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Sur les idéaux fermatiens d’un anneau commutatif

par GABRIEL THIERRIN

Si ¢ est 'anneau des nombres entiers et si # est un nombre impair > 1,

on voit facilement que le dernier théoréme de FERMAT est vrai pour 1’exposant n
3 » 3
si et seulement si 1’idéal (0) est tel que la relation X'a} € (0) entraine X'a; € (0).
i=1 1=1
Ce fait nous a conduit & considérer dans un anneau commutatif 4 deux classes
d’idéaux qui font ’objet de ce travail, les idéaux (n, r)-fermatiens et n-fer-
matiens.

Un idéal M de A est (n, r)-fermatien, n et r étant deux entiers fixés avec

r r
n>1,r>1, sila relation X al ¢ M entraine X a,e M. Tout idéal (n, r)-
i=1 i=1
fermatien est semi-premier. Le radical (n, r)-fermatien d’un idéal quelconque M
est l'intersection de tous les idéaux (n, r)-fermatiens contenant M ; c’est un
idéal (n, r)-fermatien et il est intersection d’idéaux premiers (n, r)-fermatiens.
Cette propriété entraine que tout anneau (n, r)-fermatien (non réduit & 0) est
isomorphe & une somme sous-directe de domaines d’intégrité (n, r)-fermatiens.
(Pour la notion de somme sous-directe d’anneaux, cf. [2], [3]). Un idéal M de A
est n-fermatien, s’il est (n, r)-fermatien, quel que soit . On obtient pour les
idéaux n-fermatiens des résultats analogues & ceux des idéaux (n, r)-fer-
matiens.

1. Idéaux (n, r)-fermatiens

Soient A4 un anneau commutatif et » et r deux nombres entiers fizés, avec
n>1 et r>1. Un idéal M de A4 sera dit (n, r)-fermatien, si la relation

r r
2z}« M entraine Xz, e M.
i=1 i=1

Un anneau commutatif dont 1'idéal (0) est (n,r)-fermatien sera dit un
anneaw (n,r)-fermatien. Par exemple, si n est pair, 'anneau C' des nombres
entiers est (n, r)-fermatien. On voit d’autre part facilement que 'anneau C est
(n, 3)-fermatien, n impair, si et seulement si le dernier théoréme de FERMAT
est vrai pour ’exposant 7.

Remarquons que si M est un idéal de 4, I’anneau-quotient A[M est (n, r)-
fermatien, si et seulement si M est (n, r)-fermatien. Tout idéal (n, r)-fermatien
est (n, s)-fermatien, avec 1< s< r. L’intersection d’idéaux (n, r)-fermatiens
est encore un idéal (n, r)-fermatien.
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Remarque. Si p et ¢ sont deux nombres entiers positifs fixés, tout idéal M

» q » q

tel que la relation X' a] — 2'yj ¢ M entraine Xz, — 2Z'y; e M est un idéal
i=1 i=1 i=1 j=1

(n, p + q)-fermatien. Si n est impair, c’est immédiat. Supposons n pair et

r
posons p+qg=r, p+1=s. Soit Xa} eM De xn — (— x)* eM suit

1=1

x—(—-m)-_zxeM quel que smtx De Z’a —l—Z‘a eM et 2Z’a eM
i=1 t=8 7 1=8
sult Za -—Za eM et Z'a, Z'a eM. Comme 2Xa;eM, onadonc
1=1 i=8 t=1 t=8 1=8

Z& eM.

t=1
Rappelons qu’un idéal M est dit semi-premaer, si la relation 22 ¢ M entraine

xeM. Il en résulte que 'on a x <M, dés que 'on a 2™ e M, m étant un
entier positif quelconque. Par conséquent, un idéal est semi-premier si et
seulement 8’il est (n, 1)-fermatien.

Théoréme 1. Tout vdéal (n,r)-fermatien M d’un anneauw commutatif est
semi-premaier.
En effet, tout idéal (n, r)-fermatien est (n, 1)-fermatien, donc semi-premier.

Corollaire 1. Tout anneau commutatif (n, r)-fermatien ne contient pas d’élé-
ments nilpotents différents de zéro.

Corollaire 2. Pour qu’un anneau commutatif A dont la caractéristique est un
nombre premier p soit (p,r)-fermatien, <l faut et il suffit qu’il ne contienne pas
d’éléments nilpotents différents de zéro.

