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Sur les idéaux fermatiens d'un anneau commutatif

par Gabriel Thierrin

Si G est l'anneau des nombres entiers et si n est un nombre impair > 1,
on voit facilement que Je dernier théorème de Fermât est vrai pour l'exposant n

3 3

si et seulement si l'idéal (0) est tel que la relation Sa* e (0) entraîne Sa{€ (0).

Ce fait nous a conduit à considérer dans un anneau commutatif A deux classes
d'idéaux qui font l'objet de ce travail, les idéaux (n, r)-fermatiens et w-fer-
matiens.

Un idéal M de A est (n, r)-fermatien, n et r étant deux entiers fixés avec

n > 1, r ^ 1, si la relation S a? e M entraîne S a{e M. Tout idéal (n, r)-

fermatien est semi-premier. Le radical (n, r)-fermatien d'un idéal quelconque M
est l'intersection de tous les idéaux (n, r)-fermatiens contenant M ; c'est un
idéal (n, r)-fermatien et il est intersection d'idéaux premiers (n, r)-fermatiens.
Cette propriété entraîne que tout anneau (n, r)-fermatien (non réduit à 0) est

isomorphe à une somme sous-directe de domaines d'intégrité (n, r)-fermatiens.
(Pour la notion de somme sous-directe d'anneaux, cf. [2], [3]). Un idéal M de A
est ?&-fermatien, s'il est (n, r)-fermatien, quel que soit r. On obtient pour les

idéaux w-fermatiens des résultats analogues à ceux des idéaux (n,
r)-fermatiens.

1. Idéaux (^, r)-fermatiens

Soient A un anneau commutatif et n et r deux nombres entiers fixés, avec
n > 1 et r > 1. Un idéal M de A sera dit (n, r)-fermatien, si la relation

r r
S x" € M entraîne S xi e M.

Un anneau commutatif dont l'idéal (0) est (n, r)-fermatien sera dit un
anneau (n, r)-fermatien. Par exemple, si n est pair, l'anneau C des nombres
entiers est (n, r)-fermatien. On voit d'autre part facilement que l'anneau G est
(n, 3)-fermatien, n impair, si et seulement si le dernier théorème de Fermât
est vrai pour l'exposant n.

Remarquons que si M est un idéal de A, l'anneau-quotient A/M est (n, r)-
fermatien, si et seulement si M est (n, r)-fermatien. Tout idéal (n, r)-fermatien
est (n} $)-fermatien5 avec 1 < s < r. L'intersection d'idéaux (n, r)-fermatiens
est encore un idéal (n, r)-fermatien.
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Remarque. Si p et q sont deux nombres entiers positifs fixés, tout idéal M
p q P q

tel que la relation 27 x" — 27 y7- e M entraîne 27 x{ — Zyj e M est un idéal

(n, p + #)-fermatien. Si n est impair, c'est immédiat. Supposons n pair et

posons p + q r, p -{- l s. Soit 27 a* c .M. De xw — (— x)n e Jtf suit
i—l p t r

x — (— x) 2a c Jf, quel que soit #. De Zaf + ZàicM et 2I7a^eJf
p r p r t=l i=8 r i~8

suit 27 af — Ha" € M et È at — S ai e M. Comme 2 27at c M, on a donc

Rappelons qu'un idéal M est dit semi-premier, si la relation x2 € M entraîne
x e M. Il en résulte que l'on axe M, dès que l'on a, xm e M, m étant un
entier positif quelconque. Par conséquent, un idéal est semi-premier si et
seulement s'il est (n, l)-fermatien.

Théorème 1. Tout idéal (n,r)-fermatien M d'un anneau commutatif est

semi-premier.
En effet, tout idéal (n, r)-fermatien est (n, l)-fermatien, donc semi-premier.

Corollaire 1. Tout anneau commutatif (n, r)-fermatien ne contient pas
d'éléments nilpotents différents de zéro.

Corollaire 2« Pour qu'un anneau commutatif A dont la caractéristique est un
nombre premier p soit (p, rj-fermatien, il faut et il suffit qu'il ne contienne pas
d'éléments nilpotents différents de zéro.

