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Uber eine gewisse Kurvenzuordnung in der
hyperbolischen Ebene

von STANKO BILINSKI, Zagreb

Es sei in der hyperbolischen Ebene eine Kurve Z durch ihre natiirliche
Gleichung
E....c=«k(s) (1)

gegeben, wo « die Kriimmung und s die Bogenlidnge dieser Kurve bedeutet.
Dabei setzen wir voraus, dafl die Funktion (1) eindeutig und stetig ist, und daB
sie die jeweils erforderliche Anzahl von Ableitungen hat?).

Im allgemeinen kénnen wir auf der Kurve £ zwei Arten von Bogen unter-
scheiden: Ein Bogen soll der ersten oder der zweiten Art heilen, ja nachdem auf
ihm in jedem Punkte die Bedingung |x| =1 oder |«|<1 erfiillt ist. In ein-
zelnen Fiéllen kann natiirlich auch die ganze Kurve aus einem einzigen Bogen
einer der beiden Arten bestehen.

In jedem Punkte eines Bogens erster Art wird der Schmiegungskreis (wenn
| k| >1) oder der Schmiegungsgrenzkreis (wenn || = 1) bestimmt sein. Zu
jedem Punkt des Bogens erster Art gibt es also auch einen endlich oder unend-
lich entfernten Kriimmungsmittelpunkt. Es existiert daher in diesem Falle die
Evolute der Kurve Z. Ist die Gleichung (1) gegeben, so kann man leicht auch
die natiirliche Gleichung der Evolute dieser Kurve bestimmen. Es ist ferner
nicht schwer, zu zeigen, dal die Kurvenzuordnung ,,Evolute-Evolvente in
der hyperbolischen Ebene alle jene wesentlichen geometrischen und kinemati-
schen Eigenschaften hat, die diese Zuordnung in der parabolischen oder ellipti-
schen bzw. sphirischen Geometrie besitzt. Hier ist also in der hyperbolischen
Geometrie nichts wesentlich Neues gegen den parabolischen Fall zu erwarten,
daher wird diese Zuordnung hier auch nicht betrachtet.

Fiir einen Punkt eines Bogens zweiter Art gibt es dagegen keinen reellen
Kriimmungsmittelpunkt, das heifit, zu einem Bogen zweiter Art gehort keine
Evolute. Wir kénnen jedoch in diesem Falle eine andere, #hnliche Kurven-
zuordnung definieren, die nur in der hyperbolischen Geometrie méglich ist, und
zwar folgendermafen:

Jedem Punkte 7 eines Bogens zweiter Art der Kurve £ ordnen wir den ent-
sprechenden FuBpunkt M der Normalen 7 auf der Basis (Nulllinie) b der

1) Siehe auch: 8. Bruinski, Einige Anwendungen der Polarkoordinaten in der hyperbolischen
Geometrie. Glasnik Mat.-Fiz. i Astr. (Zagreb) (2) 11 (1956), 25-35.
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2 STANKO BILINSKI

Schmiegungsiquidistante zu. Der geometrische Ort dieser Punkte M ist eine
Kurve B. Da die Beziehung zwischen den Kurven £ und B eine gewisse Ver-
allgemeinerung der Beziehung zwischen der Aquidistante und ihrer Basis dar-
stellt, so soll B die ,,Basoide der Kurve E, und E die ,, Aquidistantoide‘‘ der
Kurve B heilen (oder kiirzer nur die ,,Kurve B‘ und die ,, Kurve E‘).

Man konnte nun fragen, warum neben der Kurve B nicht auch die Ein-
hiillende der Basen b aller Schmiegungsiquidistanten der Kurve E betrachtet
wird. Diese Einhiillende existiert aber nicht. Es gilt ndmlich

Satz A. Ist auf einem Bogen zweiter Art k(8) eine (im engeren Sinne) mono-
tone Funktion, so bilden die Basen der Schmiegungsiquidistanten eine Schar
Nichtschneidender.

Der Beweis dieser Behauptung ist leicht auf Grund des nichstfolgenden
Satzes B zu fiihren.

