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On subbharmonic functions and differential geometry
in the large *)

by AvLrreD HUBER, Basle and Zurich

1. Introduection

We consider an open, two-dimensional Riemannian manifold M whose metric
is defined by a positive definite quadratic form

ds? = E(&,m)dE2 + 2F (&,9)dédny + G(&,5)dn? (1.1)

& and 7 denoting local parameters. If £, F and G are sufficiently regular, then
it is possible to introduce (local) isothermic parameters, i. e. there exists a coordi-
nate transformation z = x(&,%), y =y(§,n) such that £ =G>0, F =0
in the (z,y)-parameter system. Then we can write

ds? = %@V (da? 4 dy?) = €24@ |dz|? (1.2)

putting z = « + ¢y. Such a transformation always exists, for example, when
E, F and @ are of class (3, and in this case the corresponding function u is also
of class C?® (cf. A. WINTNER [34, p. 687]).

By the Theorema egregium the G4uvssian curvature K can be calculated from
the #, F, G and their partial derivatives up to the second order. In the iso-
thermic parameter system (1.2) one obtains the particularly simple expression

K= —e®Au (4 =0%0x®+ 0%/0y?) . (1.3)
Hence, letting d4 = e*dxzdy denote the area element on M we have
KdA = — Audzdy . (1.4)

Furthermore, one finds after some calculation (using e.g. [6, p. 175]) the
following expression for the geodesic curvature k of a curve on M

=ee(n 3 (1.5)

Here k, denotes the euclidean curvature of the corresponding curve 2z = z(t)

: . . . . d dz

in the z-plane with the convention that sign &k, = sign raki and n
*) This research was supported by the United States Air Force through the Air Force Office of
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designates the normal to z(¢) in the direction arg (-— i%i-). (1.2) and (1.5)
imply

lcds=<lc,+—g—?~?:~)|dz[ . (1.86)

In general, isothermic parameters can only be introduced in the small. In
order to be able to treat problems pertaining to differential geometry in the
large we have to consider the RIEMANN surface S8 which is determined by the
conformal structure of M. (For a detailed discussion of this step the reader is
referred to [31, pp. 2-5]. At this point we have to introduce the additional
condition that M is orientable. However, if this should not be the case we
simply replace M by an orientable, two-sheeted covering surface [33, p. 61]).
The local uniformizers are then defined as functions which map a portion of M
conformally onto a region in the 2-plane. Hence their real and imaginary parts
form a set of local isothermic parameters. Conversely, if  and y are local iso-
thermic parameters, then either x 4 ¢y or y -+ ¢x constitutes a local uni-
formizer.

We thus are led to conceive of M as a RIEMANN surface on which a conformal
metric

ds = ¢*?|dz| (2 = local uniformizer) (1.7)

has been introduced. Thereby a change of uniformizers z = @({) implies the
transformation

u(8) = u(p(0) + loglg'(2)] , (1.8)

due to the conformal invariance of ds = €*@|dz| = ¢*©|d¢].

We shall mainly be concerned with the relation between the surface integral
of the Gaussian curvature (curvatura integra) and the topological and con-
formal structures of complete, open, two-dimensional RIEMANNian manifolds.
(According to the definition of H. Hopr and W. Rinow [17] the manifold M is
called complete if every divergent path on M has infinite length. A path s is said
to be divergent (or to tend to the ideal boundary of M) if (1) s is the topological
image p = p(t) of the half-open interval 0 <t¢<1, (2) given an arbitrary
subcompact K of M there always exists a number ¢'(K)<1 such that p(t) lies
outside K for t>t').

The present article originated from a suggestion of Professor H. Horr. He
drew our attention to the connection between differential geometry and poten-
tial theory which is revealed by relations (1.3) and (1.4). For example, the
function u(z,y) is subharmonic in a certain (z,y)-parameter region if and
only if K < 0 in the corresponding domain on M. (This fact had already
been used by E. F. BECRENBACH and T. RADé [3] in their proof of the isoperi-
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metric inequality on surfaces of negative curvature.) Analogously, » is super-
harmonic if and only if K = 0. Furthermore, (1.4) discloses an even deeper
connection: The surface integral of K, considered as a set function, is essen-
tially the measure associated with w» (i. e. the mass distribution of density
Au/27, which appears when u is represented as a sum of a logarithmic poten-
tial and a harmonic function). Consequently, results of differential geometry
in the large involving the curvatura integra, such as those due to S. ConN-
VosseN [10], F. F1ara [12], CH. BLANc and F. Frava [5] (see H. Horr [16] for
further references), have a potentialtheoretical meaning. It is therefore natural
to apply functiontheoretical methods to this field in the hope that not only
other (and eventually simpler) proofs of known results will be found, but also
theorems which are new in both their differentialgeometrical and potential-
theoretical aspects. From this viewpoint [18], [19] and the present paper have
been written.

Our geometrical results are contained in sections 4, 5 and 6. We consider
manifolds which are given in the form (1.7), assuming merely that » can be
represented as a difference of subharmonic functions?),

u(z) = u,(2) — u3(z) (2 = local uniformizer). (1.9)

Of course, neither the functions u, and u, nor their associated measures x, and
¢, are uniquely determined. However, the difference u = u, — p, does not
depend on the choice of decomposition or uniformizer. Consequently, u is de-
fined as a measure on 8. Let y = ut — y— denote the JORDAN decomposition
[30, p. 11] of u, which can be characterized by the property that

pt(e) < p(e) and u=(e) = puq(e)

for all BoREL sets e and any representation y = u; — uy of u as a difference
of positive measures. Further, let C+ = 2xu~(8) and C-=2mu*(S). The
difference C = C+ — O~ = — 27 u(S), defined whenever '+ and C- are not
both infinite, will be called the curvatura integra of the metric. This termin-
ology is justified, since for sufficiently regular 4 we have indeed, by (1.4),

Ct = (f A~udxdy = [ K+dA ,
8 M
C- = [f Atudzxdy = [ K-dA
S M

and
C = — [f Audxdy = ([ KdA
] M

1) Such a representation always exists, for example, when u is of class C2. For the definition
and properties of subharmonic functions the reader may consult the book of T. Rap6 [25].
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where A+u = max [4%4,0], 4~ = max [— 4u,0], K+ = max [K,0] and
K- = max [— K,0].

From the viewpoint of potential theory (1.9) is the most natural condition
to impose on u. (We mention that such a metric has already been considered
by A. BEvrLING [4]. He restricted himself to the case of negative curvature,
i. . subharmonic u.) The following remark may illustrate that this generality
is also useful for differentialgeometrical purposes: The theory presented here
applies to all RteMANNian manifolds whose coefficients £, F and G in (1.1) are
of class C! and which possess a continuous GAussian curvature in the sense of
H. WEYL [32, pp. 43-44]. This is a consequence of results due to S. S. CHERN,
P. HarTMAN and A. WINTNER [9] who demonstrated that under these hypo-
theses isothermic parameters can be introduced, the corresponding function u
being of class C1. Furthermore, one deduces easily from [9] that w is represent-
able in the form (1.9) and that the curvatura integra C (in the above defini-
tion) is equal to the surface integral of the GAussian curvature.

An interesting special case of the metric (1.7) is given by the modulus of an
analytic differential (cf. R. NEVANLINNA [24, p. 103]), ds = |dw| = |¢(2)]| |dz]|.
Thereby we allow dw to be multiple-valued as long as |dw| is single-valued.
Furthermore, we admit isolated singularities a, in whose neighborhoods ¢ is
representable in the form ¢(z) = (2 — a,)?*¥(2), where p, denotes an arbi-
trary real number and ¥ is a function regular at ¢, (¢t =1,2,3,...). The
p,’s are conformal invariants, and we have C = — 2xXp,, this quantity
being defined whenever C+ = 2zXmax(—p,,0) and C- = 2xXmax(p,0)
are not both infinite.

Throughout section 4 we suppose that § is finitely connected. Theorem 10
states that C' < 2zy for any complete metric (1.7) whose curvatura integra
exists, y denoting the EULER-POINCARE characteristic of 8. This result has al-
ready been proved by S. COEN-VOSSEN (Satz 6, p. 79 in [10]) under more re-
stricted regularity conditions. (He admitted manifolds whose metrics were de-
fined by positive definite quadratic forms (1.1), the coefficients £, F' and G
being of class C2. In this case the GAUssian curvature is defined and continu-
ous. Hence, by a previous remark, our theorems can be applied.) Our proof is
different from the one given by CoEN-VO0SSEN, although the central idea of this
author has rather been transformed than altogether eliminated. We believe
that our reasoning is simpler, at least if one disregards the complications needed
for getting rid of unnatural regularity assumptions. It is function-theoretical.
No use is made of the theorem of H. Hopr and W. Rinow [17] which states
that on a (sufficiently regular) complete manifold any two points can be joined
by a geodesic whose length is equal to their distance.

The remainder of section 4 is devoted to sufficient conditions for equality,
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C = 2my. One of these results (Theorem 11) implies a statement due to
S. CorN-VossEN (Satz 7, p. 79 in [10]).

In section 5 infinitely connected, complete manifolds are investigated. Fi-
nally, in section 6 theorems of F. F1a1.A [12] and of CH. BLANC and F. F1arA [5]
are extended.

Theorems 10 to 14, as formulated, apply only to orientable manifolds. How-
ever, it is easy to consider also the non-orientable case. The completeness of
the metric is not destroyed if we pass to a two-sheeted, orientable covering
manifold. Furthermore, in this process curvatura integra, EULER-POINCARE
characteristic, total area and length of closed curves are all multiplied by 2.
Consequently, an application of the above mentioned theorems to the covering
manifold yields immediately the corresponding results in the non-orientable
case. Hence in these theorems the metric (1.7) need not necessarily be defined
on a RIEMANN surface. It is sufficient to suppose that § is a generalized Rie-
MANN surface in the sense that § is defined like a RIEMANN surface (cf. R. NE-
VANLINNA [24, p. 53]), but that both directly and indirectly conformal neigh-
borhood relations are admitted.

In section 2 some theorems on conformal metrics defined in doubly con-
nected, schlicht regions are demonstrated. These results are needed for sub-
sequent applications, but they are also of interest by themselves. In particular
statements concerning integrals of moduli of analytic functions along certain
curves are implied. Such integrals have been the object of previous investiga-
tions — we mention the work of L. FEJERr and F. Riesz [11], R. M. GABRIEL
[13], F. CarLsox [8], M. Riesz [29] and B. ANDERSSON [1] — but, to our
knowledge, problems of the type treated here have not been considered.

Section 3 contains a special result (Theorem 7) whose possible generaliza-
tions %) might warrant further investigation.

The reader is assumed to be familiar with some properties of subharmonic
functions (cf. T. Rap6 [25]), in particular the theory of F. Rimsz [27].

We express our sincere gratitude to Professor H. HopF for suggesting the
problem. We are very much indebted to Professor A. PFrLuGER for encourage-
ment.

2. Some theorems on conformal metrics defined in schlicht annular regions

In the following let 2 be a doubly connected region in the z-plane which
does not contain the point at infinity in its interior. We denote by I" and 4
the outer and inner boundaries of £, respectively. (We make no regularity

%) Such as the subharmonic analogue or the extension from the plane to more general RIEMANN
surfaces. See also the remarks to Theorem 7.

2 Commentarii Mathematici Helvetici
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assumptions about I" and 4. In particular we allow I" to consist of only the
point at infinity.) Let £, designate the interior region of I.

Let u (z) be a function defined in 2 and locally representable as a difference
of two subharmonic functions

u(z) = u;(2) — ug(2) . (2.1)
u (2) can assume the values oo (u, finite, u; = —oo0) and —oo (u; = —oo,
u, finite). It may be left undefined at those points where u;, = u, = —oo.

This point set is of no concern to us since it is a set of measure zero with re-
spect to all occurring integrations.

In a well known way (F. Riesz [27]) measures u,(e) and u,(e) are associ-
ated with the functions u,(z) and wu,(z), respectively. We define

u(e) = py(e) — pale) . (2.2)

If, for a given function u(z), there exists one decomposition of the form
(2.1), then there are an infinite number. Of course, the corresponding measures
u, and u, depend on the choice of decomposition. However, the difference y is
the same for every such representation. Furthermore, for every prescribed de-
composition (2.2) there exists a corresponding representation (2.1). If (2.2) is
the JorDAN decomposition [30, p. 11] of u, then (2.1) is called canonical. We
may assume without loss of generality that (2. 1) is canonical and valid through-
out Q (cf. M. G. ARSOVE [2, p. 331]).

Let y be a JORDAN curve in £2 which encloses 4. We introduce the flux of
through » in accordance with the theory of F. Riesz [27]. If u is of class C?
and if y is analytic, then we simply define

1 0
Olu,y; ) =5 [ 5 |dz| , (2.3)
Y

n denoting the outer normal. In the case of general » and y we introduce a
sequence {6,} of JORDAN curves such that the annular regions (4, d,),
bounded by 4 and §,, tend increasingly to (4,y) as k& —oco. Let

b (2) = Byp(z) — hgp(2)

where h,, and h,, are the best harmonic majorants of u, and u,, respectively,
in (8, ¥). h, is independent of the choice of the decomposition (2.1). Let now
8, denote an analytic JORDAN curve in (4,,y) which encloses d,. Then
& (b, 8} ;y) is well defined and its value is the same for every such 8}, since h,
is harmonic. We define

D(u,y; ') = lim & (h,, 6;; ) . (2.4)
k—> o
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F. Riesz [27] proved that if « is subharmonic then this limit always exists,
being finite and independent of the choice of {d,}. It is easy to conclude from
this that the same is true in our case.

Now, let {y,}, I1=1,2,3,..., be an arbitrary sequence of JORDAN curves,
enclosing 4, whose interior regions tend increasingly to £2,. In Theorems 1, 2
and 3 (below) we make the hypothesis

(A) For any such sequence the limit

O(I") = lim D (u, y,; I') (2.5)

l—>o00
exists, admitting the values +oo and —oo. Of course, @(I') is necessarily
independent of the sequence {y,}.
The theory of F. Riesz implies that

D(uy, Yi4a; I') — Plug, vi5 ') = paly, U(yes vi4a)]
for all 1. Hence the sequence {®(u,,y,; I')} is non-decreasing. The same is
true for {®(u;,y;; I')}. Consequently, the limits
(1) = lim B(uy,7,; T)

l—>o

D, (I') = lim @ (u,,y,; I')
l—>o0

always exist, being finite or -+ oo.
Hypothesis (A) ts equivalent to the assumption:

(B) @,(I') and Dy(I') are not both infinite. Furthermore
D) = D,(I') — (1) . (2.6)

and

Let us briefly indicate a proof of this statement. If (B) is fulfilled, then (A)
and (2.6) follow immediately from the relation

D(u,y,; I') = DP(uy,y,; I') — DP(us,y,; I) 1=1,2,8,...),

which is an obvious consequence of the definition of @. The second half of the
equivalence proof has to be based on the fact that u = u;, — p, is a JORDAN
decomposition. (We have supposed that the representation (2.1) is canonical.)
Without entering into details we mention that the assumption @,(I") = D,(I")
= -4 oo makes it possible to construct two sequences {y,} and {y;} of the
above mentioned type for which @(I') = 4+ o0 and P(I') = —oo, respecti-
vely. Clearly, this yields a contradiction to (A).

