Il existe par conséquent un élément wçS(a1,.. ,,an)^H de la forme

Posons h o,ixa,i%. On a w Aa3>s... aPncH, c'est-à-dire

S(h,av%,...,aPn)rsH =£0

Comme on a supposé le théorème vrai pour n — 1, on a donc

Mais #(&>«,,>...,«„„) /S(A,av...,a,n). D'où

Aa>, • • • %n ahahah ' ' ' ain€H •

Par conséquent # (ax,..., an)£.H.

Théorème 28. Pour qu'un sous-groupe 8 d'un groupe G contienne le groupe
commutateur de G, il faut et il suffit qu'il soit complètement réflectif.

La nécessité de la condition découle immédiatement du fait que 8 est
invariant et que le groupe-quotient G/8 est abélien. La condition est suffisante,
carde abb~~xa~l€8 suit, d'après la proposition 14, aba^b^eS.

Corollaire. Pour qu'un sous-groupe 8 d'un groupe G contienne le groupe corn-
muta&eur de G, il faut et il suffit que h, relation abccS entraîne cbacS.

Théorème 29. Pour qu'un complexe 8 d'un groupe G soit un sous-groupe
contenant h groupe commutateur de il faut et il suffit que les relations aeS et

bcde8 entraînent ab"le'1dm"1€S.
La condition est nécessaire. De bcd*8 suit, d'après le théorème 28, dcbe8.

D'où b-1c-ld~l€8 et ab^c^d^^S.
La condition est suffisante. Soit e Félément-unité de G et soient r, seS. De

r*8 et eseeS suit res~xe rs"x€8. Donc 8 est"un sous-groupe de G. Soit
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xyzcS. De eeS et z"-1y1x""1€S suit ezyx zyx€8. Par conséquent,
d'après le corollaire du théorème 28, S contient le groupe commutateur de G.

Théorème 30. Pour qu'un complexe H d'un groupe G soit complètement
réflectif, il faut et il suffit que Von ait xHy yHx, quels que soient x, yeG.

La condition est nécessaire. Soit heH. De y^yhxx^cH suit, d'après le
théorème 27, y^xhyx^eH. D'où xhyeyHx et xHyÇLyHx. On montre
de même que yHx^xHy. Donc xHy yHx.

La condition est suffisante. Soit abceH. On a bea^Hc1 c^Ha"1.
D'où cbaeH et jff est complètement réfleetif, puisque G possède un élément-
unité.

Remarquons qu'un groupe est afcélien si et seulement s'il possède au moins

un élément complètement réflectif.

Théorème 31. Tout élément x d'un demi-groupe D est contenu dans un
complexe complètement réflectif minimal de D et les complexes complètement réflectifs
minimaux de D sont les classes d'une équivalence de D.

La démonstration de ce théorème est analogue à celle du théorème 4.

2. Idéaux complètement réflectifs. Un anneau A sera dit complètement ré-

flectif, si l'idéal (0) est complètement réflectif. Par exemple, tout anneau sans
diviseurs de zéro est complètement réflectif.

Théorème 32. Pour qu'un anneau réflectif A soit complètement réflectif, il faut
et il suffit que la relation axb ayb entraîne bxa bya.

La condition est nécessaire, car de axb ayb suit a(x — y)b 0, donc

b(x — y)a 0, c'est-à-dire bxa bya. La condition est suffisante. En
effet, si abc — 0, on a abc a-0-c; d'où c6a c-0-a 0.

Remarquons qu'un idéal M d'un anneau quelconque A est complètement
réflectif, si et seulement si l'anneau-quotient A/M est complètement réflectif.

Tout idéal complètement premier d'un anneau ou d'un demi-groupe est

complètement réflectif.

Proposition 15. Le radical réflectif $l(M) d'un idéal complètement réflectif M
d'un anneau ou d'un demi-groupe est un idéal complètement réflectif.

D'après les théorèmes 15 et 16 9t(Jf) est un idéal réflect.f. Si a6c€$R(Jf),
il existe n tel que (abc)neM. L'où. d'après le théorème 27. (cba)neM, c'est-
à-dire cba€3i(M). Donc 3{(M) est complètement réflectif.

Corollaire. L'ensemble des éléments nilpotents d'un anneau complètement

réflectif est un idéal complètement réflectif.

