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On subharmonic functions and differential geometry
in the large *)

by Alfred Huber, Basle and Zurich

1. Introduction

We eonsider an open, iwo-dimensional RiEMANNian manifold M whose metric
is defined by a positive definite quadratic form

(1.1)

f and rj denoting local parameters. If E, F and G are sufficiently regular, then
it is possible to introduce (local) isothermic parameters, i. e. there exists a coordi-
nate transformation x z(Ç ,rj), y y(Ç,rj) such that E G>0, F=0
in the (#,y)-parameter System. Then we can write

ds* e2uix^ (dx* + dy*) e2uiz) \dz\* (1.2)

putting z x + iy. Such a transformation always exists, for example, when
E, F and 0 are of class C3, and in this case the corresponding function u is also
of class C3 (cf. A. Wintner [34, p. 687]).

By the Theorema egregium the OAussian curvature K can be calculated from
the E, F, G and their partial derivatives up to the second order. In the
isothermic parameter System (1.2) one obtains the particularly simple expression

K - e-^Au (A d*/dx* + 92%a) (1.3)

Hence, letting dA e2udxdy dénote the area élément on M we hâve

KdA — Audxdy (1.4)

Furthermore, one finds after some calculation (using e. g. [6, p. 175]) the
following expression for the géodésie curvature k of a curve on M

Hère ke dénotes the euclidean curvature of the corresponding curve z z(t)

in the «-plane with the convention that sign ke sign -=-1 arg -=-1 and n

*) This research was supported by the United States Air Force through the Air Force Office of
Scientiflc Research of the Air Research and Development Command under contract No. AF 18

(600)-573 and carried out at the University of Maryland.
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désignâtes the normal to z (t) in the direction arg I — i -=-1. (1.2) and (1.5)
imply

^ '

(1.6)

In gênerai, isothermie parameters can only be introduced in the small. In
order to be able to treat problems pertaining to differential geometry in the
large we hâve to consider the Riemann surface 8 which is determined by the
conformai structure of M. (For a detailed discussion of this step the reader is
referred to [31, pp. 2-5]. At this point we hâve to introduce the additional
condition that M is orientable. However, if this should not be the case we
simply replace M by an orientable, two-sheeted covering surface [33, p. 61]).
The local uniformizers are then defined as fonctions which map a portion of M
conformally onto a région in the 2-plane. Hence their real and imaginary parts
form a set of local isothermie parameters. Conversely, if x and y are local iso-
thermie parameters, then either x + iy or y + ix constitutes a local uni-
formizer.

We thus are led to conceive of M as a Riemann surface on which a conformai
metric

ds eu(z)\ dz\ (z local uniformizer) (1-7)

has been introduced. Thereby a change of uniformizers z <p(Ç) implies the
transformation

due to the conformai invariance of ds euiz)\dz\ euiC)\dÇ\.
We shall mainly be concerned with the relation between the surface intégral

of the GAUSSian curvature (curvatura intégra) and the topological and
conformai structures of complète, open, two-dimensional RiEMANNian manifolds.
(According to the définition of H. HoPFand W. Rinow [17] the manifold M is
called complète if every divergent path on M has infinité length. A path s is said
to be divergent (or to tend to the idéal boundary of M) if (1) s is the topological
image p p (t) of the half-open interval 0 ^ t < 1, (2) given an arbitrary
subcompact KoîM there always exists a number t ' (K) < 1 such that p (t) lies
outsideJTfor t>t').

The présent article originated from a suggestion of Professor H. Hopf. He
drew our attention to the connection between differential geometry and poten-
tial theory which is revealed by relations (1.3) and (1.4). For example, the
function u(x,y) is subharmonic in a certain (#,^)-parameter région if and
only if K ^ 0 in the corresponding domain on M. (This fact had already
been used by E. F. Beckenbach and T. Rabo [3] in their proof of the isoperi-
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metric inequality on surfaces of négative curvature.) Analogously, u is super-
harmonie if and only if K ^ 0. Furthermore, (1.4) discloses an even deeper
connection: The surface intégral of K, considered as a set fonction, is essen-

tially the measure associated with u (i. e. the mass distribution of density
Au/2n, which appears when u is represented as a sum of a logarithmic poten-
tial and a harmonie fonction). Consequently, results of differential geometry
in the large involving the curvatura intégra, such as those due to S. Cohn-
Vossen [10], F. Fiala [12], Ch. Blanc and F. Fiala [5] (see H. Hopf [16] for
further références), hâve a potentialtheoretical meaning. It is therefore natural
to apply functiontheoretical methods to this field in the hope that not only
other (and eventually simpler) proofs of known results will be found, but also
theorems which are new in both their differentialgeometrical and
potentialtheoretical aspects. From this viewpoint [18], [19] and the présent paper hâve
been written.

Our geometrical results are contained in sections 4, 5 and 6. We consider
manifolds which are given in the form (1.7), assuming merely that u can be

represented as a différence of subharmonic functions1),

u(z) ux(z) — uz(z) (z local uniformizer). (1-9)

Of course, neither the functions ux and u2 nor their associated measures fix and

fi2 are uniquely determined. However, the différence ju, ixx — fz2 does not
dépend on the choice of décomposition or uniformizer. Consequently, fi is de-
fined as a measure on 8. Let fi p+ — p- dénote the Joedan décomposition
[30, p. 11] of p, which can be characterized by the property that

and p~(e)

for ail Borel sets e and any représentation (j, fix — fi2 of /j, as a différence
of positive measures. Further, let (7+ 27Zfx~-(8) and <7~~ 2tzju,+ (8). The
différence C C+ — C~~ — 2nfji(8), defined whenever C+ and C~ are not
both infinité, will be called the curvatura intégra of the metric. This termin-
ology is justified, since for sufficiently regular u we hâve indeed, by (1.4),

C+ JJ Â-udxdy JJ K+dA
S M

C~ f$ A+udxdy JJ K~dA
and 8 M

G - $$ Audxdy §§ KdA
8 M

1) Such a représentation always exista, for example, when u is of class Oa. For the définition
and properties of subharmonic functions the reader may consult the book of T. Radô [25].
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where A+u max [<d%,0], A~u max [— Au,O], K+ max [K,O] and

From the viewpoint of potential theory (1.9) is the most natural condition
to impose on u. We mention that such a metric has already been considered

by A. Beubung [4]. He restricted himself to the case of négative curvature,
i. e. subharmonic u.) The following remark may illustrate that this generality
is also useful for difiEerentialgeometrical purposes: The theory presented hère

applies to ail RiEMANNian manifolds whose coefficients E, F and 0 in (1.1) are
of class C1 and which possess a continuous GAussian curvature in the sensé of
H. Weyl [32, pp. 43-44]. This is a conséquence of results due to S. S. Chern,
P. Hartman and A. Winwer [9] who demonstrated that under thèse
hypothèses isothermic parameters can be introduced, the corresponding function u
being of class C1. Furthermore, one deduces easily from [9] that u is represent-
able in the form (1.9) and that the curvatura intégra C (in the above defni-
tion) is equal to the surface intégral of the GAussian curvature.

An interesting spécial case of the metric (1.7) is given by the modulus of an
analytic differential (cf. R. Nevanlinna [24, p. 103]), ds | dw | | <p (z) \ \ dz |.
Thereby we allow dw to be multiple-valued as long as \dw\ is single-valued.
Furthermore, we admit isolated singularities ak in whose neighborhoods <p is

representable in the form (p(z) (z — ak)PkW(z), where pk dénotes an arbi-
trary real number and W is a function regular at ak (£=1,2,3,...). The
pk9& are conformai invariants, and we hâve C — 27iZpk, this quantity
being defined whenever C+ 27ri7max(—^,0) and <7~ 27t2Jma,x(pk,0)
are not both infinité.

Throughout section 4 we suppose that S is finitely connected. Theorem 10

states that C ^ 2n% for any complète metric (1.7) whose curvatura intégra
exists, x denoting the Euler-Poincaré characteristic of 8, This resuit has al-
ready been proved by S. Cohn-Vossen (Satz 6, p. 79 in [10]) under more
restricted regularity conditions. (He admitted manifolds whose metrics were
defined by positive definite quadratic forms (1.1), the coefficients E, F and G

being of class C2. In this case the GAussian curvature is defined and continuous.

Hence, by a previous remark, our theorems can be applied.) Our proof is
différent from the one given by Cohn-Vossebt, although the central idea of this
author has rather been transformed than altogether eliminated. We believe
that our reasoning is simpler, at least if one disregards the complications needed

for getting rid of unnatural regularity assumptions. It is function-theoretical.
No use is made of the theorem of H. Hopf and W. Rinow [17] which states
that on a (sufficiently regular) complète manifold any two points can be joined
by a géodésie whose length is equal to their distance.

The remainder of section 4 is devoted to sufficient conditions for equality,
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C 2nx- One of thèse results (Theorem 11) implies a statement due to
S. Cohn-Vossen (Satz 7, p. 79 in [10]).

In section 5 infinitely connected, complète manifolds are investigated. Fi-
nally, in section 6 theorems of F. Fiala [12] and of Ch. Blanc and F. Fiala [5]
are extended.

Theorems 10 to 14, as formulated, apply only to orientable manifolds. How-
ever, it is easy to consider also the non-orientable case. The completeness of
the metric is not destroyed if we pass to a two-sheeted, orientable covering
manifold. Furthermore, in this process curvatura intégra, Etjler-Poincarb
characteristic, total area and length of closed eurves are ail multiplied by 2.
Consequently, an application of the above mentioned theorems to the covering
manifold yields immediately the corresponding results in the non-orientable
case. Hence in thèse theorems the metric (1.7) need not necessarily be defined
on a Bjemann surface. It is sufficient to suppose that S is a generalized Rie-
mann surface in the sensé that S is defined like a Riemann surface (cf. R. Ne-
vanlinna [24, p. 53]), but that bôth directly and indirectly conformai neigh-
borhood relations are admitted.

In section 2 some theorems on conformai metrics defined in doubly
connected, schlicht régions are demonstrated. Thèse results are needed for
subséquent applications, but they are also of interest by themselves. In particular
statements concerning intégrais of moduli of analytic functions along certain
eurves are implied. Such intégrais hâve been the object of previous investigations

- we mention the work of L. Fejéb and F. Riesz [11], R. M. Gabriel
[13], F. Carlson [8], M. Riesz [29] and B. Andersson [1] - but, to our
knowledge, problems of the type treated hère hâve not been considered.

Section 3 contains a spécial resuit (Theorem 7) whose possible generaliza-
tions2) might warrant further investigation.

The reader is assumed to be familiar with some properties of subharmonic
functions (cf. T. Radô [25]), in particular the theory of F. Riesz [27].

We express our sincère gratitude to Professor H. Hopf for suggesting the
problem. We are very much indebted to Professor A. Pfltjger for encouragement.

2. Some theorems on conformai metrics defined in schlicht annular régions

In the following let Q be a doubly connected région in the z-plane which
does not contain the point at infinity in its interior. We dénote by F and A
the outer and inner boundaries of Q, respectively. (We make no regularity

*) Such as the subharmonic analogue or the extension from the plane to more gênerai Riemann
surfaces. See also the remarks to Theorem 7.

2 Commentera Mathematici Helvetici
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assumptions about F and A. In particular we allow F to consist of only the
point at infinity.) Let Qo designate the interior région of F.

Let u(z) be a function defined in Q and locally representable as a différence
of two subharmonic functions

u(z) ux{z) - u2(z) (2.1)

u (z) ean assume the values +°° (%finite, u2 —oo) and —oo (u1= —oo,
u2 finite). It may be left undefined at those points where ux u2 —oo.
This point set is of no concern to us since it is a set of measure zéro with
respect to ail occurring intégrations.

In a well known way (F. Riesz [27]) measures ^(e) and fJt2(e) are associ-
ated with the functions ux(z) and u2(z), respectively. We define

/*(*) Pi(e)-/**(*) (2.2)

If, for a given function u(z), there exists one décomposition of the form
(2.1), then there are an infinité number. Of course, the corresponding measures

fix and [i2 dépend on the choice of décomposition. However, the différence /u is

the same for every such représentation. Furthermore, for every prescribed de-

composition (2.2) there exists a corresponding représentation (2.1). If (2.2) is
the Jordan décomposition [30, p. 11] of ju, then (2.1) is called canonical. We

may assume without loss ofgenerality that (2.1) is canonical and valid through-
out Q (cf. M. G. Absove [2, p. 331]).

Let y be a Jordan curve in Q which encloses A. We introduce the flux of u
through y in accordance with the theory of F. Riesz [27]. If u is of class C2

and if y is analytic, then we simply define

^ (2.3)

n denoting the outer normal. In the case of gênerai u and y we introduce a

séquence {ôk} of Jordan curves such that the annular régions (A, ôk),
bounded by A and âk9 tend increasingly to (A, y) as h ->oo. Let

where hlk and h2k are the best harmonie majorants of ux and u2, respectively,
in (ôk, y). hkis independent of the choice of the décomposition (2.1). Let now
ôk dénote an analytic Jordan curve in (ôk,y) which encloses ôk. Then
0(hk, ôk;y) is well defined and its value is the same for every such ôfh, since hk
is harmonie. We define

ô'k;y) (2.4)



On subharmonic functions and differential geometry in the large 19

F. Bjesz [27] proved that if u is subharmonic then this limit always exists,
being finite and independent of the choice of {ôk}. It is easy to conclude from
this that the same is true in our case.

Now, let {yj, Z= 1,2,3,..., be an arbitrary séquence of Jobdan curves,
enclosing A, whose interior régions tend increasingly to Qo. In Theorems 1, 2

and 3 (below) we make the hypothesis

(A) For any such séquence the limit

lim0(u,yl;F) (2.5)

exists, admitting the values +°° anà, —-oo. Of course, 0(F) is necessarily
independent of the séquence {yz}.

The theory of P. Riesz implies that

for ail Z. Hence the séquence {@(ul9yl; F)} is non-decreasing. The same is

true for {0(u2,yt; F)}. Consequently, the limits

01(F) lim0(u1,yl;F)
and '-*00

always exist, being finite or + °°»

Hypothesis (A) is équivalent to the assumption:

(B) 01(F) and 02(F) are not both infinité. Furthermore

01(r)-02{F) (2.6)

Let us briefly indicate a proof of this statement. If (B) is fulfiUed, then (A)
and (2.6) follow immediately from the relation

0(u}yi;F) 0(ux,yi; F) - 0(u2iyi;F) (I =1,2,3,...),
which is an obvious conséquence of the définition of 0. The second half of the
équivalence proof has to be based on the fact that fi pix — /*2 is a Jobdan
décomposition. (We hâve supposed that the représentation (2.1) is canonical.)
Without entering into détails we mention that the assumption 01(F) 0^)

+oo makes it possible to construct two séquences {yj and {y[} of the
above mentioned type for which 0(F) +oo and 0{F) —oo, respecti-
vely. Clearly, this yields a contradiction to (A).