A path ¢ in 2 will be said to tend to I if the following conditions are fulfilled :
(1) o is the topological image z = z(t) of the half-open interval 0 <¢<1;
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(2) given an arbitrary subcompact K of 2, there exists a number ¢'(K)<1,
such that z(¢) lies outside K for ¢>1¢'.

Theorem 1. If @(I")<—1, then there exists a locally rectifiable path o in £2,
tending to I', such that
[ e*DNdz| <4 o0 . (2.7)

Remarks. There is no value of @(I") outside the above mentioned interval
for which the theorem is also true. This can be seen from the following counter-
examples:

(I) Q, = finite z-plane, u, = |2|%, u; = 0. Then @(I') = +oo.
(IT) 2, = finite z-plane, u, = xlog [2]|, u; = 0. Then @ (I') =«
(0 < &<+ o0).
(III) £, = finite z-plane, %, =0, uy, = — xlog|z2|. Then ?(I') =«
(—1<a<0).
(IV) Let I' contain at least two points. Then there exists a conformal
mapping w = @(z) of 2,onto |w|<1l. We define

l ! ——
Uy = 1 — l(p(z)l +10gl¢ (Z)‘ ’ uZ:O .

Then @(I') = +oo.

The reader will easily verify that in each of these examples there exists no
path o having the properties postulated in Theorem 1. (It should be observed
that the choice of 4 is irrelevant.)

It is natural to ask whether the hypothesis @ (I')<—1 can be weakened if
more restrictive conditions are imposed on £. Examples (I), (II) and (III)
show that the condition @(I')<—1 cannot be replaced by a weaker inequa-
lity for those domains 2 whose boundary component I" consists of only the
point at infinity. We shall now demonstrate that for all other regions the hypo-
thesis @(I')<—1 in Theorem 1 can be replaced by @(I')<-+oo. Since, on
the other hand, for the case @(I') = + oo we have given counterexamples for
any 2, this settles the question completely.

Theorem 2. If I' contains more than one point, and if D (I') <+ oo, then
there extists a locally rectifiable path o, tending to I', such that (2.7) is fulfilled.

Proot of Theorem 2. From (2.6) and the hypothesis @(I') <+ oo we infer
that &,(I') <+ oo. We choose an arbitrary positive number «>®,(I") + 1
and consider the function w* = u; — u;, where u}(z) =u,(z) and u}(2)
= uy(2) — agy(2,2,). Here g, denotes GREEN’s function of @, and 2z, is an ar-
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bitrary but fixed point in this region. Throughout 2, u<wu*. The functions %*
and u; are obviously subharmonic. Because of the choice of x, @*(I')<—1.
Therefore, Theorem 1 may be applied to u*(z).2) There exists a locally recti-
fiable path ¢, tending to I', such that

fev|dz| < [ e*|dz| <+ oo .

This completes the proof of Theorem 2.

It is also possible to weaken the hypothesis @(I')<—1 in Theorem 1 by
making further assumptions about the function ». We shall now discuss the
effect of a condition which is natural from the point of view of both the theory
of functions and the applications to differential geometry.

A sequence of curves {y,}, n=1,2,3,..., will be said to come arbitrarily
near to I', if the point set U y, is not contained in any subcompact of 2,.

n

Theorem 3. Suppose there exists a sequence {y,}, n=1,2,3,..., of rec-
tifiable JornaN curves, enclosing A, in Q2 and a number M such that

(a) {y.} comes arbitrarily near to I,
(b) fe*|dz|<M forall n.

Yn
Then, if ®(I') = — 1, there exists a locally rectifiable path o, tending to I,
such that (2.7) 18 fulfilled.

Remarks. The hypothesis @(I') # —1 cannot be dropped. This follows
from the example

(V) Q, = finite z-plane, u, = 0, u, = log |z]|, y, = [|2] = n],
oI')= —1.

By Theorem 2 no such counterexamples exist if £, is of hyperbolic type. In
this case Theorem 3 actually gives new information only for @ (I') = + 0.

If &(I')<—1, then Theorem 3 is, of course, superseded by Theorem 1 for
any 2.

We are left to prove Theorems 1 and 3.

Preliminary considerations. A point z,in 2 will be called a singular point of
the measure u if u(z,) = 1. (The symbol 2, is used here to denote the set con-
sisting of the point z,.) In every subcompact of £ there are at most a finite
number of such points.

Lemma 1. Let « be an analytic arc which contains no singular point of u. Then
J e*|dz| <+ oo.
[+ 4

3) The proof of Theorem 1 will later be given.
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Remark. It is easy to construct examples which show that in this lemma the
word “‘analytic”’ cannot be replaced by ‘rectifiable”.

Proof. Let x denote the segment 0 < & < 1 on the real axis of a complex
{-plane ({ = & + ¢7n). There exists a conformal mapping z = ¢({) of a neigh-

borhood V of & onto a neighborhood V of & such that x corresponds to o. We
now consider in V the subharmonic functions

4, (2) = uy(@(0)) + logle' ()]

u3(8) = us(@(2))

and define u = %, — u,, 50 that e*|dz| = eZ[dC |. One proves, without diffi-
culty, that u,(e) = u,(e) and u,(e) = u,(e) for corresponding sets e and e,
%, and i, denoting the measures associated with %, and u,, respectively. Be-
cause of the existence of such a transformation we may, without loss of gener-
ality, assume o« to be the segment 0 < « < 1 on the real axis.

Given an arbitrary point x, on «, there always exists a radius ry(zy) >0
such that u,(|z — z,| <27,) = p<1. By a well known theorem of F. Rirsz
[27, II, p. 350] we have the representations

(2.8)

u () =h(2) + | loglz — C|du,(ey) (2.9)
and [E—zo| <270
) =)+ [ logls — Lldle) (2.10)

in |z — zy| <27y, the functions A, and A, being harmonic. An obvious co-
1

vering argument yields the existence of [ e*dx if we can show that

0
Zo+7o

| etdr<+oo .

But, by (2.9) and (2.10), this will be achieved if we can prove that

Zo+7o

I= [ exp{— [ log|lz— {|dus(e;)}dz<+oo . (2.11)

Zo—To IC—$0|<21'0

We first consider the special case where the mass distribution u, is concentrated

in one point {,. Then
Zo+r

0 Zo+7o 1—p
I1="1"2 = t,de <[ & — zo|Pde = 22
Zo—To Zo—To 1 -

(2.12)

Let us now proceed to a measure u, which consists of a finite number of
concentrated masses, «,p in {,...,x,p in ,, Zo,=1, «,>0 (1 =1,
2,...,n). Weintroduce the notation I for the integral I in which log|z — (|
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has been replaced by log"|z — ¢| = max [log|z — ¢|,— N], N denoting an
arbitrarily large constant. By an application of HOLDER’s inequality [15, p. 140]
and of (2.12) we obtain

Zo+7ro

Iy= | exp{— szplogle—C[}dx

Zo—To

n Zo+ry
=II[ | exp{—plog¥ |z — {;|}dx]™

=1 T9g—rg

1—2’

n
<" "|e—t,|*dais 2007
t=1 Zy—ro 1 - p
Let us now drop every special assumption about u,. In the general case I
can always be approximated arbitrarily close for fixed N by substituting for u,
a suitable measure of the special type considered above. Hence

Iy <2r7%/(1 — p)

holds without restriction. Letting N —+oco we obtain (2.11) in the limit.
Q. E. D.

Lemma 2. Suppose there exists a sequence {c,}, n=1,2,3,...., of rec-
tifiable curves in 2, a subcompact K of 24 and a number C such that the following
18 true:

(a) each o, has a non-empty intersection with K,
(b) {o,} comes arbitrarily near to I,
(c) fe“[dz|<0 for all n.

Tken there exists a locally rectifiable path o in Q, tending to I', such that (2.7)
18 satisfied.

Proof. We may assume that Q is a circular ring
R, <|z| <R, (0 =R, <R, = +00) .

For, if this lemma has been proved for a particular region 2, then it is imme-
diately seen to be valid for the whole class of conformally equivalent domains.
This is easily proved by transplanting the metric ¢**|dz| under conformal
representation.

We introduce a sequence of circles y,, = [|z| =7r,], m=1,2,3,..., in
£, supposing that y, encloses K and that r, 7R, for m 74 oo. We further
assume that no singular point of u lies on these circles. If one of the curves o,
tends to I', then we have nothing to prove. If this is not the case, then there
exists a subsequence {d,} of {c¢,} such that o intersects y, for all n. From
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this and hypothesis (a) we conclude that o] contains an arc which leads from
, to y,. We subdivide it into o} (1,2) (leading from y, to y,), ..., oh(n — 1, n)
(leading from y,,_, to 9,). By making use of CANTOR’s diagonal process we select
a subsequence {d)} of {0}} such that the common endpoints of o} (m — 1, m)
and &, (m,m -+ 1) on y,, converge to a limit point z,, for all m. Let now m be
fixed. By Lemma 1, there exists an open arc «,, of ¥,,, containing z,,, such that
| e*|dz| <2—™ . Furthermore, there exists an index N (m) such that the

am
following conditions are satisfied:

(a) The inner and outer endpoints of oy (m,m + 1) lie on «,, and «,,,,,
respectively,

(b) f  e*|dz] <inf f  e¥|dz| 4+ 2-m1

n>N

o'y tm,m-+1) ollim,m+1)

We define o to consist of the curves oy, (1, 2), oy (2, 3),. .., joined by sub-
arcs of «,, «g,.... The reader will easily convince himself that

Jetldz|<C + 1.

o

This proves Lemma 2.

Proof of Theorem 1. There is some expository advantage in assuming that
Q2 is a circular ring R, <|z|<R; (0 < R, <R; < +o0). This can be done
without loss of generality .Indeed, an arbitrary 2 can always be mapped con-
formally onto a circular annulus R, <|{| <R, in such a way that I' corre-
sponds to the outer circle |{| = R,. Under such a representation both length
element ds and flux @ are invariant if « is transformed according to (2.8).

It follows from the hypotheses that there exists a number 5 (0<n<1) and
a radius r, (R, <r,<R,) such that

D(uy,|2| =13 T)>1 + 29 , (2.13)
D,(I') — D(uy,|z| =r;; 1<y . (2.14)

Lemma 3. Let the radius o, (r,<o,<R,) be chosen arbitrarily. Then there is
a number C with the following property: Given any o, (9, <@s<R,), there exists
a rectifiable curve x, leading from |z| = g, to |2| = g,, such that

ferldz| <C . (2.15)

Proof. We introduce three ra,;ii 8;, 83 and r, satisfying the inequalities
Ri<r <8, <0, <0< 8, <1y <R, . (2.16)
In addition we require that there should be no singular point of x on |z| = s,.
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In the following all radii with index 1 have to be considered fixed. On the other
hand, g,, s, and r, are variable within the above limits and our estimation
ultimately does not depend on their choice. By a theorem of F. Riesz [27, II,
p. 357] the representations

uy(2) = hy(2) — [ 9(z, £) dpy(eg) (2.17)
and @

s (2) = hy(2) -gg(z, £) dus(ey) (2.18)

hold in @ = [r;<|z|<7,], where h, and h, are the best harmonic majorants
of u, and u,, respectively, in.w and g denotes GREEN’s function for this domain.
We define

v(2) = hy(2) — ua(2) = u(2) + [ 9(2, {) dpy(eg) . (2.19)
v is superharmonic in @ and admits the representation (F. Riesz [27, IT, p. 350])
v(z) = H(2) — flog|z — L] dusley) , (2.20)
where H is harmonic in w. It follows from (2.13) and (2. 14) that
1 oH

14

y being an arbitrary smooth JORDAN curve in w which encloses |z| = r,, n de-

noting the outer normal.
Let & = (o, — 8,)/2. We define

wy=[n<|z| £ +9], o, =I[85+0<|2z|<r],

Uso(e) = pa(en wy), po(e) = pa(en wy), my = py(w,), My = ps(w,) and

v1(2) = H(z) — flog|z — {|dpy(ep) (2.22)
Further, let “1
Ve =u) + [ G dule) (2.23)

where G denotes GREEN’s function for |[z|>r,. For |z| = 8;, v;(2) = v(2)
+ mq log (29,). Furthermore, ¥V is superharmonic in , the associated meas-
ure being u,(e), and v < V. Since the circle |z | = s, contains no singular
point of x4, we have, by Lemma 1

[ enldz] < (2o)™ | eldz] < (20)™ [ Fldz| = Oy<+oo, (2.24)

12]=81 |2]=8 lz|=8

where C, is a constant not depending on the choice of g,, 8, and r,.



26 ArrreEp HUBER

For o, <|z] <05, u S v < v, — mylogd. Hence, for any curve x con-

tained in this annulus
fet|dz| <O97™™ [ e™|dz| . (2.25)
[4 4 o

We are now going to demonstrate that there exists a rectifiable curva «, lead-
ing from |z| = g, to |2| = g,, and such that

ferldz| =C, [ e|dz| + Cs , (2.26)
@ [z]|=81
where C, and C; are constants not depending on the choice of g,, 7, and s,.
Lemma 3 will be an immediate consequence of (2.24), (2.25) and (2.26).
In order to establish (2.26) we first approximate the measure u,,(e) by a
finite number of concentrated masses. This is done by the following construc-
tion: Choose an integer N = 2 such that

mllogg_—:: ;jzg <log 2. (2.27)

Let ¢y, gy, ..., ¢, designate those points (necessarily finite in number) which

support a concentrated mass of weight = i@ Nl T in the measure pu,,.
Denoting the corresponding masses by p,, ps, ..., p,, we define

w(z)—-:H(z)——kg'lpkloglz—Ck[ . (2.28)

We introduce the compact set K which is obtained by subtracting from the
annulus s, <|z| < s, theopen disks |z — {,|<d, (k= 1,2,...,m), where
the radii §, are chosen small enough so that the following conditions are satis-
fied:

(a) the sets |z| =8, |2 — §| =£20;,...,|2 — | = 24,, are disjoint,

(b) whenever {, is a singular point of u (i. e. p, = 1), then we choose J, so
small that

Qmy+2 pmy
w 2 vy
{e |dz| > = (7”7)121’!;:16 |dz] (2.29)
for any rectifiable curve x leading from |z| = s, to |z — (| = 26,,%)

(c) we require the remaining d,’s to be so small that

2 j' edz| <1 . (2.30)
Pr<i |z—{k| =20k

%) It is easy to prove that such a choice is always possible.
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This condition can always be satisfied since

im [ e™dz|=0 (2.31)
8—>0 |z—lk|=5
at any non-singular point {,. (2.31) can be proved by a reasoning which is
quite similar to the one used in the proof of Lemma 1 and which we do not
reproduce here.
Let »(e) denote the measure which is obtained from u,,(e) after subtract-

ing the concentrated masses p, in ¢;,...,p,, in {,. We have
v;(2) = w(z) — flog|z — {|dw(e,) . (2.32)
Wy
. 1
There exists a number d>0 such that »(e) < 1N T 1) for all BoREL

sets e of diameter <d. Let such a d be chosen, requiring in addition that d <1.
The function w(z) is uniformly continuous on K.
We now choose a number L >0, so small that the conditions (2.33) to
(2.37) are satisfied :

|2, — 25| = V2L implies

lw(z,) —w(z)|<log2 forall =z,,2,eK , (2.33)
m, log ﬂj,lL <log2 , (2.34)
VaL<d , V22N + 1)L<1, (2.35)
2V2L <4, k=1,2,...,m) , (2.36)
myd—meM (N + 12N 4 ¥ |log 2] <1 (2.37)

for 0<A < V2L, M denoting the maximum of w(z) on K.

