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Eigenwerte und Minimalpolynome symmetrischer Matrizen
in kommutativen Kôrpern

von Fbed Kbakowski

Einleitung

Es ist bekannt, daB jedes ûber einem kommutativen1) Kôrper K alge-
braische Elément X Eigenwert einer Matrix mit Elementen aus K - kurz einer
if-Matrix - ist. Bei Beschrankung auf symmetrische Matrizen gilt dies nicht
allgemein : die Eigenwerte einer reellen symmetrischen Matrix sind reell, und
somit ist zum Beispiel i V — 1 kein solcher Eigenwert. Die Frage nach
einer Charakterisierung derjenigen Elemente der algebraischen, algebraisch-
abgeschlôssenen Erweiterung Q eines Kôrpers K, welche als Eigenwerte sym-
metrischer JST-Matrizen auftreten, bildet den Ausgangspunkt der vorliegenden
Arbeit.

Fur einen beliebigen Kôrper K bilden nun die Eigenwerte symmetrischer
K-Matrizen ihrerseits wieder einen Kôrper A. Dieser ist in dem Sinne abge-
schlossen, daB er auch aile Eigenwerte symmetrischer ^4-Matrizen enthâlt.
Auf Grand dieser beiden in Paragraph 2 bewiesenen Sàtze gelingt es durch
Induktion nach dem Grad von A ûber K, die gestellte Frage vollstàndig zu
beantworten: Ist K formal-reell (das heiBt — 1 keine Quadratsumme), so
ist ein Elément A aus Q genau dann Eigenwert einer symmetrischen Jf-Matrix,
wenn es zu allen reell-abgeschlossenen Erweiterungskôrpern in Q gehôrt (das
heiBt total-reell ist) ; ist dagegen K nicht formal-reell, so ist ûberhaupt jedes
Elément von Q ein solcher Eigenwert. Insbesondere ist somit eine algebraische
Zahl genau dann Eigenwert einer rationalzahligen symmetrischen Matrix,
wenn sie und aile ihre Konjugierten reell sind.

In Verallgemeinerung dieser Satze werden fur Kôrper der Charakteristik
p ^ 2 auch die Polynôme charakterisiert, welche als Minimalpolynome
symmetrischer Matrizen auftreten. Im Falle eines formal-reellen Kôrpers sind es

die Polynôme mit lauter einfachen, total-reellen Nullstellen, und im nicht
formal-reellen Fall sind es aile Polynôme ohne Ausnahme. Das zweite trifft
hingegen nicht zu, wenn die Charakteristik 2 ist,

Unter Benûtzung dieser Resultate kônnen wir auch die analogen Fragen fur
schiefsymmetrische und orthogonale Matrizen beantworten.

Ob in âhnMcher Weise auch die Eigenwerte von symmetrischen Matrizen
mit ganzzahligen Elementen durch die Eigenschaft ganz-algebraisch und

*) Es werden in dieser Arbeit durchwegs nur kommutative Kôrper betrachtet.
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total-reell zu sein, charakterisiert sind, ist mir auBer fur den Grad n 2

unbekannt. Ebenfalls ungelôst ist das entsprechende Problem fur die
Minimalpolynome von hôherem als 2. Grad.

Herrn Professor E. Speokeb, der dièse Arbeit angeregt hat, danke ich herz-
lich fur vielfàltige Ratschlâge und Ermunterung.

§1. Die Korpereigenschaften der Eigenwerte symnietrischer Matrizen

K sei ein beliebiger Kôrper, A eine symmetrische Matrix mit Elementen aus
K - kurz eine symmetrische JT-Matrix - und X ein Eigenwert von A.

Satz 1.1. Jedes Elément von L K(X) ist Eigenwert einer symmetrischen
K-Matrix.

Beweis. Ist n der Grad von L ûber JT, so gibt es zu jedem peL eine Dar-
»-l n-l

stellung ju, Z ckXk, ckeK. Nun ist aber 2ckXk Eigenwert der if-Matrix
n-l *=0 *=0

B E ckAk, und wenn A symmetrisch ist, so ist es auch B.

Satz 1.2. Die Menge A derjenigen Elemente einer algebraisch-abgeschlossenen

Erweiterung Q von K, welche Eigenwerte symmetrischer K-Matrizen sind, ist ein

Kôrper.

Beweis. Nach 1.1 ist mit X auch k"1 Eigenwert einer symmetrischen K-
Matrix. Sind X und p Eigenwerte der r- bzw. s-reihigen symmetrischen K-
Matrizen A und JB, so ist Xju Eigenwert des Kroneckerproduktes P A xB
(vgl. [4], S. 84), und X + fi ist Eigenwert von S A xE8 + Er xB, wenn
Er und Es aie r- bzw. s-reihigen Einheitsmatrizen sind. Sind A und B
symmetrisch, so sind es auch P und S.