A path ainÛ will be said to tend to F if the following conditions are fulfilled :

(1) a is the topological image z z(t) of the half-open interval 0 <J t< 1 ;
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(2) given an arbitrary subcompact K of Qo there exists a number tr (K) < 1,
such that z(t) lies outside K for t>tf.

Theorem 1. // &(F) < — 1, then there exists a locally rectifiable path a in Q,
tending to F, such that

$eu{z)\dz\<+oo (2.7)
a

Remarks. There is no value of &(F) outside the above mentioned interval
for which the theorem is also true. This can be seen from the foliowing counter-
examples :

(I) QQ finite z-plane, Ul \z\2, u2 0. Then &(F) +oo.

(II) Do finite z-plane, % oc log \z\, u2 0. Then &(F) oc

(0 ;g<x<+ oo).

(III) £20 finite z-plane, ux 0, u2 — » log \z\. Then &(F) oc

(IV) Let F contain at least two points. Then there exists a conformai
mapping w <p (z) of Qo onto | w \ < 1. We dei&ne

Then *(r) +oo.
The reader will easily verify that in each of thèse examples there exists no

path a having the properties postulated in Theorem 1. (It should be observed
that the choice of A is irrelevant.)

It is natural to ask whether the hypothesis &(F) <— 1 can be weakened if
more restrictive conditions are imposed on O. Examples (I), (II) and (III)
show that the condition @(F) <— 1 cannot be replaced by a weaker inequa-
lity for those domains Q whose boundary component F consists of only the
point at infinity. We shall now demonstrate that for ail other régions the hypothesis

0(F)<— 1 in Theorem 1 can be replaced by &(F)<-{-oo. Since, on
the other hand, for the case 0{F) +oo we hâve given counterexamples for
any i2, this settles the question completely.

Theorem 2. If F œntains more than one point, and if 0(F)<+oo, then
there exists a locally rectifiable path a, tending to F, such that (2.7) is fulfilled.

Prooî of Theorem 2. From (2.6) and the hypothesis 0(JP)<+oo we infer
that 0t(F)<+oo. We choose an arbitrary positive number oc>01(F) + 1

and consider the function %* %*-— u*, where u*(z) ux(z) and w*(z)
u2(z) — ocgo(zfzQ). Hère g0 dénotes Gbeen's function of &Q and % is an ar-



On subharmonic functions and differential geometry in the large 21

bitrary but fixed point in this région. Throughout Q, u< w*. The functions u*
and u* are obviously subharmonic. Because of the choice of a, &*(F)< — 1.

Therefore, Theorem 1 may be applied to u*(z).3) There exists a locally recti-
fiable path o, tending to F, such that

This complètes the proof of Theorem 2.

It is also possible to weaken the hypothesis &(F)< — 1 in Theorem 1 by
making further assumptions about the function u, We shall now discuss the
effect of a condition which is natural from the point of view of both the theory
of functions and the applications to differential geometry.

A séquence of curves {yn}, n 1,2,3,..., will be said to corne arbitrarily
near to F> if the point set U yn *s n°t contained in any subcompact of Qo.

n
Theorem 3. Suppose there exists a séquence {yn}, n 1, 2, 3,..., of rec-

tifiable Jordan curves, enclosing A, in Q and a number M such that

(a) {?n} comes arbitrarily near to F,

<b) J eu\dz\ <M for ail n,
Yn

Then, if &(F) ^ — 1, there exists a locally rectifiabh path a, tending to F,
such that (2.7) is fulfilled.

Remarks. The hypothesis &(F) =fi — 1 cannot be dropped. This follows
from the example

(V) Qo finite z-plane, % 0, u2 log \z\, yn [\z\ n],
0(F)=-l.

By Theorem 2 no such counterexamples exist if QQ is of hyperbolic type. In
this case Theorem 3 actually gives new information only for 0 (F) + oo.

If 0(F)<— 1, then Theorem 3 is, of course, superseded by Theorem 1 for
any Q.

We are left to prove Theorems 1 and 3.

Preliminary considérations. A point z0 in Q will be called a singular point of
the measure fi if fi (zQ) ^ 1. (The symbol z0 is used hère to dénote the set con-
sisting of the point z0.) In every subcompact of Q there are at most a finite
number of such points.

Lemma 1. Let oc be an analytic arc which contains no singular point of p. Then

§eu\dz\<+oo.
a

i

3) The proof of Theorem 1 will later be given.
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Remark. It is easy to construet examples whieh show that in this lemma the
word "analytie" cannot be replaced by "rectifiable".

Prooî. Let Z dénote the segment 0 <* | ^ 1 on the real axis of a complex
£-piane (f f -f- *??)• There exists a conformai mapping z cp(Ç) of a neigh-
borhood F of Z onto a neighborhood F of oc such that Z corresponds to oc. We

now consider in F the subharmonic functions

and define S u1 — S2, so that eu\dz\ eu\dÇ\. One proves, without diffi-
culty, that /Wi(e) ]w1(c) and ^2(e) ?2(^) for corresponding sets e and e

]«! and jw2 denoting the measures associated with ^x and ^2? respectively. Be-

cause of the existence of such a transformation we may, without loss of gener-
ality, assume oc to be the segment O^x^l on the real axis.

Given an arbitrary point xQ on oc, there always exists a radius ro(xo)>O
such that ^2(|2 ~~ #ol <%ro) P< 1 • By a well known theorem of F. Riesz
[27, II, p. 350] we hâve the représentations

ux(z) h^z) + J log\z - CidMu) (2.9)
and ic-*ol<2ro

^i(») hÈ{z) + J log|« - f |^,(6C) (2.10)

in |« — #ol<2Po> *ne functions Ax and h2 being harmonie. An obvious co-
î

vering argument yields the existence of J eudx if we can show that
o

J eudx<+oo

But, by (2.9) and (2.10), this will be achieved if we can prove that

/= J exp{~ | log|a?-f|rfiut(ec)}il*<+oo (2.11)|lWe first consider the spécial case where the mass distribution /^2 is concentrated
in one point £o- Then

ao+fo «o+»o 2rxp1= S \x-Ç0\-»dx^ J \x-Xo\-vdx=-^— (2.12)
Zo-ro xq-tq a i?

Let vlb now proceed to a measure ju2 which consista of a finite number of
concentrated masses, oc-^p in Ci,..., <%w^ i11 Cn> ^7*« 1> «<>0 (t 1,

2,..., n). We introduce the notation IN for the intégral I in which log | z — f |
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has been replaced by log^|z — £ | niax [log|z — Ç\, — N], N denoting an
arbitrarily large constant. By an application of Hôlder's inequality [15, p. 140]
and of (2.12) we obtain

xo+ro n
IN J exp {— Z»tplogN\x — CA}dx

i l

J
xo—ro

n xo+rQ

I[ J i

i=l xo-ro A — V

Let us now drop every spécial assumption about /u2. In the gênerai case I#
can always be approximated arbitrarily close for fixed N by substituting for /i2
a suitable measure of the spécial type considered above. Hence

IN ^ 2^/(1 - p)

holds without restriction. Letting N ->+oo we obtain (2.11) in the limit.
Q. E. D.

Lemma 2. Suppose there exists a séquence {crn}, n 1,2,3, of rec-
tifiable curves in Q,a subcompact K ofDQ and a number C such that the follotving
is true:

(a) each an has a non-empty intersection wiih K,
(b) {on} cornes arbitrarily near to F,

(c) §eu\dz\<C for ail n.

Then there exists a locally rectifiable path a in Q, tending to F, such that (2.7)
is satisfied.

Proof. We may assume that Q is a circular ring

B1<\z\<R2 (0 ^R1<B2 ^ +oo)

For, if this lemma has been proved for a particular région Q, then it is imme-
diately seen to be valid for the whole class of conformally équivalent domains.
This is easily proved by transplanting the metric ew(z)|efe| under conformai
représentation.

We introduce a séquence of circles ym [|z| rm~\, m=l,2,3,..., in
Q, supposing that yx encloses K and that rm//E2 for m/*+oo. We further
assume that no singular point of (x lies on thèse circles. If one of the curves an
tends to F, then we hâve nothing to prove. If this is not the case, then there
exists a subsequence {afn} of {an} such that a'n intersects yn for ail n. From
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this and hypothesis (a) we conclude that a'n contains an arc which leads from

7i *>° 7n • We subdivide it into ofn (1,2) (leading from y1 to y2), afn (n — 1, n)
(leading from yn_t to yn). By making use of Cantob's diagonal process we sélect
asubsequence {a^} of {afn} suchthat the commonendpoints of aj(m-l,m)
and e'fn(m, m -\- l) on ym converge to a limit point zm for ail m. Let now m be
fixed. By Lemma 1, there exists an open arc ocm of ym, containing zm, such that
§ eu\dz\<2~m Furthermore, there exists an index N(m) such that the

following conditions are satisfied :

(a) The inner and outer endpoints oi arN{m,m-\-l) lie on <xm and otm+1,

respectively,

(b) J c**|^|<iaf J
n>N a^(m,w+l)

We define a to consist of the curves a%a)(l, 2), offNm(2, 3),..., joined by subarcs

of #a, «j,.... ^e rea(ier wîU easily convince himself that

J
This proves Lemma 2. Q

Prooî of Theorem 1. There is some expository advantage in assuming that
Q is a circular ring Rx<\z\<Il% (0 ^jB1<iî2 £» +oo). This can be done
without loss of generality .Indeed, an arbitrary Q can always be mapped con-
formally onto a circular annulus iî1<|f |<jB2 in such a way that F
corresponds to the outer circle | f | R2. Under such a représentation both length
élément ds and flux 0 are invariant if u is transformed according to (2.8).

It follows from the hypothèses that there exists a number rj (0<rj < 1) and
a radius rt (R1<r1<R2) such that

(2.13)

(2.14)

Lemma 3. Let the radivs qx (rt<Qx<R%) be chosen arbitrarily. Then there is
a number G with the foUowing property: Oiven any q2 (Qt<qz<R2), there exists

a rectifiabU curve oc, leading from \z\ qx to \z\ q2, svœh that

$e»\dz\<C (2.15)
(X

Proof. We introduce three radii sl9 s2 and r2 satisfying the inequalities

^i<r1<s1<Q1<Q2<s2<r2<R2 (2.16)

In addition we require that there should be no singular point of p on | z \ s1.
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In the following ail radii with index 1 hâve to be considered fixed. On the other
hand, q2, s2 and r2 are variable within the above limita and our estimation
ultimately does not dépend on their choice. By a theorem of F. Riesz [27, II,
p. 357] the représentations

ux(z) hx(z) - $g(z, Qd/ii(e<) (2.17)
and

u2(z) h2(z) - J g(z, 0 d/i%{ec) (2.18)

hold in co D*i< \z\ <r2], where hx and h2 are the best harmonie majorants
of ux and u2, respectively, in co and g dénotes Green's function for tins domain.
We define

v(z) ht(z) - u2(z) u(z) +$g(z, C) ^x(eç) (2.19)

v is superharmonic in <o and admits the représentation (F. Riesz [27, II, p. 350])

v(z) H(z) - $log\z - Ç\dv2(eç) (2.20)
txi

where H is harmonie in co. It follows from (2.13) and (2.14) that

y being an arbitrary smooth Jordak curve in co which encloses | z \ rx, n de-

noting the outer normal.
Let ê (ei — st)l2. We define

ct)!), m0 ^2(tt>o)5 w*i t*z(«>i) and

Jlog|z ~ C|*/*«l(€c) (2.22)
Further, let Wl

F(«) u(z) + J 0(2, C) d^(ec) (2.23)

where G dénotes Green's fonction for |«|>ti. For \z\ sl9 vt(z) ^v(z)
+ m0 log (2^). Furthermore, F is superharmonic in a), the associated meas-

ure being fi2(e), and t; ^ F. Since the circle \z\ st contains no singular
point of fi, we hâve, by Lemma 1

J e^\dz\S(2Qir S e*\dz\<:(2Qir* J ey\iz\ C^+oo 9 (2.24)
l«l=»i ]«i=«i l«l=«i

where (7X is a constant not depending on the choice of q2, s2 and r2.
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For gt S\z\ ^ Q2> u ^ v ^ vi — ^ol°g^- Hence, for any curve a con-
tained in this annulus

$eu\dz\ ^iï-™» $ eVl\dz\ (2.25)
<X (X

We are now going to demonstrate that there exists a rectifiable curva oc, lead-
ing from |z| qx to \z\ q2, and such that

Je^ete] ^C2 S eVl\dz\ + Gz (2.26)

where C2 and Cz are constants not depending on the choice of q2 r2 and 52.
Lemma 3 will be an immédiate conséquence of (2.24), (2.25) and (2.26).

In order to establish (2.26) we first approximate the measure p,21 (e) by a
finite number of concentrated masses. This is done by the foliowing construction

: Choose an integer N ^ 2 such that

m log
N + 1 + 2 j <lOg 2 (2.27)

Let Ci, £2 > • • • > Cm designate those points (necessarily finite in number) which

support a concentrated mass of weight ^ in the measure //21.

Denoting the corresponding masses by Pi, P2 > • • • > P» > we define

- Cfc[ (2.28)

We introduce the compact set K which is obtained by subtracting from the
annulus s± ^\z\ ^s2 the open disks |z — Çk\ <ôk (4=1,2,..., m), where
the radii ôk are chosen small enough so that the following conditions are satis-
fied:

(a) the sets \z\ sly \z — Çx\ ^ 2ôl9.. ,,|z — Çm\ ^ 2ôm are disjoint,

(b) whenever Çk is a singular point of fi (i. e. pk ^ 1), then we choose ôk so
small that

^J ^|<b| (2.29)

for any rectifiable curve » leading from 121=5! to | z — Çk \ 2 <5A,4)

(c) we require the remaining 5^'s to be so small that

E | eVl\dz\<l (2.30)

*) It is easy to prove that such a choice is always possible.
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This condition can always be satisfied since

Km J evi\dz\ O (2.31)

at any non-singular point Çk. (2.31) can be proved by a reasoning which is

quite similar to the one used in the proof of Lemma 1 and which we do not
reproduee hère.

