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Die Grundgleichungen der Flichentheorie II

von W. SCHERRER, Bern

§ 1. Einleitung

Im ersten Teill) habe ich die Grundgleichungen der Flachentheorie fiir ein
beliebiges Parameternetz dargestellt mit Hilfe des Dreibeins r, t, Rt. Dabei
bedeutet

t=D,x resp. t=D,x (1)
den Tangentenvektor der u-Linien (v = konst.) resp. der v-Linien (¥ = konst.)
und

_ [x, 1]
R= sin 0 (2)

die Flichennormale, falls man den Netzwinkel mit 6 bezeichnet. Speziell habe
ich die Ableitungsgleichungen, das heifit also die Darstellung der sechs nor-
mierten Ableitungen D,r, D,t, DN, D,x, D,t, D,N als Linearkombina-
tionen der Basisvektoren r, t und M so geschrieben, daf} die sechs Linienkriim-
mungen y,, Vs, %, %3, T;, Ty des Parameternetzes neben dem Netzwinkel 0
explizite in Erscheinung treten. Dabei bedeuten y,, v, die geodétischen Kriim-
mungen, x%,, x#, die Normalschnittkrimmungen und 7,, 7, die geoditischen
Torsionen der u- resp. v-Linien. Die dermaflen gewonnenen Ableitungsglei-
chungen, die wir hier nicht mehr benétigen, sind angegeben als die Systeme (6)
und (7) in I, § 3. Sie bilden zusammen mit (1) ein totales System zur Bestim-
mung der Vektoren %, r, t und . Als zugehorige Integrabilititsbedingungen
ergaben sich unter Beachtung der Definitionen I, § 3 (5)

N=wn+D0,0; I.=y,—D,0 (3)
nacheinander folgende Gleichungen :

#,c080 4+ 7,8n 6 = %, cos § — 7,8in 0§ (4)
DG 1 D, E

Iy = cotg ¢ G sind E (5)
1 DG D,E

Fe=-ng —q T oo —5

(Eyy)y — (Gys)y + 04, = K-EG sin 6 . (8)

1) Diese Zeitschrift Bd. 29, 8. 180—198 (1955), im Text zitiert unter I.
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und
(E%,y), — [G(xy cos 0 — 748in 0)],

= EQ[I'yt, — y,(%38in 0 + 7, cos §)] )
(Gxy), — [E (%, cos 6 + 7,8in0)],
= QE [T}ty — y3(— %, 8in 0 + 7, cos 0)]

In (8) ist K, die GAUusssche Kriimmung, definiert durch
K =%, + 7,75 + (%,75 — #57,) cOtg 0 . (8)

Denken wir uns jetzt die Grolen £, G und 0 vorgegeben als Funktionen der
Parameter u,v, so ist die Bedeutung der Integrabilitdtsbedingungen (4) bis (8)
folgende :

1. Die Relation (4) ist der Ersatz fiir die Symmetrie der von uns nicht be-
nutzten zweiten Grundform.

2. Die Gleichungen (5) liefern I'; und Iy, worauf sich aus (3) ¥, und y, er-
geben.

3. Die Gleichung (6) liefert die LiovviLLEsche Darstellung der durch (8)
definierten Gaussschen Kriimmung K.

4. Die Gleichungen (7) schlie8lich stellen das Copazzische System dar.

Insbesondere ergibt sich nun folgender Schlufl : Fiihren wir (3), (5) und (8)
in (6) und (7) ein, so verfiigen wir in (4), (6) und (7) iiber vier Gleichungen zur
Bestimmung der vier Linienkrimmungen »x,, %,, 7,, Tys. Damit ist die erste
Etappe in der Aufstellung der Grundgleichungen abgeschlossen.