Now we cover the (z,y)-plane by a net of squares X with sides of length L
(x=+L,y=9L;¢,7=0,+1,42,...) andreplace the measure »(e) by a finite
number of concentrated masses, assigning to the points ((¢ + %)L, (j + 3)L)
the weights »([tL < z< (1 + 1)L]~[jL <y<(j + 1)L]) . Let these be the
masses Pp,yq i Cpyqye .., P, in &,. We define

n

wy @) = w() — E pyloglz — L] = Hz) — pelogls — Ll . (2.39)

k=m+1 k=

We now state: There exists a polygon §, leading from |[z]| = 8; to |z]| = g,,
such that

2
e1|dz| < ev1|dz| . (2.39)
5[ | dz| 1 — cos (n7y) MJ;. 8y £
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We should like to point out that the proof of this statement constitutes the
kernel of our demonstration of Lemma 3. In fact, if # were assumed to be
superharmonic and of the type w, (i. e. harmonic with isolated logarithmic
singularities) throughout £2, then the following reasoning would represent the
complete proof of this lemma.

Let z, be an arbitrary point of the annulus 4 = [s;, <|z] < s,]. We define
A(z,)=inf | e¥*|dz| , where y varies on the set P(z,) consisting of all rectifi-

Y ¥

able, closed curves on 4 which are not nullhomotopic and pass through z,. If
2, is not a singular point of u, then A(z,) is finite and there exists at least
one minimal curve y(z,) €P(2,) such that

A(zy) = f e*1]dz]| . (2.40)
7

Indeed,  can be constructed in the usual way as the limit of a suitably chosen

minimal sequence. A(z) is continuouson 4 — U ¢,.
Pr=>1

We decompose the set D = [s; < |z| < g,] into three disjoint subsets
3
D = u D,, where

=1
(a) D, =D~ U [|z — | <26:] ,

Prp=>1
(b) D, consists of those points of D — D, which possess at least one mini-
mal curve contained in D,

(c) Dy = D — (D,vD,) .

Some of these sets may be empty. D, is closed.

We now discuss some properties of minimal curves which contain no double
point. Assume first, for simplicity, that y(z,) is completely in the interior of A
and that none of the {,’slieonit (k= 1,2,...,n). Then w, is harmonic in
some (doubly connected) neighborhood V of y. Hence the function

{ = V() = ferrtiv] 4 | (2.41)

29
where w] is conjugate harmonic to w,, yields a conformal mapping of the uni-

versal covering surface V of V onto some simply connected RIEMANN surface
extending over the {-plane. Since e*!|dz| = |d{|, the image of any subarc

of 7 not containing z, in its interior (and considered on any sheet of 17) is a
straight line segment in the {-plane. Hence

arg d{ = w; + arg dz = const. . (2.42)
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along such an arc. Furthermore, (2.21) implies

fawl ds fawl ds ——f ds —2n X p,<—2n(l-+4+1n), (2.43)

Lk inside ¥

where s denotes the arc length, » the exterior normal, and the integration is
performed in the positive sense. From (2.42) and (2.43) we conclude that, in
the neighborhood of z,, ¥ consists of two analytic arcs which intersect at an
exterior angle @(y, z,) satisfying the inequality

OF, 2) <m(l — 27) . (2.44)

If we now allow y to have points in common with |z| = s;, then (2.42) will
no more be true in general. However, it follows easily from a consideration of
the mapping (2.41) that w; -+ arg dz increases monotonically if y is followed
in the positive sense. From this and (2.42) the inequality (2.44) is again ob-
tained.

Finally, we also admit that y may pass through some of the {,’s. In such
points  will not possess corners because these would make shortcuts (in the
metric e“'|dz|) possible, contrary to the definition of minimal curves. Near
these points we replace y temporarily by small circular arcs lying in the inte-
rior region. By making use of the mapping (2.41) (integrating in a neighbor-
hood of the modified curve) and by our knowledge of the behavior of w} along
the small circles, we verify again the monotonicity of w} -4 arg dz and the
ensuing relation (2.44). No essential difficulty arises if 2, itself coincides with
one of the {.’s.

If y has points in common with |z| = s,, then (2.44) will not be fulfilled in
- general.

We shall now investigate the behavior of the function A(z) in the neigh-
borhood U of a point z, on D,. To this end we map U, by (2.41), conformally

onto a domain U in the {-plane. (Assume first, for simplicity, that w, is har-
monic at z,.) There exists a minimal curve y(z,) which is contained in D. For
the present we make the additional assumption that y is a simple closed curve.

Then the image of y in U consists of two straight line segments, /, and [, inter-
secting at £, = ¥(z,) under the angle ©(y,z,). Let £, be a point on the bi-
sector b of @, and let {, and ¢, denote the points of intersection of the normal n
to b through ¢, with I, and [,, respectively. (Choose |, — {,| small enough so

that the triangle {,¢,{; lies in (7.) We have

cos (0/2)
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The (Euclidean) bisector of @ in the z-plane is transformed into an analytic
curve a tangential to b at z,. Let ¢, denote the point of intersection of @ with .
Then 44

cfldCl = |Lo — Lol + 0] &0 — &l) -

A .

Hence, for sufficiently small |Z, — £j|
& cos (0/2)

i <i—grem)
Let z, = ¥-1(¢J). From (2.44), (2.45) and the definition of 4 we conclude

that o
Jen|de| <5

29

[(8o—Cul 18— Cel) — (1&g — Gl + 18— CaD] . (2.45)

1
— cos (77n)

[A(20) — A(zg)] (2.46)

where zyz, denotes a (sufficiently small) segment on the (Euclidean) bisector
of Oy, z,).

Only slight modifications are needed for the case where z, coincides with one
of the {,’s. Again we make use of the mapping (2.41). In order to obtain unique-
ness we slit the domain U along a line which leads from z, into the interior
of 9. The mapping ¥ is no more conformal at z,. However, the reader will
easily convince himself that @ is decreased. So our estimations hold a fortiori.

Finally, if ¥ contains double points, then it can be proved without difficulty
that (2.46) is satisfied if zyz, is defined to be a (sufficiently small) segment on
the tangent to either of the two branches of y issuing from z,.

On D, we now define a complex-valued function 7'(z). Let ze¢D, and
¢ (0 < 9p<2n) be fixed and let £(z, ¢) denote the largest number with the
following property: For all 7 in the interval 0 <7<t the point z = 7e'? is
contained in 4 and the inequality

1
1 — cos (nn)

fexp {wy(z + ret)} dr < [A() — Az + 7e'?)]

0

holds. Suppose {g,(2)} is a sequence of arguments such that {f(z,¢,)} tends
to the least upper bound ¢, (2) of ¢(z,¢). By (2.46), ¢,(2) is always positive.
We choose an arbitrary limit point ¢,, of {¢;,} and define T'(z) =t¢,e'?m. It
follows from the definition of 7'(z) and the continuity of A(z) that, for all
zeD,

1

T~ o8 (uy) LA — A+ TE)] - (2.47)

{fexp fw, (z + reiom)} dr <
0

Furthermore, by making use of the definitions it can be verified in a straight-
forward way that ¢,(z) is lower semicontinuous. Let ¢,,,, denote the (positive)
minimum of ¢,(z) on the (compact) set D,.
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Let us now construct f. We choose an arbitrary point 2z, on |2| = ;. Ob-

viously

Az = [ e™|dz| . (2.48)

Iz]=8
If z,eD,, then we define 2z, =z, 4+ T'(z,), 2 = 2, + T'(2,), etc., until we
arrive at a point z, not contained in D,. This will always happen after a finite
number of steps. This follows from 4(z2)>0 and the inequalities (implied by
(2.47))
A(zy) — AlZg11) = Lpine™"[1 — cos (n7)]

(f=0,1,2,...), Wy, denoting the (finite) minimum of w, on 4.

Let B, denote the polygon (z,,2,,...,2,). From (2.47) (formulated for
Z = 20,%,..,%,—;) and (2.48) we conclude that
1

e1)dz| < e®1|dz 2.49
I e TR N
Assume that z,eD,. Then every minimal curve y(z,) intersects [z| = p,.
Hence there exists a rectifiable curve, joining z, with some point on |z| = g,,

and of length =< A(z,)/2 < A(z,)/2 in the metric e“'|dz|. Combined with
(2. 48) this implies the existence of a polygon f, with the same endpoints and
such that
j'e”’lldz|< § e*t|dz| . (2.50)
|z]=81
We define g = B, + B.. (2.39) follows from (2.49) and (2. 50).
If |z,|>p,, then f reduces to a portion of 8,. If z,eD;, then § consists of
f; only. In these cases (2.39) is true a fortiori.
We are left with the possibility z, eD,. This never occurs. Indeed, by (2. 38),
we have
w < w, + m, log (2r,) . (2.51)

Let 8, be an arbitrary closed square of the net X' which intersects with w,.
Then, for any ze€[|z| = s,] and arbitrary (€S,

z—¢
z— 0

¢ denoting the center of S,. Hence (2.32), (2.34) and (2.38) imply

<lo 4
€9 _L °

log

w, =v,+log2 on |z|=3s .
Therefore
- [ e)dz] =2 § en|dz] . (2.52)

1z]=28, lz|=a
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It follows from (2.51), (2.49) and (2.52) that
1+1 pmy
Jeoldz] <5 2y

2 ?
— cos (7)) |z|“;,f Hdz| -
Now, if z,eD,, this would contradict (2.29).

We thus have proved the existence of . By applying (2.39) instead of (2.49)
in the above reasoning one finds that § does not intersect D, .

With the polygon B we now associate a curve « which leads from |z| = p,
to |z| = p,. This is done by the following construction: Let Z(z) denote the
set consisting of those (1, 2 or 4) closed squares of the net 2’ which contain the
point z. We connect the endpoint z, of § on |z| = s, with the last point of
intersection 2; of B with E(z,), 2; with the last point of intersection z, of
with F(2]), and so forth, until we arrive at the endpoint of 8 on [z| = p,.
We obtain a polygon f'. Now, if g’ should penetrate into some of the disks

|z — ]l <268, (pp<l;k=1,2,...,m),

then we replace in each case the subpolygon between the first entry and the
last exit by an arc on |z — {,| = 26;. If the endpoint of § on |z| = g,
should lie in |z — {,| <26, (pr<l;k=1,2,...,m), then we follow the
circle |z — (.| = 26, from the first entry until we reach |z| = g,. The re-
sulting curve contains a portion &« which leads from |z| = o, to |z| = p, and
is contained in g, < |z| = p,. We are going to prove that

§ en|dz| §—3—2—jew1|dz|+-%5—g . (2.53)
o 3 5 3

The construction clearly implies that « does not enter any of the disks
|z — | <8, for which p, <1 (k=1,2,...,m). From (2.36) and the fact
that B does not intersect D, it follows that the same is true for p, = 1. So o
lies in K.

We decompose & = «p + &y, op consisting of a finite number of polygons,
&g of a finite number of circular arcs. We have, by (2. 30)

fen|dz| <1 . (2. 54)
g
op is composed of straight line segments «p,, &p,, . .., %p, Which are contained

in some closed squares §,,8,, . . .,S, of thenet 2. It follows from the construction
of « that these squares are different from each other. We complete the finite
sequence §;,8,,...,8, to an infinite sequence {S,} which enumerates all
squares of 2. Let Z, denote the centers of S; (: =1, 2,3,...). Some of the
Z/’s are identical with (.., {mia, ..., {, (introduced for the definition of w,),
88y Z; = Cpir> Zyy = Cmias -+ +> L4y g = {,. For the corresponding masses
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we introduce the change of notation P; = p,11, Py, = Pmyas - Piy_ s = Do)
defining P, = 0 for all other indices.

Let S; and S} denote the closed squares of center Z, with sides of lengths 3L
and (2N + 1)L, respectively. We define

A, = max w(z) and a,= min w(z)
zE(S:-r\K) ze(S;r\K)
(2.33) implies
A, —a;<log?2 . (2.55)

Further, let b,, and B,; denote the maximum and minimum, respectively, of
the function log|z — ¢|, z varying on 8}, { on S,. If 8, is not contained in
87, then we have, by (2.27)

My (b, — By) <log 2, (2.56)
Let Q; = »(87). It follows from (2.35) and the definition of d that
=% (6=1,2,38,...). (2.57)

An arbitrary point z of the plane is contained in at most (2N + 2)2 of the sets
8. From this we infer that

Q; =4(N + 1)2m, . (2.58)
We have ==l
fet|dz| < fexp {4, — 2" P By, — §log|z — {|dv(e,)}|dz]
*p; apg k=1 8y (2.59)
I~ Aif2 0
<2exp{d;, — 2" Py B} x %dxr < —3—32 exp {a, — 2" P,b;.} l}"q‘ .
k=1 0 k=1

Here, as indicated by the double prime, we do not extend the summation over
those indices & for which S, is contained in S . This estimation is based on the
representation (2. 32). In the first step we replace w(z) as well as the potential
of the masses » outside ] by a constant. Then we observe that the integral
attains its maximum when the total mass @, is concentrated in the center of
op;. This follows from an application of HOLDER’s inequality. (The reader is
referred to the proof of Lemma 1 where exactly the same reasoning has been
reproduced in full detail.) Finally, in the third step we evaluate the integral
and make use of (2.55), (2.56), (2.57) and the inequality 2" P, < m,.

The segment «p; has been introduced as a shortcut of some subpolygon f§; of
B which, at least for a portion of length =4,, is contained in S;. By (2.36) and
the construction of &, S;cK (¢ =1,2,...,r). Hence

3 Commentarii Mathematici Helvetici
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Here w(z) as well as the potential of the masses » outside S; have been replaced
by a constant. The potential of the masses on S; has been neglected. (We are
allowed to do this because of the second relation of (2.35).)

From (2.59) and (2.60) we conclude that

1—
A% — 5,

f e |dz| S———er“’lleI +-——eXP {a, —2"Pk wt@—Qg— (2.61)

apg
32 w 32 oo” - .
§—3—é’;e lleI +—3'—6XP {a'i —kél Pkbik}QiA’i I].Og Z’il (’l;=1,2’ _..,7-).

The first step is obvious. In the second inequality we make use of the mean
value theorem of differential calculus, (2.57) and the inequality 4,<<1 which
is implied by the second relation of (2.35). We observe that the final estima-
tion in (2.61) is also valid if @, = 0, although in this case the intermediate
step has no meaning.

Obviously
o, <M (=1,2,...,7), (2.62)
M denoting the maximum of w(z) on K.
It is easy to verify that
2" P,b,, = }log (NL) + m, log d . | (2.63)
k=1

We have, by (2.62), (2.63), (2.37) and (2.58)

4 - r
Zexp {a; — 2" Pyb,;} @, }.?/“|10g Al =2 eM(N L)—1/4d~m1Qi l%"llog Al
k=1 i=1

i=1

r 9 (2.64)
< 2‘_£Q,e“‘N“1"d—m A% log 4] < IS Z'Q, <8.
We add the inequalities (2.61) and obtain, by (2. 64)
j'e”lldzl S—-——-g 1|dz |+~2—§—§ (2.65)

(2.53) follows from (2.54) and (2.65). Since (2.26) is implied by (2.53),
(2.39) and (2. 52), this completes the proof of Lemma 3. Theorem 1 is a conse-
quence of Lemmas 2 and 3.