Let v(e) dénote the measure which is obtained from /%(e) after subtraet-
ing the concentrated masses p1in Ci, • •., pm in Çm. We hâve

vx(z) w(z) - Jlog|z - Ç\dv(eç) (2.32)

There exists a number d>0 such that v(e) ^ for ail Boeel

sets e of diameter ^d. Let such a d be chosen, requiring in addition that d < 1.
The fonction w (z) is uniformly continuous on K.
We now choose a number L>0, so small that the conditions (2.33) to

(2.37) are satisfied:

\z, — zJ < ZV2L implies
(2.33)

\w(zi) ~ w(z2)| <log 2 for ail z1} z2eK

m1 log ^L < log 2 (2.34)

V~2L<d VH(2N + l)L<l (2.35)

2V~2L<ôk (k= 1,2,..., m) (2.36)

M ** (2.37)

for 0<A ^ V2L, M denoting the maximum of w(z) on K.
Now we cover the (#,y)-plane by a net of squares Z with sides of length L

(x iL, y jL; i,j=0, ± 1, ±2,...) and replace the measure v(e) byafinite
number of concentrated masses, assigning to the points ((i -\-\)L,(j-\- \)L)
the weights v([iL ^ x<(i + l)L]^[jL <Ly<{j + l)L]) Let thèse be the
masses pw+1 in fw+1, ...,pn in Cn- We define

wx{z) ^(2) - i P*log|z - f*| H(^) - EVk\og\z - Cfc| • (2.38)

We now state: There exists a polygon ft, leading from \z\ sx to |«|
such that

fe«»|cfa|<- ^-7—r f e^\dz\ (2.39)
/f ¦ ' 1 -cos(^) ,f,"Lfl ' J
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We should like to point out that the proof of this statement constitutes the
kernel of our démonstration of Lemma 3. In fact, if u were assumed to be

superharmonic and of the type w1 (i. e. harmonie with isolated logarithmic
singularities) throughout Q, then the following reasoning would represent the
complète proof of this lemma.

Let z0 be an arbitrary point of the annulus A [sx ^ | z | ^ s2]. We define
A(zo) iiifJ eWl|<fe| where y varies on the set P(z0) consisting of ail reetifi-

y y
able, closed curves on A which are not nullhomotopic and pass through z0. If
zQ is not a singular point of jâ then A (z0) is finite and there exists at least
one minimal curve y(zo)€P(zo) such that

A(z0) §ew*\dz\ (2.40)
y

Indeed, y can be constructed in the usual way as the limit of a suitably chosen

minimal séquence. A (z) is continuous on A — (J C* •

We décompose the set D [st ^ \z\ ^ q2] into three disjoint subsets
3

uD<) where

i l\k\k]
(b) Da consists of those points of D — Dt which possess at least one minimal

curve contained in D,

(c) DZ^D-(D^D2)
Some of thèse sets may be empty. D2 is closed.

We now discuss some properties of minimal curves which contain no double
point. Assume first, for simplicity, that y(z0) is completely in the interior of A
and that none of the ffc's lie on it (k 1, 2,..., n). Then wx is harmonie in
some (doubly connected) neighborhood F of y. Hence the fonction

f W(z) /e»i+««f dz (2.41)
z0

where w* is conjugate harmonie to wl9 yields a conformai mapping of the uni-
versal covering surface F of F onto some simply connected Riemann surface

extending over the C-pI^ne. Since e1*1)^! |dC|, the image of any subare

of y not containing zQ in its interior (and considered on any sheet of F) is a

straight line segment in the f-plane. Hence

arg dC w* + arg dz const. (2.42)
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along such an arc. Furthermore, (2.21) implies

+* • <••«>

where s dénotes the arc length, n the exterior normal, and the intégration is

performed in the positive sensé. From (2.42) and (2.43) we conclude that, in
the neighborhood of z0, y consists of two analytic arcs which intersect at an
exterior angle @(y,z0) satisfying the inequality

0(y,zo)<7t(l-2rj) (2.44)

If we now allow y to hâve points in common with \z\ sl9 then (2.42) will
no more be true in gênerai. However, it foliows easily from a considération of
the mapping (2.41) that w* + arg dz increases monotonically if y is followed
in the positive sensé. From this and (2.42) the inequality (2.44) is again ob-
tained.

Finally, we also admit that y may pass through some of the Çk's. In such

points y will not possess corners because thèse would make shortcuts (in the
metric e^lcfzl) possible, contrary to the définition of minimal curves. Near
thèse points we replace y temporarily by small circular arcs lying in the inte-
rior région. By making use of the mapping (2.41) (integrating in a neighborhood

of the modified curve) and by our knowledge of the behavior of w* along
the small circles, we verify again the monotonicity of w* + arg dz and the
ensuing relation (2.44). No essential difficulty arises if z0 itself coincides with
one of the £fc's.

If y has points in common with | z \ — s2, then (2.44) will not be fulfilled in
gênerai.

We shall now investigate the behavior of the function A (z) in the
neighborhood U of a point z0 on D2. To this end we map U, by (2.41), conformally
onto a domain U in the £-plane. (Assume first, for simplicity, that w1 is
harmonie at z0.) There exists a minimal curve y(z0) which is contained in D. For
the présent we make the additional assumption that y is a simple closed curve.
Then the image of y in U consists of two straight line segments, lx and i2, inter-
secting at £o ^(^o) under the angle &(y, z0). Let Çf0 be a point on the bi-
sector b of 0, and let Ci and £2 dénote the points of intersection of the normal n
to b through Ç'o with lx and l2, respectively. (Choose | £0 — Çf01 small enough so

that the triangle Co^Ca lies in U.) We hâve
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The (Euclidean) bisector of © in the z-plane is transformée! into an analytic
curve a tangential to 6 at z0. Let Co dénote the point of intersection of a with n.
Then cg

Hence, for sufficiently small | Co — £o I

Cii + icî--:.i)]. (2.45)

Let 4 Ï'-Mfo)- From (2.44), (2.45) and the définition of A we conclude
that „(LA^, (2.46)

where zoz^ dénotes a (sufficiently small) segment on the (Euclidean) bisector
of S (y, «,).

Only slight modifications are needed for the case where z0 coincides with one
of the Cfc's. Again we make use of the mapping (2.41). In order to obtain unique-
ness we slit the domain U along a line which leads from z0 into the interior
of y. The mapping W is no more conformai at z0. However, the reader will
easily convinee himself that © is decreased. So our estimations hold a fortiori.

lïnally, if y contains double points, then it can be proved without difficulty
that (2.46) is satisfied if zoz'q is defined to be a (sufficiently small) segment on
the tangent to either of the two branches of y issuing from z0.

On D2 we now define a complex-valued fonction T(z). Let zcD2 and
<P (0 2g <p<2a) be fixed and let t(z9 ç?) dénote the largest number with the
foliowing property: For ail t in the interval 0<r<t the point z rei9> is
contained in A and the inequality

/exp {Wl(z + re**)} dr< -j-JL— [A(z) - A(z + re'*)]/
holds. Suppose {<fi(z)} is a séquence of arguments such that {t(z,q>ù} tends
to the least upper bound tm(z) of t(z,(p). By(2.46), tm(z) is always positive.
We choose an arbitrary limit point çpw of {<p{} and define T(z) tmei(p*». It
follows from the définition of T(z) and the continuity of A{z) that, for ail

fexp {Wl(z + re<«*)} dr ^ l __ ^ (^} [A(z) - A(z + T(z))] (2.47)

Furthermore, by making use of the définitions it can be verified in a straight-
forward way that tm(z) is lower semicontinuous. Let tmin dénote the (positive)
minimum of tm (z) on the (compact) set D2.
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Let us now construet /?. We choose an arbitrary point z0 on | z | 8X. Ob-

viously
A(z0) ^ J e"*\dz\ (2.48)

If zo€D2, then we define z1 z0 + T(z0), z2 zt + T(zx), etc., until we
arrive at a point zn not contained in D%. This will always happen after a finite
number of steps. This follows from A (z) > 0 and the inequalities (implied by
(2.47))

A(zk) - A(zk+1) ^ *m<ne"*«'"[l - cos

(£ 0,1,2,...), wlmtw denoting the (finite) minimum of w1 on A.
Let /Sx dénote the polygon (z0, ^1?..., zn), From (2.47) (formulated for

z z0, 21?..., zn_1) and (2.48) we conclude that

f e™i\dz\ (2.49)

Assume that zncD3. Then every minimal curve y(zn) intersects \z\ q2.
Hence there exists a reetifiable curve, joining zn with some point on | z \ q2 >

and of length ^ A(zn)/2 ^ A(zo)/2 in the metric eWl\dz\. Combined with
(2.48) this implies the existence of a polygon /?2 with the same endpoints and
such that

J eWl\dz\ (2.50)
|

We define /S p1 + £2. (2.39) follows from (2.49) and (2.50).
If |zn|>£2> then j3 reduces to a portion of j8x. If zQ€Dz, then fi consists of

j82 only. In thèse cases (2.39) is true a fortiori.
We are left with the possibility zn eD1. This never occurs. Indeed, by (2.38),

we hâve
w ^ w1 + m1 log (2r2) (2.51)

Let 8k be an arbitrary closed square of the net 2 which intersects with eox.

Then, for any Z€[|2| 8t] and arbitrary Ç€Bk

log z-C <log- L '

ffc denoting the center of 8k. Hence (2.32), (2.34) and (2.38) imply

w1 ^ vx + log 2 on | z | Si
Therefore

J eWl|^l ^2 J eVl|<fa| (2.52)
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It follows from (2.51), (2.49) and (2.52) that

Now, if zn€Dl3 this would contradict (2.29).
We thus hâve proved the existence of fi. By applying (2.39) instead of (2.49)

in the above reasoning one finds that fi does not intersect D1.
With the polygon fi we now associate a curve oc which leads from | z \ q±

to \z\ q2. This is done by the following construction : Let E (z) dénote the
set consisting of those (1, 2 or 4) closed squares of the net Z which contain the
point z. We connect the endpoint z0 of fi on 12: | ^x with the last point of
intersection z[ of fi with E(zo)9 z[ with the last point of intersection z2 of fi
with E(z[), and so forth, until we arrive at the endpoint of fi on \z\ q2.
We obtain a polygon fi'. Now, if fi' should penetrate into some of the disks

\z- C*|<2<5a (pk<l;k= 1,2,...,m)
then we replace in each case the subpolygon between the first entry and the
last exit by an arc on \z — Çk\ 2ôk. If the endpoint of fi on |z| ga

should lie in | z — Cfc | < 2 ôk (pk < 1 ; k 1, 2,..., m), then we follow the
circle \z — Çk\ 2dk from the first entry until we reach \z\ q2. The re-
sulting curve contains a portion a which leads from 131 gj to | z \ q2 and
is contained in qx < \ z \ ^ q2 We are going to prove that

(2.53)

The construction clearly implies that oc does not enter any of the disks
I* — £h\<àh for which pk<l (4=1,2,...,!»). From (2.36) and the fact
that fi does not intersect Z)1 it follows that the same is true for pk ^ 1. So a
Mes in K.

We décompose oc ocp -\- occ, ocP consisting of a finite number of polygons,
<x0 of a finite number of circular arcs. We hâve, by (2.30)

$eVl\dz\<l (2.54)

ocP is composed of straight line segments ocpi, ocP2,..., ocPr which are contained
in some closed squares 8X, S2,..., Sr of the net S. It follows from the construction
of oc that thèse squares are différent from each other. We complète the finite
séquence 8lyS2,..., Br to an infinité séquence {$J which enumerates ail
squares of Z. Let Zi dénote the centers of 8i (i 1, 2, 3,... Some of the
Z/s are identical with £«,+1, Cm+2> • • • » C» (introduced for the définition of wj,
say Zh Cm+1, Zi% Cw+2» •.., ^n-fll £n- For the corresponding masses
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we introduce the change of notation Ph pm+1, Ph î>OT+2,..., Pin_m 2>n,

defining P{ 0 for ail other indices.
Let S[ and S" dénote the closed squares of center Z{ with sides of lengths ZL

and (2JV + I)L, respectively. We define

Ai max w(z) and a{ min w(z)

(2.33) implies
(2.55)

Further, let bik and Bik dénote the maximum and minimum, respectively, of
the fonction log|z — f |, z varying onS-, f on 8k. If 8k is not contained in
8", then we hâve, by (2.27)

™i(bik-Bik)<log2 (2.56)

Let Qi v(8"). It follows from (2.35) and the définition of d that

Qi^l (»=1,2,3,...) (2.57)

An arbitrary point s of the plane is contained in at most (2N + 2)2 of the sets
aS^ From this we infer that

+ l)2m1 (2.58)
We hâve i=1

Je*|&| ^ Jexp {A< - S«PkBik-$\og\z -
aPi aPi *aBl ^ (2.59)

oo Xi/2 oo

^ 2 exp {^ - 27* PkBik} S x~*dx < f exp {a, - S" Pkbik} *}"«'

Hère, as indicated by the double prime, we do not extend the summation over
those indices k for which 8k is contained in 8". This estimation is based on the
représentation (2.32). In the first step we replace w(z) as well as the potential
of the masses v outside 8^ by a constant. Then we observe that the intégral
attains its maximum when the total mass (^ is concentrated in the center of
ocPi. This follows from an application of Holdeb's inequality. (The reader is
referred to the proof of Lemma 1 where exactly the same reasoning has been

reproduced in full détail.) Finally, in the third step we evaluate the intégral
and make use of (2.55), (2.56), (2.57) and the inequality X"Pk ^ mx.

The segment <xPi has been introduced as a shortcut of some subpolygon fc of
P which, at least for a portion of length ^X{, is contained in 8f{. By (2.36) and
the construction of oc, 8^ cK (i 1, 2,..., r). Hence

J eWl | dz| ^ X€ exp {a{ - Z" Pkbik) (2.60)
fii *=i

3 Commentarii Mathematici Helvetici
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Hère w(z) as well as the potential of the masses v outside 8^ hâve been replaced
by a constant. The potential of the masses on 8" has been neglected. (We are
allowed to do this because of the second relation of (2.35).)

From (2.59) and (2.60) we conclude that

^ -f- f et \dz\ + -^-exp {«, - S" Pkbik} Q€
^. (2.61)

QO OO 00

g -==-/e-»|«fe| + ~exp {a, - Z" PJ^Q^l log A4| (• 1,2,

The first step is obvions. In the second inequality we make use of the mean
value theorem of differential calculus, (2.57) and the inequality A^< 1 which
is implied by the second relation of (2.35). We observe that the final estimation

in (2.61) is also valid if Q{ 0, although in this case the intermediate
step has no meaning.