Si M est un idéal quelconque d'un anneau commutatif A, l'intersection de
tous les idéaux (n, r)-fermatiens contenant M est un idéal (n, r)-fermatien qui
sera appelé le radical (n,r)-fermatien de M et noté par R{nr)(M). Si
1 < s < r, on a JB(n 8) (M) £L i?(Wj r) (Jf), puisque tout idéal (n, r)-fermatien
est (n, $)-fermatien. Un idéal est (n, r)-fermatien si et seulement s'il coïncide

avec son radical (n, r)-fermatien. Désignons par 81 (M) l'idéal engendré par
r r

l'ensemble de tous les éléments x de A de la forme x 27 xi avec 27 x% e M,

par#2(Jf) l'idéal S1[8l(M)]9 et d'une manière générale par Sk(M) l'idéal
#i [#*-! (M)]. On a les relations M £_ Sx (M) £_... £. 8k (M) £_... £_ Ritli r) (M).

On déduit facilement de là que

1

car U 8k(M) est un idéal (n, r)-fermatien.

Le radical {n, r)-fermatien de l'idéal (0) de l'anneau A sera appelé le radical
(n, r)-fermatien de A et noté par B{fit r).
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Rappelons qu'un idéal premier P de A est dit un idéal premier minimal
appartenant à M, si M ÇL P et s'il n'existe pas d'idéal premier Pr tel que
M Çz.Pf c P. Nous dirons de même qu'un idéal premier (n, r)-fermatien
Q de A est un idéal premier (n, r)-fermatien minimal appartenant à M, si

MÇLQ et s'il n'existe pas d'idéal premier (n, r)-fermatien Ql tel que MÇLQ' czQ.

Théorème 2. Soit M un idéal (n, r)-fermatien d'un anneau commutatif A.
Tout idéal premier minimal appartenant à M est un idéal premier (n,r)-fer-
matien minimal appartenant à M, et inversement.

Soit P un idéal premier minimal appartenant à M et supposons P c A.
On sait (cf. [1], [2]) que l'ensemble B A — P est un sous-demi-groupe
multiplicatif maximal ne rencontrant pas M (c'est-à-dire sans éléments com-

r r
muns avec M). Soit x £ x% e P. Si y Z x{ î P, alors y € B. Désignons

par X le sous-demi-groupe multiplicatif cyclique engendré par l'élément x.
On a X fl M 0 ; en effet de xm € M suit, puisque M est semi-premier
(théorème 1), x c M et donc y € M £L P, ce qui est impossible. On a de

même BXHM 0. En effet, si b e B et si bxm€M, on a (bx)meM.
r

D'où bxeM et bnX€M, c'est-à-dire S (bx£)n c M. Cette dernière relation
i=l r

entraîne, puisque M est (w, r)-fermatien, Sbx{€M et by € M f\ B, ce qui

est impossible. De ce qui précède, il résulte que le sous-demi-groupe

T BUIUBX
contient B et ne rencontre pas M ; d'où, puisque B est maximal, T B.
Comme x eT, on a donc x i P, ce qui est contradictoire. Par conséquent,

r
Exi€P', et P est un idéal premier (w, r)-fermatien minimal appartenant à Jf.

Soit maintenant Q un idéal premier (n, r)-fermatien minimal appartenant
à M. On sait que tout idéal premier Q contenant un idéal M contient un
idéal premier minimal P appartenant à M. Mais d'après la première partie
du théorème, P est (n, r)-fermatien. Donc P Q.

Théorème 3. Le radical (n,r)-fermatien Mitlt r) (M) d'un idéal quelconque
M d'un anneau commutatif A est l'intersection de tous les idéaux premiers
(n, r)-fermatiens minimaux appartenant à M.

Le radical JB(n r) (M) est un idéal (n, r)-fermatien, donc semi-premier. Par
conséquent, (cf. [1], [2]), Miîlt r) (M) est l'intersection de tous les idéaux
premiers minimaux Pt- appartenant à R{n> r) (M). D'après le théorème 2, ces

idéaux P{ sont tous les idéaux premiers (n, r)-fermatiens minimaux apparte-
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nant à R{n r) (M). De la définition du radical (n, r)-fermatien suit alors facilement

que les idéaux P^ sont aussi tous les idéaux premiers (n, r)-fermatiens
minimaux appartenant à M.

Corollaire. Tout idéal (n, r)-fermatien M de A est Vintersection de tous les

idéaux premiers (n, r)-fermatiens minimaux appartenant à M.

Théorème 4. Pour qu'un anneau commutatif A (non réduit à zéro) soit
isomorphe à une somme sous-directe de domaines d'intégrité (n,r)-fermatiens,
il faut et il suffit qu'il soit (n, r)-fermatien.