Proof of Theorem 3. If there exists a subcompact of 2, which intersects
infinitely many y,,, then Theorem 3 follows immediately from an application
of Lemma 2. Otherwise we may suppose that (eventually after extraction of a
subsequence) the interior regions of {y,} tend monotonically to £2,.
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We distinguish between two cases depending on whether £, is parabolic
(i. e. identical with the entire plane) or hyperbolic.

(I) Let 2, be parabolic. If ®(I')<—1, then Theorem 3 is superseded by
Theorem 1. We complete the proof of Theorem 3 for parabolic £, by showing
that in the remaining case the hypotheses are incompatible:

Lemma 4. Suppose that Q2 is the entire plane and that ®(I')>—1. Let

{yu}, n=1,2,2,..., be a sequence of rectifiable JornAN curves whose interior
regions tend increasingly to 2,. Then
lim [ e*?|dz| = 400 . (2.66)
n—> ¥Yn
Proof. There exists an index N and a number #>0 such that
B(uy, a3 I) — Bo(I)<—1 + 1 (2.67)

for all » = N. We choose a circle y = [|z| = R] which encloses yy. Let w,
denote the annular region bounded by ¢ and y,, n being arbitrary but suffi-
ciently large so that |z| < R lies within y,. The theory of F. Riesz [27] im-

plies 1 oh,
9w | 3, 1% = Pluy,y; I) (2.68)
and
1 oh
8

for every smooth JORDAN curve § in w, which encloses y. Here %, and A, denote
the best harmonic majorants of «, and u,, respectively, in w,,, and » designates
the outer normal. We define

h(z) = hy(2) — hy(2) (2.70)
and conclude from relations (2.67) to (2.70) that
1 oh
8

There exists a (uniquely determined) conformal representation z = ¢,({) of
a (suitable) circular ring R<|{| <R, onto w, such that ¢,(+ R)= +R.
We introduce the function

k() = h(@a(2)) + log| ¢ (2)] -

h, is harmonic in R<|{| <R, and we have
[ 141 = [riaal (2.72
o

on
y
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y and 0 denoting arbitrary smooth JORDAN curves, not null-homotopic and
lyingin R<|{|<R, and w,, respectively. We state that

+n 4+ Q2 +n
TR oI 1 [ oh,(0e'?) do
fhn(eze P)de —fhn(ele ?)dy + 2%_[[2” Framld hve

('$1 it

o
;_j; k,(0,€*%)dp + 27(— 1 + n)(log 0, — log ¢,) (2.73)

>4 + 2a(—1+mn)loge, (BR<e<ea<R,) ,
where 4 is a constant not depending on 7, ¢, and g,. In this inequality we

first apply (2.71) and (2.72). Then we let p,—~R. We complete the proof of
(2.73) by showing that the limits

+n
L,=1m | k(0,e%dp (n=1,2,3,...)

@1—>R —=n
exist and are uniformly bounded. To this end we consider the function
hi(2) in o,

U,(2) =
ul(z) on 7’ b (A ’ 7’) ’

which is defined and subharmonic throughout the annulus (4, y,). The con-

formally transplanted functions, ﬁm(é‘) = U (¢.(0)), n=1,2,3,..., are
subharmonic in circular rings R, <|{|<R, (B,<R). It is well known (see
e. g. [25, p. 8]) that the arithmetic mean of a subharmonic function on con-
centric circles is a continuous function of the radius. Consequently

1
Lim - | I hy(9n(0:6%%)) dp = hmR—— i Usnlesetv)dy

e1—>R 2
] +a
= om __J; U,n(Re*®)dp = — f ’“q(% (Re'?)) do .

An analogous relation holds with index 2. By subtraction we obtain

+n

hmR 5 h(p.(0,€*9)dp = [ u(p,(Re'?))dyp . (2.74)
Q1—> -7 —7
Furthermore

lim flogl%(ele“’)ldw Ilogl%(Re"’)Idw, (2.75)

e1—>R —=

since g, is analytic on |{| = R. From (2.74), (2.75) and the definition of 71,,,
we infer that

+= +n
L, = fu(p,(Be'?))dp + [log|g,(Ret?)|dp (n=1,2,3,...). (2.76)
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We have yet to verify that the sequence {L,} is bounded. Actually we shall

prove more, namely ‘ i
lim L, = [u(Re'?)dyp . (2.77)
n—>o0 -7

we first observe that (2.77) will be an immediate consequence of (2.76) after it

has been shown that

lim @, (¢) = ¢ (2.78)

n—>0oo

(and, consequently, lim ¢}, ({) = 1), uniformly on |{| = R. Indeed, then

f—>o0
+= +n ~1 i 4=
lim | u(@,(Re'?) dp = lim [ u(Ret¥) I Mil\dw = [ u(Re¥)dy,
f—>00 —xn n—>o00 —mn dz -

whereas the second term on the right-hand side of (2.76) tends to 0 as n—>oco.

In order to prove (2.78) we first extend the definition of ¢, () by reflec-
tion at |{| = R. The resulting function is schlicht in R?/R,<|{|<R,, and
it maps |{| = R onto |z| = R. We mention that R,—>co as m->oco, due to
the fact that w, tends to R<|z| <+ oo.

By making use of CANTOR’s diagonal process we select a subsequence {g}}
of {¢,} which converges at an enumerable set of points possessing limit points
in both 0<|{|<R and R<|{|<-+oo. {gr} is normal [7, pp. 176, 179] in
these regions. Hence, by a theorem of VITALI [7, p. 186], it converges there,
uniformly on every subcompact. From this we conclude that {p.} converges
even in 0<|{| <+ oo, uniformly on every subcompact. The limit function ¢
is either schlicht meromorphic or a constant [7, p. 193]. The latter possibility
can immediately be excluded, since convergence to a constant, uniformly on
|| = R, is incompatible with the fact that ¢, maps || = R onto |2| =R
for all n.

The image region has to be of the same conformal type as 0<|{| <4 oo.
Furthermore, it follows from results of A. HurwiTz [7, pp. 191-192] that ¢
does not assume the values 0 and co. Hence 0<|{| <-4 oo is mapped onto
0<|2z|<+oo and ¢ is necessarily a linear transformation. The points 0, oo
and -+ R are fixed. Consequently, ¢({) = .

Finally, if {@,({)} does not converge to {, then {g}} can be chosen such
that, for some £, (0<|&,| <+o0), lim ¢} (&) = &; 5% £,- We thus obtain a

Nn—» o
contradiction, since the above reasoning yields lim ¢} (Z,) = {,. This com-

pletes the proof of (2.78) and, with it, of (2.73). *—>*
By the theorem of the arithmetic and geometric means [15, p. 137|

tx oo 1 v
J exp {hn(02¢'%)} 02dp = 2704 0XP |5 hn(eae"”)dsv} : (2.79)

-7
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Furthermore
lim SupI exp {hn(0:¢**)} 0adp SI e|dz| . (2.80)
Q2—>Rn —n
This relation will be verified in the proof of Lemma 5 (see formula (2.130)).
By (2.73), (2.79) and (2.80)

f ev|dz| = 2ned® RD . (2.81)
Yn

(2.66) is implied by (2.81), since RB,—»>oco as n —>oo.

(IT) Let 2, be hyperbolic. Again we may suppose that the interior regions of
{y.} tend increasingly to 2,. Furthermore, we assume that @(I") = + oo,
since otherwise Theorem 3 is superseded by Theorem 2. Then there exists an
index N such that

D(uy, yy; ') — Do (') >0 (2.82)
and

' 1
¢2(F)_¢(u237N;P)<—1-6' s (283)
Let n> N be arbitrary. Theorem 3 (for the case remaining to be treated) is an
obvious consequence of Lemma 2 and the following result:
Lemma 5. There exists a rectifiable curve o, , leading from yy to v, , such that
M

o}’; eldz| < sin (7/8) cos (n/32) ~ (2.84)
Proof. By F. Riesz [27, II, p. 357] the representations
uy(2) = hy(2) — § g (2, O)dpy () (2.85)
and e
Uy (2) = hy(2) "“.of g(z, C)dﬂz(eg) (2.86)

hold in the annulus o = (yy, ¥,)- Here A, and &, denote the best harmonic
majorants of %, and u,, respectively, in w and g is GREEN’s function for this
region. The theory of F. Riesz implies further that

oh,

D (uy,yn; I') S——— »ldz] < B(uy,y,); T) (2.87)

and ”

oh
D(ug,yn; I') = =

leI S¢(u2’7'nar) (2‘88)
";
for every smooth JORDAN curve y in w which encloses yy - n denotes the outer
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normal. We define

h(z) = hy(2) — hy(2) (2.89)
and introduce the abbreviation
oh
]
« does not depend on the choice of y. (2.85), (2.86) and (2.89) imply
u(z) < h(2) + [ gz, O)dpaley) - (2.91)
From (2.83) follows @
1
,us(w)<——ﬁ;- . (2.92)

We begin with the special case where y, and y, are circles |2| = Ry and
|2] = R, (0<Ry<R,<+o0). We state that
5 M

" u(x)
le;'e v = sin (7/8) cos (7/32)

(2.93)

More generally, (2.93) holds if the integration is extended over any radial seg-
ment (Rye®®, R,e*®), 0 < @ <2x. First we prove (2.93) under the additional
assumption that the measure u,(e,) is concentrated in one point {,. We have,
for positive real z

g(x’ Co) ég(x’lcol) . (2°94)

This estimation can be verified by considering, for fixed x, the FOURIER expan-
sion of g(x, {,) on the circle |{,| = const. We conclude from (2.91), (2.92)
and (2.94) that, for positive real x

u(z) < b(2) + 1590 L) - (2.95)

If we slit w along the negative real axis we obtain a simply connected region
w’'. We define
f(z) = exp {(h(2) + th*(2))/2} , (2.96)

where A* is conjugate harmonic to A and, for example, A*((Ry + R,)/2) = 0.
f is regular analytic in ’. It can be continued into w as a multiple-valued
function with (multiplicative) period ™. We consider

@(2) = 27%%f(2) , (2.97)

defining 2~** to be positive real on the interval (Ry,R,). ¢ is analytic in o’
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and can be continued into w in a unique way. There exists a decomposition of
the form
P(2) = @1(2) + 19:(2) , (2.98)

where ¢, and @, are analytic and one-valued in w, real for real z. Indeed, just
put @,(2) = Za,z* and @,(2) = 2b,2¥, where X(a,+ ¢b,)2* is the LAURENT
expansion of ¢ in w (a,,b,real; k=0, +1, +2,...). From (2.97) and
(2.98) we conclude that f admits the decomposition

f(2) = f1(2) + ifa(2) , (2.99)
where f, and f, are analytic in o' and
argfy =argf,=0 (mod =) (2.100)
on (Ry, R,). Furthermore, on (— Ry, — R,) we have

arg f, = arg f, = nx/2 (mod =) (2.101)
or
arg f, = arg f, = — nx/2 (mod =) (2.102)

depending on whether the real axis is approached from above or below. For
real z

If(2) 12 = |fr(®)|* + |fa(2)]? . (2.103)
We further have, for —a<t<+x and Ry<r<R,

Fre®)[* = Iy (re®) 2 + 1fulre®) |2 + i Lfy (re=falre®) — fi(re®)fa(re=)] .

Since the bracket contains an odd function of ¢, it follows that

-+

n 4+
J1fre®)|2dt = § (1fy(re®)|* + |fa(re)|?)de (2.104)

-7

for Ry<r<R,. Let 0" = w~[Imz>0]. Let g*(z,|{,|) be conjugate har-
monic to ¢(z,|{,|) in «”, satisfying

g¥(2,|L]) =0 for Ry<z<|&l . (2.105)
We then have
g¥(x,| L)) =n  for || <x<R, (2.106)
and
0<g*(z,| Lol) <n (2.107)

throughout «”. We define

F,@) = fie)exp [5p 9| Gal) + ig*@lta]] . (2:108)



On subharmonic functions and differential geometry in the large 41

We state that

. s 2 oxpl L
sin (7z/8) cos (”/32)r{, |y ()] eXP{ 16 7 (@l Col)} dz (2.109)

< rw exp {1 0w, G| {1 Cwe ) 2t + 7y 30 |5 0001 o) flAtrae

for any two radii ry and r, (Ry <ry<r,<R,). For the proof of this relation
we distinguish between two cases: ‘

(A) |x — q| = 1/4, where q denotes the or one of the odd integers nearest to x.
(B) There exists an odd integer q such that |o — q|<1/4.

Case (A): We apply CAuCHY s integral theorem to F',. We integrate along the
boundary of w” (described in the positive sense), replacing the circular bound-
ary by the approximating circles |2| =ry and |z|=7r,. At first we by-
pass {, on a small semicircle of radius ¢. But we observe that the integral along
this semicircle tends to 0 with €. So we have

Il+I2+Ia+I4=O, (2-110)

where 1,, I,, I, and I, denote the respective integrals along (ry,| Col), (| Col, 7)),
(—r,, —ry) and the two semicircles. (2.100), (2.105) and (2.108) imply

argl, =0 . (2.111)
By (2.100), (2.106) and (2.108) we have
arg I, = n[16 . (2.112)
From (2.111) and (2.112) we infer

|1, + | = cos (#/32)(| 1] + | 1,]) - (2.113)
We further have
0 <arg (I, + I,) <=/16 . (2.114)

From the assumption that |« — ¢| = 1/4 (¢ denoting the or one of the odd
integers nearest to «), (2.101), (2.107) and (2.108) we conclude that argl,
distinguishes itself from the nearest odd multiple of = by at least 3x/16. Con-
sider the triangle with sides I, + I,, I; and J, in the complex number plane.
Since the angle between I, + I, and I3jis =x/8 we obtain the estimation

| 4] gsip (7/8)| 1y + 1| . (2.115)

From (2.113), (2.115) and the property (2.94) of Green’s function it follows
indeed that
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s (n]8) os (w/52) § 11, ()]Pexp |9 oD o
*N

= sin (#/8) cos (#/32)(| 1| + |14]) < [14]

< rw oxp |00, 8o utewet)
+ ruoxp |10 | 6D f I Cae P

Case (B): From (2.82), (2.87), (2.88), (2.90) and the inequality |« — ¢q|<<1/4
we conclude that ¢>0.
We first make the additional hypothesis that f, # 0 on

D=[ry Slz| <r]~[Imz 2 0] .

Our method is again based on an application of CAucHY’s integral theorem to
the function #,, but this time we do not integrate along the boundary of D.
(The previous argument breaks down because it does not yield any more an
inequality of the type (2.115)).

We state that there exists an analytic curve v with the following properties:
(a) 7 is contained in D and leads from |z| =r, to |z| = ry, (b) arg[f2(2)dz]
=0 along 7.

In order to verify the existence of v we decompose the function log f2 into
its real and imaginary parts, log f2 = H,(2) + ¢ H;(z). With every point z on
D we associate the unit vector exp {— ¢ H;} (z)}. The thus defined vector field
has no singular points, since f; % 0 on D. Through every point z on D there
passes exactly one streamline (i. e. solution of the differential equation

dz/dt = exp {— i H} (2)}) ,

which begins and ends on the boundary of D. Obviously, arg[f3(z)dz] =0
along these lines. They are analytic since the conformal mapping w = f f3(z)dz

4
transforms them into straight lines. So the existence of = will be assert:ed if we
can verify that at least one of these streamlines leads from |z| =7, to |z| =1ry.