Da A ein Unterkôrper von Q ist, ist es sinnvoll, nach denjenigen Elementen
von Q zu fragen, welche Eigenwerte symmetrischer ^1-Matrizen sind. Nach
1.2 bilden dièse wiederum einen Kôrper A', der A enthalt. Es zeigt sich aber,
daB A gegenûber der Opération der Bildung von Eigenwerten symmetrischer
Matrizen abgeschlossen ist, denn es gilt :

Satz 1.3. Der Kôrper A! der Eigenwerte symmetrischer A-Matrizen stimmt
mit A ûberein.

Beweis. Seien L ((Xik)) eine symmetrische yl-Matrix und K der end-
liche Erweiterungskôrper, welcher aus K durch Adjunktion samtlicher
Elemente Xik von L entsteht. K ist Endglied einer Kette

K
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von sukzessiven einfachen Erweiterungen, wobei Kt aus Kl_1 fur l 1,..., p
durch Adjunktion eines Eigenwertes einer symmetrischen If^-Matrix hervor-
geht. Unser Satz wird bewiesen sein, wenn wir gezeigt haben, daB ein Eigen-
wert einer symmetrischen j5TrMatrix auch schon Eigenwert einer symmetrischen

jK^j_1-Matrix ist.
Es sei also Kt Ki-i(oc), wo oc Eigenwert einer s-reihigen symmetrischen

if^x-Matrix A ist, und A sei ein Eigenwert der r-reihigen symmetrischen
JSTrMatrix B ((ocik)). Wir konstruieren nun eine rs-reihige
welche X als Eigenwert hat.

Da oc^eK^^oc), gibt es eine Darstellung

und <xik ist daher Eigenwert der symmetrischen

n-l
A y Av) a v-ft-ik — ** cik -**¦ -

v=0

FJ,..., V*r seien r isomorphe Exemplare eines s-dimensionalen Vektorraumes
V8 (mit Kl als Koeffizientenbereich), und Js sei ein Isomorphismus von V8

auf FJ, j 1,..., r. Wir deuten A als Matrix einer Abbildung SI von V8 in
sich bezuglich einer Basis (et) von V8, und es sei

v=0

Ferner sei teV8 ein zum Eigenwert oc gehôriger Eigenvektor von SI und
Zi c FJ das Jj-Bild von x.

Wir betrachten nun die direkte Summe Wrs der Vektorràume FJ,..., Y\
und definieren auf folgende Weise eine Abbildung S von Wr8 in sich :

Ist m ein Vektor aus Wr8 und m t)i + t)2 + • —h t)r, t>,€ FJ, seine Zer-

legung in direkte Summanden, so sei :

In der Basis * 'k

des Raumes JFf* hat die rs-reihige Matrix S dieser Abbildung folgende Gestalt :
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S entsteht also aus B, wenn man an Stelle der Elemente <xtk die symmetrischen
«Kâstchen» Atk einsetzt. Da auch A%k Aki ist, so folgt, daB 8 eine sym-
metrische if-Matrix ist. Dièse Matrix S hat nun A als Eigenwert. Es ist nâmlich :

<5(xk)

i i i
Das bedeutet aber, daB der von xl9.. .,Xr als Basisvektoren aufgespannte
Unterraum Xr durch Q in sich abgebildet wird, und, wenn wir mit SB die von
S in Xr induzierte Abbildung bezeichnen, daB die Matrix von SB bezuglich
der Basis (xl9...9 Xr) gerade jB ((ocik)) ist. Ist nun X)€Xr ein zum Eigenwert

A gehôriger Eigenvektor von SB, so ist er natùrlich auch Eigenvektor von
(S mit demselben Eigenwert A. Damit ist ailes bewiesen.

§2. Quadratische Polynôme und Irrationalitaten

Wir betrachten quadratische Polynôme mit Koeffizienten aus einem Kôrper
K, und zwar beliebige, wenn die Charakteristik p =fi 2, nur reinquadratische
Polynôme, wenn p 2 ist. Solche Polynôme kônnen in der Form f(x) x2 -f-
2ax + b angeschrieben werden. Wir fragennunnach dernotwendigenund hin-
reichenden Bedingung dafur, daB f(x) Minimalpolynom einer symmetrischen
if-Matrix ist.

Satz 2.1. Ein quadratisches Polynom f(x) x2-\-2ax-{-b ist dann und
nur dann Minimalpolynom einer symmetrischen K-Matrix, wenn seine Dis-
kriminante a2 — b Quadratsumme (von nicht-verschwindenden Kôrperelementen)
ist.

Beweis. Da x2 + 2ax -f 6 (x + &)2 — (#2 — b) ist, so genugt es, den
Satz fur reinquadratische Polynôme x2 — c zu beweisen.