Proposition 16. Soient H un complexe quelconque et M un idéal complètement

réflectif d'un anneau ou d'un demi-groupe. L'ensemble M.' H est un idéal

complètement réflectif et on a la relation M.'H M* .H.
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Si zeM.'H, on a Hx£.M et, puisque M est réflectif, xHÇLM. D'où
M.'H£.M'.H. On montre de même que M.H£_M;H. D'où M. H

M .H. De cette égalité suit que M.H est un idéal. Si abc M/H, on a
Hab^LM. D'où, puisque Jf est complètement réflectif, HbaSîLM et baeM/H.
Si abceM.'H, on a Habc^M et donc, d'après le théorème 27, HcbaS=i.M.
Par conséquent, cbae M .'H et M.'H est complètement réflectif.

Théorème 33. 2Vw$ anneau A de carré non nul, dont les seuls idéaux
complètement réflectifs sont (0) et A, est un anneau sans diviseurs de zéro.

En effet, si A n'est pas un anneau sans diviseurs de zéro, il existe a^O et
6 ^ 0 tels que ab 0. L'ensemble (0)/a est, d'après la proposition 16, un
idéal complètement réflectif. Comme 6c(0)/a, on a (0)/a A, c'est-à-
dire aA 0. L'ensemble (0)' .A est également un idéal complètement
réflectif. Comme a<z(0y.A, on a (0)' ,A A, c'est-à-dire A2 0, contre
l'hypothèse.

Proposition 17. Tout idéal M d'un anneau (d'un demi-groupe) réflecteur à
droite A est un idéal complètement réflectif.

L'anneau A étant réflecteur à droite, l'idéal M est réflectif. Soit abce M.
L'ensemble M sa est un idéal à droite, donc un idéal réflectif. Comme

bccM/a, on a cbeM/a, c'est-à-dire acbeM. Par conséquent, M est
complètement réflectif, d'après la proposition 14.

Soit H un complexe quelconque d'un demi-groupe (d'un anneau) D. Nous
désignerons par TX(H) l'ensemble de tous les éléments a; de D de la forme
x xx... xn avec 8(xx,..., xn)rsH ^ 0. On a HSLT^H). D'autre part, la
relation 8(at,..., am)rsH ^ 0 entraîne 8(al9.. ,9 a^S^T^H). Nous
désignerons par T2(H) l'ensemble T2(H) 271[îT1(£f)] et, d'une manière générale,

par Tn(H) l'ensemble Tn(H) T1\Tn^.1(H)'\. On a évidemment
Tn^(H)^Tn(H). Posons

T(H) U Tn(H)

On voit facilement que T(H) est le complexe complètement réflectif engendré

par H .Si K est un complexe de D, on a T1(H)K£.T1(HK), HT^K^T^HK)
T^H^^K^T^HK). Si H est un sous-demi-groupe de Z>, Tn{H) est un
sous-demi-groupe de D et 7(1/) est le sous-demi-groupe complètement réflectif
engendré par H.

Proposition 18. Si H est un idéal à droite (à gauche) du demi-groupe D, Tn (H)
est un idéal et T(H) est Vidéal complètement réflectif engendré par H.

Pour démontrer la proposition, il suffit d'établir que Tt(H) est un idéal.
TX(H) est un idéal à droite, car T^x^T^Hx^T^H). Soit atT^H);
l'élément a est de la forme a ax... an avec 8(a1,..., an)<^H ^0 et l'on
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a 8(a1,...,an)x^H ^ 0, ce qui entraîne 8(al9..., an,z)^H ^ 0. Par
conséquent, 8(aly..., an,x)£_T1(H) et xatT^H).

Si ilf est un idéal à droite (à gauche) d'un anneau A, nous désignerons par
F1(Jf) l'idéal engendré par T1(M). D'après ce qui précède, on voit facilement
que tout élément de VX(M) est la somme d'un nombre fini d'éléments de
TX(M). Nous désignerons par V2(M) l'idéal V2(M) V^V^M)], et,
d'une manière générale, par Vn(M) l'idéal Vn(M) VX[Vn^{M)\ Posons

V{M) U Vn(M)

Proposition 19. Si M est un idéal à droite (à gauche) d'un anneau A, V(M)
est Vidéal complètement réflectif engendré par M.

La démonstration de cette proposition est immédiate.