On the intervals (ry,r,) and (—r,, —ry), Hf = 0 and H} = nax, re-
spectively. Since ¢ =1, x>$. The continuity of H; and the relations
Hf(ry) = 0, HY(—ry) = mna>3n imply: There exists at least one open sub-
arc § = [@,>6 = arg 2> 60;] of the semicircle

Cy = [I2| = ryl~[Imz 2 0]
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with the following properties:

(a) H¥(ryei®)= — 0, + —3—2—75 (mod 2x) ,

(b) HY(rye®) = — 0, + -’—2‘- (mod 27) ,

() —6+ %’f_ >H¥(rye®)>— 6 + —g— (mod 2x)
for all @ in S.

Since Hj (rye®) is of bounded variation in @, there exists but a finite
number of such arcs. We denote them by §,,8,,...,S,, and suppose that
they have been arranged in such a way that @,_, ,>0,, (¢ =2,3,...,m),
where S, = [@,;>0>0,,]. In each §, there is (at least) one point @,, at
which H; (rye®%) = — @,, + 7 (mod 27).

The geometrical meaning of these conditions is the following: At rye
and at rye*®%: the field vector is tangential to Cy, directed away from S,.
It points into |z|<ry at all points in S, and is, in particular, normal to Cy
at rye®o |

We are now going to prove that at least one of the m streamlines ending at
ryet®o, ryoe®o roei®m must begin on |z| =r,. This will complete
the existence proof for .

We state that H} (rye'®*) = nqg — ©,,. Indeed, otherwise

Hf (rye®0) < (g — 2) — O.
From this would follow
, 3
Hi(ryeow) < (¢ —3) = a1 |

'i@kl

which, in turn, would imply the existence of at least one S, between — 7, and
rye*®11, contrary to hypothesis.

Let z, be the point at which the streamline y ending at rye'® begins. We
consider all possibilities:

(a) |2o| = r,. Then there is nothing left to prove.

(b) =z, positive real. This never occurs because the positive real axis is itself
a streamline.

(¢) 2o =rye'® (0,,>60,>0). It is easy to verify that argdz increases
by at least "'725' + 0, — 0, if we follow y from z, to 74¢'®°. From this, the

inequality HY(rye'®*) >ng — @,, and the fact that arg[f}(2)dz]=0
along y we conclude that Hj(z,) = =(q + 4) — ©,. Hence, there exists at
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least one more S, between z, and r, . Furthermore, we have again
H’lk("Nemh)'z ng — Oy .
(d) zo=rye® (@>0y>0,,). It is easy to see that argdz decreases by

at least —;—;— + @y — 0,, if we follow y from z, to r,e*®0. Hence

H} (ryei®n) — HY (z,) g%‘ + 6y — 0y .
Furthermore, H; (2)) =7(q + 3) — ©,. (Otherwise, since the vector
exp{—iH; (2)} points into D, we would have Hj(z,) <n(q — }) — O,.
But this would imply the existence of an S, between —ry, and z,, contrary
to hypothesis). We conclude that Hj(rye®*) =n(¢ + 1) — 0,,. But,
knowing that Hf (rye'®?°) 4 @,, is an odd multiple of =z, we infer that even
H (rye®9) = n(q 4 2) — 0,, is satisfied. Consequently,

, 3
HY (ryei®s) = :rr,(q "I‘“é*) — 0, .

So there must exist a second arcS, and we have Hy (ryei®*) = nqg — @,.

(e) 2, negative real. The previous argument applies also to this case and
yields the same conclusion.

As a result of this discussion we have now the following alternative: Either
(a) occurs, and then the proof is completed, or the above constructions lead to
another S, such that Hj (rye®®) = nqg — @,,. In the second case we repeat
the above reasoning. (The reader will convince himself that this can be done
without difficulty. The following trivial observation is useful in this connec-
tion: Streamlines do not intersect. Hence, for example, the one ending at
rye'® does not begin on |z| = ry between the points z, and rye*®r.) We
arrive at the same alternative again. But there are only a finite number of S, ’s.
Hence, if we iterate this argument we must meet with case (a) after a finite
number of steps. So 7 exists.

We now apply CAucHY’s integral theorem to F,, integrating in the positive
sense along the closed curve consisting of =, (ry,r,) and subarcs of |z| = ry
and |z| =r,. We have

L4+ L, +I,4+1;=0, (2.1186)

where I,, I, I} and I denote the respective integrals along (r N J1Col)s (1 Cols70)s
v and the two connecting circular arcs. From (2.107) and the fact that
arg [f3(z)dz] = 0 along 7 we infer

0 <arg Iy <n/l6 . (2.117)
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Consider the triangle with sides I, + I,, I and I in the complex number
plane. By (2.114) and (2.117), the angle between I, + I, and I}is =157/16,
Hence

JAES I S A (2.118)

It follows from (2.113), (2.118) and the property (2.94) of GREEN’s function
that

cos (n/32) [ |1, (0) *exp | 10 .| D) d = o8 (wf32) Ts] + 1Ta]) < |24
TN

< rw exp g 0w | LoD | f1fsrwe) 2+ ryexp [ 0t LoD | LA aey 1t

This inequality implies (2.109). It has been deduced under the assumption
that f, 20 on D. We now admit zeros, but still assume that f, = 0 on the
circles |z2| =ry and |2| =7r,. Let a,,a,,...,a, denote the zeros of f, on D.
We introduce the function

8
J10(?) = f1(2) Il exp {[g (z,2;) + 9(2,@,)] + 1[9*(2,a,) + 9*(2,8,)]} . (2.119)
i=1
Here g denotes GREEN’s function for the annulus ry <[z| <7, and g* is con-
jugate harmonic to g, defined to vanish at z = ry. f,,is analyticand # 0 on
D. Obviously

[f10(2)| = f1(2)] (2.120)
on |z| =7y andon |z| =7,. Furthermore
[f10(2)| 2 If1(2)] (2.121)
everywhere on D. We conclude from (2.100) and (2. 119) that
arg f,o =0 (mod =) (2.122)
(2.101) and (2.119) imply
arg fio = nxe/2 (mod m) , (2.123)

where «y>x. We can write «, = ¢, + 9,, where g, is a positive odd integer
and |9, < 1. We distinguish between two cases:

(B,) |8,|<1/4. The above reasoning can be applied to f,4(z) since this
function has no zeros on .D. We obtain relation (2.109), but with f,, taking
the place of f,. It follows from (2.120) and (2.121) that the unmodified in-
equality (2.109) is true a fortiori.

(B;) || = 1/4. By the method used in case (A) we prove (2.109), f; being
replaced by f;,. The unmodified inequality (2.109) follows as mentioned.



46 ArrrEp HUBER

We can eastly free ourselves from the assumption that f, # 0 on the circles
|z] = ry and |z| = r,. For, if this hypothesis should not be fulfilled, then we
first prove (2.109) for neighboring circles and afterwards pass to the limit.

(2.109) is also satisfied by f,. Analogous estimations hold for the lower half-
annulus. By adding these four inequalities and making use of {2.95), (2.96),
(2.103) and (2.104) we obtain

2 sin (7/8) cos (/32) }ne“‘”’dx < ry exp [-1*16"9(7' Ns| Co|)} }nlf (rwe'’)|2dt
TN -

] o (2.124)
+ raexp |0t 2ol Flrtraepoae

The best harmonic majorants h, and hk, are limits of decreasing sequences,
{hy} and {hy} (k,1=1,2,3,...), consisting of functions which are harmo-
nic in the region w, continuous on its closure. Furthermore, on the boundary
hyy N %, and hy, \(uy for k,1 oo.

Let %, I be fixed. The function |z|exp {k,;(2) — hsy;(2)} is subharmonic in
. Hence the integral

+=
L(r exp {hyy, — hg;};7) = [ r exp {hy(re’*) — hyy(re®*)}dt

is a convex function of log r. Consequently, for Ry <r<R,
L(rexp {hy;, — hy}; r) < max [L(r exp {hy, — hy;}; By),
L(r exp {hy; — hy}; R,)] .
Letting first ¥ —oco, then ! —+oco, we obtain, by hypothesis (b) of Theorem 3
L(r|f|®; r) = L(re*; r) < max [L(re*; Ry), L(re*; R,)]< M .

Since, furthermore, g(ry,|lo]) >0 for ry —>Ry and g(r,,|C]) >0 for
r,—~>R,, (2.93)is a consequence of (2.124).
Let us now proceed to general measures u,. We define

Ry
Sk =RI exp (A" () + j'gK(x,C)dyg(eg)}dx ) (2.125)
N w

where g% (z,({) = min [K,g(x,’)] and A% (x) = min [K,k(z)], K denoting
an arbitrary positive constant. We first examine the case where u,(e;) con-
sists of a finite number of concentrated masses: «,p 1 {;, asp ing,,...,x,P
in¢,, 2P« =1, ¢,>0 (¢=1,2,...,m) and p<1/16. An application of
HOLDER’s inequality [15, p. 140] and the above result yields
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R” m
I%P%ﬂ@+p2myw¢n¢r}LUWW%Wm+pQWCMW¢v
N i=1
m Rn m Rn
=1 [f exp (h*(2) + pg* (=, L) }da]™ < I [f exp{h () + pg (=, L) }da]™
1=1Ry i1=1Ry

M
= sin (z/8) cos (7/32) ~

(2.126)

One proves without difficulty that it is always possible to approximate Sy
arbitrarily close by substituting for u,(e;) a finite number of concentrated
masses of total weight p = u,(w)<1/16. Therefore, we infer from (2. 126) that

M
Sk = (7/8) cos (/32) °

(2.127)

Letting K-»oco we obtain (2.93) as a consequence of (2.91), (2.125) and
(2.127).

We now admit arbitrary rectifiable JORDAN curves yy and y,. Then there
exists a conformal representation z = @({) of some suitable circular ring
Ry<|C|<R, (0<Ry<R,<-+o0) onto the annular region w, bounded by
yy and v,, such that the boundary components y,y and y, correspond to
|¢] = Ry and |{| = R,, respectively. Then the flux @(u,y; I') is invariant
if w is transformed according to (2.8). We are going to prove that (2.84) is
satisfied if o, is the image of the interval (R, ,R,) on the é-axis ({ = & + 7).

% (L) be defined by (2.8). Obviously, (2.84) is equivalent to

M

Rn
f evds < sin (r/8) cos (7/32) °

Ry

(2.128)

All relevant quantities (e*|dz|, mass, flux) are invariant under the transfor-
mation (2.8). For this reason the proof of (2.128) is essentially an application
of the already treated special case to the function % . The only difficulty which
arises stems from the boundary behavior of ¢.

First we assume that u, is concentrated in one point. Let %,(z) and k,(2)
denote the best harmonic majorants in w of u,(z) and wu,(z), respectively.
We define h(z) = h,(2) — hy(2), f(2) = exp {(h(2) + th*(z)) /2}~ (h* being con-
jugate harmonic to ») and introduce the transplanted functions 4({) =h(p({)),
f( {) = f(9(L)). Assume for a moment that the inequalities

lim sup j Iﬁ(re“)q) (re®t)|rdt < j' e dz| (2.129)
r—>Ry —=

and
lim sup j' |f2(re?) @’ (ret) |rdt < j e*? | dz| (2.130)

r—>Rp —=
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have been demonstrated. Then we would obtain (2.128) as an immediate con-
sequence of (2.129), (2.130), Hypothesis (b) of Theorem 3 and (2.124) (u, f2
being replaced by u, fzgo’ ). Since an application of HOLDER’s inequality would
enable us again to get rid of the special hypothesis about u,, the proof of
Lemma 5 would thus be complete.

We are left to verify (2.129) and (2.130). Let {&,,(2)} and {hy(2)} be de-
fined as above, i. e. sequences of functions which are harmonic in o, continuous
on the closure and which tend decreasingly to 4,(z) and hA,(z), respectively.
Let h,, = h,;, — hy,. We introduce the functions

S (2) = exp {(hy(2) + zh’,';l(z))/2} (k,1=1,2,3,...), (2.131)

where £}, is conjugate harmonic to &,;, and define

fa©) =fulp®) (*,1=1,2,3,...). (2.132)
We state that o
limsup [ | f%, (ret) ¢’ (ret)|rdt < [ | fy,(2)[2]de| (2.133)
r—>Ry —=xn YN
and +7 o
limsup [ |73,0e)g! (el rdt < [ 1fu@IPlde] . (2,134
r—>LRpn —n n

We briefly indicate a proof of these two inequalities ®). (For more details the
reader is referred to the quoted articles.) Certain statements concerning the
boundary behavior of ¢ will have to be verified. The analogous properties of
the conformal mapping of simply connected domains are well known and we
shall make extensive use of them.

Let us first verify that ¢ is continuous and of bounded variation on the
boundary. We consider the outer boundary, [{| = R,. Let z = ¢,(w) denote
a conformal mapping of a suitable circular disk |w| <R onto the interior of y,, .
We define w = @,(¢) = ¢y (9(¢)). This function represents the domain
Ry <|{| <R, conformally onto an annulus 2 with outer boundary |w| = R.
@ has thus been decomposed into two steps, ¢ = @,(¢;({)). @, is known to be
continuous on |w| = R (for references see C. GATTEGNO and A. OSTROWSKI
[14, p. 27]). Since y, is rectifiable, ¢, is also of bounded variation. Further-
more, w = @,({) is analytic on |{| = R, because this part of the boundary
is mapped onto a circle. Consequently, z = ¢({) is continuous and of bounded
variation on |{| = R,. The same is true for the immer circle [{| = Ry.

Next we prove that ¢ is absolutely continuous on the boundary. From the
LAURENT expansion we conclude that ¢ admits the representation ¢ ({)=g¢;({)
+ @(8), ¢; and @ being analytic in |{|<R, and in |[{|>Ry, respec-

8) Professor M. Rimsz kindly suggested to us the following demonstration.
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tively. Since ¢ is continuous and of bounded variation on |{|= R, , the same
is true for ¢;;. Hence, by a well known theorem of F. and M. Rirsz [28], ¢y is
absolutely continuous on |{| = R,. Consequently, ¢ is absolutely continuous
on |{| = R,. An analogous reasoning proves the same for |[{| = Ry.

@ can be written as the PoIsson integral of its boundary values

p(0) =J K(, Z)p(2Z)|dZ] ,

where K denotes the Poisson kernel, { an interior and Z a boundary point of
Ry <|¢]|<R,. Because of the circular symmetry of the domain the kernel K
depends only on |{|, |Z| and arg({ — Z). Consequently, if we put ¢ = ge'*
and Z = Rye® (or Z = R,e**), we have 0K/09 = — 0K/ot. This relation
allows us to convert the differentiation of (K ((,Z)p(Z)|dZ| with respect to
¢ into a differentiation along the boundary (see M. Rigsz [29, p. 55]). A partial
integration then permits us to conclude that ¢'({) is given by the Porssox
integral of its (almost everywhere existing) values

L OpBrve) g ¢ (R, e't) = 1 op(R,e")

@' (Rye®) =

tRye® ot iR, e* ot
on the bounding circles. It follows that
l@" (D) = 4:(0) + 42(0) , (2.135)
where
4,() = I K (¢, Rye)| @' (Ry )| Ryds
and

+ 7
4,(0) = [ K(¢, R,e?) | ¢’ (R,e)| R, dt .