Si M est un idéal quelconque d’un anneau commutatif A4, I'intersection de
tous les idéaux (», r)-fermatiens contenant M est un idéal (n, r)-fermatien qui
sera appelé le radical (n,r)-fermatien de M et noté par R, , (M). Si
1<sgr, ona R, , (M) E R, (M), puisque tout idéal (n, r)-fermatien
est (n, 8)-fermatien. Un idéal est (n, r)-fermatien si et seulement s’il coincide
avec son radical (n, r)-fermatien. Désignons par S, (M) I'idéal engendré par

r

r
Pensemble de tous les éléments x de 4 de la forme x = X z; avec Z' x; e M,
=1

par S, (M) l'idéal S, [S, (M)], et d’une maniére générale par S, (M ) l'idéal
8,[8%_1(M)]. Onalesrelations M S S, (M)S...C S, (M)S...S R, ,(M).
On déduit facilement de 1& que

R,,n (M) =V Sy (M)
=1
car U S, (M) est un idéal (n, r)-fermatien.
k=1
Le radical (n, r)-fermatien de 1’idéal (0) de ’anneau A sera appelé le radical

(n, r)-fermatien de A et noté par R, .
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Rappelons qu’'un idéal premier P de A est dit un idéal premier minimal
appartenant @ M, si M S P et 8’il n’existe pas d’idéal premier P’ tel que
M S P’ ¢ P. Nous dirons de méme qu’un idéal premier (»,r)-fermatien
Q de A est un idéal premier (n,r)-fermatien minimal appartenant ¢ M, si
M C @ et s’il n’existe pas d’idéal premier (n, r)-fermatien Q' tel que M C Q' Q.

Théoréme 2. Soit M un idéal (n,r)-fermatien d’un anneau commutatif A.
Tout idéal premier minimal appartenant @ M est un idéal premier (n,r)-fer-
matien minimal appartenant a M , et inversement.

Soit P un idéal premier minimal appartenant & M et supposons P c A.
On sait (cf. [1], [2]) que I'’ensemble B = 4 — P est un sous-demi-groupe
multiplicatif maximal ne rencontrant pas M (c’est-a-dire sans éléments com-

r r
muns avec M). Soit x = 2 al e P. Si y =2z, ¢ P, alors y e B. Désignons
i=1 i=1
par X le sous-demi-groupe multiplicatif cyclique engendré par I’élément x.
Ona XNM=g; en effet de a™ e M suit, puisque M est semi-premier
(théoréme 1), x e M et donc ye M & P, ce qui est impossible. On a de

méme BXNM =g¢g. En effet, si be B et si bax™e M, on a (bx)"e M.
r
Dot bx e M et b*x e M, c’est-d-dire X (bx,)” e M. Cette derniére relation

t=1 r
entraine, puisque M est (n,r)-fermatien, X bx; e M et bye M N B, ce qui
i=1
est impossible. De ce qui précede, il résulte que le sous-demi-groupe

T=BUXUBX

contient B et ne rencontre pas M ; d’olu, puisque B est maximal, T = B.

Comme x €7, on a done z¢ P, ce qui est contradictoire. Par conséquent,
r
2z, eP, et P estunidéal premier (n, r)-fermatien minimal appartenant & M .

i=1

Soit maintenant @ un idéal premier (n, r)-fermatien minimal appartenant
& M. On sait que tout idéal premier @ contenant un idéal M contient un
idéal premier minimal P appartenant & M. Mais d’aprés la premiére partie

du théoréme, P est (n, r)-fermatien. Done P = Q.

Théoréme 3. Le radical (n,r)-fermatien R, , (M) d'un idéal quelconque
M d’un anneauw commutatif A est Uintersection de tous les idéaux premiers
(n, r)-fermatiens minimauzx appartenant & M. .

Le radical R, , (M) est un idéal (n, r)-fermatien, donc semi-premier. Par
conséquent, (cf. [1], [2]), R(,, r) (M) est Pintersection de tous les idéaux pre-
miers minimaux P, appartenant & R, , (M). D’aprés le théoréme 2, ces
idéaux P, sont tous les idéaux premiers (n, 7)-fermatiens minimaux apparte-
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nant & R, , (M). De la définition du radical (n, r)-fermatien suit alors facile-
ment que les idéaux P, sont aussi tous les idéaux premiers (n, r)-fermatiens
minimaux appartenant & M .

Corollaire. Tout idéal (n,r)-fermatien M de A est Uintersection de tous les
idéaux premiers (n, r)-fermatiens minimauz appartenant & M .

Théordme 4. Pour qu’un amneau commutatif A (non réduit a zéro) soit
tsomorphe a une somme sous-directe de domaines d’intégrité (n,r)-fermatiens,
1l faut et il suffit qu’il soit (n, r)-fermatien.