Obviously
a{^M (t=l,2,...,r) (2.62)

M denoting the maximum of w(z) on K.
It is easy to verify that

Z" Pkbik ^ i log (NL) + m1 log d (2.63)

We hâve, by (2.62), (2.63), (2.37) and (2.58)

iexp K - £ffPkbik}Q^llog A,| ^ EeM{NL)-^d-^Q^t|log X<\

ti
>m log ^| ^ W(/+ 1)2 ffl ^ 8

We add the inequalities (2.61) and obtain, by (2.64)

(2.65)

(2.53) follows from (2.54) and (2.65). Since (2.26) is implied by (2.53),
(2.39) and (2.52), this complètes the proof of Lemma 3. Theorem 1 is a

conséquence of Lemmas 2 and 3.

Proof of Theorem 3. If there exists a subcompact of û0 which intersects
inflnitely many yn, then Theorem 3 follows immediately from an application
ot Lemma 2. Otherwise we may suppose that (eventually after extraction of a
subsequence) the interior régions of {yn} tend monotonically to i20.
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We distinguish between two cases depending on whether Qo is parabolic
(i. e. identical with the entire plane) or hyperbolic.

(I) Let Qo be parabolic. If &(F)<— 1, then Theorem 3 is superseded by
Theorem 1. We complète the proof of Theorem 3 for parabolic û0 by showing
that in the remaining case the hypothèses are incompatible :

Lemma 4. Suppose that Qo is the entire plane and that 0(jT)>— 1. Let
{yn}, n= 1,2,2,..., be a séquence of rectifiable Jordan curves whose interior
régions tend increasingly to £?0. Then

lim $euiz)\dz\ +oo (2.66)
n-»oo Yn

Proof. There exists an index N and a number rj > 0 such that

1 + n (2.67)

for ail n ^ N. We choose a circle y [\z\ — R] which encloses yN. Let oon

dénote the annular région bounded by y and yn, n being arbitrary but suffi-
ciently large so that \z\ ^ R lies within yn. The theory of F. Riesz [27]
implies

±J^ (2.68)
à

and

¦^/¦^f-l&l^^^.y.;/1) (2.69)
ô

for every smooth Jordan curve ô in a>n which encloses y. Hère Ax and fe2 dénote
the best harmonie majorants of ux and u2, respectively, in coni and n désignâtes
the outer normal. We define

h(z) ht(z) - h2(z) (2.70)

and conclude from relations (2.67) to (2.70) that

There exists a (uniquely determined) conformai représentation z <pn(Ç) of
a (suitable) circular ring R<\Ç\<Bn onto cuw such that q>n(+B)
We introduce the fonction

is harmonie in .B< | CI <-B« and we hâve

F
Y à

*'«' -/¦£'*! ¦
(2'72)
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y and ô denoting arbitrary smooth Jordan curves, not null-homotopic and
lying in B<\Ç\<Bn and con, respectively. We state that

Qi

àf K{Qle^)dcp + 2n(- 1 + rçXlog Qi - log Ql) (2.73)

>A + 27Z(- 1 +Tj)l0gQ2 (B<Q1<Q2<Bn)

where A is a constant not depending on%, ^t and g2. In this inequality we
first apply (2.71) and (2.72). Tlien we let qx-+R. We complète the proof of
(2.73) by showing that the limits

fhn(Qle*
-n

exist and are uniformly bounded. To this end we consider the fonction

ux{z) on y^(A,y)
which is defined and subharmonic throughout the annulus (A, yn). The con-

formally transplanted functions, Uln(Ç) Ï7i(ç>n(£)) > w 1, 2, 3,..., are
subharmonic in circular rings Bfn<\Ç\ <Bn {B'n<B). It is well known (see

e. g. [25, p. 8]) that the arithmetic mean of a subharmonic function on con-
centric circles is a continuous function of the radius. Consequently

lim -L )\{9n(Qi#*))*P= Mm ^- f Ûln(Qle"?)d<p
Qi-Ï-R "tt —n Qi—>R "M -n

An analogous relation holds with index 2. By subtraction we obtain

lim fh((pn(Qle^))d<p fu(q>n(B>e^))d9 (2.74)
Ql-*-R —n -n

Furthermore +n +n
lim Jlog|V;(eie^)|dp Jlog|^(56^)|c^ (2.75)

since ç?w is analytic on | Ç\ B. From (2.74), (2.75) and the définition of hn

we infer that

)n +Ylog\^(Be^\d<p (n - 1, 2, 3,...) (2.76)
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We have yet to verify that the séquence {Ln} is bounded. Actually we shall

prove more, namely +n
]im Ln=$u(Rei*)d<p (2.77)

n—>oo —n

we first observe that (2.77) will be an immédiate conséquence of (2.76) after it
has been shown that

C (2.78)
n->oo

(and, consequently, Iimç4(f) 1), uniformly on |f | — R. Indeed, then
n—>o

+ w

lim J u(<pn(Re**)) d<p lim J
n—>oo —n n—>oo — n

dqi?{Re**)
dxp )u

whereas the second term on the right-hand side of (2.76) tends to 0 as n-+oo.
In order to prove (2.78) we first extend the définition of <pn{C) by reflec-

tion at | £| R. The resulting function is schlicht in R2/Rn<\ C\ <Rn, and

itmaps |C| =R onto |z| R. We mention that Rn->oo as n->oo, due to
the fact that wn tends to R < \ z | <+ oo.

By making use of Cantor's diagonal process we sélect a subsequence {ç?*}

of {<pn} which converges at an enumerable set of points possessing limit points
inboth 0<\C\<R and R<\Ç\<+ oo. {<p*} is normal [7, pp. 176, 179] in
thèse régions. Hence, by a theorem of Vitali [7, p. 186], it converges there,
uniformly on every subcompact. From this we conclude that {ç>*} converges
even in 0< | f | <H-co, uniformly on every subcompact. The limit function q>

is either schlicht meromorphic or a constant [7, p. 193]. The latter possibility
can immediately be excluded, since convergence to a constant, uniformly on
| f | jR, is incompatible with the fact that cpn maps | f | U onto \z\ R
for ail n.

The image région has to be of the same conformai type as 0<| £| <+oo.
Furthermore, it follows from results of A. Hurwitz [7, pp. 191-192] that <p

does not assume the values 0 and oo. Hence 0<|£|<+oo is mapped onto

0<|z| <+oo and <p is necessarily a linear transformation. The points 0, oo
and +R are fixed. Consequently, cp(Ç) t,.

Finally, if {<pn(Ç)} does not converge to f, then {<p*} can be chosen such

that, for some f0 (0<| fo| <+oo), limç?*(f0) Ci ¥" Co- We thus obtain a

contradiction, since the above reasoning yields lim9?*(C0) f0. This
complètes the proof of (2.78) and, with it, of (2.73). n">0°

By the theorem of the arithmetic and géométrie means [15, p. 137|

+ » -w [ 1 +* ~ ]
j exp {hn{Q%et<p)} Q%d<p ^2^^2exPj"ô— J hn\Q2et<p)d<p\ (2.79)
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Furthermore +w
lim sup J exp (hn(q^)} q^dxp £ J eu| dz | (2.80)

This relation will be verified in the proof of Lemma 5 (see formula (2.130)).
By (2.73), (2.79) and (2.80)

(2.81)
Yn

(2.66) is implied by (2.81), since jRn->oo as n -»oo.
(II) Let i?0 &e hyperbolic. Again we may suppose that the interior régions of

{yn} tend inoreasingly to û0. Purthermore, we assume that &(F) +oo,
since otherwise Theorem 3 is superseded by Theorem 2. Then there exists an
index N such that

<P(u1,yN;r)-<P2(r)>0 (2.82)
and

**(r)-*(«*>YMir)<-^-. (2.83)

Let n >N be arbitrary. Theorem 3 (for the case remaining to be treated) is an
obvious conséquence of Lemma 2 and the following resuit :

Lemma 5. There exists a rectifiable curve an, leading from yN to yn, such that

sin W8)foB
W32) • <2-84>

Proof. By F. Bœsz [27, II, p. 357] the représentations

ux(z) Ax(2) - S g(z, C)d^(ec) (2.85)
and

ec) (2.86)

hold in the annulus g> (yN, yn). Hère hx and h% dénote the best harmonie
majorants of ux and u2, respeetively, in m and g is Gbeen's function for this
région. The theory of F. Riesz implies further that

u y)-D (2.87)

and

&(u%>y#; F) <J /"âiri^l ^&(uz>Yn> F) (2.88)
y

for every smooth Jordan curve y in m which encloses yN • n dénotes the outer
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normal. We define
h(z) h1(z) -h2(z) (2.89)

and introduce the abbreviation

/!r <2-90>

y

oc does not dépend on the choice of y. (2.85), (2.86) and (2.89) imply

u(z) ^ h(z) + $g(z, C)^2(eç) (2.91)
Frqm (2.83)follows w

/*i(»)<-jj • (2.92)

We begin with the spécial case where yN and yn are circles \z\ BN and

\z\=Rn (0<BN<Rn<+oo). We state that
Rn Mf e#*>dx <: /ox /om (2.93)

RJN ~ sm (rc/8) cos (tt/32) v ;

More generally, (2.93) holds if the intégration is extended over any radial
segment (RNei@,Rnew)9 0^<9<2rc. First we prove (2.93) under the additional
assumption that the measure fiz(e^) is concentrated in one point f0. We hâve,
for positive real x

g(x,Co) ^9(x,\U\) • (2.94)

This estimation can be verified by considering, for fixed x, the Fottbiebexpansion
of g(x, Co) on the circle | Col const. We conclude from (2.91), (2.92)

and (2.94) that, for positive real x

u(x) ^*(*)+^(^|Ct|) (2.95)

If we slit co along the négative real axis we obtain a simply connected région
cof. We define

f(z) exp {(*(*) + ih*(z))/2} (2.96)

where h* is conjugate harmonie to h and, for example, h*((RN + JSJ/2) 0.

/ is regular analytic in a/. It can be continued into co as a multiple-valued
fonction with (multiplicative) period enai. We consider

<p(z) z-*'*f(z) (2.97)

defining 2~a/2 to be positive real on the interval (RN ,Rn). <p is analjrtic in m'
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and can be continuée! into co in a unique way. There exists a décomposition of
the form

q>(z) Vl(z) + i<p2(z) (2.98)

where (px and ç>2 are analytic and one-valued in co, real for real z. Indeed, just
put <px{z) Sakzk and y2(z) Ebkzk, where S(ak-\-ibk)zk is the Laurent
expansion of <p in co (ak, 6fcreal; le 0, ±1, ±2,...)- From (2.97) and
(2.98) we conclude that / admits the décomposition

/i(*)+ */•(*) > (2.99)

where fx and f2 are analytic in co; and

arg fx arg /2 0 (mod tt) (2.100)

on (BN,Bn). Furthermore, on — RNi — Bn) we hâve

^ arg/2 tioc/2 (mod n) (2.101)
or

arg/x arg/2 — noc/2 (mod n) (2.102)

depending on whether the real axis is approached from above or below. For
real z

l/(*)l" l/i(*)l* H- l/.(*)la •

We further hâve, for —7i<t<+7t and BN<r<Rn

|/(w«f)|i |/l(re«)|2 + |/2(re«)|2 + •'[/!(«-«)/,(««) -h{n**)ft{re-«
Since the bracket contains an odd function of t, it follows that

e««)|2 + \h(re»)\*)dt (2.104)

for BN<r<Bn. Let co" etf^[Imz>0]. Let flr*(2,|C0|) be conjugate
harmonie to g(z,\ Co\) *n °>*9 satisfying

^*(*,|fol) O for BN<x<\Co\ (2.105)
We then hâve

0*(*,l?ol) w for |Col<^<J?« (2.106)
and

0<g*(x}\Ç0\)<7i (2.107)
throughout co''. We define

Ft(z) =/ÎW«xp[-^to(*,
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We state that

sin (*/8) cos (»/32) jî/i(*) I2 expl^rgix, \ î,|)]<te
rN { 1O J (2.109)

j J|/i ('*«")\*dt + rn exp (-^-flr(r,,I Col)} /l/i(^ r, exp {^-flr(r,, | fo|)

for any two radii rN and rn (BN <rN<rn< Rn). For the proof of this relation
we distinguish between two cases :

(A) | oc — q | ^ 1/4, wAere g dénotes the or one of the odd integers nearest to oc.

(B) There exists an odd integer q such that \oc — q\ < 1/4.
Case (A): We apply Cauchy's intégral theorem to Ft. We integrate along the

boundary of œ" (described in the positive sensé), replacing the circular bound-

ary by the approximating circles \z\ rN and |z\ rn. At first we by-
pass Ço on a small semicircle of radius e. But we observe that the intégral along
this semicircle tends to 0 with s. So we hâve

I1 + I2 + Id + Ié 0 (2.110)

where I1,I2y I* &nd ^4 dénote the respective intégrais along (rN, | f01), (| £01, rn),
— rn, —rN) and the two semicircles. (2.100), (2.105) and (2.108) imply

arg/1 0 (2.111)

By (2.100), (2.106) and (2.108) we hâve

arg/2 w/16 (2.112)

From (2.111) and (2.112) we infer

17, + h\ à cos (W/32HIJJ + |/2|) (2.113)
We further hâve

O^arg (/! + /,) ^n/16 (2.114)

From the assumption that \oc — q\ ^1/4 (q denoting the or one of the odd

integers nearest to oc), (2.101), (2.107) and (2.108) we conclude that arg/8
distinguishes itself from the nearest odd multiple of n by at least 3^r/16. Con-
sider the triangle with sides It + I2, Iz and 74 in the complex number plane.
Since the angle between Ix + J2 and 73 is ^7r/8 we obtain the estimation

|/4| > sin (^/8)|JX + /2| (2.115)

From (2.113), (2.115) and the property (2.94) of Green's function it follows
indeed that
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sin (rc/8) cos (tz/32) J |/i(a?)|aexp 1-——-gr(a:, | to|)| i

rjsr 16 J

sin (a/8) cos (tz/

£ r* exp {^

Ca«e (J5): From (2.82), (2.87), (2.88), (2.90) and the inequality | oc — q | < 1/4
we conclude that q>0.

We first make the additional hypothesis that fx^0on

Our method is again based on an application of Cauchy's intégral theorem to
the function Fx, but tins time we do not integrate along the boundary of D.
(The previous argument breaks down because it does not yield any more an
inequality of the type (2.115)).

We state that there exists an analytic curve x with the following properties :

(a) t is contained in D and leads from |2|=rn to \z\ =rN, (b) &?g[fl(z)dz]
0 along t.