Wir stellen nun das folgende Problem: Wenn die Gleichung (1) einer Kurve
E gegeben ist, so soll fiir ihre Bogen zweiter Art die natiirliche Gleichung

k = k(o)
der Basoide gefunden werden.

Hier wird also mit %k die Kriimmung und mit ¢ die Bogenlinge der Basoide
bezeichnet, zum Unterschied von der Kriimmung « und der Bogenlinge s der
Aquidistantoide.

Zwecks Losung des ge-
stellten Problems brauchen
wir einige Beziehungen fiir
gewisse HilfsgroBen.

Wir suchen also zuerst die
Beziehung zwischen den ein-
ander entsprechenden Bo-
genelementen ds und do der
gegebenen Kurve und ihrer
Basoide. Es seien 7' und T, B
zwei unendlich nahe Punkte
eines Bogens zweiter Art der
Kurve B, und M und M,
die entsprechenden Punkte E
der Kurve B (Fig. 1). Offen-
bar kénnen wir einen genii-

T(»)

/N
gend kleinen Bogen T'T'; beliebig genau durch den zugehorigen Bogen der
Schmiegungséquidistante approximieren. Da aber fiir die Bogenlinge s der
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Aquidistante und fiir das zugehérende Segment ¢ von deren Basis die be-
kannte Beziehung s = achu gilt, wobei « die Entfernung eines Punktes der
Aquidistante von der Basis bezeichnet, so wird in unserem Falle

ds = chu-da . (2)

Da wir ferner auf das infinitesimale Dreieck MM, P, das im Grenzfalle ds—0
in ein rechtwinkliges iibergeht, die Formeln der euklidischen Geometrie an-
wenden kénnen, so wird

do? = ch—2u-ds? 4 du® . (3)
Da jetzt die Krimmung der Kurve F der Kriimmung
x = thu (4)

der Schmiegungsiquidistante gleich ist, so erhalten wir durch Elimination der
Verinderlichen » aus (3) und (4) die gesuchte Beziehung

do = [<* +1({_:2K2)3]1/2 ds , (5)

wo hier, wie auch im folgenden, durch einen Punkt die Ableitung nach der
Bogenlidnge s bezeichnet ist.

Wir bestimmen jetzt den Winkel ¢, den in einem Punkte M die Basoide mit
der Basis b der Schmiegungsiquidistante des zugehorigen Punktes 7' der Aqui-
distantoide einschlieBt (Fig. 1). Aus dem Dreieck MPM, entnehmen wir, daf
im Grenzfalle, wenn 7, gegen 7T strebt, die Beziehung

du
©P=da

giiltig ist. Daraus erhilt man unter Anwendung von (2) und (4)
tg g =x(l — )", (6)
AuBler diesen Beziehungen benostigen wir ferner den folgenden

N
Satz B. Es ses MM, ein Bogen der Basoide (Fig. 2), der zu einem Bogen

ﬁl ihrer Aquidistantoide gehort. Es sei ferner n jene Normale der Aquidistan-
toide, welche durch die Punkte T und M geht, und b, sei die Basis der Schmie-
gungsiquidistante fiir den Punkt T, der Aquidistantoide. Schneiden sich nun die
Geraden n und b, in einem Punkte N und schliefen sie dabei den Winkel



4

=X MNM, ein, so ist der
Flicheninhalt des Bereiches
M M,N, den die Geraden
n und b, und der Bogen

—
MM, begrenzen, gleich

F=2—-9. (7

Ist dabei k(3) auf dem Bogen
N

TT, eine monotone Funktion
(hier betrachten wir zum Bes-
sptel den Fall, daf sie mono-
ton steigend ist), so schneidet

7~
der Bogen MM, der Basoide

das Segment NM. 1 der Basis
b, bestimmi micht, und es ist
sicher F>0. Dann ist nach
(7) sicher 9 <m/2 .