Wir wenden uns jetzt zur zweiten Etappe, die auch schon in Teil I eingeleitet
wurde. Wir ziehen die mittlere Kriimmung H heran, welche sich nach I, § 3 (17)
ergibt aus der Formel

H =1} (%, + %) — (7, — 75) cOtg 0 . (9)
Definieren wir jetzt einen Hilfswinkel w durch

Xy — X
t B e et 10
gw 1, (10)

und machen wir auerdem Gebrauch von der Abkiirzung
J=VH:—K , (11)

so kénnen wir aus den Gleichungen (4), (8), (9) und (10) die vier Linienkriim-
mungen x,, %3, v, und 73 berechnen. Es folgt :

%, =H+ Jcos(w-+0); 7, =Jsin(w 4 0)

%9 =H + J cos (w — 0); 73=Jsin(w — 0) (12)
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Dieses System unterscheidet sich vom System I, § 7 (10) nur dadurch, da3
aus Griinden der ZweckmaiBigkeit das Vorzeichen von w umgekehrt worden ist.
Durch (12) werden die Linienkriimmungen x,, %,, 7;, 7, auf die Flachenkriim-
mungen H und J und den Hilfswinkel o reduziert.

Jetzt sind wir in der Lage, die geometrische Bedeutung des Winkels w zu
ermitteln. Betrachten wir nédmlich eine beliebige Flichenkurve durch den
Punkt (w,v), deren Richtung daselbst mit der w-Linie (v = konst.) den
Winkel « bildet, so gehen die Gleichungen I, § 7 (11) nach Anderung des Vor-
zeichens von w iiber in

#=H + J cos (v + 60 — 2«)

T = J sin (o + 60 — 2«) (13)

Dabei ist » die Normalschnittkrimmung und v die geodétische Torsion der be-
trachteten Kurve im Punkte (u,v). Wir erhalten somit

Satz 1. Dreht man eine Winkelhalbierende des Parameternetzes wm den
Winkel %’— , 80 fdllt sie mit einer Hauptkriimmungsrichtung zusammen.

Wir wollen daher den Winkel kurz Houptwinkel nennen. Wir kénnen jetzt
das Ziel der weiteren Untersuchung folgendermafBen umschreiben: Es sollen
die Beziehungen zwischen mittlerer Kriimmung und Hauptwinkel bei vor-
gegebenem Linienelement ermittelt werden.

§ 2. Integrabilititsbedingungen zweiter Stufe

Fiihren wir die Ausdriicke (12) des vorausgehenden Paragraphen in die
Copazzischen Gleichungen (7) daselbst ein, so verwandeln sich dieselben in ein
totales System fiir den Hauptwinkel w, welches neben w nur noch die mittlere
Kriimmung A als unbekannte Funktion enthilt, da wir ja das Linienelement
als gegeben voraussetzen :

o, = P,; cos o + P, s%n o+ P, (1)
w, = Py, co8 w + Py sin w + P,
Pn=— sing + cotg 0 E;II”
P,= — E('f]” (2a)
P, = — cotg 0 'g’; + Sif;".b'] _ 2B, +0,
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Py = — cotg GEI?I snfle”-J
P, = ij," (2b)
P,=— az%@.—ﬁ cotgofj': — 2QT,— o,
Die zum System (1) gehorige Integrabilitatsbedingung hat die Gestalt
Q,cosw+@ysinw+R=0 (3)

wobei die nur bis auf einen gemeinsamen Faktor A (u,v) festgelegten Koeffi-
zienten vermittels der BErLTRAMIschen Operatoren §/ und A sowie weiterer an-
schlieBend zu definierender Operatoren V,, A;, V., A, folgendermafien ge-
schrieben werden kénnen :

NH 2V, (HLJ)
/\Ql } ng
—NH  2V,(H,J)
AQ=Stt _ ZVas @)
_AJ  VI4VH _
AR =5 2K |

Die eben erwidhnten neuen Operatoren sind fiir irgendwelche vorgegebenen
Invarianten @ (u,v) und ¥(u,v) folgendermafen definiert :