In order to verify the existence of r we décompose the function log/J into
its real and imaginary parts, log/J JBf1(2) + iH*(z). With every point z on
D we associate the unit vector exp {— ilï*(z)}. The thus defined vector field
has no singular points, since ft ^ 0 on D. Through every point z on D there
passes exactly one streamline (i. e. solution of the differential équation

wMch begins and ends on the boundary of D. Obviously, arg[/j(z)efe] 0
z

along thèse lines. They are analytic since the conformai mapping w §f\(z)dz

transforms them into straight lines. So the existence of r will be asserted if we
can verify that at least one of thèse streamlines leads from | z \ rn to | z | rN.

On the intervals (rN, rn) and (-— rn, —rN), H* 0 and H* n<%, re-
spectively. Since g^l, #>i« The continuity of H* and the relations
H*(rN) 0, J5T*( — rN) 7t(K>%n imply: There exists at least one open sub-
arc 8 t^i > 0 arg z > 0Z] of the semicircle
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with the following properties :

(a) H*(rNe**i) - 0X +^ (mod 2n)

(b) H*(rNe<**) - 6>2 + -J- (mod 2k)

(c) - 0 + -Ç- >H*(rve<*) > - 0 + -J- (mod 2a)

for all<9in#.
Since H*(rNei@) is of bounded variation in 0, there exists but a finite

number of such arcs. We dénote them by 8l9 S2,..., 8m and suppose that
they hâve been arranged in such a way that 0jc-if2>@ki (4 2,3,..., m),
where 8k [0ki>0>0k2]- I*1 each $* there is (at least) one point &k0 at
which H*(rNei&k0) -0ko + n (mod 2w).

The geometrical meaning of thèse conditions is the foliowing: At rNei@kl

and at rNei@ki the field vector is tangential to GN, directed away from 8k.
It points into \z\ <rN at ail points in 8k and is, in particular, normal to CN
at rNem°

We are now going to prove that at least one of the m streamlines ending at
rNei@1°, rNei020, rNei@mo, must begin on \z\ =rw. This will complète
the existence proof for r.

We state that H*(rNeiSi0) ^nq — 0IO. Indeed, otherwise

Prom this would follow

which, in turn, would imply the existence of at least one 8k between —rN and
rNei@11, contrary to hypothesis.

Let z0 be the point at which the streamline y ending at rNe%ei° begins. We
consider ail possibilities :

(a) \zo\ rn. Then there is nothing left to prove.

(b) z0 positive real. This never occurs because the positive real axis is itself
a streamline.

(c) z0 rNeiB° (01o>0q>O). It is easy to verify that argcfe increases

by at least -^- + 01O — 0O if we follow y from z0 to rNeiBl\ From this, the

inequality H*(rNeiBlQ) è nq — 01O and the fact that arg[/*(z)<fe] 0

along y we conclude that H* (z0) à ^(î + i) — ®o- Hence, there exists at
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least one more 8k between z0 and rN. Furthermore, we hâve again

(d) zo rNe%@o (n>@0>©10). It is easy to see that a>rgdz decreases by

at least — + @o — ®io if we follow y from z0 to rNei@1°. Hence
z

- H*(z0) è -J >10

Furthermore, Ht(zo) à jr(g + \) — 0O. (Otherwise, since the vector
exp{—iH*(z0)} points into D, we would hâve H*(z0) ^7t(q — \) — 0O.
But this would imply the existence of an Sk between — rN and zQ, eontrary
to hypothesis). We conclude that H*(rNei@1°) ^ n{q + 1) — <910. But,
knowing that H*(rNe%®10) + ©10 is an odd multiple of n9 we infer that even
H*(rNei@10) ^ 7t(q + 2) — <910 is satisfied. Consequently,

So there must exist a second arc#2 and we hâve jff^r^e*020) ^ nq — 02o-

(e) z0 négative real. The previous argument applies also to this case and

yields the same conclusion.
As a resuit of this discussion we hâve now the following alternative : Either

(a) occurs, and then the proof is completed, or the above constructions lead to
another Sk such that H*(rNei@ko) ^Ttq — &k0. In the second case we repeat
the above reasoning. (The reader will convince himself that this can be done
without difficulty. The following trivial observation is useful in this connection:

Streamlines do not intersect. Hence, for example, the one ending at
rNeWko does not begin on \z\ rN between the points z0 and rNemiù.) We
arrive at the same alternative again. But there are only a finite number of 8ks.
Hence, if we iterate this argument we must meet with case (a) after a finite
number of steps. So r exists.

We now apply Cattchy's intégral theorem to Ft, integrating in the positive
sensé along the closed curve consisting of r, (rN, rn) and subarcs of \z\ rN
and I z | rn. We hâve

J1 + Ia + 4 + /£ 0 (2.116)

where Ix, I2, /£ and Iré dénote the respective intégrais along (rN, |f01), (| f01,rn),

t and the two Connecting circular arcs. From (2.107) and the fact that
arg Ul(z)dz] 0 along r we infer

0 g arg /; ^jr/16 (2.117)
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Consider the triangle with sides It-{-129 ITZ and /£ in the complex number
plane. By (2.114) and (2.117), the angle between It + I2 and ITZ is :> lôjr/16
Hence

i ^|/i + I,| (2.118)

It follows from (2.113), (2.118) and the property (2.94) of Green's fonction
that

*? f 1
cos(jr/32) j |/i(^)|2exp —— g{x,\ £0|)> dx cos (n/32)(\I1\ + |/2|) ^ \I[\

rN {!» J

rjre^rA + rne^^jftr^lCilîJ/l/ifr.e*)!»*.
This inequality implies (2.109). It has been deduced under the assumption
that /x ^ 0 onD. We now admit zéros, but still assume that fx =£ 0 on the

circles \z\ rN and \z\ rn. Let al9ai9.. ,9a9 dénote the zéros of/x on D.
We introduce the fonction

aJ + giz&M + iWiz.aJ+gtizfr)]} (2.119)

Hère g dénotes Green's fonction for the annulus rN<\z\<rn and g* is con-
jugate harmonie to g, defined to vanish at z rN. /10 is analytic and ^0 on
D. Obviously

l/io(«)l l/i(*)l (2.120)

on | z | rN and on | z \ rn. Furthermore

l/io(«)l ^l/i(*)l (2-121)

everywhere on Z>. We conclude from (2.100) and (2.119) that

arg/10 0 (mod n) (2.122)
(2.101) and(2.119)imply

arg /10 noco/2 (mod n) (2.123)

where oco>ot. We can write oco qQ-\- êQ, where q0 is a positive odd integer
and |#0| ^1. We distinguish between two cases:

(Bx) |^0|<l/4. The above reasoning can be applied to /iO(z) since this
fonction has no zéros on D. We obtain relation (2.109), but with /10 taking
the place of/^ It follows from (2.120) and (2.121) that the unmodified
inequality (2.109) is true a fortiori.

(B2) | #01 ;> 1/4. By the method used in case (A) we prove (2.109), ft being
replaced by /10. The unmodified inequality (2.109) follows as mentioned.
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We can easily free ouradves from the assumption that /j^O on the cirdes
\z\ rN and \z\ rn. For, if this hypothesis should not be fulfilled, then we
first prove (2.109) for neighboring circles and afterwards pass to the limit.

(2.109) is also satisfied by/2. Analogous estimations hold for the lower half-
annulus. By adding thèse four inequalities and making use of (2.95), (2.96),
(2.103) and (2.104) we obtain

2 sin (jt/8) cos (n/32) J euix)dx ^ r^ exp j-y^-

f 1 +. (2.124)
\-^girn,\U\)\jmrne**)\Ht

The best harmonie majorants hx and h2 are limits of decreasing séquences,
{hlk} and {h2l} (k,l 1,2,3,...), consisting of functions which are harmonie

in the région œ, continuous on its closure. Furthermore, on the boundary
hlk\iut and h2l\k,u2 for k,l/^oo.

Let k, l be fixed. The function \z\ exp{hlk(z) — h2l(z)} is subharmonic in
(o. Hence the intégral

L(r exp {hlk — h2l) ; r) J r exp {hlk(reu) - h2l(reil
—n

is a convex function of log r. Consequently, for RN<r<Rn

L(r exp {hlk — h2l} ; r) ^ max [L(r exp {Alfc — h2l} ;

Letting first k ->oo, then l ->oo, we obtain, by hypothesis (b) of Theorem 3

Mr\f\*;r) i(re^; r) ^ max [L(re«; RN)9 L(re«; Rn)]<M

Since, furthermore, g (rN, | Co | -> 0 for r^ ->JBjy and ^ (rn, | £o | -> 0 for
rn~>jRn, (2.93) is a conséquence of (2.124).

Let us now proceed to gênerai measures pc2. We define

8K /exp {hK(x) + §gK{x^)d(i2(e^)}dx (2.125)

where ^(#,0 min [JC,gr(a:,C)] and hK(x) min [JT,A(a;)], iT denoting
an arbitrary positive constant. We first examine the case where /i2{e^) con-
sists of a finite number of concentrated masses : axp in Ci » <^2P in C2 > • • • <*mP

in Cm> 2T«|=l, «<>0 (i 1,2,..., m) and p<l/16. An application of
's inequality [15, p. 140] and the above resuit yields
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Rn w*

J exp {hK(x) + p E(XigK(a
RN t=l

m Rn
<T TT f Ç pyn SJt l f\ I fin *\¦*•* LJ ^r v v**'/ 1^ Jr o \

Jf
- sin (nr/8) cos (tt/32) '

Rn

:,Çi)}dx=$
Rn

m

i7[exp

?7[Jexp

)}f da;

(2.i:

One proves without difficulty that it is always possible to approximate 8K
arbitrarily close by substituting for fi%{e^ a finite number of concentrated
masses of totalweight p /j2(a>)<l/16. Therefore, weinferfrom(2.126) that

S* ~ sin (tt/8) cos (ot/82) ' (2.127)

Letting if-»oo we obtain (2.93) as a conséquence of (2.91), (2.125) and
(2.127).

We now admit arbitrary rectifiable Joedan curves yN and yn. Then there
exists a conformai représentation z ç?(£) of some suitable circular ring
EN<\C\<Bn (0<RN<Rn<+oo) onto the annular région co, bounded by
yN and yn, such that the boundary components yN and yn correspond to
| f | iî^ and |C| i2n, respectively. Then the flux <P(w,y ; jT) is invariant
if u is transformed according to (2.8). We are going to prove that (2.84) is
satisfied if an is the image of the interval (RN, Rn) on the |-axis C I + iq).
Let S(C) be defined by (2.8). Obviously, (2.84) is équivalent to

Ail relevant quantities (eu\dz\, mass, flux) are invariant under the transformation

(2.8). For this reason the proof of (2.128) is essentially an application
of the already treated spécial case to the function u. The only difficulty which
arises stems from the boundary behavior of <p.

First we assume that /*2 is concentrated in one point. Let hx(z) and h2(z)
dénote the best harmonie majorants in oo of ux(z) and u2(z), respectively.
We define h (z) hx{z) — ht(z),f(z) exp {(h (z) + ih*(z))/2} (A* being con-

jugate harmonie to h) and introduce the transplanted functions h(£) h (<p(C)) »

f(<p(Ç)) Assume for a moment that the inequalities

limsup f\P{reu)<p'(re^rdt £ Jeu{z)\dz\ (2.129)
R Y

limsup flfHre**)?'(retirât £§#M\dz\ (2.130)
r—>-JR» —n Yn
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have been demonstrated. Then we would obtain (2.128) as an immédiate
conséquence of (2.129), (2.130), Hypothesis (b) of Theorem 3 and (2.124) (u,f*
being replaced by u, f2(pr). Since an application of Holdeb's inequality would
enable us again to get rid of the spécial hypothesis about //2, the proof of
Lemma 5 would thus be complète.

We are left to verify (2.129) and (2.130). Let {hlk(z)} and {h2l(z)} be de-
fined as above, i. e. séquences of functions which are harmonie in co, continuous
on the closure and which tend decreasingly to hx(z) and h2(z), respectively.
Let hkl hlk — h2l. We introduce the functions

fkl(z) exp {(hkl(z) + ih*kl(z))/2} (k,l 1,2,3,...) (2.131)

where h^ is conjugate harmonie to hkl, and define

(*,J= 1,2,8,...) (2.132)
We state that +n

Umsup SlfkiWWWnrdt £5\ftl(z)\*\dz\ (2.133)
r->RN -n yN

and +« ^
limsup / iflM^(re^rdt < / \fkl(z)\*\dz\ (2.134)

We briefly indicate a proof of thèse two inequalities5). (For more détails the
reader is referred to the quoted articles.) Certain statements concerning the
boundary behavior of q> will have to be verified. The analogous properties of
the conformai mapping of simply connected domains are well known and we
shall make extensive use of them.

Let us first verify that q> is continuous and of bounded variation on the
boundary. We consider the outer boundary, | f | Bn. Let z q?± (w) dénote
a conformai mapping of a suitable circular disk | w \ < R onto the interior of yn.
We define w ç>2(t) V\X {$>{£)) • This function represents the domain
RN <| f | <Rn conformally onto an annulus Q with outer boundary \w\ R.
y has thus been decomposed into two steps, q> (pxfaiO) • 9i *s known to be

continuous on \w\ R (for références see C. Gattegno and A. Ostbowski
[14, p. 27]). Since yn is rectifiable, <px is also of bounded variation. Further-
more, w <p2(0 is analytic on | Ç\ Rn because this part of the boundary
is mapped onto a circle. Consequently, z ç?(£) is continuous and of bounded
variation on | C| Rn• The same is true for the immer circle | C| Rn •

Next we prove that <p is absolutely continuous on the boundary. From the
Laubent expansion we conclude that q> admits the représentation q> (0=^1 (C)

+ 9^11(0, <Pi and q>n being analytic in |f|<JSn and in \Ç\>BN, respec-

5) Professor M. Ribsz kindly suggested to us the following démonstration.
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tively. Since ç> is continuous and of bounded variation on | Ç | Rn, the same
is true for <pn. Hence, by a well known theorem of F. and M. Riesz [28], q>u is

absolutely continuous on | £ | Rn. Consequently, <p is absolutely continuous
on | £ | Rn. An analogous reasoning proves the same for | J | RN.