STANKO BILINSKI

E

e

Der Beweis dieses Satzes griindet sich auf dem folgenden einfachen Satze

iiber Polygone (Fig. 3):

Satz C. Sind in einem 2n-Eck n + 1 innere Winkel gleich n/2, n — 2

Ay

\4

A A,

1

D
5

Fig. 3

innere Winkel gleich 3n/2, und
18t 9 der exnzige ibriggebliebene
Winkel, so hat dieses Polygon
den Flicheninhall F=n[2 —9.
Schneiden die Seiten dieses
Polygons einander nicht, so st
sicher & <m/2. Ein solches Po-
lygon, wie es in diesem Satze
beschrieben wurde, heifle II-
Polygon.

Den Bereich M M,N aus
Satz B konnen wir aber jetzt
auffassen als Grenzfall eines
bestimmten 77-Polygons, wobei

die Anzahl der Seiten gegen Unendlich strebt.

Um das zu zeigen, denken wir uns einen Bogen T,EI zweiter Art irgend-
einer Kurve, und der Einfachheit halber nehmen wir an, da8 auf diesem Bogen
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die Kriimmung eine monotone Funktion ist, und zwar etwa eine monoton
~
steigende (Fig. 4). Auf dem Bogen 7'T;, wiihlen wir der Reihe nach » Punkte

wird sich die gebrochene
Linie CyD,C,D,...C, D, ,,
Py

dem Basoidenbogen MM,
unbegrenzt néhern.

Da aber NC,D,C, ...
D, ,M;N ein II-Polygon
ist, so ist wegen des Satzes
C auch der Satz B richtig.
Es ist nicht schwer einzu-
sehen, dafl die vorausge-
setzte Monotonie der Funk-
tion « (s) fiir den Beweis des
Satzes nicht wesentlich ist.

Jetzt konnen wir die
Kriimmung der Basoide in
einem Punkte M finden. Es

Ay, A,,..., A,. Dabei sei
7~
jeder der Bogen T4A,,
~

—
A;4,,..., A, T, geniigend
klein, so daB man ihn belie-
big genau durch einen Aqui-
distantenbogen approximie-
ren kann. Zu jedem solchen

Aquidistantenbogen A:?IHI
denken wir uns auch das da-
zugehorige Segment (—JT,-_I-)—,.+1
der Basis. Beim Grenziiber-
gang n—>oo, wobei auch die
Linge des grofiten Bogens

7~
A;A,., gegen Null strebt,

sei also ﬁl 1 ein geniigend kleiner Bogen der Basoide, so da wir annehmen
konnen, daB auf dem zugeordneten Aquidistantoidenbogen die Kriimmung «(s)
monoton ist, und wir nehmen an, sie sei steigend (Fig. 5). Die Lénge des Bo-
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gens M’Ell sei noch durch die weitere Bedingung eingeschrénkt, daB sich die
Tangenten ¢ und ¢, in den Punkten M und M, der Kurve B in einem Punkte §
schneiden. SchlieBen diese zwei Tangenten den Winkel Ax ein, so wird die
Kriimmung der Basoide im Punkte M als Grenzwert

. Ax
b= ®

definiert.

Aus der Definition der Basoide folgt unmittelbar, daBl die Basis b die Grenz-
lage der gemeinsamen Normale der Nichtschneidenden # und 7, ist, wenn der
Punkt 7', gegen 7' strebt, und ebenso, dafl die Basis b, die Grenzlage der ge-
meinsamen Normale dieser Geraden ist, wenn der Punkt 7' gegen 7', strebt.
Wegen der Stetigkeit folgt daraus, dal die Gerade b die Gerade 7, in einem
Punkte N, schneidet, und dal die Gerade b, die Gerade n in einem Punkte N

schneidet; dabei mufl aber der Bogen M/ZI}I geniigend klein sein, was wir hier
voraussetzen werden.
Da der Flicheninhalt F;, des Vierecks M S M,N seinem Defekt gleich ist,

so wird
7

F1= 2

Nach dem Satz B ist dann

¢+ Ao — Ao .

F,—F = Ax — Ag , (9)
und das ist gerade der Flicheninhalt der Figur M SM,, die durch den Bogen

Mﬁ, der Basoide und die Segmente MS und M 1S der beiden Tangenten
begrenzt ist.