For |Z| = Ry, || - R, implies K ({,Z) -0, the convergence being uni-
form in Z and arg{. Consequently

+n
lim [ A,(re?*)rdt =0 . (2.136)
r—>Rn —n
Let K, denote the PoissoN kernel for the domain |{|<ZR,. For |Z| =R
K(¢,Z) < K,(,,Z). Hence

IA (reyrdt = | | Ko(£,2)|¢'(Z)]|dl]|dZ]
lel=r |Z]=Rn (2.137)

< §19' (Ryet) | Rydt = f|dz] .
- Yn
From (2.135), (2.136) and (2.137) we infer
lim sup j'[(p (re’t)|rdi Sj'l(p (R,e*)| R, dt = j'[dzl (2.138)

r—>Rp -—=x
4 Commentarii Mathematici Helvetici
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We state that, more generally

lim supj’ | @’ (reft) | rdt Sﬂtp (R,e") | R, dt = “dz] (2.139)
r—>Rp # v
holds for any pair of values ¢, and ¢, (—zn <¢,<t, < +z), y, denoting the
portion of y, which corresponds to the arc(R,e’,, R, e?). Indeed, suppose
that (2.139) is not fulfilled for some such arc. Then there exists a sequence of
radii {r,} —R, such that

lim !ltp (rke“)lrkdt>fl¢ (B,e*)| R, dt
k—o
and

lim [ |g! (ryet) | rydt s; |9 (Rae®)| R, dt .

k—>o00 —n

These two inequalities imply

t1+2” t1+2n
m [ |¢'(ree’)|rdt< j' |¢' (B, e)| R,dt .
k-—)oo tg

But since |¢’(r.e')| —|¢' (B,e*)| for almost all £, we have thus obtained a

contradiction to FATOU’s lemma [30, p. 29]. This proves (2.139). (2.134) is an

immediate consequence of (2.139). (2.133) can be proved by the same method.
Now, let & —-co. We conclude from (2.133) and (2.134) that

+n
lim sup f exp {h,(p(re*)) — ha(p(re™))} | ¢’ (re*)|rdt
r—>Ry —n (2.140)

= Jexp {u,(2) — hy(2)} | dz|
YN

and

+xn
lim sup | exp {h,(p(re")) — hu(p(re”))} |¢ (re*)|rdt
r—>Rn % (2.141)

< fexp {u,(2) — hy(2)}|dz] (I1=1,2,3,...).
’n

Indeed, the symbol ,, > in either of these inequalities leads to a contradiction:
An easy argument then yields the conclusion that, for any fixed ! and suffi-
ciently large k(l), the integral on the left-hand sides of (2.133) and (2.134)
is not a convex function of log r. But, on the other hand, it should possess this
convexity property, since it represents the mean value of a subharmonic func-
tion.

Finally we let ! —oco. By making again use of the convexity we obtain
(2.129) and (2.130) as consequences of (2.140) and (2.141), respectively. This
completes the proof of Lemma 5.
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Theorem 1, 2 and 3 are concerned with the behavior of % near I'. Correspond-
ing results can be obtained for the neighborhood of 4. We state them without
giving detailed proofs. Let &(4) be defined analogously to @(I"). (Inter-
change I"' with 4 and assume that n designates the inner normal in all defini-
tions.) Suppose that @(4) exists.

Theorem 4. If ®(A)<+ 1, then there exists a locally rectifiable path ¢ in Q,
tending to A, such that (2.7) is fulfilled.

Theorem b. If A contains more than one point, and if @ (4)<-+oo, then
there exists a locally rectifiable path o, tending to A, such that (2.7) is satisfied.

Theorem 6. Suppose there exists a sequence {y,}, m» =1,2,3..., of recti-
fiable Jorpan curves, enclosing A, in 2 and a number M such that

(a) {y.} comes arbitrarily near to A,
(b) fet|dz|< M forallmn.
Yn

Then, if ®(A) % + 1, there exists a locally rectifiable path o, tending to A4,
such that (2.7) is fulfilled.

These results follow from the previous ones by an inversion. We mention
that Theorems 4 and 6 can also be obtained as corollaries of Theorems 8 and 9
(section 4), respectively.

We conclude this section with a remark concerning a special case. Let
w = f(2) be a (not necessarily single-valued) complex analytic function which
is defined and 40 throughout £ except possibly at a (finite or infinite) num-
ber of isolated points a@,,a,,as,.... Suppose that in the neighborhood of
these f admits the representation

f@)=(—a)?9(z) (k=1,2,3,...),

where ¢ is regular and #0 at a,, and p, denotes an arbitrary real number.
(In particular, f may be of the form [#(z)]}, where F denotes a meromorphic
function and A is a real number.) Then the (single-valued) function

u(z) = log|f(2)]

is harmonic throughout 2 except at a,,a,,a,,..., where it possesses isolated
logarithmic singularities. Hence w admits the representation (2.1). Let y de-
note a JORDAN curve in 2, enclosing 4, which does not pass through any of the

a;’s. Then 1
¢(ua7; P) = E;Jd[a‘rgf(z)] ’

y being described in the positive sense. Since €"**|dz| = |f(2)||dz|, Theo-
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rems 1 to 6 thus imply certain results on integrals of moduli of analytic func-
tions in the case where something is known about the variation of the argu-
ment along closed curves.
If the region of definition of f can be extended to Q,, then
D(u,y; I') = 2 py ,
apEw

where w designates the interior region of y.

3. A characteristic property of polynomials

Theorem 7. An entire analytic function w = f(z) s a polynomial if and
only if there exists a positive number A such that

JIf @) dz| = +oo (3.1)

[

for every locally rectifiable path o tending to infinity.

Remarks. It is natural to ask whether this theorem remains valid if the
class of admissible curves ¢ is more restricted. We have no results in this direc-
tion. For example, the following question is still open : Let w = f(z) be an en-
tire analytic function. Suppose there exists a positive number A such that

' +

ﬁf(ee‘@)l"‘de = +o0

1
forall @ (0 < @ <2x). Does this tmply that f is a polynomial?

One might also consider other regions of definition of f(z) instead of the
entire plane. In this respect Theorem 2 immediately yields the following state-
ment : Suppose the function w = f(z) == 0 is defined and analytic in a simply-
connected, proper subregion Q, of the z-plane. Then, given any A>0, there
exists a locally rectifiable path o, tending to the boundary I of Q,, such that

§ 17 @) de] <+-oo .

g

Proof of Theorem 7. Suppose the function w = f(z) satisfies condition
(3.1) for some A>0. Let N denote the number of zeros of f (N < +00). We
exclude the trivial function f= 0 and define (z) = u,(2) — u,(2), where
%,(2) =0 and wuy(2) = Alog|f(z)|. Let £, denote the entire z-plane. Using
the notations of section 2 we then have ®(I') = —AN. Since u does not
satisfy the statement of Theorem 1, @(I') =—1. Hence N < 1/1 <+ oo.
So f admits the representation

f@) = PO —ay, 3.2)

k=1
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where ¥ is an entire function and a,,a,, ..., ay are the zeros of f. The func-
tion 2
(= g@z)=fe "4, (3.3)
0

yields a conformal mapping of the finite z-plane onto a RIEMANN surface R
without branch points, extending over the (-plane. We have to distinguish
between two cases

(a) R coincides with the entire finite plane. Then ¢ = ¢(2) is necessarily an
entire linear function. So y(z) is a constant and, therefore, f(z) is a polyno-
mial.

(b) There exists a finite point {, with the following property: On some sheet
of R the half-open segment ((t) = {,¢ (0 <¢<1) belongs to R, whereas £,
lies on the boundary. This segment is the image of an analytic curve o, in the
z-plane which tends to infinity. By (3.3) we have

J1e¥@|Adz| = [ |¢' (2)||dz] = | Lo] <40 . (3.4)
From (3.2) and (3.4) we conclude that

J1f@)|2]dz| <40, (3.5)
To
contrary to hypothesis. (It is understood that ¢, has to be slightly modified if
zeros of f should lie on it.)
So f must be a polynomial. The converse is obvious.

4. On complete conformal metrics defined on finifely connected,
open RIEMANN surfaces

We first give a conformally invariant formulation of Theorems 1 and 3. Let
£ be a doubly connected, open RIEMANN surface on which a conformal metric
(1.7) is defined. We assume that » admits the local representation (1.9). Let
I' and A denote the ideal boundary components of 2 and let y be a JORDAN
curve %) in £ which is not nullhomotopic.

Assume for a moment that » is of class C? and that y is analytic. Then we
define

I(e“|dz|,y;r>=yf(ke+—‘f’-,,%)ldzl , («.1)

®) The definitions of the concepts JORDAN curve, homotopic, locally rectifiable, analytic are to be
understood with respect to the underlying RIEMANN surface.
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where k, and n are to be determined as in (1.5), the orientation of y being
chosen such that I' lies on the right. The integral (4.1) (in fact, even the differ-

ential (ke + —g;:—)l dz|) is a conformal invariant. This is immediately clear

from the geometrical interpretation (1.6), but it can also be verified by direct
calculation.

In order to define I(e*|dz|,y; I') for general » and y we consider a sequence
{6z}, £=1,2,3,..., of JORDAN curves in £, chosen such that the annuli
(4,6,) tend increasingly to (4,y) as k¥ —oco. In (d;,y) we introduce a con-
formal metric e**®|dz|, defining

hie(z) = u(2) + f gx(z,0)duley) - (4,2)
@k,

Here g, denotes GREEN’s function for (d,,y) and u = u, — u,, where u, and
U5 are the measures associated with %, and u,, respectively. (It should be no-
ticed that u does not depend on the choice of decomposition or uniformizer.
Hence the integral on the right-hand side of (4.2) is a scalar. Consequently,
e*?|dz| is indeed a conformal invariant.) Let &} be an arbitrary analytic
JORDAN curve in (4,,p) which is not nullhomotopic. Then I(e**|dz|,é}; y)
is well defined. If 2 is a schlicht region in the finite z-plane, then %, (z), defined
by (4.2), is identical with the function designated in the same way in (2.4).
This is implied by the decomposition theorem of F. Riesz [27, II, p. 357]). If,
furthermore, I" denotes the outer boundary of £, then, obviously

I(e**|dz|,8%; ) = 27 [D (A, 65 9) + 1] . (4.3)

We observe that I(e**|dz|,d,;y) does not depend on the choice of &}, this
being true for the right-hand side of (4. 3). We further conclude from (4.3) and
the existence of the limit (2.4) that

I(e*|dz|,y; I') = lim I (e**|dz|, 6%; y) (4.4)

k—>00

always exists, being finite and independent of the choice of {§,}. Clearly
I(e*|dz|,y; ') = 2x[P(u,y; I') + 1] . (4.5)

These relations hold under the above mentioned special assumptions. But 2
can always be mapped conformally onto a schlicht annulus such that I" cor-
responds to the outer boundary. Furthermore, since I (e**|dz|,d;;y) is a con-
formal invariant, the existence of I(e*|dz|,y; I') is thus assured in any case.

Now, let {y,}, 1=1,2,3,..., be an arbitrary sequence of JORDAN curves
which are not nullhomotopic and such that the regions (4,y,) tend increas-
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ingly to 2 as | —>oo. Assume that the limit
I(I'y = lim I (e*|dz|,y,; I (4.6)

l—>o
exists for any such sequence, admitting the values +oco and —oo. Of course,
I(I') is necessarily independent of the choice of {y,}.
From (4.5) we infer that

I(I) = 2z[®(I) + 1] (4.7)

in the case where 2 is a schlicht region and I'" denotes its outer boundary.
Since I(I') is a conformal invariant, this relation gives rise immediately to
the following extensions of Theorems 1 and 37):

Theorem 8. If I(I')<O0, then there exists a locally rectifiable path o, tending
to I', such that | €*?|dz| <+ oo.

Theorem 9. Suppose there exists a sequence {y,}, n=1,2,3,..., of lo-
cally rectifiable Jorpan curves which are not nullhomotopic and a number M such
that

(@) {y.} comes arbitrarily near to I,
(b) [e*@dz|< M foralln.
Yn

Then, iof I(I') 5 0, there exists a locally rectifiable path o, tending to I", such
that [ e*@|dz| <+ oco.

After this preparation we take up the concepts developed in the introduc-
tion. Consider an open RIEMANN surface S on which a conformal metric (1.7)
is defined. Assume that u admits the local representation (1.9). We define: The
metric ¢*@ |dz| is said to be complete if [ e*?|dz| = + oo for every locally

rectifiable path o which tends to the ideal boundary of §.

Theorem 10. Let S be a finitely connected, open Riemanw surface on which a
complete conformal metric e*@|dz| is defined. Suppose that the curvatura in-
tegra C exists. Then C < 2my, where y denotes the EvLer- PoiNcARE charac-
teristic of S.

Remark. This is a result of S. CoEN-V0ssEN (Satz 6, p. 79in [10]) in extended
form. (For further comments see introduction.)

7) The meaning of “c tends to I'”’ and of * {yp, } comes arbitrarily near to I'”’ has been defined in
section 2 for schlicht annular regions. It is clear how these definitions have to be reformulated for
arbitrary RIEMANN surfaces.
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Proof. S is homeomorphic to a closed surface from which a finite number
(say N) of points have been removed?®). There exists a subcompact K of S,
bounded by N JORDAN curves, 4,,4,,...,4y, such that the open set § —K
consists of N doubly connected components, 2,,0,,...,2y. Thereby each
£, is bounded by 4, and a second (ideal) boundary component I',. Let y, be
an arbitrary JORDAN curve in £, which is not nullhomotopic with respect to 2,
(r=1,2,...,N). Let X2 denote the subregion of § whose boundary consists of

Y15+ Yy—1 and yy. We are going to prove the GAuss-BoNNET formula ®)
N
2ap(X) + 27y = X 1(e*|dz|,y,; I,) . (4.8)
r=1

Assume first that u is of class Oy and that y,,..., yy_; and yy are analytic.
Consider a triangulation of the closure of X consisting of analytic arcs. Let 7',
denote the interiors, B; the boundaries, and «;; (I = 1,2,3) the exterior angles
of the triangles (j =1,2,..., M). We may suppose that one and the same
local uniformizer can be used in a neighborhood of 7';-B;. By GAUss’s theo-
rem and the definition of %,

3
JjAudx,dy,+2n——2’oc,,= f(k + )ldz,[ G=1,2,..., M),
i =1 g
7
if we integrate along B, in the positive sense We add all these relations. Be-

cause of the conformal invariance of (Ic + ) |dz| , and the coherence of

the orientation most integrals on the right- hand side drop out. Furthermore,
the EULER-PoINCARE characteristic y of S appears in a well known way. We
obtain
N
_g_f Audzdy + 2ny =2 (k + )Id | »

r=1
Yr

i. e. relation (4.8) for the considered special case.
We now proceed to the general case but still assume that the y,’s are ana-
lytic and free of mass. Without losing generality we then may suppose that the
M

entire ,,skeleton’ of the triangulation, L = U B, , is free of mass. Let {D,},
j=1

k=1,2,3,..., beasequence of regions, tending decreasingly to L as k —oo,

each of which is bounded by M + N JoRDAN curves lying, respectively, in

T.,.,Ts,....Tx, y1,11), ¥, 13), ..., (yy,I'y). Consider the conformal metric

8) of. B. v. KERERJARTS [19, chapter 5].
%) For the functiontheoretical aspects of the GAUss-BoNNET formula see also R. NEVANLINNA

[21).
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e?*@|dz| in D,, defining
H; (z) = u(2) +D{Gk(z:&.)dﬂ(e§) , (4.9)
where G, designates GREEN’s function for D,c (k=1,2,3,...). Then

faHk]dz,|+2a—Za,, f(

Bj Bj

and, by addition

)ld,l G=1,2,..., M),

z aH 2 (Ic + aH")ldl (4.10)
)'r
We state that
k—>o0 on
Bj
and
; aHk
lim [k, + |dz| = I(e*|dz|,ys; I’ (r=1,2,...,N). (4.12)
k—>o0

Yr

In order to verify (4.11) we introduce (for a fixed §) a sequence of doubly con-
nected regions {&,} which are bounded by analytic JORDAN curves and tend
decreasingly to B,. Consider the conformal metric e**®|dz| in E,, defining

hi(2) = u(2) +E{ g (2,C)duley) (4.13)

where g, denotes GREEN’s function for £, (k= 1,2,3,...). From the results
of F. Riesz [27] one concludes without difficulty that

ahk

lim
k—>o0

(4.9) and (4.13) imply

o O P

By (4. 15)

1 [9Gy(2,0)
2nf on, ]dzll <1 (4.16)
B

1 [ 0g,(2,0)
2%5[ = |dz|| <1, (4.17)
i

|dz;| = 2mu(T,) . (4.14)

Obviously we have

and
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if we interprete these integrals as fluxes. From (4.15), (4.16) and (4.17) we
infer that
l15:

The right-hand side of this inequality tends to 0 as & —>oco, because u(L)
= u(B;) = 0. Consequently, (4.11) follows from (4.14) and (4.18). (4.12)
can be demonstrated in a similar way.