_ Ny E®, @, G,
EGQ@sin6.-N, D 2(— sin 0 © G ),,”(sine E )u
0“ ev s (5

E2@3sin?0 V(D, V) = (G*0, P, + E*D, ¥, )cos 0 — EQ (P, ¥, + D, P,)
G, E®, ]
EQsin 6 AP ( A )u-—( a )v
(@2 sin 6), 0, (£2sin 6), 6. (54)
”[EG’sinO—{—smB “+[EGsin0+sm0 \
ErQ2sin? 0 Vy(P, ) = (*0, ¥, — E*®D,¥,)sin 6
Fiir Umrechnungszwecke notieren wir noch die BELTRAMIschen Operatoren :

. _ [ EPD, G,
EGQsino N\ D =(Gsin 7 cotg Hdi,,)v- (—— T sin b + cotg 6¢”)u

- EB*@%in*0 (0, P) = (D, ¥, + B2 D, ¥,) — EG cos6(D, ¥, + D, P,,)

(6)
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SchlieBlich erinnern wir noch an die Abkiirzung V@ fir V(P,9). Wir
werden analog von den Symbolen ;9 und V,® Gebrauch machen. Will
man (6) mit den traditionellen Formeln vergleichen, so ist zu beachten, dafl
wir fiir das Linienelement die Gestalt

82 = E*u® + 2EG cos Quv + Q2v? (7)
gewdhlt haben.
Will man explizite zum Ausdruck bringen, dafi die Koeffizienten von (3)
nur vom Linienelement und von H (»,v) abhingen, so hat man in (4) das in
§ 1 (11) definierte Symbol

J=VH'— K (8)

zu eliminieren. An Stelle von (4) tritt dann folgende Tafel :

_ANH  2HV,H — v,(K,H)
NL==F—— g
AQ, = NH 2HV,H — V,(K,H)

2=g NE

_HAH 2H[HEVH— V(K H)] ®
AR= J2 - J4

AK VK
— gz gy 2K

In (9) haben wir die Abkiirzung J stehenlassen, soweit sie die Ubersicht nicht
beeintriachtigt. Die Gleichungen (3) und (9) stellen nun die endgiiltige Fassung
der Integrabilititsbedingung zweiter Stufe dar. Wenn wir ihren Einflufl auf das
totale System (1) abkldren wollen, miissen wir beachten, daf die Operatoren (5)
im Gegensatz zu (6) keine Invarianten liefern. Unsere ndchste Aufgabe wird
also darin bestehen, die Wirkung der Parametertransformation auf die Opera-
toren (6) zu ermitteln.

§ 3. Parametertransformation

Wir betrachten die in (5) des vorausgeheﬁden Paragraphen in bezug auf die
Parameter u,v definierten Operatoren

VI(¢’T)aV2(¢:T)’A1¢:A2¢ * (1)

Fiihren wir nun durch eine Transformation
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u = u(%, ?) (2)

v = v(u, v)
neue Parameter %,v ein, so treten an ihre Stelle die Operatoren
%l (¢,Y/), —V-z(fb, T)a -A—l@’ Z2¢ . (3)

Da die Funktionen @ und ¥ als Invarianten vorausgesetzt sind, ist die Be-
zeichnung durch (3) ausreichend. Die Frage ist jetzt, wie die Operatoren (3)
mit den Operatoren (1) formelmiBig zusammenhéngen.

Da die Operatoren V/; und Y, nur erste Ableitungen enthalten, bietet die
Berechnung ihres Transformationsgesetzes keine Schwierigkeit. Das Gesetz
lautet

—61(¢> ¥) = 2 V1(¢, ¥)+ B Va(?, )

4
—‘-7—2((15: !}7) = - ﬂ V1(¢: T) + o v2(¢s T) ( )

wobei die Koeffizienten «, 8 definiert sind durch

y = (B?uguy + GPogvy) cos 0 + HG (ugve + upvy)
o EG
Bruguy; — QPogv, )
p=— = vE@ Y sin @

Da, wie man leicht nachrechnet, gilt
s +p=1, (6)

stellt (4) eine orthogonale Transformation dar.

