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On the Ends of the Fundamental Groups
of 3-Manifolds with Boundary

by C. D. PAPAKYRIAKOPOULOS, Princeton (N. J.)

§ 1. Introduction

Let M be any compact 3-manifold, closed!) or with boundary, whose
components are orientable closed surfaces. According to?) H. Hopr [2], the
number e of ends of x,(M) is either 0 or 1 or 2 or co, where e = 0 if and
only if =, (M) is finite. The naturally arising problem is: When is e = 1 or 2
or oo? This problem has been solved by E. SPECKER [10], p. 325, Satz VI, in
case M is closed. Thus the remaining question is: What is the solution of this
problem when M has non-vacuous boundary? We notice that, if some of the
components of the boundary of M are 2-spheres, then there exists a 3-mani-
fold M' closed or with boundary, whose components are orientable closed
surfaces of positive genus, and such that3) =, (M) =~ n,(M’). Thus the pro-
blem may be stated: Let M be a compact 3-manifold with boundary, whose
components are orientable closed surfaces of positive genus. When 18%) e = 1 or 2
or o? To the best knowledge of this author, some partial results have been
obtained by E. SpEckEr [10], pp. 326-327, Sdtze VII and VIII, and this
author [5], p. 296, theorems 1 and 2. In the present paper we solve this prob-
lem, and the solution is:

(1) If M is aspherical and the injection m,(F) — n,(M) is an isomorphism
for every component F of the boundary of M . then e = 1.

(2) If M s aspherical, the boundary F of M is connected of genus one, and the
tnjection 7ty (F') — 7, (M) 8 not an isomorphism, then e = 2.

(3) In any other case, e =oco.

These are provided us by the theorem 6 in § 4, which is the main theorem
of this paper. The proof of theorem 6 is based on theorems 1, 2 and 3 4, 5.
The theorems 3, 4 are lent from authors paper [5], and the theorem 5 is lent
from E. SpECKER’s paper [10]. The theorems 1 and 2 are explained in § 3, and
their proofs are based on the lemmas 1, 2, 3, 4 and 5 of § 2.

In § 5 we give a short proof of theorems 1 and 2, using DEHEN’S lemma [7],
p. 169, [8], p. 1, and theorem 1, [6], p. 281.

1) Clogsed means compact without boundary.

2) Numbers in brackets refer to the bibliography at the end of the paper.
3) ~. means isomorphic to.

%) According to lemma 3, 7,(M) is infinite, therefore e > 0.
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86 C. D. PAPAKYRIARKOPOULOS

All 3-manifolds under consideration in this paper will be considered as
having a certain fixed triangulation. This is possible according to E. E. MoIsE’s
work [4].

The paper is presented here in a form suggested by Professor H. Horr to
the autor, who would like to express his gratitude to Professor H. Hopr for
his suggestions.

§ 2. Five Lemmas

1. In the Nos. 1-2, M will mean a 3-manifold with boundary, and F will
mean a component of its boundary, but in No. 3, F' will mean an abstract
surface.

Lemma 1. Let L,, L, be loops on F such that®) s(Z,,Z,) # 0, where Z,, Z,
are the 1-cycles corresponding to L,, Ly. Then, at most one of Z,, Z, is%) ~ 0
m M.

Proof. Let us suppose that Z, ~ 0 in M. Then there exists a 2-chain C
in M, such that oC = Z,. Let M* = M <M’ be the duplication?) of M,
and let C' be the copy of —C in M’, where M’ is the second copy of M. Then
Z* = C + (' is a 2-cycle in M*, and?®)8)

8*¥(Z*,Zy) = + 8(Z,,Z,) # 0 .
Thus Z, ~ 0 in M*, and hence Z, ~ 0 in M. This proves lemma 1.

Lemma 2. If M is simply connected, then F is homeomorphic to a region of
a 2-sphere.

Proof. Bylemma 1, any simple?) loop on F' decomposes F, i. e. F'is ““schlicht-
artig’’ [3], p. 140. Therefore F' can be imbedded in a 2-sphere, according
to [3], p. 165. This proves lemma 2.

Lemma 3. Let M be a compact 3-manifold with boundary, where some one
of tts components, say F, is a closed orientable surface of positive genus g(F).
Then 7,(M) ts infinite.

Proof. Let us suppose that 7 (M) is finite. Let p: M - M be the uni-
versal covering of M, and let F be a boundary surface of M lying over F'.

5) 8 means intersection numbers on F.

) ~ or ~p means homologous to ..., over the integers or rationals respectively.