M

Since X u(T,) = p(X) , (4.11)and (4.12) allow us to conclude that (4.8) is

j=1
the limit ,of (4.10) as k& —oo.

In order to get rid of the hypotheses that the y,’s are analytic and free of
mass we exhaust an arbitrary X by an increasing sequence of regions whose
bounding curves satisfy these conditions. Relation (4.8), formulated for X', is
immediately obtained as the limit of the corresponding equalities already veri-
fied for the subregions.

From (4.8) one can conclude that the limits I(I',), r =1,2,..., N, exist.
(This is a consequence of the existence of C = — 2xu(S) and proved by let-
ting an arbitrary one of the y,’s move to the boundary while all others are kept
fixed.) Now, if X tends increasingly to S, then (4.8) yields in the limit

aH,  oh,
( on an)ldz”

= 2n[p(Hy) + pn(Dy)] - (4.18)

i

N
C=2ny—2I(I,) . (4.19)
r=1

From Theorem 8 and the completeness of the metric we infer that 1(I,) = 0
for r=1,2,..., N. Hence, by (4.19), C < 2xy. Q.E.D.

Theorem 11. Let S be a finitely connected, open Riemany surface on which a
complete conformal metric €*?|dz| is defined. Suppose there exisis a sequence
{Va}, n=1,2,8,..., of locally rectifiable Jorpan curves with the following
properties:

(1) they are not nullhomotopic,

(2) their lengths [e*®|dz| are uniformly bounded,
Yn

(3) {y.} comes arbitrarily near to every boundary component of S 1°).

Assume further that the curvatura integra C exists. Then C = 2my, where x
denotes the KuLer- Porncarg characteristic of S.

Remarks. This result implies a theorem of S. CoEN-V0SSEN (Satz 7, p. 79 in
[10]) which states that C = 2zy for every finitely connected, open, two-

10) i, e. the y,’s penetrate into each 2, , r = 1,2,...,N, for any choice of K.
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dimensional RIEMANNian manifold whose curvatura integra exists and which
does not possess a so-called “eigentlicher Kelch”. By going back to the defini-
tion of this concept and using the notations introduced for the proof of Theo-
rem 10 one arrives to the following formulation of CoEN-VO0SSEN’s hypothesis:
Let
m(R2,) = inf [fe*“|dz]|] ,
Y 7

admitting to competition all locally rectifiable JORDAN curves in 2, which are
not nullhomotopic. A sequence {y,} of such curves is called a minimal se-
quence of Q, if

lim fe*@|dz] = m(Q2,) .

n—>w Yn
ConN-VosSEN postulated that, given an arbitrary subcompact K, of S, there
should always exist a connected subcompact K, containing K,, such that all
components 2,, r=1,2,..., N, of § — K have the following property:
Each minimal sequence {y,} of 2, comes arbitrarily near to I,.

It is clear that CorN-V0SSEN’s hypothesis is stronger than ours. The ordi-
nary circular cylinder imbedded in 3-space is a trivial example of a manifold
to which our result applies while COHN-VOSSEN’s theorem does not.

The following statement is also a corollary of Theorem 11: Let M be a finitely
connected, complete, open, two-dimensional Rremanwnian manifold whose curva-
tura integra C exists. Suppose there exists a sequence of subcompacts, tending in-
creasingly to M, the boundaries of which are of uniformly bounded length. Then
C = 2ny. Professor H. HOPF points out to us that if we make the additional
assumptions that M is analytic and has everywhere non-negative curvature
(and is therefore necessarily simply connected), then this result follows from
two theorems of F. F1ALA (Theorems A and D, pp. 299-300 in [12]) and the
previously mentioned result of COEN-VOSSEN (Satz 6, p. 79 in [10]).

Proof. If infinitely many of the y,’s would intersect K, then a reasoning
quite similar to the one used in the proof of Lemma 2 would yield a contra-
diction to the hypothesis of completeness.

Hence only a finite number of y,’s intersect K. From this we conclude that
each Q, contains a subsequence {y} of {y,} which comes arbitrarily near
to I',. Therefore, by Theorem 9 and the completeness of the metric, I(I,) = 0
for r =1,2,..., N. Consequently, by (4.19), C = 2zny. Q. E.D.

Theorem 12. Let S be a finitely connected, open Riemany surface on which a
complete conformal metric e*@|dz| of finite total area A = [f e**dxdy is de-
S

fined. Suppose that the curvatura integra C exists. Then C=2my, where x de-
notes the EuLer-PoincarE: characteristic of S.
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Proof. Again we make use of the concepts introduced for the proof of Theo-
rem 10. Considering an arbitrary one of the regions 2, we shall prove that
I(I',) = 0. This, combined with relation (4.9), will demonstrate the theorem.

The region (, is conformally equivalent to a schlicht circular ring in the
z-plane, R, <|z|<R,; (0<R,<R,; < + o0). We distinguish between two cases
depending on whether R, is finite or infinite. Let us begin by showing that the
first possibility cannot occur.

(I) Ry;<+oco. Let R (R, <R<R,) be chosen arbitrarily. By ScHWARZ’s
inequality

R 2n . 2z R ip R 2n R .
I Jeue™ odedp = B, [[ [N do]dp 2 5 f[ e+ do]dy
1 0 Ry R — -Rl 0 Ry

27 R L. B (4.20)
=_—""L [ inf uieet) dol2 |
- R — R [0<];l?<2n le el

Furthermore R .
lim[ inf [esee*®Hdp]= 400, (4.21)

R—>Ry 0 9¢<2n R;

since otherwise an application of Lemma 2 would yield a contradiction to the
completeness of the metric. It follows from (4.20) and (4.21) that

jj' erudrdy = + oo ,
contrary to hypothesis. Hence R, = -+ oo.
(II) Ry = +4oo. Since
gj‘ e2uee’®) pdodp <+ oo ,
r

there must exist a sequence of radii {p,} —>oco for which

3’ e2u(0n6'¢) On dqg < __!'_
(1] Qn

Hence, by ScHWARZ’s inequality
2n . 2x .
[f evtenc®® o, dp]* < 2mg, [ e2utenc’® g, dp <2 .
0 0

Now we apply Theorem 9, letting v, = [|z| = ¢,] and M =V 2x. It follows
that I(I',) = 0. This completes the proof of Theorem 12.

We mention that there exist finitely connected, complete, open, two-dimen-
sional RIEMANNian manifolds which belong to any prescribed topological type.
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In order to construct such examples we take a parabolic RieMANN surface §11)
which possesses the required topological structure. (Such a RIEMANN surface
can always be obtained by removing a finite number of points from a suitable
closed surface.) Then the 2,’s are all conformally equivalent to schlicht circu-
lar rings of the type R, <|z| <4 oo (R,>0). Inthese we define the conformal
metric '

. |dz|

|2| log (Jz| + 1)
On the remaining portion of 8§ the metric is “’filled out’ arbitrarily, but such

that it is everywhere positive definite and of class C2. By making use of the
fact that +oo + o

do f do
= but
f@log (o +1) Ty B e log?(e + 1) =50 5

1 1

ds

one verifies easily that this metric is complete, but of finite total area.

5. On eomplete conformal metrics defined on infinitely econnected
RIEMANN surfaces

Theorem 13. Suppose that the conformal metric ¢*® |dz|, defined on an in-
finitely connected Riemann surface S, s complete. Then O~ = 4 oo.

Remark. This result complements Theorem 10. It was suggested to us as a
conjecture by Professor H. Horr.

Proof. Assume that C—<+4oco. We are going to show that *®|dz| can-
not be complete under this hypothesis.

We exhaust § by an increasing sequence {X,} of subcompacts, each being
bounded by a finite number of analytic JORDAN curves (8,,8,2, - - -, Brm,) Which
we suppose to be free of mass. We may further request that each g,, consti-
tutes the boundary of exactly one component 2,,of § — 2, (s =1,2,...,m,).
By the Gauss-BoxNET formula (4.8)

m
27p(Z,) + 27y, = ZL(*|dz], b3 B) , (5.1)
8=1
where y, denotes the EULER-POINCARE characteristic of 2, and B designates
the (ideal) boundary of §. The left-hand side of (5.1) tendsto —co as r —oo,
since 2nu(S) = — C <+ oo. Hence, for sufficiently large r

B I(e*|dz|, B ; B)<—4dp*(8) .

8=1

11) j, e. a RIEMANN surface with nullboundary (cf. R. NEVANLINNA [24, p. 319]).
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Then, for at least one index s

I(e*|dz}, By; B) = —4alu*(2,) + 1] , (5.2)

where 7>0. Let such r and s be chosen. We change the notation by writing
B, 2, p, and u, instead of g,,, 2,,, 4+ and u—, respectively, and introduce an
analytic JORDAN curve 4, in 2 which is homotopic to §,, free of mass and so
close to §, that u,(8,,d;)<n.

Lemma 6. There is a number C with the following property: Given an arbitrary
index r, there exists a rectifiable curve &, leading from &, to the boundary of X,
such that

feldz|<C . (5.3)
[+ 4

Remark. Theorem 13 follows immediately from this result by means of an

obvious generalization of Lemma 2.

Proof. Our demonstration is similar to the one of Lemma 3. Let 9, and y,
be analytic JORDAN curves in (8,,d,), both homotopic to g, and free of mass,
volying in (y,,d,). We introduce the notations é,, v, and g, for the respective
intersections (non-empty for sufficiently large r) of the boundaries of X, X, ,
and X, with Q. Further, let = (;,8:), wo= (f1,70), @1 = (¥0.B5),
;‘lao(e) = pg(€n o), pa(e) = pa(en @), my = ps(wo) and m; = py(w,). We

ave

my = pa(fy,6,) <7 . (5.4)
We define the metrics e*@|dz|, €"?|dz|, €®?|dz| and "?|dz| by putting
Ch(z) =u(z) + [g(z,0)duley) , (5.5)
v(z) = u(2) + [ g(z,0)du,(ey) (5.6)
_ h(Z) +§g(z’c)dﬂ2(eg) ’
v1(2) = h(2) + f 9(z, $)dus (ey) (6.7)
and t

where G and g denote the GREEN’s functions of 2 and w, respectively!2). Since
0 < ¢ < @ throughout w, v»,(2) < v(2) < V(2) and, consequently

7j’ e"|dz| gyj e"?|dz{ = C,<+o0 . B) (5.9)

12) Cf. R. NEVANLINNA [24].
1) (,,...,0; are constants not depending on the choice of f;, 9, and d;.
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Furthermore, throughout (4,,d,), %#(2) <v(2) < v,(2) + €y, where C, de-
notes the (finite) upper bound of

§ G(z,0)dpug(e;) forz varyingon Q2 — (8,6, .

(In the case where u,, is concentrated in one point the existence of such a
bound is an immediate consequence of the properties of G'. One proceeds to
general measures u,, by an application of HOLDER’s inequality.) Hence, for

every curve « in (6,,0,)
fetldz| < C5fedz| . (6.10)

We are now going to prove that there exists a rectifiable curve «, leading from

8, to d,, such that
fedz| < Cyfe™dz| + C5 . (5.11)
o Y1

Lemma 6 is an immediate consequence of (5.9), (5.10) and (5.11).

In order to establish (5.11) we first approximate the measure u,, by a finite
number of concentrated masses. This is the purpose of the following construc-
tion.

Consider a triangulation 7', of the closure @ of w, consisting of the triangles
A% (k= 1,2,..., M) whose boundaries we suppose to be analytic and free
of mass.

We subdivide 7', in the following way: There exists a conformal represen-
tation ¢, = @,(2) of the interior of A% onto the equilateral triangle E (1/2,

—1/2, iV§/2) in a ¢,-plane such that the vertices of A} correspond to those
of £ (k=1,2,..., M). (In the following the letters z and { are used to de-
signate points on S whereas ¢, and t, denote the corresponding values of the
just introduced uniformizers.) We join the mid-points of the sides of £, thus
breaking it up into four smaller triangles. To this subdivision of E there cor-
responds a triangulation 7', of @, consisting of the triangles

4 k=1,2,...,M;j=1,2,3,4) .

By iterating the subdivision of E we obtain a sequence {7,} of triangula-
tions, each T, being composed of 4"M triangles A4%; (k=1,2,..., M;
j=1,2,...,4"). We are going to select an index # large enough for our pur-
pose.

We define a subcompact K, of @ by subtracting neighborhoods of all ver-
tices of T,. We require that these neighborhoods be bounded by analytic

) By A?s and A% ; (below) we understand the closures of the respective triangles.
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curves (let I'; denote their totality) such that
| eMdz| <1 . (5.12)

I'yA®
Further, let K, be a second compact of the same type, containing K, and satis-
fying the condition
pa (0w — Ky)g(z, L) <log 2 (5.13)

for all zeK, and (e(w — K,). It is always possible to fulfill the conditions
(5.12) and (5.13), since, by hypothesis, the vertices of 7', support no mass.
The region of definition of the conformal representation ¢, = ¢,(z) can be
extended to include an open set O, containing A%~ K,. Let G, denote a region
which also contains 4%~ K, and whose closure lies in O, (k =1,2,..., M).
G.’s belonging to adjacent triangles intersect. It can be inferred from the
construction that there exists a number 4 (1 < A4 <+ o) such that, uniformly

inkand!

L _|d

7 =|a|=4 (5.14)

throughout @,~@,.