(p can be written as the Poisson intégral of its boundary values

v(Q=SK(Ç,Z)<p(Z)\dZ\
where K dénotes the Poisson kernel, f an interior and Z a boundary point of
RN < | C| <Rn- Because of the circular symmetry of the domain the kernel K
dépendsonly on |f|, \Z\ and arg(£ — Z). Consequently, if weput f çeiû
and Z RNeu (or Z Bne% we hâve dK/dê - dK/dt. This relation
allows us to convert the difïerentiation of §K(ÇyZ)<p(Z)\dZ\ with respect to
£ into a difïerentiation along the boundary (see M. Riesz [29, p. 55]). A partial
intégration then permits us to conclude that (p'(Ç) is given by the Poisson
intégral of its (almost everywhere existing) values

on the bounding circles. It foliows that

|ç/(C)| ^ At(Ç) + A2(Ç) (2.135)
where ,„

— n
and +n

For \Z\ RN, |£| -*Rn implies K(Ç,Z) ->0, the convergence being uni-
form in Z and arg £. Consequently

Km fA^re^rdt =* 0 (2.136)
r-+Rn -n

Let Ko dénote the Poisson kernel for the domain | f | <Rn. For \Z\ Rn,

K(C,Z) £K0(C,Z). Hence

T^ J J K.(C,Z)\v'(Z)\\dC\\dZ\
ICI—r |^|=iJn (2.137)

From (2.135), (2.136) and (2.137) we infer

lim sup }] <p' (re**) \ rdt ^ f\<p' {Rne«) \ Rndt 11 dz| (2.138)
r—>Rn -n —n Yn

4 Commentarii Mathematici Helvetici
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We state that, more generally

lim sup J |<p'(reu)\rdt ^$\<p'(Rneu)\Rndt J |dz| (2.139)
r->Rn h h yr

holds for any pair of values tx and t2 (—n ^ £i<£2 ^ +^)» ^n denoting the
portion of yn which corresponds to the arc(JRwem,jRwe'*2). Indeed, suppose
that (2.139) is not fulfilled for some such arc. Then there exists a séquence of
radii {rk} ->i?n such that

lim J | q>> (rke«) \rkdt> J 19/ (Bne«) | Bndt

lim J |,/ (r4e«) |rkdt £ J | <p' {Rne») \ Rndt

Thèse two inequalities imply
h+2n

lim J \<p'{rke»)\rkdt< J
k—>0O «2 <2

But since |ç?'(r^e^)! ->\q>'(Rneu)\ for almost ail i^, we hâve thus obtained a
contradiction to Fatotj's lemma [30, p. 29]. This proves (2.139). (2.134) is an
immédiate conséquence of (2.139). (2.133) can be proved by the same method.

Now, let k -»oo. We conclude from (2.133) and (2.134) that

limsup Jexp (Mç>(re«)) - M?(«"))} Wire^rdt
r-+RN-n (2.140)
^ Jexp K(2) - hn(z)} \dz\

Vn
and +n

Km sup Jexp foMre")) - KM™"))) W(re«)\rdt
r-+Rn -» (2.141)
2£jexp{ih(*)-M*)}l«fc| (ï= 1,2,3,...)

Yn

ïndeed, the symbol „ >" in either of thèse inequalities leads to a contradiction :

An easy argument then yields the conclusion that, for any fixed l and suffi-
ciently large k(l), the intégral on the left-hand sides of (2.133) and (2.134)
is not a convex fonction of log r. But, on the other hand, it should possess this
convexity property, since it represents the mean value of a subharmonic func-
tion.

Finally we let l ->oo. By making again use of the convexity we obtain
(2.129) and (2.130) as conséquences of (2.140) and (2.141), respectively. This
complètes the proof of Lemma 5.
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Theorem 1, 2 and 3 are concerned with the behavior of u near F. Correspond-
ing results can be obtained for the neighborhood of A. We state them without
giving detailed proofs. Let &(A) be defined analogously to 0(F).
(Interchange F with A and assume that n désignâtes the inner normal in ail
définitions.) Suppose that @(A) exists.

Theorem 4. // &(A) <+ 1, then there exists a locally rectifiable path a in Q,
tending to A, such that (2.7) is fulfilled.

Theorem 5. // A contains more than one point, and if &(A)<-{-oo, then
there exists a locally rectifiable path a, tending to A, such that (2.7) is satisfied.

Theorem 6. Suppose there exists a séquence {yn}> w== 1,2,3..., of
rectifiable Jordan curves, enclosing A, in Q and a number M such that

(a) iVn} cornes arbitrarily near to A,

(b) §eu\dz\< M for ail n.

Then, if &(A) ^ +1, there exists a locally rectifiable path a, tending to A,
such that (2.7) is fulfilled.

Thèse results follow from the previous ones by an inversion. We mention
that Theorems 4 and 6 can also be obtained as corollaries of Theorems 8 and 9

(section 4), respectively.
We conclude this section with a remark concerning a spécial case. Let

w — f(z) be a (not necessarily single-valued) complex analytic function which
is defined and ^ 0 throughout Q except possibly at a (finite or infinité) number

of isolated points a1,a2,a3,.... Suppose that in the neighborhood of
thèse / admits the représentation

f(z) (z-ak)**g(z) (4=1,2,3,...)
where g is regular and ^ 0 at ak, and pk dénotes an arbitrary real number.

(In particular, / may be of the form [F(z)]x, where F dénotes a meromorphic
function and X is a real number.) Then the (single-valued) function

is harmonie throughout Q except at ax ,a2iaz,..., where it possesses isolated

logarithmic singularities. Hence u admits the représentation (2.1). Let y de-

note a Jordan curve in Q, enclosing A, which does not pass through any of the
ak's. Then

y being described in the positive sensé. Since eu{z)\dz\ |/(z)||dz|, Théo-
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rems 1 to 6 thus imply certain results on intégrais of moduli of analytic func-
tions in the case where something is known about the variation of the argument

along closed curves.
If the région of définition of/ can be extended to Qo, then

<P(u,y;F) S ph
a]c€to

where co désignâtes the interior région of y.

3. A characteristic property of polynomials

Theorem 7. An entire analytic function w f(z) is a polynomial if and
only if there exists a positive number X such that

(3.1)

for every locally rectifiable path a tending to infinity.

Remarks. It is natural to ask whether this theorem remains valid if the
class of admissible curves a is more restricted. We hâve no results in this direction.

For example, the following question is still open : Let w —f(z) be an en-
tire analytic function. Suppose there exists a positive number A such that

Y\f(Qei@)\~Xd(> =+oo
î

for ail 0 (0 < 0< 2tz). Does this imply that f is a polynomial?
One might also consider other régions of définition of f(z) instead of the

entire plane. In this respect Theorem 2 immediately yields the following state-
ment : Suppose the function w f(z) =jk 0 is defined and analytic in a simply-
connected, *proper subregion Qo of the z-plane. Then, given any A>0, there
exists a locally rectifiable path a, tending to the boundary F of Qo, such that

Prooî of Theorem 7. Suppose the function w f(z) satisfies condition
(3.1)forsome A>0. Let N dénote the number of zéros of/ (N ^ +oo). We
exclude the trivial function /= 0 and define u(z) ux(z) — u2(z), where
ut(z) 0 and ^2(2:) Alog|/(2)|. Let Qo dénote the entire z-plane. Using
the notations of section 2 we then hâve &(F) — AN. Since u does not
satisfy the statement of Theorem 1, &(F) 2^—1. Hence JV ^ l/A<+oo.
So / admits the représentation

f(t) e*">n(z - ak) (3.2)
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where îFis an entire function and at,a2,,. ,,aN are the zéros of/. The func-
tion z

yields a conformai mapping of the finite z-plane onto a Riemann surface R
without branch points, extending over the £-plane. We hâve to distinguish
between two cases

(a) R coïncides with the entire finite plane. Then £ q>(z) is necessarily an
entire linear function. So ip(z) is a constant and, therefore, f(z) is a polyno-
mial.

(b) There exists a finite point £0 with the following property : On some sheet
of R the half-open segment £(t) fo£ (0 ^ t< 1) belongs to R, whereas £0

lies on the boundary. This segment is the image of an analytic curve a0 in the
z-plane which tends to infinity. By (3.3) we hâve

(3.4)

From (3.2) and (3.4) we conclude that

A (3.5)

contrary to hypothesis. (It is understood that a0 has to be slightly modified if
zéros of/ should lie on it.)

So / must be a polynomial. The converse is obvious.

4. On complète conformai metrics deîined on îinitely connectée,

open Riemann surfaces

We first give a conformally invariant formulation of Theorems 1 and 3. Let
Ûbea doubly conneeted, open Riemann surface on which a conformai metric
(1.7) is defined. We assume that u admits the local représentation (1.9). Let
F and A dénote the idéal boundary components of Q and let y be a Jobdan
curve6) in Q which is not nullhomotopic.

Assume for a moment that u is of class C2 and that y is analytic. Then we
define

•) The définitions of the concepts Jordan curve, homotopic, locally rectifiable, analytic are to be

understood with respect to the underlying Riemann surface.
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where ke and n are to be determined as in (1.5), the orientation of y being
chosen such that F lies on the right. The intégral (4.1) (in fact, even the differ-

ential \ke + -=r" \dz\) is a conformai invariant. This is immediately clear

from the geometrical interprétation (1.6), but it can also be verified by direct
calculation.

In order to define / (eu \ dz \, y ; F) for gênerai u and y we consider a séquence
{ôk}, k 1,2,3,..., of Jordan curves in Q, chosen such that the annuli
(A,ôk) tend increasingly to (A,y) as k ->oo. In (ôk,y) we introduce a
conformai metric ehk(z)\dz\, defining

hh(z) u(z)+ J g*(*>C)d(i{ec) (4,2)
Wk,Y)

Hère gk dénotes Green's function for (ôk,y) and fi fjLx — /j2, where fix and

fi2 are the measures associated with ux and ^2 > respectively. (It should be no-
ticed that p does not dépend on the choice of décomposition or uniformizer.
Hence the intégral on the right-hand side of (4.2) is a scalar. Consequently,
ehk{z)\dz\ is indeed a conformai invariant.) Let ôfk be an arbitrary analytic
Jordan curve in (ôk,y) which is not nullhomotopic. Then I(ehk\dz\,ôk; y)
is well defined. If Q is a schlicht région in the finite 2-plane, then hk (z), defined
by (4.2), is identical with the function designated in the same way in (2.4).
This is implied by the décomposition theorem of F. Riesz [27, II, p. 357]). If,
furthermore, F dénotes the outer boundary of Q, then, obviously

I(eh'\dz\,ô'k;y) 27t[0(hk,ô'k;y) + 1] (4.3)

We observe that I(ehk\dz\ ,ôk; y) does not dépend on the choice of dk, this
being true for the right-hand side of (4.3). We further conclude from (4.3) and
the existence of the limit (2.4) that

^;y) (4.4)

always exists, being finite and independent of the choice of {ôk}. Clearly

I(e«\dz\,y; F) 27il0(u,y; F) + l] (4.5)

Thèse relations hold under the above mentioned spécial assumptions. But Q
can always be mapped conformally onto a schlicht annulus such that F
corresponds to the outer boundary. Furthermore, since I(ehk\dz\, ôk ;y) is a
conformai invariant, the existence of I(eu\dz\ ,y ; F) is thus assured in any case.

Now, let {yj, l 1,2,3,..., be an arbitrary séquence of Jordan curves
which are not nullhomotopic and such that the régions (â>yù tend increas-
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ingly to Q as l ->oo. Assume that the limit

J(r) Km J(e«|&|,y,; T) (4.6)

exists for any such séquence, admitting the values +°° and —°°« Of course,
I{F) is necessarily independent of the choice of {yj.

From (4.5) we infer that

J(r) 2w[*(D+l] (4.7)

in the case where Q is a schlicht région and F dénotes its outer boundary.
Since I(F) is a conformai invariant, this relation gives rise immediately to
the following extensions of Theorems 1 and 37) :

Theorem 8. // /(F) <0, then there exists a locally rechfiable path a, tending
to F, such that J euiz)\dz | <+oo.

a

Theorem 9. Suppose there exists a séquence {yn}, n= 1,2,3,..., of
locally rectifiable Jordan curves which are not nulïhomotopic and a number M such
that

(a) {yn} oomes arbitrarily near to F,

(b) $eu{z)\dz\<M for ail n.
Yn

Then, if I(F) ^ 0, there exists a locally rectifiable path a, tending to F, such
that $eu{z)\dz\<+oo.

a
After this préparation we take up the concepts developed in the introduction.

Consider an open Riemann surface S on which a conformai metric (1.7)
is defined. Assume that u admits the local représentation (1.9). We define : The
metric euiz)\dz\ is said to be complète if J eu{z)\dz\ + oo for every locally

a
rectifiable path a which tends to the idéal boundary of 8.

Theorem 10. Let S be a finitely connected, open Riemann surface on which a
complète conformai metric eu{z)\dz\ is defined. Suppose that the curvatura
intégra C exists. Then G ^ 2;r^, where x dénotes the Euler-Poincaré charac-
teristic of S.

Remark. This is a resuit of S. Cohn-Vossen (Satz 6, p. 79 in [10]) in extended
form. (For further comments see introduction.)

7) The meaning of "cr tends to F" and of " {yn} cornes arbitrarily near to i"1" has been defined in
section 2 for schlicht annular régions. It is clear how thèse définitions hâve to be reformulated for
arbitrary Riemann surfaces.
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Prooî. S is homeomorphic to a closed surface from which a finite number
(say N) of points hâve been removed8). There exists a subcompact K of 8,
bounded by N Jobdan curves, Al9A29.. .9AN9 such that the open set 8 —K
consists of N doubly connected components, Ql9Q29..., QN. Thereby each

Qr is bounded by Ar and a second (idéal) boundary component Fr. Let yr be

an arbitrary Jordan curve in Qr which is not nullhomotopic with respect to Qr
(r 1,2,... 9N). Let E dénote the subregion of 8 whose boundary consists of

yl9..., yN^t and yN. We are going to prove the Gatjss-Bonnet formula9)

2^(r) + 2^ 27/(e«|<fe|,yr;rf) (4.8)

Assume first that u is of class C2 and that yl9..., yN_x and yN are analytic.
Consider a triangulation of the closure of E consisting of analytic arcs. Let Tj
dénote the interiors, B$ the boundaries, and ocn (l 1,2,3) the exterior angles
of the triangles (j 1,2,..., M). We may suppose that one and the same
local uniformizer can be used in a neighborhood of T^B^ By Gauss's theo-
rem and the définition of ke

pAudx,dy, + 2n -Z*n J(k + ^) \dzs\ (j 1,2,..., M)

if we integrate along Bi in the positive sensé. We add ail thèse relations. Be-

cause of the conformai invariance of lk0 + -^—11 dz | and the cohérence of

the orientation most intégrais on the right-hand side drop out. Furthermore,
the Euler-Poincaké characteristic % of 8 appears in a well known way. We
obtain

y Audxdy + 2nX j^ f(ke +^j \dz\

Yr

i. e. relation (4.8) for the considered spécial case.
We now proceed to the gênerai case but still assume that the y/s are

analytic and free of mass. Without losing generality we then may suppose that the
M

entire ,,skeleton" of the triangulation, L U Bi is free of mass. Let {Dk}9

&= 1,2,3,..., bea séquence of régions, tending decreasingly to L as k ->oo,
each of which is bounded by M + N Jordan curves lying, respectively, in
TlfTt,...9TM, (yi,^), (y2,r2),..., (yN,rN). Consider the conformai metric

8) cf. B. v. Kbeékjàbtô [19, chapter 5].
•) For the functiontheoretical aspects of the Gauss-Bonnet formula see also R. Nevanlinna

{21].