On voit facilement que la condition est nécessaire. Elle est aussi suffisante.
En effet, l'idéal (0), étant (n, r)-fermatien, est d'après le corollaire du théorème
3, intersection de tous les idéaux premiers {n, r)-fermatiens minimaux P{
appartenant à (0). Par conséquent, A est isomorphe à une somme sous-directe
des anneaux-quotients A/Pt. Comme A ^ 0, on a P{ c A et les anneaux

sont des domaines d'intégrité (n, r)-fermatiens.

Théorème 6. Le corps des quotients K d'un domaine d'intégrité (n, r)-
fermatien A est un corps (n, r)-fermatien.

r
Soit 2Jk" 0, avec kj€ K. Les éléments k{ sont de la forme k{ a^1,

avec ati fet € A, b€^z 0. Posons b 6X62. br; on a 6^0, bk{ e A et
r r r
£ (bkiY' 0. D'où, puisque A est (n, r)-fermatien, b 2k{ Sbki 0.

Par conséquent, Z k{ 0 et K est (n, r)-fermatien.

Théorème 6. Pour que tous les domaines d'intégrité (n, r)-fermatiens soient
de caractéristique non nulle, il faut et il suffit que l'anneau C des nombres entiers

ne soit pas (n, r)'fermatien.
La condition est évidemment nécessaire. Elle est suffisante. En effet, soit A

un domaine d'intégrité (nf r)-fermatién et soit K le corps des quotients de A.
D'après le théorème 5, K est (n, r)-fermatien. Si A est de caractéristique
nulle, il en est de même de K. Le corps K contient alors un sous-corps
isomorphe au corps des nombres rationnels qui n'est pas (n, r)-fermatien, puisque
C ne l'est pas. Par conséquent, K n'est pas (n, r)-fermatien, ce qui est
contradictoire.

Théorème 7. Soit C l'anneau des nombres entiers et soient aetn deux nombres

entiers supérieurs à Vunité, avec n impair. Posons r an + 1. Le radical
(n, r)-fermatien Rint r) de A vérifie la relation

(0)ciî(B>r)Ç(2)
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L'idéal (2) est évidemment (n, r)-fermatien ; donc E(nr) £L(2). On a
d'autre part an — an 0 et an — a^O. L'élément an peut s'écrire
an ln + -f- ln. On a par conséquent

1* + + ln + (- a)n 0 et 1 + + 1 + (— a) ^ 0

L'idéal (0) n'est donc pas (n, r)-fermatien. D'où (0) c B{nt T).

Théorème 8. Soit n un nombre entier impair > 1. Si Vanneau C des nombres
entiers n'est pas (n, r)-fermatien, tout nombre premier q, à partir d'un certain

rang, est de la forme r

q —

Si C n'est pas (n, r)-fermatien, C n'a qu'un nombre fini d'idéaux premiers
(n, r)-fermatiens. Par conséquent, tout nombre premier q, à partir d'un
certain rang, est tel que l'idéal premier (q) correspondant n'est pas (n, r)-fer-
matien. Soit Q le corps des classes résiduelles modulo q, Q Cj(q) ; le corps Q

n'est pas (n, r)-fermatien. Il existe par conséquent r éléments ocly <xr € Q
r r

tels que l'on ait oc Zoci¦ ^ 0 et Zo(% 0. En multipliant respectivement

par oc*1 et oc~n, on a, en posant <x,iorx &

27ft= 1 et 27# 0

Ces relations donnent dans C :

Sbi sq+ 1 et 276? «g

Posons at- 6f- pour i 1, r — 1, ar br — sq.
On a alors r r

Zat =1 et Zaf bq =£ 0

ru?
Donc q -^|—

Corollaire 1. Soient a et n deux nombres entiers supérieurs à Vunité, avec n
impairt et posons r an + 1. Toui nombre premier g, à partir d'un certain

rang, est de la forme r

q J_l— avec Z a{ 1

En effet, d'après le théorème 7, l'anneau G n'est pas (w, r)-fermatien.

1? Commenter!! Mathematici Helvetici
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Corollaire 2. Si Véquation xn + yn zn a des solutions en nombres erdiers

positifs x,y, z, avec n impair > 1, tout nombre premier q, à partir d'un certain

rang, est de la forme

an + bn + cn

En ejïet, avec cette hypothèse, l'anneau C n'est pas (n, 3)-fermatien.