Die Verkoppelung der Operatoren A, und A, mit den Operatoren V¥, und V,
in den Formeln (4) des vorausgehenden Paragraphen und ihr gemeinsames Ein-
gehen in die invariante Relation (3) daselbst liBt schon die Vermutung auf-
kommen, da sich die A, A, kogredient zu den V/,, V, transformieren kénnten.
Tatsichlich zeigt die Berechnung, daff die Vermutung zutrifft. Es gilt somit das
Gesetz

I D

1P=  aADH+ AP
5 (7)

>

I

Normiert man den willkiirlichen Faktor in § 2 (4) auf A = 1, so folgt aus
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(4) und (7) die weitere Transformation

le “Q1+ﬂQ2, }
sz ——ﬁQl+“Q2 .

Fiihren wir (8) in § 2 (3) ein, so ergibt sich wegen der Invarianz von R auch das
Transformationsgesetz fiir den Hauptwinkel o :

(8)

(9)

cosS® = «cosw-+ fsinw,
sin ® = —fcosw 4 asinw .

Aus (9) und (6) schlieflich folgt

R

= ¢o8 (® — ) , } (10}

p=sin (® — w) .

Hieraus ergibt sich wegen § 1, Satz 1, die geometrische Bedeutung der Trans-
formationszahlen « und g.

Die zur Gewinnung von (7) erforderliche Rechnung ist ebenso verwickelt wie
umfangreich. Ich gebe daher einige Hinweise auf das von mir eingeschlagene
Verfahren.

1. Die algebraischen Umformungen werden iibersichtlicher, wenn man das
Linienelement § 2 (7) in seine iibliche Gestalt iiberfiihrt, indem man setzt

A=E; B=EQcosbl; C=G; D=EQ@sinb , (11)

so daB also gilt D= AC — B . (12)

Die in § 2 (5) angegebenen Operatoren A,, A, lassen sich dann folgender-
mafen schreiben :

D*EGA,® = D[B(CD,, + 49D,,) —24CD,,]

+ [D(C4, — BB,) + B(BD, — CD,)]2,
+ [D(4C, — BB,) + B(BD, — AD,)]®,

N

(13,)

D*EGA,® = D(CD,, — AD,,)
+ (DB, — (CD, + BD,)]9P, / (13,)
- [-DBu - (A-Dv + BDu)]¢v -

2. Es ist wichtig, die in den Formeln (5) sich ankiindigende Zeichenbelastung
zu mildern. Wir gebrauchen daher die Abkiirzungen
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a=u;, b=u; ; c=v;, d=uv;
U, =uz; ; V,=vgg
1 uy ’ 1 Uy
(14)
Us = ug5 ; Va=g3
Us = u35 s Ve=153

Es ergeben sich so die Transformationsformeln
b, =ad, +cP,
b, =b0P, +do,
&.. = a*®,, + 2acD,, + 2D, + U, D, + V, D, (15)
&, =abd,, + (ad + bc)D,, + ¢dD,, + U, D, + V,P,
d,, =02, + 2bdD,, + d*D,, + U;D, + V;9,

und \

I

Il

Aa? 4+ 2Bac + Cc?
Aab + B(ad + bc) + Ccd
Ab2 + 2Bbd + Cd?

(16)

| Q& Al
I

D = D(ad - bc)

Aufierdem empfiehlt sich die Aufstellung derjenigen Tabelle, welche die acht
Ableitungen — —
(4z,..., D7) (17)

auf die 14 Ableitungen
(Az,...,D5,U,y,..., Vy) (18)
reduziert.
In einer ersten Etappe werden nun die den Gleichungen (13) entsprechenden
Gleichungen

DEGA, D =..., D*EGA,D=... (19)

auf die Ableitungen (18) umgerechnet. Dabei zeigt sich, da alle mit U,,..., ¥V,
behafteten Glieder herausfallen.
In einer zweiten Etappe werden dann die noch verbleibenden acht Ableitun-

gen (18) auf die acht Ableitungen
4,,...,D,) (20)

reduziert. Jetzt kann man an Hand der mit @,,, 9,,, ?,, behafteten Glieder
feststellen, daB der lineare Anteil der Transformation von der Gestalt
EGA,® = o*EQA,D + PX*EGA,D }

—_ 21
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sein mufl, wobei «* und §* gegeben sind durch

ot — B(Aab + Cecd) + AC(ad + be)
AC ’

B — — D(ad — bc) .