?7) Duplication = Verdoppelung [9], pp. 129, 223. Actually there the duplication is defined
for a solid torus (= Henkelkérper), but the generalization to any 3-manifold with boundary is
immediate.

8) g* means intersection numbers in M*.

?) Simple means without multiple points.
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Then F is closed, because M is compact, and therefore g(ﬁ)>0. But by
lemma 2, g(F) = 0. We arrived at a contradiction. This proves lemma 3.

2. Let us start this No. with some remarks about the ends of F and
those of M, where M is supposed to be simply connected. By lemma 2, F may
be thought of as a region of a 2-sphere S. The ends of F' are precisely the com-

ponents of 8§ — F, and F = Fo(endsof F) = 8, see [2], p. 86, No. 4.

An open subset of S is a neighbourhood of any of its points in F. According
to [2], p. 87, No. 6, to any end ¢ of F' there corresponds a unique end 7 of M.

Lemma 4. Let M be simply connected, ¢,, e, be two ends of F, such that
& 7 €, and let ny, n, be the ends of M corresponding to &, €5. Then 7, 7 n,.

Proof. Let L be a simple loop on F separating &, ¢, i. e. there exist open
connected sets on F, say U,, U,, which are disjoint from L, neighbourhoods
of ¢, &, and such that the intersection number of L with any path on F
connecting U, and U, is + 1. There exists a 2-cell D with self-intersections,
such that®) bdD = L, and D — Lcint M, because M is simply connected.
Let C be the 2-chain corresponding to the oriented D, and let Z be the 1-cycle
corresponding to L. Then dC = Z. By [2], p. 84, Nos. 2-3, the lemma 3
will be proved if we have shown, that each path P in M with initial point
p, €U, and final point p,e U, meets the compact set D.

Let @ be a path on F with initial point p, and final point p,, and let us
consider the loop L, = PQ-1. Let V, W and Z, be the 1-chains and 1-cycle
corresponding to P, @ and L,. Then V — W =2,~0 in M, because M
is simply connected. Let M* = M v M’ be the duplication?) of M, and let
C' be the copy of —C in M’', where M’ is the second copy of M. Then
Z* = C 4 (' is a 2-cycle in M*, and?®)8)

0 = §%(Zy,2*) = s*(V,Z*¥) — s*(W,Z%)
s¥(W,Z*) = +8(W,Z) = +1 .

Thus s*(V,Z*) = +1 £ 0. Hence P~D # g. This completes the proof of
lemma 4.

3. In the preceding Nos. 1-2, F was a component of the boundary of
the 3-manifold M. In the present one F will be an abstract surface.

Lemma 6. Letq: F-—>F bea regularl) covering, where F i8 a closed orien-
table surface, and Fis homeomorphic to a cylinder. Then the genus g(F) = 1.

10) int = interior, ¢l = closure, bd = boundary.
11) (9], § 57, p. 195.
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Prool. Let @ = n,(F) and®) K = m,(F) >~ Z. Then K is a normal sub-

group of G, because the covering q: F — F is regular, and H = G/K is
the group of covering translations. N

According to [2], p. 96, No. 1612), e(H) = e(F) = 2, because Fisa cylinder.
By [2], p. 97, Satz V, the group H has an infinite cyclic subgroup B with
finite index in H. Let13)

¢ = G/[6,¢], H = H/[H,H], K' = K/(K~[G,?]) .

Then G'/K’' ~ H', and because @', H', K' are abelian we have by [1], p. 573,

Satz14)
r(G')=r(K')+r(H') .

r(K') =1, because K =~ Z. Abelianizing H we obtain the group H’ which
has an infinite cyclic subgroup B’ with finite index in H’, where B’ is obtained
from the subgroup B of H. Thus

r(H') =r(B)+rH'|B)=1.

Hence r(G') < 2. But @ is the 1-homology group, and 7(G') is the 1-Betti

number of F. Thus ¢g(F) < 1. On the other hand g¢g(#)>0, because F is
infinite. Hence g¢(F) = 1. This proves lemma 5.

§3. Two Theorems
4. The conjecture in [5], p. 298, § 5, is a special case of the following

Theorem 1. Let M be a compact 3-manifold with boundary, and let F be a
component of its boundary, where F is an orientable surface of genus g(F)>1,
and the injection j: n,(F) — n,(M) 18 not an isomorphism. Then n,(M) has
infinitely many ends.