We define the notion of N-neighborhood (N = 0,1,2,...) of a triangle

¥; by recursion as follows: The 0-neighborhood is identical with A%;. The
N-neighborhood of A%; consists of those (closed) triangles A%.;, which intersect
the (N — 1)-neighborhood of A%;(N =1,2,3,...).

The following property is obvious:

(I) If A%, lies in the N-neighborhood of A%;, then A%; belongs to the
N-neighborhood of A4%;..

Given an arbitrary positive integer N, there always exists an index n,(N)
such that the following condition is fulfilled for all £, j and any n>ny(N):
If the N-neighborhood of A%; intersects K,, then it lies in G, and overlaps
from A] into at most one A9 (I # k). In this case every such N-neighbor-
hood (considered in the ¢,-plane) is contained in a circle of radius (N + 1)4/n.

Since, on the other hand, the area of every composing triangle is gV§/4A2n2,
we conclude:

(IT) Each N-neighborhood intersecting K, contains less than 8(N -+ 1)2A44
triangles A%;.

The statements (I) and (IT) imply:

(IIT) Each A%; intersecting K, is contained in less than 8(N 4 1)24*
different N-neighborhoods.

We choose an integer N;>A4 4 1 and introduce the abbreviation U%; for
the N,-neighborhood of A%;. It is easy to verify that the following is true for
all n>ny(N,):
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(IV) Let p be a rectifiable curve on S, leading from z to {, both points
lying in A%;. Suppose that Aj;~ K, # 0. Then g~ U; has at least the
length%) |t — 74].

We state that there exists an integer N,> N, 4 1 with the following prop-
erty:

(V) Let V3%; denote the Ny-neighborhood of A%;. Suppose that A4%;~ K, 7 0.
Assume further that n>mny(N,). Then the inequality

my|g(z,8) — g(',{') | <log 2 (5.15)

holds for arbitrary z,z’'eA}; and (,({'eA}.;,, admitting any A%, which is
not contained in V%;.

It is sufficient to prove the existence of N, for a fixed index k. Throughout
G, we have the representation

1
g(z,0) =10gm+7’k(tk,'€k) , (5.16)

where r;, is a regular function. We first limit ourselves to those triangles A%,
which lie in @,. If » is large enough, then, by the continuity of r,
lo
My |73 (B> T2) “Tk(t;c>"»';c)|<”?g“ (5.17)
for z,2'eAy; and (,{'ed}; C@y. Since ny(Ny) —>o0o0 a8 Ny—oo, (5.17) is
fulfilled for all n>mny(N,) if only N, is chosen large enough. Furthermore, the
diameter®) of any A%, in G, is at most A/n, whereas the distance ) between
%; and the boundary of V7; is at least (N, — N, — 1)/An. Hence, if N, is
sufficiently large, then

N,—N;—1 24
2 1 +

— T An n log 2
m, log A= < m, log N,—N,—1 24 = 2 (n>mnqe(Ng)) (5.18)
An n

for 2,2’eU%; and {,{’ed}.;, where A%, is supposed to lie in G but not in
%;- (6.15) follows from (5.16), (5.17) and (5.18). We have yet to treat the
case where A}, intersects w — G. But then (5.15) (for sufficiently large n)
is an obvious consequence of the continuity of g.
From now on N, and N, are to be considered fixed. » is still variable. Let
&yyCay ..., L, designate those points which support a concentrated mass of

. 1 .
weight = 2, ¥ 14 in the measure u,, (e~ K,). We denote the corre-

sponding masses by p,,Ps,..., P and define the metric e*?|dz| by putting

15) with respect to the Euclidean metric in the #-plane.

5 Commentaril Mathematici Helvetici
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m
w(z) = h(z) t2mge.) . (5.19)
=1
We enclose each {, by two analytic JORDAN curves ¢, and &) which satisfy
the following conditions:
(a) &} is contained in the interior of &, (I =1,2,...,m);
(b) y1,&1, €35+ +,&, do not intersect;

(c) whenever {; is a singular point of u (i.e. p, = 1), then g, shall be so
close to ¢, that

4 J er1|dz| (5.20)

j'e"’ldz]> 1 — cos (mn) 5,

for every rectifiable curve x leading from y, to ¢,;;

(d) Z [emdz|<1 . (5.21)

pl<1 Gl

Let »(e) denote the measure which originates from pu,, (e~ K,) after re-

moval of the concentrated masses p, in &,,...,p,, in £, . For all zeK, we
have, by (5.13) and (5.19)
0(2) =v,(2) + § gz, $)dug (ey) = va(2) +1log 2, (6.22)
where il
u() = w() + [9(z,0dv(ey) . (5.23)

Let C designate the compact which is obtained by subtracting the interiors of
€, €5, ...,& from the closure of (y,,%s).

Now we choose %, large enough so that conditions (5.24) to (5.30) are satis-
fied for all k, j and :

n>ne(N,) ; (5.24)
A%~ & # 0 implies Rine=0; (5.25)
1
n w
v(Akj) é 32(1\72 _+_ 1)2A4 » (5‘26)
my|9(2,8;) — g(2,85)| <log 2 (5.27)

for all zey, and {;,{,e4%;, provided that A};~w, 7 0;

|w(t,) — w(T,)| <log 2 (5.28)
and
|75 (e, Th) — rk(t;:’ T;:)I <log 2, (6.29)

whenever t,, 7;, ¢}, and v} lie in the same V7%;.
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There exists a positive number L such that, for all zew

v(E[C|g(z,0)>L]) <% .
Let

W = max[ sup w(;)] and R=max[ sup 7,(t,7)] .
kE  tkeGpnC E lk,tk€GE

We postulate that, for 0<1 < 1/n

29m1Al“Z(N2 + 1)2
(Ng — N, — 1)

eW+R+m L, A%Ilogll <l. (5.30)

On each A43%; intersecting w, there is a point {;,(4%;) such that

g (2, a9 (2,
f g(z;ntmm) 2| sf—*(’%;g—ldzl (5.31)
Y1

z
71

for all eA%;, n, denoting the normal to y, which points into (yy,d,).

Now we concentrate in each (. ; (4%;) the mass » which is associated with
the interior of A%; and part of its boundary, defining the latter such that every
point is covered exactly once. Let these be the masses p,, ., in {,.4,..., P, in
. We introduce the metric e***?|dz|, where

wi(2) = he) + Epg(e,t) = we) + Z pglety) . (5.32)

=1 l=m+1

Let y be a JORDAN curve in @ which is homotopic to 8,. We state that
I(e™|dz],y; By) <—2m:n . (5.33)

In order to prove this inequality we first observe that, by the GAuss-BoNNET
formula
I(e*|dz|,y; Bs) = I(e"*|dz],py; Bs) - (5.34)

From (5.31) and the construction of w, we infer that
I(e"|dz|,p1; Ba) = I(e™|dz],py; Ba) - (5.35)
By (4.8), (5.22), (56.6) and (5.7)

I(e™|dz], y,; Ba) = I(e™|dz], yo; Bs)
< 1(e™|dz|, yos; Ba) = L(€"|d2], o5 Ba) + 2am,
=< I(e*|dz]|,p0; Ba) + 27[mo + p1(2)] . (5.36)
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From (4.8) and (5.2) we infer that

I(e*|dz|,po; Ba) = L(e*|dz],By; Bs)
+ 27 p (B, p0) <— 27 [, (2) + 29] . (5.37)

(5.33) is implied by relations (5.4) and (5.34) to (5.37).
We state that there exists a rectifiable curve g, leading from y, to ,, such

that
2

— cos (77) 7{

Bfewlldzl< 1 ev1|dz| . (5.38)
The proof of this inequality is so similar to the one of (2.39) that we do not
reproduce it here. We limit ourselves to the following remarks:
(a) In the definition
A(zy) = inf [ e |dz|
Y Y

we admit to competition all rectifiable JORDAN curves y which lie in the closure
of (y,,ys), pass through 2z, and are homotopic to g,. Then (2.44) holds again
for every minimal curve y(z,) which as neither double points nor points in
common with y,. This follows from (5.33).

(b) B can be constructed as a “polygon”, i. e. a contiguous chain of “‘straight
line segments’. Thereby a ‘“‘straight line segment” ¢ in w is defined to be a
smooth curve with the property that, for all k£, the set ¢,(c~A4%) in the
t,-plane consists of (Euclidean) straight line segments.

(c) B does not intersect any ¢, for which p, = 1. Indeed, by (5.32)

Jer|dz| < e|dz| . (5.39)
B B

From (5.27) and (5.22) we infer that
fer|dz] £ 2fe|dz| < 2[e|dz| . (5.40)
71 Y1 71

(5.38), (5.39) and (5.40) imply the inequality

fer|dz| , (5.41)

ev|dz| < -
éf |z 1 — cos (nn) ¥,

which would contradict (5.20) if 8 would intersect any ¢, for which p, = 1.

With the “polygon” § we now associate a curve « which leads from 4, to J,.
This is done by the following construction: Let E (z) denote the set consisting
of those A%s which contain the point z. We join the endpoint 2, of § on y,
with the last point of intersection 2] of g with E(z,) by a ‘“‘straight line seg-
ment”’, 2, with the last point of intersection 2} of g with E(z]), and so forth,
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until we arrive at the endpoint of 8 on §,. We obtain a ‘“‘polygon’ p’'. Now, if
p' should penetrate into @ — K, or into the interiors of some curves ¢, for
which p,<1, then we replace the ‘“‘subpolygon’ between the first entry and
the last exit by a boundary arc. The resulting curve contains a portion & which
leads from 4, to 8, and is contained in the closure of (4,,d,). We state that

Jerldz| g-%?—ﬂj'ewl]dﬂ +3. (5.42)

We decompose &« = «p + o, &p consisting of a finite number of ‘‘polygons”,
o of the detours introduced above. By (5.12), (5.21) and (5.22)

feldz| <2 .
We are left to show that ()
[evs|dz| §—§?— fem|dz| + 1 . (5.43)
ap 3 B

The verification of this inequality is quite analogous to the proof of (2.65). We
leave it to the reader and limit ourselves to the following remarks:
(a) From (5.26) and property (II) of N-neighborhoods we infer

(Vi) <} (5.44)

Every point z in K, belongs to at most 6 A}’s. From this and property (I1I)
of N-neighborhoods we conclude that

Zv(Vy) = 48m, (N, + 1)244 . (5.45)
k,j

Relations (5.44) and (5.45) correspond to (2.57) and (2.58), respectively.

(b) In the estimations corresponding to (5.59), (5.60) and (5.61) it is con-
venient to integrate in the plane of the respective uniformizer ¢, . One makes use
of the decomposition (5. 16) of GREEN’s function. The logarithmic term is han-
dled in the same way as in the proof of (2.65). The additional function r, is
taken care of by relation (5.29) and the fact that R occurs in (5.30).

Inequality (5.11) follows from (5.22), (5.42), (5.38) and (5.40). We have
thus proved Lemma 6 and, with it, Theorem 13.

6. Further results

Theorem 14. Let S be an open Riemany surface on which a complete conformal
melric e*?@|dz| is defined. Suppose that the measure u* has a compact support.
Then the total area A = [[e*dxdy s infinite.

K

Remark. For manifolds which possess a continuous GAuUssian curvature K
our hypothesis simply means that K = 0 outside a compact subdomain. We
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mention that Theorem 14 has already been demonstrated by F. F1ara (Theo-
rem A, p. 300 in [12]) for (necessarily simply connected) analytic manifolds
whose curvature is everywhere non-negative.

Proof. Since C—- = 2aut+(8) <+ oo, we conclude from Theorem 13 that S
is finitely connected. Furthermore, the curvatura integra C exists. Conse-
quently?$), I(I7) =0 for r =1,2,...,N. Consider an arbitrary one of the
regions Q,. It is conformally equivalent to a schlicht circular ring R, <|z| <R,
(O<R,<R; < +00). Again we distinguish between two cases:

(I) By<-+oo. It has been verified in the proof of Theorem 12 that the
completeness of the metric yields indeed A = -+ oo. (Actually this case does
not occur at all. For, RB,<- oo implies that S is hyperbolic, and it will be
shown in Theorem 15 that this is incompatible with C— <+ o0.)

(II) R; = +oco. We may assume that 2, does not intersect the support of
ut. (If necessary we increase R;.) Then » is superharmonic throughout 2,.
Since I(I',) = 0, we have, by (4.7)

lim @(u,|z| =¢; I,) =o(I}) = —1 . (6.1)
e—>o
But, u being superharmonic, @(u,|z| = ¢; I',) is a non-increasing function of
¢. Hence (6.1) implies
D(u,|z| =¢; 1) =2 —1 (B, <g<+oo). (6.2)
Furthermore
2n 2n Q2
o!u(eae"“’)dfp —Julee)dy = 2%@! D(u,|2| = ¢; Iy)dloge , (6.3)
1

where R, < p, < 0, <-+oo. In the case of sufficiently regular « this relation
can be verified immediately by a direct calculation. It is more generally true
(and essentially known) for all functions 4 which admit the decomposition
. (1.9). (The reader looking for a proof will find section 5. 14, p. 35 in [25], help-
ful.) From (6.2) and (6.3) we infer that

1 2n )
—2;6fu(ge‘¢)d<p = B, —loge (6.4)

for some real constant B, and arbitrary ¢ (R; < ¢ <+ o0). By making use of
the theorem of the arithmetic and geometric means [15, p. 137] we obtain, for
arbitrary g

2 et d
3 u(e )de B2
2

2n
{ e2utec® dgp > 2me”" ° 2 (6.5)
0

18) See proof of Theorem 10.
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B, denoting a positive constant. (6.5) yields
400 27 iv dQ
4> [ fome gdgdp = Bzf Q. E.D.

Theorem 15. If an open Riemany surface S admzts a complete conformal metric
e\ |dz| with finite C—, then it is parabolic.

Remark. This result is known in the simply connected case, where it has been
proved by CH. Braxc and F. Fiara [5].

Proof. We assume that S is hyperbolic and show that this leads to a contra-
diction.

Under this hypothesis § would possess a GREEN’s function (cf. P.J. MyR-
BERG [21], R. NEVANLINNA [24, chapter 10]). Consider the conformal metric
€"?|dz|, where

v(2) = u(2) + 2¢(z, o) +SI g(z,0)dut(ey) (6.6)

Here ¢, denotes an arbitrary, but fixed point on 8. The integral on the right-
hand side of (6.6) is not identically infinite, since u*(8) = C—/2x <+ oo. One
verifies easily that C* = 4z and C- = 0 for this metric. But since always
¥ <1 we conclude from Theorems 10 and 13 that "?|dz| cannot be com-
plete. Hence e*®|dz| would not be complete either, contrary to hypothesis.

We observe that the assumption €~ <+ oo has only been used for the pur-
pose of showing that the integral in (6.6) ist not identically infinite. Hence we
have actually proved a statement which is slightly stronger than Theorem 15.
Let 8 be a hyperbolic Riemann surface carrying a complete conformal metric
e“@|dz| whose curvatura integra C may or may not exist. Then

:g“g(z9 C)dﬂ+(8§) = +OO ’

where g denotes GreEN’s function for S. In the case of infinitely connected S
Theorem 15 is obviously superseded by Theorem 13, whereas the stronger result
contains new information.

The author wishes to thank Mr. J. H. BRaMBLE, M. A., for helping with the
English translation.
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