On voit facilement que la condition est nécessaire. Elle est aussi suffisante.
En effet, 1'idéal (0), étant (n, r)-fermatien, est d’apres le corollaire du théoréme
3, intersection de tous les idéaux premiers (n,r)-fermatiens minimaux P,
appartenant & (0). Par conséquent, A est isomorphe & une somme sous-directe
des anneaux-quotients 4/P;. Comme 4 # 0, ona P, c 4 et les anneaux
A|P, sont des domaines d’intégrité (n, r)-fermatiens.

Théoréme 5. Le corps des quotients K d’un domaine d’intégrité (n,r)-
fermatien A est un corps (n,r)-fermatien.

r
Soit Xk = 0, avec k;, ¢ K. Les éléments k, sont de la forme k; = a,b;",
i=1

avec a;,, b,e A, b+ 0. Posons b=0bb,...b,; on a b#0, bk;e A et

r r r

2 (bk) =0. D’oh, puisque A est (n,r)-fermatien, b2k, = X bk, = 0.
r

i=1 i=1 i=1
Par conséquent, X'k, = 0 et K est (n, r)-fermatien.
i=1

Théoréme 6. Pour que tous les domaines d’intégrité (n, r)-fermatiens soient
de caractéristique non nulle, il faut et il suffit que Uanneau C des nombres entiers
ne soit pas (n, r)-fermatien.

La condition est évidemment nécessaire. Elle est suffisante. En effet, soit 4
un domaine d’intégrité (», r)-fermatien et soit K le corps des quotients de 4.
D’aprés le théoréme 5, K est (n,r)-fermatien. Si 4 est de caractéristique
nulle, il en est de méme de K. Le corps K contient alors un sous-corps iso-
morphe au corps des nombres rationnels qui n’est pas (n, r)-fermatien, puisque
C ne l’est pas. Par conséquent, K n’est pas (n, r)-fermatien, ce qui est con-
tradictoire.

Théoréme 7. Soit C 'anneau des nombres entiers et soient a et n deux nombres
entiers supérieurs & lunité, avec n impair. Posons r = a™ + 1. Le radical
(n, r)-fermatien R, , de A vérifie la relation

(0) € Biu,n & (2) -



Sur les idéaux fermatiens d’un anneau commutatif 245

L’idéal (2) est évidemment (n,r)-fermatien; donc R, ,, & (2). On a
d’autre part a®* —a"=0 et a® —a # 0. L’élément a™ peut s’écrire
a* = 1" 4 ...+ 1*. On a par conséquent

"4+ ...+ 1"+ (—ap=0 e 1+4+...+1+(—a)z£0.
L’idéal (0) n’est donc pas (n, r)-fermatien. D’ou (0) c R, ..

Théoréme 8. Soit n un nombre entier impair > 1. St Uanneau C des nombres
entiers n’est pas (n,r)-fermatien, tout nombre premier q, a partir d’un certain

rang, est de la forme ,
Za} ,

g=""—, avec Za,=1.
b i=1

Si C n’est pas (n, r)-fermatien, C n’a qu’'un nombre fini d’idéaux premiers
(n, r)-fermatiens. Par conséquent, tout nombre premier ¢, & partir d’'un cer-
tain rang, est tel que 1’idéal premier (g) correspondant n’est pas (n, r)-fer-
matien. Soit @ le corps des classes résiduelles modulo ¢, @ = C/(q); le corps @
n’est pas (n, r)-fermatien. Il existe par conséquent r éléments «,,...,x, €@

7 r
tels que I'on ait & = 2Z'«x; £ 0 et X = 0. En multipliant respectivement
i=1 i=1
par ' et «~", on a, en posant «;x"! = f,

r r
ZB=1 e Zpfr=0.

Ces relations donnent dans C':

Zb,=s8q+1 e 2Xbl=1tq.

i=1 i=1
Posons a;, = b, pour ¢ =1,..., r—1, a,=b, — sq.
On a alors ’ "
Ya,=1 et Xal=0bqg+#0.
r =1 i=1
a;
_i=1
Donc ¢q = 5

Corollaire 1. Soient a et n deux nombres entiers supérieurs a Uunité, avec n
impair, et posons r = a®™ -+ 1. Tout nombre premier q, & partir d’un certain
rang, est de la forme ,

,
“

q="b avec Za,=1.
t=1

En effet, d’aprés le théoréme 7, I’anneau C n’est pas (n, r)-fermatien.
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246 GABRIEL THIERRIN

Corollaire 2. 87 Uéquation a™ + y™ = 2" a des solutions en nombres entiers
positifs x, y, z, avec n impair > 1, tout nombre premier q, & partir d’un certain
rang, est de la forme

q.—:an—}—?;-*—cn avec a-+b+c=1.