Corollaire 3. Le dernier théorème de Fermât est vrai pour tout exposant impair
n > 1 tel qu'il existe une infinité de nombres premiers q ne pouvant se mettre

sous la forme a« + 6, + c«
qq — avec a -j- b + c 1

2. Idéaux n-fermatiens

Soient A un anneau commutatif et n un nombre entier fixé, avec n > 1.
Un idéal M de A sera dit n-fermatien, s'il est (n, r)-fermatien pour tout entier
positif r. Un anneau commutatif dont l'idéal (0) est n-fermatien sera dit un
anneau n-fermatien. Si N est un idéal de A, l'anneau-quotient AjN est
n-fermatien si et seulement si N est n-fermatien. L'anneau C des nombres entiers est
n-fermatien pour n pair ; par contre, d'après le théorème 7, C n'est pas
n-fermatien pour n impair.

Du corollaire 2 du théorème 1 suit immédiatement que pour qu'un anneau
commutatif, dont la caractéristique est un nombre premier p, soit p-fermatien,
il faut et il suffit qu'il ne contienne pas d'éléments nilpotents différents de zéro.

L'intersection d'idéaux n-fermatiens est encore un idéal n-fermatien. Si M
est un idéal quelconque de A, l'intersection de tous les idéaux n-fermatiens
contenant M est un idéal n-fermatien qui sera appelé le radical n-fermatien
de M et désigné par jRn (M).

Théorème 9. On a la relation

Posons (J JS(nt r) (M) S. Comme i?(n> r) (M) SL Bn (M) pour tout entier

positif r, on a donc S S^R» (M). L'ensemble S est un idéal, car B{Ut r) (M)
est un idéal et on a i?(n> rï (M) £i JB(n> 8) (M) pour r < s. D'autre part, on
voit facilement que S est un idéal n-fermatien. Donc Bn (M) £i8et8 Bn (M).

Un idéal premier n-fermatien P sera dit un idéal premier n-fermatien minimal
appartenant à Vidéal M, si M S-LP et s'il n'existe pas d'idéal premier
n-fermatien P' tel que M £_Pf c P.

Du théorème 2 suit facilement le théorème suivant ;
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Théorème 10. Soit M un idéal n-fermatien d'un anneau commutatif A.
Tout idéal premier minimal appartenant à M est un idéal premier n-fermatien
minimal appartenant à M, et inversement.

Théorème 11. Le radical n-fermatien Bn (M) d'un idéal quelconque M d'un
anneau commutatif A est Vintersection de tous les idéaux premiers n-fermatiens
minimaux appartenant à M.

Le radical Bn (M) est un idéal w-fermatien, donc semi-premier. Par
conséquent, Bn (M) est l'intersection de tous les idéaux premiers minimaux P{
appartenant à Bn (M). D'après le théorème 10, ces idéaux Pt- sont tous les

idéaux premiers w-fermatiens minimaux appartenant à Bn (M). De la définition

du radical w-fermatien suit alors facilement que les idéaux P€ sont aussi
tous les idéaux premiers w-fermatiens minimaux appartenant à M.

Corollaire. Tout idéal n-fermatien M de A est Vintersection de tous les idéaux
premiers n-fermatiens minimaux appartenant à M.

Théorème 12. Pour qu'un anneau commutatif A (non réduit à zéro) soit

isomorphe à une somme sous-directe de domaines d'intégrité n-fermatiens, il faut
et il suffit qu'il soit n-fermatien.

En utilisant le corollaire du théorème 11, la démonstration de ce théorème
est analogue à celle du théorème 4.

Théorème 13. Le corps des quotients d'un domaine d'intégrité n-fermatien
est un corps n-fermatien.

Ce théorème découle immédiatement du théorème 5.

Théorème 14. Tout anneau n-fermatien A, n impair, est de caractéristique
non nulle N et N divise tout nombre de la forme qn — q, q étant un entier
quelconque > 1.

En effet, pour tout a e A, on a l'égalité qnan + (— qa)n 0 qui peut se

mettre sous la forme
M „ x#w _an + + an + (— qa)n 0

Par conséquent, a+ +a + (—qa) 0, c'est-à-dire qna — qa (qn — q)a=0.
L'anneau A est donc de caractéristique non nulle N et N divise qn — q.
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