Strebt jetzt Ao gegen Null, so ist offenbar der Flicheninhalt der Figur
MSM, in bezug auf Ao eine infinitesimale GréBe hoherer Ordnung, und wir
bekommen aus (8) und (9) fiir die Kriimmung der Basoide im Punkte M die
Formel

_ 99
== (10)

Es sei hier noch ein Beweis fiir die Formel (10) gegeben. Derselbe griindet
sich auf zwei Hilfss#itze:

Satz D. Begrenzen die Bogen L,,L,,..., L, einen einfachzusammenhingen-
den Bereich und schliefen dabei zwei benachbarte Bogen L, und L, im Punkte,
wo sie stch treffen, den duPeren Winkel B, ein, so hat der Bereich den Flicheninhalt

F =28 + [ nds) — 27 .
Lg

=1
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Dieser Satz folgt unmittelbar aus dem Gauf3-Bonnetschen Satz; er ist aber auch
leicht elementar beweisbar, und zwar durch einen Grenziibergang, wo man von
einem Polygon ausgeht, das dem gegebenen krummlinig begrenzten Bereich
umgeschrieben ist.

SatzE. Sind T (s) und T,(s,) die Endpunkte eines Aquidistantoidenbogens und

MM, der zugehirige Basoidenbogen (Fig. 5), so ist der Flicheninhalt der Figur
TT M, M, die durch die zwei erwihnten Bogen und die Geraden TM und T, M,

begrenzt ist, gleich "
F = j‘KdS .
8

Beweis. Es ist bekanntlich der Flicheninhalt eines Aquidistantensektors
gleich
F, = ashu ,

wo a das begrenzende Basissegment dieses Sektors ist. Da weiter die Lénge des
zugehorigen Aquidistantenbogens gleich

s=achu
ist, so erhalten wir wegen (4)
FI = K8 .

Waihlen wir nun auf dem Bogen ﬁl n Punkte 4; (¢ = 1,...,n), und approxi-

mieren wir jeden Bogen A’,.Z,-“ durch einen Aquidistantenbogen (Fig. 4).
Schlieflich summieren wir die Flicheninhalte aller so erhaltenen Sektoren. Der
Grenziibergang n->oco bestéitigt dann die Richtigkeit des Satzes E.

Wir konnen also den Fliacheninhalt des Bereiches T'T, M, M auf zwei ver-
schiedene Weisen bestimmen. Nach dem Satze D wird

8+A4s c
F = [kds + [ kdo + A¢ ,
]

g+-40

wahrend aus dem Satze E fiir denselben Bereich

s+4s
F = ( «kds
folgt. Es ist also ‘ ordoe
fkdo = Ay .

Dividieren wir diese Gleichung durch 4g, so ergibt der Grenziibergang Aoc—0
die Gleichung (10).

Unter Verwendung der Gleichung (10) kénnen wir jetzt leicht die natiirlichen
Gleichungen der Basoide finden.
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Aus (6) folgt zunichst

dp k(1 —x2)32 4 rx2(l — k2)12
ds k2 + (1 — «?)® ) (11)

und aus (5) erhalten wir

_idf___ 1 — «2
do  [k2+ (1 — K2)3 U2

(12)

Das Produkt von (11) und (12) ergibt dann die Kriimmung der Basoide, aus-
gedriickt durch die Kriimmung der Kurve E. Wenden wir hier noch die Glei-
chung (5) an, so erhalten wir endlich zusammen mit (1) die natiirlichen Glei-
chungen der Basoide in parametrischer Form:

P [R(L— &%) + 3ui?](1 — )

[£2 + (1 — K2)3PP ’
, (13)
0= 0, + f [ +1(1__K:2)3]1/2 ds .

Losen wir jetzt das umgekehrte Problem: Es sei irgendeine Kurve durch ihre
natiirliche Gleichung gegeben. Diese werden wir jetzt in der Form

k= k(o) (14)

schreiben. Wir fragen dann, ob eine Kurve existiert, deren Basoide die Kurve
(14) wire. Wenn eine oder mehrere solche Kurven existieren, so soll die natiir-
liche Gleichung

Kk = K($) (15)

solcher Kurven — Aquidistantoiden — bestimmt werden.