Corollaire, Un anneau A de carré non nul, dont les seuls idéaux sont (0) et A,
est soit un anneau sans diviseurs de zéro, soit un anneau de la forme A V1(0).

En effet, si Fx(0)c^, on a, puisque Vt(0) est un idéal, F^O) (0) et
donc F(0) (0). Par conséquent, l'idéal (0) est complètement réflectif et A
est un anneau sans diviseurs de zéro, d'après le théorème 33.

Rappelons qu'un idéal N d'un anneau A est dit compressif (cf. [14]), si la
relation a\a\.. ,a2neN entraîne axa2...an€N. Nous avons montré dans [14]
que l'intersection &(M) de tous les idéaux compressifs contenant un idéal
quelconque M de A est un idéal compressif, appelé le radical compressif de M
et que (£(Jf) est l'intersection de tous les idéaux complètement premiers
minimaux appartenant à M. De là suit que pour qu'un anneau (non réduit à

zéro) soit isomorphe à une somme sous-directe d'anneaux sans diviseurs de
zéro, il faut et il suffit que l'idéal (0) soit compressif.

Théorème 34. Pour qu'un idéal N de Vanneau A soit compressif, il faut et il
suffit que N soit complètement réflectif et complètement semi-premier.

La condition est nécessaire. L'idéal N, étant compressif, coïncide avec son
radical compressif. Par conséquent, N est l'intersection d'idéaux complètement
premiers, et donc N est complètement semi-premier et complètement réflectif.

La condition est suffisante. Soit a\a\.. .a^eN. Du théorème 27 suit
(axa2... an)2eN et donc axa2... aneN, puisque J\T est complètement semi-
premier.

Corollaire. Pour qu'un idéal N soit compressif, il faut et il suffit que les

relations a2eN et bcdeN entraînent respectivement aeN et dcbeN.
L'intersection de tous les idéaux complètement réflectifs contenant un idéal

M de A est un idéal complètement réflectif, qui sera appelé le noyau complètement

réflectif de M.
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Théorème 36. Le radical compressif (E(Jf) d'un idéal quelconque M de A
coïncide avec le radical réflectif 9î(Jf*) du noyau complètement réflectif Jf*
de M.

D'après le théorème 16 et la proposition 15, 5R(Jf*) est un idéal complètement

semi-premier et complètement réflectif, donc compressif d'après le théorème

34. Par conséquent, Œ(Jf)c.SR(Jf*). L'idéal d(M) étant compressif,
donc complètement réflectif, on a M*££(M). Si acîR(Jf*), il existe un
entier positif n tel que ane M*££(M). D'où ae(Z(M) et Œ(Jf) 9l(M*).

Corollaire. Le radical réflectif du noyau complètement réflectif d'un idéal
quelconque M de A est l'intersection de tous les idéaux complètement premiers
minimaux appartenant à M.

Théorème 36. Pour qu'un anneau A (non réduit à zéro) soit isomorphe à une
somme sous-directe d'anneaux sans diviseurs de zéro, il faut et il suffit que les
relations a2 0 et bcd 0 entraînent respectivement a 0 et dcb 0.

D'après [14], il faut et il suffit que l'idéal (0) soit compressif. Le théorème
découle alors immédiatement du corollaire du théorème 34.

3. Décomposition des idéaux complètement réflectifs. Un idéal complètement

réflectif M d'un demi-groupe (d'un anneau) D sera dit r-réductible, si M
est de la forme M — Mt^ M2, où Mx et M2 sont des idéaux complètement
réflectifs de D, avec MczM1 et McM%. Un idéal complètement réflectif,
qui n'est pas r-réductible, sera dit r-irréductible.

Théorème 37. Tout idéal complètement réflectif r-irréductible M d'un demi-

groupe D, vérifiant la condition de chaîne ascendante pour les idéaux complètement

réflectifs, est primaire.
Supposons que M ne soit pas primaire. Il existe alors deux éléments a et 6

tels que l'on ait ab*M, aiM, bh$M pour tout entier positif h. Posons

Mh M' ,bh. D'après la proposition 16, Mh est un idéal complètement réflectif.

D'autre part, on a les relations Mc M^M^SL • • •.
Comme D vérifie la condition de chaîne ascendante pour les idéaux complètement

réflectifs, il existe un entier positif n tel que l'on ait Mn Mn+1
Soit B l'idéal complètement réflectif engendré par l'idéal à gauche Dbn.