On subharmonie functions and differential geometry in the large 57

eBkm\dz\ inZ>*,denning

Hk(z) u(z) + J Gk(z,OdMeJ (4.9)

where Ok désignâtes Gbeen's function for Dk (k 1,2,3,... Then

(4.10)

(4.11)

and, by addition

We state that

hm zi\ 2nix{T}) ij =1,2,..., M)

and

(4.12)
Vr

In order to verify (4.11) we introduce (for a fixed j) a séquence of doubly con-
nected régions {Ek} which are bounded by analytic Jordan curves and tend
decreasingly to B}. Consider the conformai metric ehkm\dz\ in Ek, defining

(*.13)
Eh

where gk dénotes Gbeen's function for Ek (k 1,2,3,... From the results
of F. Riesz [27] one concludes without difficulty that

Km (4.14)

(4.9) and (4.13) imply

Obviously we hâve

and

2n J dn,

J_ fdgk(z,Ç)
2n J dnz

\dz\

\dz\

(4.15)

(4.16)

(4.17)



58 Alfred Huber

if we interprète thèse intégrais as fluxes. From (4.15), (4.16) and (4.17) we
infer that

] • (4-18)

The right-hand side of this inequality tends to 0 as h ->oo, because

^(B}) 0. Consequently, (4.11) follows from (4.14) and (4.18). (4.12)
can be demonstrated in a similar way.

M
Since Z /* (ï7,) p(Z) (4.11) and (4.12) allow us to conclude that (4.8) is

the Kmit of (4.10) as k ->oo.
In order to get rid of the hypothèses that the yr's are analytic and free of

mass we exhaust an arbitrary S by an increasing séquence of régions whose

bounding curves satisfy thèse conditions. Relation (4.8), formulated for E, is
immediately obtained as the limit of the corresponding equalities already veri-
fied for the subregions.

From (4.8) one can conclude that the limits I(Fr), r 1,2,..., JV, exist.
(This is a conséquence of the existence of G — 2n(x(8) and proved by let-
ting an arbitrary one of the yr's move to the boundary while ail others are kept
fixed.) Now, if E tends increasingly to S, then (4.8) yields in the limit

(4.19)

From Theorem 8 and the completeness of the metric we infer that I(rr) ^ 0

for r 1,2, ...,N. Hence, by (4.19), C ^ 2ti%. Q. E. D.

Theorem 11. Let 8 be afinitély connecied, open Riemann surface on which a
complète conformai metric eu{z)\dz\ is defined. Suppose there exists a séquence
iVn}> tt= 1,2,3,..., of locally rectifiahle Jordan curves wiih the following
properties:

(1) they are not nullhomotopic,

(2) their lengfhs Je^lefel are uniformly bounded,
Yn

(3) {yn} cornes arbitrarily near to every boundary component of 8 10).

Assume further that the curvatura intégra C exists. Then G 2ti%, where %

dénotes the Euler-Poincaré characteristic of 8.

Remarks. This resuit implies a theorem of S. Cohn-Vossek (Satz 7, p. 79 in
[10]) which states that G 2n% for every finitely connected, open, two-

*•) i. e. the yn's penetrate into each£?r r 1,2,.. .,Nf for any choice of K.
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dimensional RiEMA^rïrian manifold whose curvatura intégra exista and which
does not possess a so-called "eigentlicher Kelch". By going back to the définition

of this concept and using the notations introduced for the proof of Theo-
rem 10 one arrives to the following formulation of Cohn-Vossen's hypothesis:
Let

y y

admitting to compétition ail locally rectifiable Jordan curves in Qr which are
not nullhomotopic. A séquence {yn} of such curves is called a minimal
séquence of Qr if

lim $eu™\dz\ =m(Qr)
n->oo yn

Cohn-Vossen postulated that, given an arbitrary subcompact Ko of S, there
should always exist a connected subcompact K, containing Ko, such that ail
components Qr, r=l,2,...,JVr, of S — K hâve the following property:
Each minimal séquence {yn} of QT cornes arbitrarily near to Fr.

It is clear that Cohn-Vosseist's hypothesis is stronger than ours. The ordi-
nary circular cylinder imbedded in 3-space is a trivial example of a manifold
to which our resuit applies while CoHN-VossEîir's theorem does not.

The following statement is also a corollary of Theorem 11 : Let M be afinitely
connected, complète, open, two-dimensional RiEMANNÎan manifold whose curvatura

intégra C exists. Suppose there exists a séquence of subcompacts, tending in-
creasingly to M, the boundaries of which are of uniformly bounded length. Then
C 2 n%. Professor H. Hopf points out to us that if we make the additional
assumptions that M is analytic and has everywhere non-negative curvature
(and is therefore necessarily simply connected), then this resuit follows from
two theorems of F. Fiala (Theorems A and D, pp. 299-300 in [12]) and the
previously mentioned resuit of Cohn-Vossen (Satz 6, p. 79 in [10]).

Prooî. If infinitely many of the yn's would intersect Ky then a reasoning
quite similar to the one used in the proof of Lemma 2 would yield a contradiction

to the hypothesis of completeness.
Hence only a finite number of yw's intersect K. From this we conclude that

each Qr contains a subsequence {y^} of {yn} which cornes arbitrarily near
to Fr. Therefore, by Theorem 9 and the completeness of the metric, J(JTr) 0

for r 1,2,..., N. Consequently, by (4.19), C 2n%. Q. E. D.

Theorem 12. Let S be a finitély connected, open Riemann surface on which a
complète conformai metric ea(z)\dz\ of finite total area A $$ e2udxdy is de-

s
fined. Suppose that the curvatura intégra C exists. Then C=2n%, where % de-

notes the Euler-Poincaré characteristic of S.
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Prooî, Again we make use of the concepts introduced for the proof of Theo-
rem 10. Considering an arbitrary one of the régions Qr we shall prove that
I(Fr) 0. This, combined with relation (4.9), will demonstrate the theorem.

The région Qr is conformally équivalent to a schlicht circular ring in the
2-plane, R1<\z\<R2(0<R1<B2 ^ + oo). We distinguishbetweentwo cases

depending on whether R2 is finite or infinité. Let us begin by showing that the
first possibility cannot occur.

(I) i?2<+oo. Let R (J?1<J?<J?2) be chosen arbitrarily. By Schwabz's
inequality

Bt 0

^ **\ [ inf
M — It1 o^9'<2 i

Furthermore R

lim [ inf ^eMQe^dq] +c» (4.21)
0<:<P<2n R%

since otherwise an application of Lemma 2 would jdeld a contradiction to the
completeness of the metric. It follows from (4.20) and (4.21) that

§$e2udxdy= +oo

contrary to hypothesis. Hence jB2 + oo.

(II) JÎ2= +oo. Since

JJ e2«(ee^) qdqdxp<+oo

there must exist a séquence of radii {qn} ->oo for which

Qn

Hence, by Schwabz's inequality

0 0

Now we apply Theorem 9, letting yn [\z\ gn] and M V2n. It follows
that I(Fr) 0. This complètes the proof of Theorem 12.

We mention that there exist finitely connected, complète, open, two-dimen-
sional RiEMAKNian manifolds which belong to any prescribed topological type.
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In order to construct such examples we take a parabolic Riemann surface 8n)
which possesses the required topological structure. (Such a Riemakn" surface
can always be obtained by removing a finite number of points from a suitable
closed surface.) Then the Qr's are ail conformally équivalent to schlicht circu-
lar rings of the type R1<\z\<Jroo (JB1>0). In thèse we define the conformai
metric

dc 1*1

On the remaining portion of S the metric is "filled out" arbitrarily, but such
that it is everywhere positive definite and of class 02. By making use of the
factthat -f-oo +oo

f dq fi — ^_— —|- oo, but / —
J Q lOg (Q + 1) J Q

one vérifies easily that this metric is complète, but of finite total area.

5. On complète conformai metrics defined on inlinitely connectée!

Riemann surlaces

Theorem 13. Suppose that the conformai metric eu{z)\dz\, defined on an in-
finitely connected Riemann surface 8, is complète. Then C~ +00.

Remark. This resuit compléments Theorem 10. It was suggested to us as a

conjecture by Professor H. Hopf.

Proof. Assume that (7~<+oo. We are going to show that euiz)\dz\ can-
not be complète under this hypothesis.

We exhaust S by an increasing séquence {Er} of subcompacts, each being
bounded by a finite number of analytic Jobbak curves (f}rl, {}r2,..., (}rmr) which
we suppose to be free of mass. We may further request that each pr8 consti-
tutes the boundary of exactly one component Qrs of S — Zr (s 1,2,... ,mr).
By the Gauss-Bonnet formula (4.8)

pn;B) (5.1)

where %r dénotes the Euleb-Poincabé characteristic of Er and B désignâtes
the (idéal) boijndary of S. The left-hand side of (5.1) tends to ~oo as r -»oo,
since 2tiju(8) — C<+oo. Hence, for sufficiently large r

«=1

u) i. e. a Riemann surface with nullboundary (cf. R. Nevanlinna [24, p. 319]).
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Then, for at least one index s

I(e«\dz\, pra; B) -4n[/i+(Qr8) + V] (5.2)

where rj>0. Let such r and s be chosen. We change the notation by writing
fil9 Q, [àx and /it instead of (îr8, £ir8, /*+ and fi~, respectively, and introduce an
analytic Jordan curve àx in Q which is homotopic to jSl5 free of mass and so
close to /?! that jj,2 {pt, <5X) < rj.

Lemma 6. There is a number C with the follouring properiy: Oiven an arbitrary
index r, there exista a reetifiable curve oc, leading from ôt to the boundary of Ur,
such that

$eu\dz\<C (5.3)
a

Remark. Theorem 13 foliows immediately from this resuit by means of an
obvious generalization of Lemma 2.

Prooî. Our démonstration is similar to the one of Lemma 3. Let yx and y0
be analytic Jobdan curves in (fil9 ô^, both homotopic to px and free of mass,

y0 Jying in (yl9 ô^. We introduce the notations ô2, y2 and (}2 for the respective
intersections (non-empty for sufficiently large r) of the boundaries of Zr, Ur+1
and Zr+2 with Q. Further, let o (^,/82), coQ (pl9y0), (ox (yo>£2),

pm{e) fi2(ena)Q), fi21(e) ^(er.co^, m0 fji2(co0) and m1==/i2(w1). We
hâve

(5.4)

We define the metrics ehiz)\dz\, eviz)\dz\f eVliz)\dz\ and eV{z)\dz\ by putting

h(z) =u(z)+Sg{z,Qdp(ec) (5.5)

v(z)

S(eç) (5.7)
and

V(z) u(z)

where G and g dénote the Grben's fonctions of Q and œ, respectively12). Since
0 <J g S G throughout m, vx(z) ^v(z) <£ F(z) and, consequently

Se*\dz\ S feViz)\dz\ C^+oo w) (5.9)
Yi n

») Cf. R. Nbvanonna [24].
18) Ol9.. .,Oft are constants not depending on the choice of ($i9 y2 «^d 4i»
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JTurthermore, throughout (<5i,<52), u(z) ^v(z) ^ vx(z) + C'a, where C2 de-
notes the (finite) upper bound of

$G(z,Ç)dp20(eç) for z varying on Q - (&, ÔJ

(In the case where jbt20 is concentrated in one point the existence of such a
bound is an immédiate conséquence of the properties of G. One proceeds to
gênerai measures fj,20 by an application of Hôlder's inequality.) Hence, for
every curve oc in (dl9 ô2)

(5.10)

We are now going to prove that there exists a rectifiable curve a, leading from
ô1 to ô2, such that

C» (5.11)

Lemma 6 is an immédiate conséquence of (5.9), (5.10) and (5.11).
In order to establish (5.11) we first approximate the measure ju2l by a finite

number of concentrated masses. This is the purpose of the following construction.

Consider a triangulation TQ of the closure œ of co, consisting of the triangles
A°ku) (k 1,2,..., M) whose boundaries we suppose to be analytic and free
of mass.

We subdivide To in the following way: There exists a conformai représentation

tk <pk(z) of the interior of A\ onto the equilateral triangle E (1/2,
— 1/2, iVs/2) in a £fc-plane such that the vertices of A°k correspond to those
of E (k 1,2,..., M). (In the following the letters z and f are used to de-

signate points on S whereas tk and rk dénote the corresponding values of the
just introduced uniformizers.) We join the mid-pomts of the sides of E, thus
breaking it up into four smaller triangles. To this subdivision of E there
corresponds a triangulation Tx of œ, consisting of the triangles

A\, (fc= 1,2, ...,M;j= 1,2,3,4)

By iterating the subdivision of E we obtain a séquence {Tn} of triangulations,

each Tn being composed of énM triangles A^ (k 1,2,..., M;
j 1,2,..., 4n). We are going to sélect an index n large enough for our pur-
pose.

We define a subcompact Kt of cô by subtracting neighborhoods of ail
vertices of To. We require that thèse neighborhoods be bounded by analytic

14) By zf ^ and Jj. (below) we understand the dosurea of the respective triangles.
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curves (let J\ dénote their totality) such that

J e*\dz\<l (5.12)

Further, let K2 be a second compact of the same type, containing Kx and satis-
fying the condition

(5.13)

for ail zeK1 and £>(<*> — K2). It is always possible to fulfill the conditions
(5.12) and (5.13), since, by hypothesis, the vertices of To support no mass.

The région of définition of the conformai représentation tk cpk(z) can be
extended to include an open set 0k containing A\r^K2. Let Ok dénote a région
which also contains A\r\K2 and whose closure lies in 0k (k 1,2,..., M).
Gk& belonging to adjacent triangles intersect. It can be inferred from the
construction that there exists a number A (1 ^ A <+ oo) such that, uniformly
in kand l

_!<; _g*_ <:A (5.14)A ~~ dtl ~ v '
throughout GkrsGx.