En effet, avec cette hypothése, ’anneau C n’est pas (n, 3)-fermatien.

Corollaire 3. Le dernier théoréme de Fermat est vras pour tout exposant impair
n > 1 tel qu’il existe une infinité de nombres premiers q ne pouvant se metire
sous la forme ar 4 b+ on

q = 3 avec a-+b-+c=1.

2. Idéaux n-fermatiens

Soient A4 un anneau commutatif et » un nombre entier fizé, avec n > 1.
Un idéal M de A sera dit n-fermatien, 8’il est (n, r)-fermatien pour tout entier
positif . Un anneau commutatif dont I'idéal (0) est n-fermatien sera dit un
anneau n-fermatien. Si N est un idéal de 4, 'anneau-quotient A/N est n-fer-
matien si et seulement si NV est n-fermatien. L’anneau C des nombres entiers est
n-fermatien pour n pair; par contre, d’aprés le théoréme 7, C n’est pas n-fer-
matien pour n impair.

Du corollaire 2 du théoréme 1 suit immédiatement que pour qu’un anneau
commutatif, dont la caractéristique est un nombre premier p, soit p-fermatien,
il faut et il suffit qu’il ne contienne pas d’éléments nilpotents différents de zéro.

L’intersection d’idéaux n-fermatiens est encore un idéal n-fermatien. Si M
est un idéal quelconque de A4, l'intersection de tous les idéaux n-fermatiens
contenant M est un idéal n-fermatien qui sera appelé le radical n-fermatien
de M et désigné par R, (M).

Théoréme 9. On a la relation
Rn (M) = U R(n, r). (M) .

r=1

Posons U R, ) (M) = 8. Comme R, , (M) < R, (M) pour tout entier
r=1

positif 7, on a donc 8§ & R, (M). L’ensemble S est un idéal, car R, , (M)
est un idéal et on & R, , (M) S R, , (M) pour r <s. D’autre part, on
voit facilement que S est un idéal n-fermatien. Donc R, (M) S Set S = R, (M).
Un idéal premier n-fermatien P sera dit un <déal premier n-fermatien minimal
appartenant & Uidéal M, si M S P et &'l n’existe pas d’idéal premier n-fer-
matien P’ tel que M S P' c P.
Du théoréme 2 suit facilement le théoréme suivant :
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Théoréme 10. Soit M un idéal n-fermatien d'un anneauw commutatsf A.
Tout idéal premier minimal appartenant & M est un idéal premier n-fermatien
mintmal appartenant @ M , et tnversement.

Théoréme 11. Le radical n-fermatien B, (M) d’un idéal quelconque M d’un
anneaw, commutalif A est Uintersection de tous les idéaux premiers n-fermatiens
mintmaux appartenant ¢ M .

Le radical R, (M) est un idéal n-fermatien, donc semi-premier. Par consé-
quent, R, (M) est l'intersection de tous les idéaux premiers minimaux P;
appartenant & R, (M). D’aprés le théoréme 10, ces idéaux P, sont tous les
idéaux premiers n-fermatiens minimaux appartenant & R, (M). De la défini-
tion du radical n-fermatien suit alors facilement que les idéaux P, sont aussi
tous les idéaux premiers n-fermatiens minimaux appartenant & M.

Corollaire. Tout idéal n-fermatien M de A est U'tntersection de tous les idéaux
premiers n-fermatiens minimaux appartenant o M.

Théoréme 12. Pour qu'un anneau commutattf A (non réduit & zéro) soit
1somorphe & une somme sous-directe de domaines d’intégrité n-fermatiens, il faut
et tl suffit qu’il soit n-fermatien.

En utilisant le corollaire du théoréme 11, la démonstration de ce théoréme
est analogue & celle du théoréme 4.

Théoréme 13. Le corps des quotients d’un domaine d’intégrité n-fermatien
est un corps n-fermatien.
Ce théoréme découle immédiatement du théoréme 5.

Théoréme 14. Tout anneau n-fermatien A, n tmpair, est de caractéristique
non nulle N et N divise tout nombre de la forme q* — q, q étant un entier quel-
conque > 1.

En effet, pour tout @ € 4, on a 1’égalité ¢*a™ + (— ga)* = 0 qui peut se

mettre sous la forme ar 4 ... +ar+ (—gayr =0 .

Par conséquent, a4 ... +a+(—qa)=0, c’est-a-dire ¢"a —qa=(¢q" —q)a=0.
L’anneau A4 est donc de caractéristique non nulle N et N divise ¢" — q.
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