1. Die Bedingung ist notwendig.
Seien aik die Elemente von A ; i, k 1,..., n. Ist x2 — c das Minimalpolynom

von A, so ist A2 cE (E Einheitsmatrix). Das Elément in der i-ten
Zeile und i-ten Kolonne von A2 ist a2t + a%2-\ h a2n — c ; c ist also
Quadratsumme in K von Elementen, die nicht aile 0 sind.

2. Die Bedingung ist hinreichend.

Ist die Charakteristik des Kôrpers 2, so ist c u\ +... + u2. (u\ + + urf
u2 und die zweireihige Matrix J hat die gewunschte Eigenschaft. Ist

\u 0/
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die Charakteristik von K aber von 2 versehieden, so beweisen wir die Be-
hauptung durch Induktion nach r. Fur r 1, c u\ hat die zweireihige
Matrix

das Mnimalpolynom 3? — c. Die Behauptung sei bewiesen fur r — 1. Es
seien c' u\ +... + u%r_x und Ar_t eine symmetrische «-reihige If-Matrix
mit Al_x c'^' (E' s-reihige Einheitsmatrix). Wir bilden nun die 2s-reihige
symmetrische K-Matrix

A _
Es ist

2

r

\ o («î+... + ««

^4r erfullt daher die Gleichung x2 — c 0. Anderseits kommen in der Haupt-
diagonalen von Ar die Elemente ur und — ur vor, welche voneinander
versehieden sind. Daher kann Ar nicht einer Gleichung x — d 0 genûgen ;

a?2 — c ist also das Minimalpolynom von -4r.
Da die Wurzeln des Minimalpolynoms einer Matrix A die Eigenwerte von A

sind, so folgt aus 2.1 unter Anwendung von 1.1:
Satz 2.2. Ist p 7^ 2, «o i^ ^ede^ Elément einer quadratischen Erweiterung

L von K, deren Diskriminante Quadratsumme in K ist, Eigenwert einer symme-
trischen K-Matrix.

In nicht formal-reellen Kôrpern (d. h. — 1 ist Quadratsumme) der Charak
teristik p ^ 2 ist jedes Elément Quadratsumme. Demnach ist in ihnen jedes

quadratische Polynom Minimalpolynom einer symmetrischen Matrix. Ist
p 2, so ist jede Quadratsumme selbst ein Quadrat. Es kann aber Elemente
geben, die keine Quadrate sind, wie z. B. das Elément t im Kôrper P2 (t),
wo P2 der Primkôrper mod 2 und t eine Unbestimmte sind. Dementsprechend
tritt auch nicht jedes quadratische Polynom als Minimalpolynom einer
symmetrischen P2 (é)-Matrix auf. Dagegen gilt noch :

Satz 2.21. Ist p 2, so ist jede Quadratwurzel Eigenwert einer
symmetrischen K-Matrix.

Beweis. Ist y2 c, so ist y Eigenwert von
c 1

j c c c+l
c+l 1
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denn das charakteristische Polynom von G ist % (x) (ce2 + c) (x + c + 1),

und G ist symmetrisch.

Bemerkung. Fur den Kôrper der rationalen Zahlen kann man auf Grand
des von Legendre bewiesenen Satzes, wonach jede natûrliche Zahl ^£ 0, 4, 7

(mod 8) Summe von 3 Quadraten ist (vgl. [5]), zeigen:
2.3 Jede réelle algebraische (ganz-algebraische) Zahl zweiten Grades ist

Eigenwert einer 3-reIhigen rationalzahligen (ganzzahligen) symmetrischen
Matrix, und jedes quadratische Polynom mit rationalen (ganz-rationalen)
Koeffizienten und positiver Diskriminante ist Minimalpolynom einer 4-

reihigen rationalzahligen (ganzzahligen) symmetrischen Matrix. Im all-
gemeinen kommt man aber mit weniger Reihen als eben angegeben nicht aus.

§3. Charakterisierung der Eigenwerte und Minimalpolynome beliebigen Grades

Wir geben in diesem Abschnitt die in der Einleitung angekûndigte Charakterisierung

der Eigenwerte und Minimalpolynome symmetrischer Matrizen mit
Elementen aus einem beliebigen Kôrper. Vorerst beweisen wir zwei Hilfssâtze.

Hilfssatz 3.1.
Es seien:

K ein Kôrper;
Q eine algebraisch-abgeschlossene Erweiterung von K;
f (x) xn + a1xn~~1 + ein Polynom n-ten Grades aus K [x] mit den

Wurzeln al9... ,<xn;

g (x) xn~x + b1xn~1 + ein Polynom (n — l)-ten Grades aus K [x] mit
lauter einfachen Wurzeln pl,..., f}n^x ;

/ (x) (x — a) g (x) + r (x), wobei aeK und r (x) ein Polynom von hôchstens

(n — 2)-tem Grad ist.
Dann hat die symmetrische Matrix

Wn-l 0 0

charakteristische Polynom %M (x) (— 1)*/(#).
Zusatz. Ist fa ^=ock fur aile j, k, dann ist %M(x) zugleich das Minimal-

polynom von M.