We define the notion of JV-neighborhood (N 0,1,2,...) of a triangle
A\$ by recursion as follows: The 0-neighborhood is identical with A%j. The
iV^neighborhood of A^ consists of those (closed) triangles A\,y which intersect
the (N - l)-neighborhood of Ankj{N 1,2,3,...).

The following property is obvious :

(I) If A\,y lies in the iV-neighborhood of A\^ then A%$ belongs to the
JV^-neighborhood of A\,r.

Given an arbitrary positive integer N, there always exists an index no(N)
such that the following condition is fulfilled for ail k, j and any n>nQ(N):
If the iV-neighborhood of A^ intersects K2, then it lies in Gk and overlaps
from A\ into at most one A°t (l ^k). In this case every such iV^-neighbor-
hood (considered in the ^-plane) is contained in a circle of radius (N + l)A/n.
Since, on the other hand, the area of every composing triangle is ^V3/4:A*n2,
we conclude :

(II) Each iV'-neighborhood intersecting K2 contains less than 8(N + l)2-44
triangles A\^.

The statements (I) and (II) imply :

(III) Each A\$ intersecting K2 is contained in less than %(N + l)2-44
différent i^-neighborhoods.

We choose an integer NX>A + 1 and introduce the abbreviation U^ for
the jftj-neighborhood of A^. It is easy to verify that the following is true for
ail n>no(N1):
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(IV) Let q be a rectifiable curve on S, leading from z to £, both points
lying in JJ?.. Suppose that A^^K2 =£ 0. Then g^Uj,- has at least the
length*5) \tk-rk\.

We state that there exists an integer N2 > ^1 + 1 with the following prop-
erty:

(V) Let Vnkj dénote the iV2-neighborhood of Anki. Suppose that A\^K2 ^ 0.
Assume further that n>no(N2). Then the inequality

m1\g(z,Ç)-g(z'iÇ')\<log2 (5.15)

holds for arbitrary ZjZ'eA^ and Cf'czl^, admitting any A\,y which is

not contained in F£7-.

It is sufficient to prove the existence of N2 for a fixed index h. Throughout
Gk we hâve the représentation

g(z,Ç) logj—1—T+rk(tk,Tk) (5.16)
\lk — rk\

where rk is a regular function. We first limit ourselves to those triangles A\,y
which lie in Ok. If n is large enough, then, by the continuity of rk

^- (5.17)

for z,zfeAlj and Ç,Çr€A%,j,c:Qk. Since ^0(iV2) ~>cx> as JV2->oo, (5.17) is
fulfilled for ail n > n0 (N2) if only ^2 is chosen large enough. Furthermore, the
diameter15) of any A\,y in Ok is at most Ajn, whereas the distance15) between

U^ and the boundary of F^- is at least (N2 — Nt — 1)/An. Hence, if N2 is

sufficiently large, then

h-
H — Vk

a — iVi —1 2 A
_ f..

An

for z,z'eUij and CC'cidJ^/, where Anrr is supposed to lie in Gk but not in
V%. (5.15) follows from (5.16), (5.17) and (5.18). We hâve yet to treat the
case where A\,y intersects co — Gk. But then (5.15) (for sufficiently large n)
is an obvious conséquence of the continuity of g.

From now on Nx and N2 are to be considered fixed. n is still variable. Let
CiîCa* • • •> Cm designate those points which support a concentrated mass of

weight 2£
Q6>/7VT ïxTJï ^n ^e measure ^2i(er^2)* We dénote the corre-
O ^V "T~ ¦¦¦/^ 2 /

sponding masses by ^1,p2j- • •> ^m an(i define the metric ew{z)\dz\ by putting
15) with respect to the Euclidean metric in the tk -plane.

5 Commentarii Mathematici HelveticI
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w{z) h(z) + £plg(z,Cl) (5.19)

We enclose each Ci by two analytic Jobdan curves e% and &\ which satisfy
the following conditions :

(a) e\ is contained in the interior of ex (l 1,2,..., m) ;

(b) yx, ex y e2,..., em do not intersect ;

(c) whenever £, is a singular point of fi (i. e. pt ^ 1), then et shall be so
close to Ci that

for every rectifîable curve x leading from yx to ex ;

(d) E Je^|cfe|<l (5.21)

Let v(é) dénote the measure which originates from /^2i(c^^2) after re-
moval of the concentrated masses j?a in Ci, -.., pm în Cw ï"or a^ ^€-K"x we
hâve, by (5.13) and (5.19)

vx(z) v%(z) + § g(z,t)dpn(ec) S v2(z) + log 2 (5.22)
where "-**

(5.23)

Let C designate the compact which is obtained by subtracting the interiors of
e£, e£,..., £i from the closure of (yL,y2)-

Now we choose n, large enough so that conditions (5.24) to (5.30) are satis-
fied for ail k, j and l:

n>nQ(N2) ; (5.24)

A\^ ex ^ 0 implies 11%^ b\ 0 ; (5.25)

^ * (5>26)

(5.27)

for ail zeyi and Ci,^2€^j> provided that A^f^a>1 ^t 0;

(5.28)
and

I r» (**. rk) - f» («i, r'k) | < log 2 (5.29)

whenever £„, Tfc, ^ and tJ. lie in the same FJ,-.
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There exists a positive number L such that, for ail zeœ

Let
flT max[ sup w{tk)] and R max [ sup rk(tk,rk)]

C Je

We postulate that, for 0< X S 1/n

(5.30)

On each A\$ intersecting (ot there is a point Cmin(^2;) such that

1 ' -]~W~X '

for ail Cc^2;-, ft^ denoting the normal to yx which points into (yx, ^x).
Now we concentrate in each Cmin(^ï;) ^e ï^ass v which is associated with

the interior of A^ and part of its boundary, defining the latter such that every
point is covered exactly once. Let thèse be the masses pm+1 in fm+1,..., pr in
£r. We introduce the metric eWl{z)\dz\, where

wt{z) h(z) + Zplg(z,£l) w(z) + S ptg(z9£t) (5.32)

Let y be a Jokdan curve in co which is homotopic to pt. We state that

(5.33)

In order to prove this inequality we first observe that, by the Gaxjss-Bonnet
formula

yiip,) (5.34)

From (5.31) and the construction of wt we infer that

I{e**\dz\,Ylip,) £l{e*\dz\,yi;pj (5.35)

By (4.8), (5.22), (5.6) and (5.7)

y0; p2) ^ /(e*|&|, y0; P,)

(5.36)
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From (4.8) and (5.2) we infer that

2rj] (5.37)

(5.33) is implied by relations (5.4) and (5.34) to (5.37).
We state that there exists a rectifiable eurve p, leading from yt to ô2, such

that

J«i|dk| (5.38)1 - COS (TCTj) y\

The proof of this inequality is so similar to the one of (2.39) that we do not
reproduce it hère. We limit ourselves to the following remarks :

(a) In the définition
A(z0) mf§ew* \dz\

Y Y

we admit to compétition ail rectifiable Jobdan curves y which lie in the elosure
of (ylyy2), pass through zQ and are homotopic to px. Then (2.44) holds again
for every minimal curve y{z0) which as neither double points nor points in
common with y2. This follows from (5.33).

(b) p can be constructed as a "polygon", i. e. a contiguous chain of "straight
line segments". Thereby a "straight line segment" a in œ is defined to be a
smooth curve with the property that, for ail k, the set (pk(a^A°k) in the
^-plane consists of (Euclidean) straight line segments.

(c) p does not intersect any et for which pt ^ 1. Indeed, by (5.32)

$ew\dz\ ^§ew*\dz\ (5.39)

From (5.27) and (5.22) we infer that

$ew*\dz\ ^2je*|efe| ^2jefl|ifa| (5.40)
Yi Yx Yx

(5.38), (5.39) and (5.40) imply the inequality

which would contradict (5.20) if P would intersect any et for which pt ^ 1.

With the "polygon" p we now associate a curve oc which leads from dx to ô2.

This is done by the following construction: Let E(z) dénote the set consisting
of those A^/s which contain the point z. We join the endpoint z0 of p on yx
with the last point of intersection z[ of p with E(z0) by a "straight line
segment", z[ with the last point of intersection z!% of p with E(z/1), and so forth,
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until we arrive at the endpoint of /? on <52. We obtain a "polygon" $'. Now, if
(}' should penetrate into â> — K1 or into the interiors of some eurves ez for
which Pi<l, then we replace the "subpolygon" between the first entry and
the last exit by a boundary arc. The resulting curve contains a portion tx which
leads from ôt to <52 and is contained in the closure of (<5l5 ô2)- We state that

Je**|<fe| ^— Je«i|dz| + 3 (5.42)

We décompose a — ocP + occ, ocP consisting of a finite number of "polygons",
<xc of the détours introduced above. By (5.12), (5.21) and (5,22)

§ev*\dz\<2
We are left to show that "v

J ^ $ (5.43)
<Xp

à

The vérification of this inequality is quite analogous to the proof of (2.65). We
leave it to the reader and limit ourselves to the following remarks :

(a) From (5.26) and property (II) of iV-neighborhoods we infer

v{V%) <£J. (5.44)

Every point z in K2 belongs to at most 6 ZlJ/s. From this and property (III)
of i^-neighborhoods we conclude that

Zv(Vnkj) ^ éSm1(N2 + 1)M4 (5.45)

Relations (5.44) and (5.45) correspond to (2.57) and (2.58), respectively.
(b) In the estimations corresponding to (5.59), (5.60) and (5.61) it is con-

venient to integrate in the plane of the respective uniformizer tk. One makes use
of the décomposition (5.16) of Gbeen's function. The logarithmic term is han-
dled in the same way as in the proof of (2.65). The additional function rk is
taken care of by relation (5.29) and the fact that R occurs in (5.30).

Inequality (5.11) follows from (5.22), (5.42), (5.38) and (5.40). We hâve
thus proved Lemma 6 and, with it, Theorem 13.

6. Further results

Theorem 14. Let S be an open Biemann surface on which a complète conformai
metric eu(z)\dz\ is defined. Suppose that the measure [jl+ has a compact support.
Then the total area A $$e2udzdy is infinité.

s
Remark. For manifolds which possess a continuous GAussian curvature K

our hypothesis simply means that K J> 0 outside a compact subdomain. We
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mention that Theorem 14 has already been demonstrated by F. Fiala (Theo-
rem A, p. 300 in [12]) for (neeessarily simply connected) analytic manifolds
whose curvature is everywhere non-negative.

Proof. Since G" 27Zfi+(8)<+oo, we conclude from Theorem 13 that 8
is finitely connected. Furthermore, the curvatura intégra G exists. Conse-

quently16), I(Fr) 2^ 0 for r 1,2,.. .,N. Consider an arbitrary one of the
régions Qr. It is conformally équivalent to a schlicht circular ring B1<\z\<B2
(0<B1<B2 ^ +°o)- Again we distinguish between two cases:

(I) jR2<+oo. It has been verified in the proof of Theorem 12 that the
completeness of the metric yields indeed A + oo. (Actually this case does
not occur at ail. For, U2<-f-oo implies that S is hyperbolic, and it will be
shown in Theorem 15 that this is incompatible with C~ <+oo.)

(II) i22 +oo. We may assume that Ûr does not intersect the support of
/*+. (If necessary we increase B1.) Then u is superharmonic throughout Qr.
Since I(rr) ^ 0, we hâve, by (4.7)

^-1 (6.1)
e-x»

But, u being superharmonic, 0(u,\z\ q; Fr) is a non-increasing function of
q. Hence (6.1) implies

0(u,\z\ Q;rr) ^-1 (iî1<^<+oo) (6.2)
Furthermore

Jtt(e,e<*)dç> - fu(QleifP)d(p 27if0(u,\z\ q; rr)dlog q (6.3)
0 0 Q±

where Rx ^ qx ^ ç2<+°°- In *^e case °f sufficiently regular u this relation
can be verified immediately by a direct calculation. It is more generally true
(and essentially known) for ail fonctions u which admit the décomposition
(1.9). (The reader looking for a proof will find section 5.14, p. 35 in [25], help-
ful.) From (6.2) and (6.3) we infer that

fu(Qe)d(p ^Bx- log q (6.4)

for some real constant Bt and arbitrary q (B1 ^ q <+oo). By making use of
the theorem of the arithmetic and géométrie means [15, p. 137] we obtain, for
arbitrary q

2 2*
2a -5— Su(Qexip)d<P*°Jewee*)d<p à 27re ° ^-^f » (6.5)
o Q

u) See proof of Theorem 10.
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B2 denoting a positive constant. (6.5) yields
+ 00

QdQd(P ^ Bz f— +oo Q. E. D.
J Q

Ri

Theorem 15. If an open Riemann surface 8 admits a complète conformai metric
euiz)\dz\ withfinite C~~, then it is parabolic.

Remark. This resuit is known in the simply connected case, where it has been

proved by Ch. Blanc and F. Piala [5].

Proof. We assume that S is hyperbolic and show that this leads to a
contradiction.

Under this hypothesis 8 would possess a Green's function (cf. P. J.Myr-
berg [21], R. Nevanlinna [24, chapter 10]). Consider the conformai metric
ev{z)\dz\, where

v(z) u(z) + 2g(z,Çê)+Sg(z,Ç)d/*+(ec) (6.6)
s

Hère £0 dénotes an arbitrary, but fixed point on 8. The intégral on the right-
hand side of (6.6) is not identically infinité, since fi+(8) (7-/27*<+oo. One
vérifies easily that C+ ^ 4tz and C~ 0 for this metric. But since always
X ^ 1 we conclude from Theorems 10 and 13 that ev(z)\dz\ cannot be
complète. Hence eu{z)\dz\ would not be complète either, contrary to hypothesis.

We observe that the assumption C~ <+ oo has only been used for the pur-
pose of showing that the intégral in (6.6) ist not identically infinité. Hence we
hâve actually proved a statement which is slightly stronger than Theorem 15.

Let 8 be a hyperbolic Riemann surface carrying a complète conformai metric
eu(z)\dz\ whose curvatura intégra C may or may not exist. Then

$g(z,Ç)dfi+(eç) +oo
s

where g dénotes Green's function for 8. In the case of infinitely connected S
Theorem 15 is obviously superseded by Theorem 13, whereas the stronger resuit
contains new information.

The author wishes to thank Mr. J. H. Bbamble, M. A., for helping with the
English translation.
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