AC

(22)

Hierauf kann man verifizieren, daB auch die mit @, und @, behafteten Glieder
gich der Transformation (21) fiigen. Da nun aus (11) und (22) folgt

EGo* = EGua ; EGB* = EGp (23)

geht (21) iiber in (4), w. z. b. w.

Das wesentliche Ergebnis dieses Paragraphen ist nun also, dafl die beiden
Paare V,(®,¥), Vi(P,¥) und A,P, A;P orthogonale Vektoren bilden.
Fiir unsere Zielsetzung speziell wichtig ist die daraus sich ergebende Transfor-
mation (8). Wir formulieren daher diese Folgerung als

Satz 2. Dre Koeffizienten Q,, Qg der Integrabilititsbedingung zweiter Stufe
bilden einen orthogonalen Vektor.

§ 4. Folgerungen

Wir kehren jetzt wieder zuriick zum totalen System § 2 (1)

w, = P,; cos w + Pgs8in w + P, } 1)

w, = P, co8 w + Pgysin w + P,
und der zugehorigen Integrabilitdtsbedingung § 2 (3)
Q,co8mw+ Q,8inw+ R=0. (2)

Wir haben nun zwei wesentlich verschiedene Fille zu unterscheiden, je
nachdem @, und @, auf der ganzen Fliche verschwinden oder nicht. Wir treffen
daher die

Definition 1. Eine Fldiche heife integrabel, wenn auf thr dberall gilt
Q=0:=0. | (3)

DaB es sich dabei um eine invariante Eigenschaft der Flache handelt, folgt
unmittelbar aus Satz 2, § 3. Infolge von (2) muBl dann auch R iiberall auf der
Fléiche verschwinden. In anderen Worten : Auf einer integrablen Fliche ist die

6 Commentarii Mathematici Helvetici
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Integrabilitdtsbedingung (2) identisch in %,v und o erfiillt. Fiir das totale
System (1) ist somit die klassische Voraussetzung erfiillt, und es ergibt sich

Satz 3. Awuf einer integrablen Fliche kann der Wert des Hauptwinkels o in
etnem beliebigen Punkt der Fliche vorgegeben werden, falls dieser Punkt kein
Nabelpunkt ist.

Auf Qrund dieser Vorgabe ist nun durch das totale System (1) der Wert des
Hauptunnkels fir jeden weiteren Punkt der Fliche festgelegt, falls dieser weitere
Punkt mit dem Ausgangspunkt durch eine Flichenkurve verbunden werden kann,
welche keinen Nabelpunkt trifft.

Wichtig ist nun, daB durch eine beliebige Anderung des Anfangswertes von
o weder das Linienelement noch die den Gleichungen

Q=@ =R=0 (4)

geniigende mittlere Kriitmmung H (u,v) beeinflut wird. Da weiter durch
Linienelement, H und o nach den Formeln (11) und (12) von § 1 die Flidche bis
auf Kongruenz festgelegt ist, ergibt sich als Folgerung

Satz 4. Jede integrable Fliche gestattet eine einparametrige Schar von Ver-
biegungen, bei welcher die Werte der mittleren Krimmung erhalten bleiben.

- Natiirlich ist dieser Satz «im kleinen» zu interpretieren. Wie ein Blick auf
die Tafel (9) in § 2 zeigt, bilden die Flichen konstanter mittlerer Kriimmung
die einfachsten Vertreter der integrablen Flichen. Der bekannte Satz iiber die
Verbiegung der Flichen konstanter mittlerer Kriitmmung ist daher in Satz 4

enthalten.
Wir wenden uns jetzt zu den nichtintegrablen Fldchen. Nach Satz 2, § 3

ist nun neben R auch
Q=VQ +Q:+#0 ()
eine Invariante. Jetzt kann man den Hauptwinkel w aus der Gleichung (2) be-
rechnen. Setzt man abkiirzend
S=V@ — R, (6)
so findet man