16 Commenter!! Mathematici Helvetici
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Beweis. Es ist
Xm(x) (a - x) fa - x)... (/?„_! - x) -"zcJlUPt -x)
(- 1)» (x - a) g (x) - (- I)"-* SctII(x- pk)

(- 1)» [(x -a) g (x) -*ic, fl> - pk)] (1)

h(x) — ZctTI{x — pk)
Esistdann w_x

i==1 *^%

h(f},)=:-c3ll(p3~(}k) f((},); y 1 n — 1

Da auch *^J

und r(a;) hôchstens vom Grade r^ — 2 ist, so folgt, daB A (a;) r(a;), und
daher stimmt das Polynom in den eckigen Klammern von (1) uberein mit

Zum Beweise des Zusatzes haben wir zu zeigen, daB der grôBte gemeinsame
Teiler aller (n — l)-reihigen Unterdeterminanten der charakteristischen
Matrix M — zE gleich 1 ist (vgl. [4], S. 20). Sei Dk(x) diejenige (n — l)-reihige
Unterdeterminante von M — xE, welche aus dieser durch Streichen der
ersten Zeile und der (1c + l)-ten Kolonne hervorgeht. Es ist :

Dk(x) ± yk{px - x) (pt - x).. .(^M - x) (pk+1 -x).. .{pn_x - x)

Weil pkz£<xt fur i 1,...,n, so ist f(pk) =£ 0 und daher auch yk ^ 0.
Da auch pf ^ pk fur j ^ k, so ist Dk(x) nicht teilbar durch pk — x. Mithin
ist der grôBte gemeinsame Teiler von Dx (x),..., Dn_x (x) und daher auch
aller (n — l)-reihigen Unterdeterminanten von M — xE gleich 1.

Fur die im folgenden verwendeten Begriffe und Sàtze aus der Théorie der
formal-reellen Kôrper verweisen wir auf [1] und [2] oder auch [3].

Hilfssatz 3.2.
Es seien:

K ein formal-reeïïer Kôrper;
Q eine algebraisch-abgeschlossene Erweiterung von K;
A der Kôrper der total-reellen Elemente von û2) ;

f(x) xn + a^""1 + • • • ein Polynom aus K [x] mit lauter verschiedenen und
total-reellen Wurzeln ocx,..., ocn ;

f(x) die Ableitung von f(x) und pl9..., Pn^x ihre Wurzeln;

L JT(&,...,A_i) und «,= --5=

•) Das heifit, A ist der Durehsehnitt aller reeU-abgeschlossenen Erweiterungen von K.
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Dann ist L formal-reell, Lez A, und die n — 1 Grôfien c^e L sind total-
positiv.

Beweis. Nach dem Rolleschen Theorem liegen fa,..., pn_± in A. L ist
daher in A enthalten und mithin auch formal-reell. Wir haben noch zu beweisen,
daB câ in jeder Anordnung von L positiv ist. Da jede Anordnung von L Anlafi
zu einer angeordneten reell-abgeschlossenen Erweiterung gibt, welche A ent-
hàlt und deren Anordnung diejenige von L fortsetzt, so wird die Behauptung
bewiesen sein, wenn wir gezeigt haben, daB ci in jeder Anordnung von A

positiv ist.
Da eine Ânderung der Numerierung der GrôBen (xt und pi nur eine

Permutation der GrôBen c^ unter sich bewirkt, so kônnen wir ohne Einschrànkung
der Allgemeinheit annehmen, daB in der betrachteten Anordnung von A gilt :

*i < Pi < <*2 < h < • - • < <*w-i < Pn-i < *n -

Es ist
f(x) (X - (Xy) (X - <X%) (X - 0Cn)

und somit
HP,) (Pi ~ ^) (A -«•)••¦ (A - ocn)

Da
Pi <<xk fur k > j und fa > ak fur k < j

lst
HPJ *g (Pi - »M) • • • (A - «•) (- l)n~j -

Ebenso n_1
sg Û (fa - pk) sg(fa - pM) ...(fa- P^x) (- 1)-^

Daher ist sgcô + 1 und somit ci > 0 in jeder Anordnung von A.
Wir sind nun imstande, unser Problem fur die Eigenwerte symmetrischer

jfiT-Matrizen zu lôsen.

Satz 3.3. Sei Q die algebraische, algebraisch-abgeschlossene Erweiterung des

Kôrpers K. Ist K formal-reell, so ist XeQ dann und nur dann Eigenwert einer
symmetrischen K-Matrix, wenn A total-reell ist; ist aber K nicht formal-reell,
so ist jedes Elément von Q Eigenwert einer symmetrischen K-Matrix.