Proot. Let p: M — M be the universal covering of M, where M has the
induced triangulation, and let F be a component of p~1(F). Then F may be
considered as a region of a 2-sphere S, by lemma 2. The number!2) e(ﬁ) is
equal to the number of the components of § — F, by No. 2. It is easily

seen that N
7y (F) 2 j71(1) # 1

where the isomorphism is induced by the projection map p. Thus F is not

13) ¢ means the number of ends of a group or a space.
13) [, ] means the commutator subgroup of.
1) r means the rank of an abelian group.
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simply connected, and therefore e (ﬁ) >1. The covering q: F—Fis regular,
where g = p]I7‘ , because j-1(1) is a normal subgroup of =, (#), [9], p. 195.
Therefore, by lemma 5 and because g(F) >1, F is not homeomorphic to a
cylmder Thus e(F)>2 Hence e(F) =o0, by [2] p. 93, Satz II. Thus
e(M) =o00, by lemma 4. Hence e(n;(M)) ——e(M) =o0, by [2], p.96,
No. 16. This proves theorem 1.

Theorem 2. Let M be a 3-manifold with boundary, which is not connected if
M is compact, and let F be a component of its boundary, where F is an orientable
closed surface of genus ¢(F) = 1, and the injection j: 7,(F) — =, (M) 1s not
an wsomorphism. Then my(M) # 0.

Proof. Let us suppose that m,(M)= 0. We are going to prove thats®)
® ~p 0, where @ is the basic 2-cycle of F.

There exists on F a loop L which is¥) ~0 in M but 30 on F, because §
is not an isomorphism. Let X, Y be the l-cycles of two simple loops 4, B
on F, having only one point in common, and such that X, Y form a generating
system of¢) H,(F). Then there exist integers a, b, ¢ such that?)

V~t@X+bY) onF, (la|,[b) =1, t#0, (1)
where V is the 1-cycle of L. Thus there exist integers ¢, d such that

ad —bc=1, (|c],|d])=
Hence the 1-cycles
X,=aX+bY, Y, =cX+dY (2)

from a generating system of H,(F), and moreover there exist on F two
simple loops 4,, B,, having only one point in common, and such that their
1-cycles are X,, Y, respectively.

Let F, be a torus and let X,, Y, be the 1-cycles of two simple loops 4,,
B, on F,, having only one point in common, and such that X,, ¥, form a
generating system of H,(F,). Let f: F, — F be a t-sheeted covering, such
that f(4,) = 4{, f(By) = Bi.

Let now C be a 2-cell such that bdC = C~F, = X,. Then the map f can
be extended to a map f': CvF,—> M, because f(4y)~0 in M,by L~0
in M, and

f(dy) =Ai~L onF,

where the last relations hold by (1) and (2).

18) ~ means homotopic to.
1¢) H, means 1-homology group.
17) ( , ) means greatest common divisor.
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Let h: 8 - CvF, be a map, where 8 is a 2-sphere defined in the following
way: two disjoint 2-cells C,, C; on S are mapped homeomorphically on C
such that8) A(C,) = C+, h(C,) = C—, and § — C, — C, is mapped homeo-
morphically on ¥y — X,. So we have the following map &' = f'h: § - M.

Let now @, and ¥ be the basic 2-cycles of F, and S. Then

' (@) = (D) =tD, and h(¥) =D, .
Therefore 2'(¥)=1t®. But A’ ~ 0, because m,(M) = 0. Hence
td=h(¥Y)~0 inM.

Thus @ ~,0 in M, as we asserted. This contradicts the fact that M is a
3-manifold, which is either infinite, or in case it is finite bdM is not connected.
Hence n,(M) 7 0. This proves theorem 2.

§ 4. The main Theorem

8. The following three theorems will be used in the proof of the main theo-
rem.

Theorem 3. Let M be an aspherical compact 3-manifold with boundary,
where the components are orientable closed surfaces of positive genus, such that
the injection 7, (F) — n, (M) 18 an isomorphism, for any component F of the
boundary. Then e(n,(M)) = 1.

Proof. According to lemma 3, n, (M) is infinite. Hence e(n,(M)) = 1, by
[6], p. 296, theorem 1.

Theorem 4. Let M be an aspherical 3-manifold whose boundary F is an orient-
able closed surface of genus one, and suppose that the injection 7,(F) — m, (M)
18 not an tsomorphism. Then M is compact and orientable and =, (M) 18 free
cyclic, therefore e(m,(M)) = 2.

See [5], p. 296, theorem 2.