QR — Q.8 QS+ QR

Ccos @ = — 0° ; 8in w = 0

w = Arctg—g—’——l—Arctg%

@

(7)
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Aus den Relationen (5), (6) und (7) in Verbindung mit der Tafel (9) von § 2
erhalten wir also den

Satz 5. Ist eine Fliche nicht integrabel, so kann man thren Hauptwinkel be-
rechnen aus dem Linienelement und der mittleren Kriimmung durch elementare
algebraische Prozesse in Verbindung mit Differentiationen bis zur zweiten Ordnunyg.

Da nun, wie schon erwihnt, eine Flache durch Linienelement, H (u,v) und
w(u,v) bis auf Kongruenzen festgelegt ist, folgt weiter

Satz 6. Eine nichtintegrable Fliche tst durch das Linienelement und die
Funktion der mittleren Kriimmung bis auf Kongruenz festgelegt.

Hieraus folgt nun unmittelbar die Umkehrung von Satz 4, némlich

Satz 7. Gestattet eine Fliche eine einparametrige Schar von Verbiegungen, be:
welcher die Werte der mittleren Kritmmung erhalten bleiben, so ist sie integrabel.

Fiihren wir schliefllich die Ausdriicke (7) in die Gleichungen (1) ein, so er-
halten wir unter Beachtung von (5) und (6) das System

(aa% +SPH)cosw+( 0Qs +SP12)smw+———+SP =0,

(8)

0 .
( 8% +SP,1)cos w —l—( 3?)2 -+ »S’Pn)smw +—55—.+SP2= 0.

in das wir der Kiirze halber die Werte (7) fiir cos  und sin w nicht einge-
tragen haben. '
Es gilt somit

Satz 8. Ist eine Fliche nichtintegrabel, so besteht ihre Integrabilititsbedingung
zweiter Stufe aus zwer partiellen Differentialgleichungen dritter Ordnung fir die
mittlere Krimmung, deren Koeffizienten durch das Linienelement bestimmt sind.

§ 5. Zusiitzliche Formeln

Da es sich empfiehlt, die eingefiihrten Operatoren dem jeweiligen Zweck an-
zupassen, gebe ich sie hier noch in einer dritten Gestalt an, welche die in Teil I
gebrauchten absoluten Ableitungen

1 2 1 2 "
D,=% 3 Do=g 5 ()
verwertet.
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8in?0V (®,¥) = D, 6D, ¥+ D, 0D, ¥ — cos§(D,®D,¥ + D,0D,¥), (2)
5in®0V (@, ¥) = cos§(D, D, ¥+ D, 0D, ¥)— (D, 6D, ¥+ D,8D,¥), (2,)
sin?0V,(®,¥)= sin 6(D, 9D, ¥ — D,®D,¥) . (2,)

Um die A-Operatoren iibersichtlich zu schreiben, gebrauchen wir die Ab-
kiirzungen

_ D,6 ) _D,6
ty :m a cotg 0 D”O ; g = Sin B - OOtg ODuO . (3)

Damit erhalten wir

sin? AD = (D, D, + D, D,)®P — cos 0(D, D, + D,D,)D } @)
+ (ygsin 6 — ¢, cos 0) D, D — (y, 8in 6 + ¢4 cos 6)D, D

sin® AP = cos (D, D, + D, D,)® — (D, D, + D,D,)D } )
’ 1

— (y,8in 6 + £,) D, D + (yg8in 0 — 1) D, D

sin? 6A,® = sin 6(D, D, — D,D,)®
} (42)

+ (cos Oy, — y5) D, D + (cos Oyy — ,) D, P

Diese Darstellung gewiihrt offenbar den besten Einblick in den formalen Bau
der Operatoren. Sie wird allerdings dadurch erkauft, da man beim Rechnen

vom Kommutator

D,D, — DD, — -Qéﬁ D, —

D,E

T Du (5)

Gebrauch machen muf.

(Eingegangen den 8. Miirz 1957.)
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