Das bedeutet, daB der Kôrper aller Eigenwerte symmetrischer If-Matrizen
im nicht formal-reellen Fall algebraiseh-abgesehlossen ist und im formal-
reellen Fall mit dem Durchschnitt aller reell-abgeschlossenen Erweiterungen
von K ûbereinstimmt.

Beweis. Ist L ein formal-reeller Kôrper und liegen die Eigenwerte der

symmetrischen jL-Matrix A in L(i), i V— 1, so liegen sie, wie bekannt, auch
schon in i. Ist L Unterkôrper von Q und reell-abgeschlossen, so ist L(i) Q.
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Somit gehôren dîe Eigenwerte jeder symmetrischen if-Matrix, wenn K formal-
reell ist, zu allen reell-abgeschlossenen Erweiterungskôrpern von K in Q.
Die Bedingung ist daher notwendig.

Den Beweis der Umkehrung fiihren wir durch Induktion nach dem Grad n
von A iiber K. Fur n 1 ist die Behauptung trivial. Sie sei bewiesen fur
n — 1. Ist f(x) das irreduzible Polynom, von welchem A eine Nullstelle ist,
so betrachten wir die Matrix

Wn-l 0

Die GrôBen a9 pl9... 9 Pn_t und 71,..., yn_x sollen dabei dieselbe Bedeu-

tung haben wie in den Hilfssàtzen 3.1 und 3.2. Im formal-reellen Fall sind
Pi> • • • > Pn-i <&e Wurzeln der Ableitung /' (x) und sind total-reell, a ist in K und

?i > • • • > 7n-i sin(i nach 3.2 Quadratwurzeln aus total-positiven Elementen
von K({il9..., j8n«i). Ist jK^ nicht formal-reell, so sind &,...,/ïn_i die
(lauter einfachen) Wurzeln irgendeines Polynoms (?^ — l)-ten Grades, und

yx,..., yn_x sind Quadratwurzeln aus Elementen von K (pt,..., /?„_!). In einem
formal-reellen Kôrper sind die total-positiven und in einem nicht formal-reellen
Kôrper der Charakteristik p ^ 2 aile Elemente Quadratsummen (vgl. [2],
S. 103 ; [3], S. 248); demnach sind nach 2.2 und fur die Charakteristik 2 nach
2.21 sâmtliche y{ Eigenwerte symmetrischer K(plf..., /Sn_1)-Matrizen. Da

± f(x) nach 3.1 das charakteristische Polynom von M ist, so ist X Eigenwert
von M. M ist symmetrisch, und seine Elemente sind Eigenwerte symmetrischer

K(fil9..., /S^J-Matrizen. Mithin ist auch A nach 1.3 Eigenwert einer
symmetrischen K(fily..., ^^J-Matrix. Da pl9..., pn_t ûber JThôchstens den
Grad n — 1 haben, so sind die Elemente dieser Matrix nach Induktionsvor-
aussetzung Eigenwerte symmetrischer JT-Matrizen ; nach 1.3 ist daher auch A

ein solcher Eigenwert. Damit ist der Satz bewiesen.

Bemerkung. Ist K der Kôrper der rationalen Zahlen, so lâBt sich der Beweis

infolge der Eigenschaft, daB sich die reellen Wurzeln eines Polynoms durch
rationale Zahlen voneinander trennen lassen, vereinfachen. Es genûgt nâmlich,
um réelle yl9..., yn-1 zu erhalten, welche dann Eigenwerte symmetrischer
rationaler Matrizen sind, fur pt,..., pn^x rationale Zahlen zu nehmen, welche
zwischen je zwei Wurzeln von f(x) liegen. Die Induktion fâllt weg, und eine

einmalige Anwendung von 1.3 liefert das Gewtinschte. Dieser SchluB versagt
hingegen in allgemeinen formal-reellen Kôrpern, wo es nicht immer môglich
ist, die in einer rell-abgeschlossenen Erweiterung liegenden Wurzeln eines

Polynoms durch Elemente aus dem Grundkôrper zu trennen (vgl. [1], S. 90).
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Der folgende Satz erlaubt die Beantwortung der Frage nach der Charak-
terisierung der Minimalpolynome symmetrischer if-Matrizen. Wir betrachten
dabei endliche Erweiterungen K(<xl9... 9<xr) von K und fragen nach den Be-
dingungen, unter denen der Kôrper K(<xl9..., ocr) eine Darstellung durch
symmetrische iST-Matrizen, kurz, eine symmetrische if-Darstellung, besitzt.
Eine solche Darstellung besteht aus einem Matrixring K [Al9..., Ar]9 wo
Al9..., Ar symmetrische iT-Matrizen sind, und einem Homomorphismus von
K(ocl9..., ocr) auf K [Al9..., Ar], welcher, da K(ocl9..., ocr) ein Kôrper
ist, zu einem Isomorphismus wird.