Um dieses Problem zu l16sen, setzen wir zuerst voraus, daf} fiir die Kurve (14)
die Aquidistantoide (15) wirklich existiert, und in diesem Falle werden wir
ihre Gleichung bestimmen.

Fiir den Winkel ¢, den die Basoide (14) in irgendeinem Punkte mit der Basis
der zugehorigen Schmiegungsidquidistante einschlieft, erhalten wir durch Inte-
gration aus der Gleichung (10) die Beziehung

@ =@+ [ kdo . (16)
Aus Figur 1 entnehmen wir, da@

du = sin ¢-do
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ist, und daraus folgt wegen (16)
u = %y + [ sin (o + [ kdo)do . (17)
Oo Oo

Durch Anwendung von (4) erhalten wir aus (17) die Kriimmung der Aqui-
distantoide (15) als Funktion der Bogenldnge o der gegebenen Basoide (14).
Um auch die Bogenlinge s der Aquidistantoide als Funktion der Bogen-
linge o der Basoide zu bestimmen, wenden wir die Beziehung (2) an. Da aufler-
dem nach Figur 1
da = cos ¢-do
gilt, so kénnen wir schreiben:

ds = ch u cos ¢-do . (18)

So erhalten wir aus (4) und (18) durch Anwendung von (16) und (17) die natiir-
lichen Gleichungen der Aquidistantoide in parametrischer Form:

k = th[u, + j'asin (po + j'okda) do] ,
o ¢ o o (19)y,.
8 = 8o + f{ch[uy + [ sin (¢o + [ kdo)do]-cos (ge + [ kdo)}do .

Die Gleichungen (19) der Aquidistantoide fiir die Kurve (14) sind abgeleitet
unter der Voraussetzung, daB diese Aquidistantoide wirklich existiert. Thre
Existenz ist aber fiir eine beliebig gegebene Kurve nicht so offensichtlich wie
die Existenz der Basoide fiir jeden Bogen zweiter Art einer beliebig gegebenen
Kurve. Darum zeigen wir, daB wirklich fiir eine jede Kurve die Aquidistan-
toide existiert.

Es sei also irgendeine Kurve durch ihre Gleichung (14) gegeben. Wir zeigen
dann, daB fiir die Kurven, die formal durch die Gleichungen (19) definiert sind,
diese Kurve bei beliebig gewihlten Integrationskonstanten %,, ¢, und s, tat-
sdchlich die Basoide ist.

Aus (19), folgt sofort | x| <1, darum ist jeder Bogen der so definierten Kurve
ein Bogen zweiter Art, und danach existiert die Basoide sicher.

Um fiir die durch die Gleichungen (19) definierten Kurven die Basoide zu
finden, bedienen wir uns der Gleichungen (13). Dabei schreiben wir jetzt £, und
g,, zum Unterschied von den GroBen k und o aus den Gleichungen (14). Die
gesuchte Basoide wird also die folgenden natiirlichen Gleichungen haben:

[K(1 — x2?) + 3kx2](1 — x2)¥2
[£2 4 (1 — k2)3]32 )

— 23 71/2
61~00+f[K 11 K)] d8,

ky, =

(20)

"‘K
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wo noch fiir x und s die Werte (19) einzusetzen sind. Durch Differentiation der

Gleichung (19), erhalten wir
ds

—U—ls_—zchucosqa ,

und daraus und aus (19), gelangt man zu den Gleichungen
i 8P (21)

" ch3u

k ch v — 3 sh u sin? ¢ cos ¢
ch® u cos® ¢ )

o
K =

(22)

Setzen wir die Werte fiir «, « und « aus (4), (21) und (22) in die Gleichungen
(20) ein und beachten dabei, daBl hier ¢ und u kiirzere Bezeichnungen fiir die
Funktionen (16) und (17) sind, so erhalten wir

k1=’c, 01=0.

Damit ist bewiesen, daf3 wirklich fiir jeden Wert der Konstanten u,, ¢,, s, die
Gleichungen (19) eine Aquidistantoide einer beliebigen Kurve (14) darstellen.