D'après la proposition 18, on a B T(Dbn). L'idéal C M^B est
complètement réflectif et l'on a JfcC, car 6n+1€(7 et bn+1$M. Par conséquent,
MSLM^C. Soit ceM^C. On a cbeM, et ceM ou c*B. Si c*B, il
existe un entier positif m tel que ceTm(Dbn) et C€Tm(dbn), où d est un
élément de D. Comme cbeM, on a Tm(dbn)*brs M ^ 0, ce qui entraîne, puisque

M est complètement réflectif, dbn*b dbn+1€ M. Par conséquent,
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deMn+1 Mn et db"€M. D'où Tm(dbn)£_M et ce M. On a donc
M MX^C et M est r-réductible, ce qui est contradictoire.

Théorème 38. Tout idéal complètement réflectif M d'un demi-groupe D,
vérifiant la condition de chaîne ascendante pour les idéaux complètement réflectifsy est
intersection d'un nombre fini d'idéaux complètement réflectifs primaires.

En effet, tout idéal complètement réflectif de D est intersection d'un nombre
fini d'idéaux complètement réflectifs r-irréductïbles, donc primaires d'après le
théorème 37.

Nous allons maintenant étudier les idéaux d'un anneau ou d'un demi-

groupe, qui sont intersections d un nombre fini d'idéaux complètement réflectifs

primaires. Comme exemples de tels idéaux, nous avons les idéaux complètement

réflectifs d'un demi-groupe vérifiant la condition de chaîne ascendante

pour les idéaux complètement réflectifs (théorème 38), ainsi que les idéaux d'un
anneau réflecteur à droite vérifiant la condition de chaîne ascendante pour les

idéaux (théorème 20 et proposition 17). Nous nous dispensons de donner les

démonstrations des théorèmes qui suivent, car ces démonstrations sont
analogues aux cas correspondants des anneaux et des demi-groupes commutatifs.

D'après le théorème 19, le radical réflectif P d'un idéal complètement réflectif

primaire Q est un idéal complètement premier. Nous dirons que P est l'idéal
complètement premier associé à Q et que Q est un idéal complètement réflectif
primaire appartenant à P.

Théorème 39. Dans un anneau ou un demi-groupe, Vintersection

d'idéaux complètement réflectifs primaires appartenant à un même idéal complètement

premier P est un idéal complètement réflectif primaire appartenant à P.
Soit maintenant, dans un anneau ou un demi-groupe, un idéal M possédant

une représentation comme intersection d'un nombre fini d'idéaux complètement

réflectifs primaires
M Qt~...r,Qn (1)

L'idéal M est lui-même complètement réflectif.
Le théorème 39 permet de remplacer dans la représentation (1) tous les

idéaux complètement réflectifs primaires appartenant à un même idéal
complètement premier par un seul idéal complètement réflectif primaire. D'autre
part, si Ql9 par exemple, contient l'intersection Q2rs •. -<^Qn, on peut le

supprimer sans altérer le second membre et Qt est dit superflu. En appliquant
autant que possible ces deux procédés, on aboutit à une représentation normée

ne comprenant aucun idéal complètement réflectif superflu, et dans laquelle
deux idéaux complètement réflectifs primaires appartiennent toujours à des
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idéaux complètement premiers différents. Les idéaux complètement réflectifs
primaires Q{ figurant dans une telle représentation normée seront appelés les

composants complètement réflectifs primaires de M et les idéaux complètement
premiers correspondants Pt- seront les idéaux complètement premiers essentiels
de M. On a par conséquent le théorème suivant :

Théorème 40. Tout idéal M d'un anneau ou d'un demi-groupe, qui est
intersection d'un nombre fini d'idéaux complètement réflectifs primaires, admet une
représentation normée.

Théorème 41. Un idéal d'un anneau ou d'un demi-groupe qui admet une
représentation normée comprenant plus d'un composant complètement réflectif
primaire n'est pas primaire.

Théorème 42. Dans deux représentations normées d'un idéal d'un anneau ou
d'un demi-groupe, le nombre des composants complètement réflectifs primaires est

le même et les idéaux complètement premiers essentiels sont les mêmes.
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