Satz 3.4. Ist K formal-reell, so gibt es dann und nur dann eine symmetrische
K-Darstéllung der endlichen Erweiterung K(ocl9...9ocr)> wenn die r adjun-
gierten Elemente <xl9... ocr total-reell sind ; ist K nicht formal-reell, seine Oharak-
teristik aber von 2 verschieden, so besitzt jede endliche Erweiterung K(ocl9..., otr)
eine symmetrische K-Darstellung.

Beweis, DaB, im formal-reellen Fall, die Bedingung notwendig ist, folgt
sofort aus 3.3; denn ist A{ die dem Elément oc{ in der Darstellung entspre-
chende Matrix, so ist oc4 Eigenwert von Air> nach 3.3 also total-reell.

Den Beweis des Satzes in der umgekehrten Bichtung zerlegen wir in drei
Schritte. Wir zeigen der Reihe nach :

1. Ist der Satz richtig fur eine einfache Erweiterung vom Grade <w,
so ist er auch richtig fur jede endliche Erweiterung, vorausgesetzt, da8 der
Grad sâmtlicher adjungierter Elemente ûber K nicht grôBer als n ist.

2. Der Satz ist richtig, wenn die adjungierten Elemente Quadratwurzeln
sind.

3. Der Satz ist richtig fur eine einfache Erweiterung.

Zu 1. Wir fuhren den Beweis des ersten Schrittes durch Induktion nach r.
«!,..., txr seien algebraische Elemente, welche unsere Voraussetzungen er-
fïïllen und deren Grade ûber K nicht grôBer sind als n. Fur r 1 ist die Be-

hauptung trivial. Sie sei bewiesen fur r — 1, d. h. wir nehmen an, es exi-

stieren r — 1 symmetrische JT-Matrizen Al9..., Ar_x und ein Isomorphismus

J von K(oct,..., ar_x) auf K[Al9...9 Ar_x]. Der Grad g von ocr liber
L K(ocl9..., <%,__!) ist nicht grôBer als der Grad von ocr ûber K. Mithin ist
g < n. Ist K formal-reell, so ist es auch £. Da der Satz fur einfache Erweiterungen

vom Grade ^ n richtig sein soll, so gibt es eine symmetrische L-
Matrix Ar ((<xik)), derart, daB L{<xr) g* L [Âr] ist. Âr habe m-Reihen, und

es sei J(<xik) Aik. Die Matrix
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/Alt Alf)

A'-([ L

ist eine symmetrische K [Al9..., ^..-J-Matrix, und es gilt
ti r a i r**j tc r m a i r a ixy |^./j.|.j .i jtx ixii * • « xi/f> il i^xiyj •

Ist JE die m-reihige if [u41?...., J.r_1]-Einheitsmatrix, so sei

4, A}E fur y 1,..., r - 1

Da die Elemente von Al9..., Ar symmetrische if-Matrizen sind, so kônnen
auch Al9..., Ar selbst als symmetrische if-Matrizen betrachtet werden.

Es ist dann

K F A ÂlïAl^KïA A Al
also

Damit ist unsere Behauptung bewiesen.
Zu 2. Sind if formal-reell, c e K,y total-reell und y2 c, so ist c total-

positiv und somit Quadratsumme in K. Ist K nicht formal-reell, seine Charak-
teristik aber ^é 2, so ist jedes Elément c c if Quadratsumme. Nach 2.1 gibt
es in beiden Fàllen eine symmetrische if-Matrix G mit x2 — c als Minimal-
polynom. Infolgedessen ist K (y) ^ K [C]. Sind nun cl9..., cr e K,
yl c1}... ,y* cr und yl9..., yr total-reell, wenn K formal-reell ist,
so gibt es, nach dem unter 1. bewiesenen angewendet fur n 2, r symmetrische

if-Matrizen Cl9... ,Cr> so daB K (yl9..., yr) ^ K [C1,... Cr]9 was
zu beweisen war.

Zu 3. Sei oc algebraisch ûber K vom Grade n und total-reell, wenn K formal-
reell ist. f(x) 0 sei die irreduzible Gleichung, welcher oc genûgt. Wir haben
nachzuweisen, daB eine symmetrische Matrix A existiert, derart, daB

if (<x) if [-4] oder, was auf dasselbe herauskommt, daB f(x) das Minimal-
polynom von A ist.

Fur n 1, d. h. wenn oc in K liegt, ist die Behauptung trivial. Sie sei
bewiesen fur aile algebraischen Elemente, deren Grade ûber K kleiner als n
sind. Wir betrachten nun wieder die mit Hilfe von f(x) konstruierte
symmetrische Matrix //a yx

/ri Ao.
M= I 0

\ : : : -o
V«-i 0 0 pn_x/
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wo &,Yi, • • • 9yn-iy Piy " 9 Pn-i dieselbe Bedeutung haben sollen wie im
Beweis von Satz 3.3. Ist L K(px,..., f}n_x), so gibt es nach dem
unter 2. bewiesenen n — 1 symmetrisehe i-Matrizen Gu Cn_x, so dafi

Ersetzen wir in M die Matrixelemente durch die ihnen in L [O±,..., Cn^x]
entsprechenden symmetrischen L-Matrizen, so erhalten wir eine symmetrische
Matrix:

deren Elemente nun in L liegen. jB ist dabei die Einheitsmatrix in L [Cx,...,
^n-i] • Da i(yl5..., yw_i) ^ i [C^ Cn_x], ist das Minimalpolynom
von ML dasselbe wie dasjenige von M\ dièses ist aber f(x), denn f(x) ist
irreduzibel und charakteristisches Polynom von M.