Theorem 5. Let M be a compact 3-manifold with boundary, where the com-
ponents are orientable surfaces of positive genus, such that e(n,(M)) =1 or 2.
Then M is aspherical.

This is a slight modification of Satz VII, [10], p. 326, and the proof of this
is precisely the proof of Satz VII. The following corollary refines Satz VIII,
[10], p. 327.

Corollary 1. Let M be a compact 3-manifold with non-connected boundary,

13) Here we suppose that S and C have an arbitrary orientation, and that C, and C, have the
induced orientation. C+ and O- mean the two orientations of C.
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where the components are orientable surfaces of genus one, then e = e(n,(M)) =1
or oo, 1. e. always = 2.

Proof. If M is not aspherical, then e =co, by theorem 5. If M is aspheri-
cal, then the injection =, (#) — z,(M) is an isomorphism for any component
F of bdM, by theorem 2. Hence ¢ = 1, by theorem 3.

6. The following is the main theorem of the paper.

Theorem 6. Let M be a compact 3-mansfold with boundary, where the com-
ponents are orientable closed surfaces of positive genus. Then®) e = e (n,(M)) #0,
and the following hold

(1) If M is aspherical and the injection m,(F) — 7, (M) is an isomorphism,
for any component F of the boundary of M, then e = 1.

(2) If M is aspherical, its boundary F is connected and has genus g(F) =1,
and the injection 7, (F) — 7, (M) 18 not an isomorphism, then e = 2.

(3) In any other case (. e. if either M is not aspherical; or M is aspherical, and
there is a component F of the boundary, of genus g(F)>1, such that the injection
7, (F) — 7, (M) is not an isomorphism) e =oo.

Proof. If M is not aspherical, then e =oo, by theorem 5. Let us from now
on suppose that M is aspherical. If the hypotheses of (1) hold, then e =1,
by theorem 3. Let us from now on suppose that the hypotheses of (1) do not
hold, i. e. there is a component ¥ of the boundary of M , such that the injection
7, (F) — 7, (M) is not an isomorphism. We have to consider the following
two cases: (i) The boundary of M is not connected. (ii) The boundary of M
is connected.

Case (i): By theorem 2, the genus g(F)>1, because M is aspherical.
Hence e =oo, by theorem 1.

Case (ii) : In this case F is the whole boundary of M. If the genus ¢(F) =1,
then e = 2, by theorem 4. If g(#)>1, then ¢ =00, by theorem 1.
From the above we conclude the truth of theorem 6.

§ 5. Applications of DEEN’S Lemma

7. We now are going to give a short proof of theorems 1 and 2, using DEHN’s
lemma [7], p. 169, [8], p. 1, and theorem 1, [6], p. 281, which we shall call
the loop theorem for convenience.

In both theorems 1 and 2, there exists a loop L on F which is ~0 in M,
and <0 on F, because j is not an isomorphism. Thus there exists a simple?)

1) By lemma 3, x,(M) is infinite, therefore e # 0.
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loop Ly on F whichis ~0 in M,and 320 on F, by the loop theorem. Hence
there exists a 2-cell D, such that®) bdD = L,, and D — L,CintM, by
DEHN’s lemma. Let M, be the 3-manifold with boundary we obtain cutting
M along D, and let F, be the component of bdM,, which comes from F, and

on which there lie the two copies D} and D) of D. Let p,: M o —> M, be the
universal covering of M,, and let D{,,, D{,’,, j=1,2,..., be the 2-cells on

bd M, lying over D), D!. The universal covering p: M - M of M is composed

of a (denumerable) number of copies of M o» and is obtained glueing the Dy, of
a copy with the Dj; of another copy, in such a way that we obtain a simply

connected complex. Let us denote by D,, k= 1,2,..., the 2-cells lying
over D.

Let us now pass to the proof of theorem 1: By lemma 1, there is a simple
loop L, on F,, which is 0 in M, because the genus g¢(F,)>0. As we
can easily see, using the loop theorem, Lj % 0 in M, for any natural num-

ber s2). This implies that x,(M,) is infinite, and thus M o 18 not compact.

As we can easily see, using the cells ﬁk, k=1,2,..., M has infinitely many
ends. This proves theorem 1.
Let us now pass to the proof of theorem 2: F, is a 2-sphere, therefore

P25 ' (F,) consists of 2-spheres. But M o is at least either not compact, or
bd M, — P (F,) # @. Thus, if X, is a basic 2-cycle of a component F, of
2o (F,), fo A 0 in M. Hence, by standard Hurewicz theorems, 7y (M) # 0.
This proves theorem 2.
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