Wir sehen also, daB fiir jeden Bogen zweiter Art einer Kurve eine bestimmte
Basoide existiert, umgekehrt gibt es aber fiir jede beliebige Kurve als Basoide
eine zweiparametrige Schar von Aquidistantoiden. In dem Sinne kénnen wir
zu einem beliebigen Punkte M (o,) einer gegebenen Kurve (14) einen beliebi-
gen Punkt 7' der Ebene als zugehorigen Punkt einer Aquidistantoide wihlen.
Ist ndmlich %, die Entfernung von 7' zu M , und schlieBt dabei die Normale auf
die Verbindungsgerade 7'M mit der gegebenen Kurve (14) im Punkte M den
Winkel ¢, ein, so sind (19) die Gleichungen jener Aquidistantoide, welche durch
den Punkt 7' geht und auf der dieser Punkt 7' dem Punkte M zugeordnet ist.

Jetzt konnen wir auch auf einige speziellere Fragen eingehen. Zuerst bemer-
ken wir, daBl die Gleichungen (13) und (19) wirklich eine Verallgemeinerung der
Beziehung zwischen der Aquidistante und ihrer Basis ergeben. Denn fiir
| k| = const <1 folgt aus den Gleichungen (13) k = 0. Das heiBt, der Aqui-
distante als Aquidistantoide entspricht ihre Basis als Basoide. Auf #hnliche
Weise folgt fiir £ =0, ¢, =0 aus (19) x = thu,, und das ist gerade die
natiirliche Gleichung der Aquidistante. Das gilt aber nur im Falle, da8 ¢, = 0
ist. Im allgemeinen, wenn ¢, beliebige Werte annehmen kann, haben die Glei-
chungen (19) fiir £ = 0 die Form

x = th[u, + (¢ — o) sin g,] ,
8 = 89 + {sh[uy + (0 — o) 8in o] — sh u,} cotg @, .
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Durch Elimination des Parameters ¢ folgt daraus die Gleichung der allgemeinen
Aquidistantoide der Geraden in der Form

(8 — 8o) tg o + sh u,
Vl + [(s — so) tg @o + sh u,]?

Diese Gleichung erhilt man auch durch Losung der Differentialgleichung (6)
fiir den Fall ¢ = ¢, = const.

Als eine zweite Anwendung der gewonnenen Resultate 16sen wir jetzt das
Problem, ob eine solche Kurve existiert, bei der die Lénge jedes Bogens der
Léange des entsprechenden Bogens ihrer Basoide gleich ist.

Dann miiite offenbar ds = do gelten, und aus (12) erhalten wir fiir die
Funktion «(s) eine Differentialgleichung mit der Losung

68—'83
o —
2ch (s — sy ’

und das ist die natiirliche Gleichung der Kurve mit der gewiinschten Eigen-
schaft.

Hat eine Kurve Bogen erster und zweiter Art, so wird sie sowohl Evoluten
als auch Basoiden haben. Die Normalen auf diese Kurve in jenen Punkten, wo
|k| = 1 ist, werden dabei die gemeinsamen Asymptoten der Basoide und der
Evolute dieser Kurve. In Inflexionspunkten wird die Basoide die gegebene
Kurve schneiden.

Alle diese Verhiltnisse sind schematisch in der Figur 6 dargestellt, wo eine

sinusoidale Kurve mit den Evoluten (punktiert) und den Basoiden (gestrichelt)
ihrer Bogen gezeichnet ist.
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Bis jetzt bezogen sich unsere Betrachtungen nur auf das reelle Gebiet der
hyperbolischen Ebene. Ziehen wir auch die idealen Punkte in Betracht, so
wird der Unterschied zwischen den Bogen erster und zweiter Art nicht mehr so
wesentlich. Fiir die Bogen erster Art existieren ndmlich reelle Evoluten und
die Basoiden bestehen aus idealen Punkten. Fiir die Bogen zweiter Art verhal-
ten sich die Dinge umgekehrt. Die Basoide ist jetzt reell und die Evolute wird
aus idealen Punkten der Ebene gebildet.

(Eingegangen den 12. Oktober 1956.)
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