Nun haben die Elemente px,..., pn__x ûber K hôchstens den Grad n — 1,
und sie erfullen die Voraussetzungen von Satz 3.4. Nach Induktionsvoraus-
setzung besitzt eine einfache Erweiterung von K, deren Grad n — \ ist,
eine symmetrische iT-Darstellung. Mithin gibt es nach dem unter 1. bewiesenen
aucheine symmetrischeiC-Darstellung K[BX,..., Bn^1] von K(pl9... 5/?n_i)

Ersetzen wir nun in gleicher Weise wie oben die Elemente von ML durch
die ihnen in K [Bl5..., jBw_x] entsprechenden symmetrischen iC-Matrizen,
so erhalten wir eine neue symmetrische Matrix MK, deren Elemente aus K
stammen. Weil K (pl9..., pn_x) ^ K [Bly..., Bn_x] ist, so haben MK und

ML das gleiche Minimalpolynom. Damit ist aber eine symmetrische JT-Matrix,
nâmlich MK gefunden, deren Minimalpolynom f(x) ist, so daB ailes bewiesen ist.

Es folgt nun ohne weiteres der

Satz 3.5. Ist K formal-reell, so ist ein Polynom dann und nur dann Minimal-
polynom einer symmetrischen K-Matrix, wenn seine Wurzeln einfach und total-
reell sind; ist K nicht formal-reell und seine Charakteristik p ^ 2, so ist jedes

Polynom Minimalpolynom einer symmetrischen K-Matrix.

Beweis. Fiir irreduzible Polynôme ergibt sich der Satz sofort aus 3.4.
Er bleibt daher nur noch fur reduzible Polynôme zu beweisen.

Da eine symmetrische Matrix mit Elementen aus einem formal-reellen Kôr-
per K innerhalb jeder rell-abgeschlossenen Erweiterung von K auf Diagonal-
form transformiert werden kann, so ist die Bedingung notwendig.

Fur die Umkehrung beachten wir, daB sich in nicht formal-reellen Kôrpern
der Charakteristik p ^é 2 zn jedem Polynom f(x) ein Polynom g(x) finden
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lâBt, welches die Voraussetzungen von Hilfssatz 3.1 und seinem Zusatz er-
fûllt. Ist K formal-reell, so sei g(x) ff(x). In beiden Fâllen hat die nach
2.1 mit Hilfe von f(x) und g(x) konstruierte symmetrische Matrix M das

Minimalpolynom f(x). Die Elemente von M erfûllen die Voraussetzungen von
Satz 3.4. Somit besitzt der aus K durch Adjunktion dieser Elemente entste-
hende Erweiterungskôrper L eine symmetrische Jf-Darstellung D. Da
L ^D, hat die der symmetrischen L-Matrix M entsprechende symmetrische
D-Matrix M dasselbe Minimalpolynom wie M, also f(x). Jede symmetrische
D-Matrix kann aber auch als symmetrische if-Matrix aufgefaBt werden. Damit
ist der Satz bewiesen.

Bemerkungen:

3.51. Wie wir schon in §2 gesehen haben, ist Satz 3.5 ohne die Voraus-
setzung p ^ 2 nicht richtig.

3.52. Im Kôrper der rationalen Zahlen gelten auf Grund von 2.3 die fol-
genden Abschâtzungen :

Ist r die Zeilenzahl der kleinsten symmetrischen Matrix, von welcher A ein

Eigenwert ist, und ist n der Grad von A, so ist r < n-S71-1.

Ist s die Zeilenzahl der kleinsten symmetrischen Matrix, von der f(x)
Minimalpolynom ist, und ist n der Grad von f(x), so ist s < n • 4?1-1.

§4. Schieîsymmetrische und orthogonale Matrizen

Auf Grund der Ergebnisse des vorhergehenden Abschnittes sind wir nun
imstande, die entsprechenden Fragen fur schiefsymmetrische und orthogonale
Matrizen zu beantworten. Im folgenden sei die Charakteristik der betrachteten
Kôrper, ohne ausdrûckliche Nennung, als ^ 2 vorausgesetzt. Wir behandeln
zuerst den Fall der schiefsymmetrischen Matrizen.

Diejenigen Polynôme f(x) aus K [x], welche als Mnimalpolynome schief-

symmetrischer X-Matrizen auftreten kônnen, haben entweder die Gestalt

f(x) g(ofi) oder f(x) xg(x2). Ist namlich f(x) das Minimalpolynom
der schiefsymmetrischen JT-Matrix S, so ist /(#)* /(/S*) /(— S) 0,
wenn mit ^4* die Transponierte einer Matrix A bezeichnet wird. Bedeutet

n den Grad von f(x), so ist f(S) + (— l)w-1/(— S) 0. Da der Grad von
f(x) + (— l)**-1 /(-— x) kleiner als w, anderseits f(x) das Minimalpolynom von
8 ist, so muB f(x) + (— l)n~lf(— x) identisch verschwinden. Somit ist,
wenn n gerade ist, f(—x) f(x), also f(x) g(x2) und anderseits, wenn
n ungerade ist, /(— x) — f(x), also f(x) xg(x2).

Ist K formal-reell und A der Kôrper der total-reellen Elemente der alge-
braischen, algebraiseh-abgeschlossenen Erweiterung û von K, so sei F A (i)
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der aus A durch Adjunktion einer Wurzel von x2 + 1 0 erhaltene Erwei-
terungskôrper. Jedes Elément À von F lâBt sich in der Form A oc + fii,
oc, fi € A, darstellen. Ist oc 0, so soll X total-imaginàr heifien.

Bezeichnen wir mit s(x) ein Polynom ans K [x], welches sich entweder in der
Porm g(x2) oder in der Form xg(x2) schreiben lâfit, so lautet nun der 3.5
entsprechende Satz fur schiefsymmetrische Matrizen :

Satz 4.1. Ist K formal-reell, so ist ein Polynom s(x) dann und nur dann
Minimalpolynom einer schiefsymmetrischen K-Matrix, wenn seine Wurzeln
einfach und total-imaginàr sind; ist K nicht formal-reell, so ist jedes Polynom
s(x) Minimalpolynom einer solchen Matrix.

Beweis.

1. Die Bedingung ist notwendig im Falle eines formal-reellen Kôrpers. Sei

s (x) das Minimalpolynom der schiefsymmetrischen JT-Matrix 8 und sei

J i î. Das Kroneckerprodukt T J x S ist symmetrisch und

T2 (J x 8)2 E x (— S2) (E Einheitsmatrix). Fur das Minimalpolynom
t(x) von T gilt daher t(x) g(— x2) oder t(x) xg(— x2), je nachdem
s (x) g{x2) oder s (x) xg(x2) ist. Ist fi Wurzel von t(x), so ist fii Wurzel
von s (x) und umgekehrt. Da die Wurzeln von t(x) total-reell und einfachsind,
so sind die Wurzeln von s(x) total-imaginàr und ebenfalls einfach.

2. Die Bedingung ist hinreichend. Da s(x) im formal-reellen Fall lauter ver-
schiedene und total-imaginâre Wurzeln haben soll, so sind die Wurzeln von
g(— x2) bzw. xg(— x2) total-reell und ebenfalls einfach. Nach 3.5 gibt es in
beiden Fàllen eine symmetrische Jf-Matrix A, deren Minimalpolynom g(— x2)

bzw. xg(— x2) ist. Nun ist S J X A schiefsymmetrisch, und das Minimalpolynom

von 8 ist s (x).
Wenn K nicht formal-reell ist, so tritt jedes Elément von Q als Wurzel

eines Polynoms s(x) auf. Daher :

Satz 4.2. Ist K formal-reell, so sind die total-imaginaren Elemente von Q,
und nur dièse, Eigenwerte schiefsymmetrischer K-Matrizen; ist K nicht formal-
reell, so ist jedes Elément von Q Eigenwert einer solchen Matrix.

Wir betrachten nun noch orthogonale K-Matrizen. Als Minimalpolynome
kônnen in diesem Fall nur solche Polynôme auftreten, welche sich in der Ge-

stalt q(x) xm (x + l)8(x — If g[x H wo à, e entweder 0 oder 1 sind,

schreiben lassen. Ist nâmlich Q eine orthogonale JT-Matrix mit dem Minimal-
n n n

polynom f(x) Eakxk, an 1, so gilt: £akQk 0 und ZakQ*k=z

ZakQ~k 0. Die Multiplikation der letzten Gleichung mit Qn ergibt:
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n n

£®kQn~k — 0 oder, nach Ânderung des Summationsindexes : Zan_kQk 0.
fc=O n n *=0
Daher ist: E (ak — an_k) Qk 0. Da Z akxk das Minimalpolynom von Q

ist, sofolgt: ak—an_k=juak fur fc=0, l,...,w und daraus ak(l—jbi)=an_k
und aw_fe(l — ju) ak, also an_fc(l — /^)2 &„_&. Fur & 0 ergibt sich:
(1 ¦— jli)2 1, also ^ 0 oder ju — 2, mithin aA aw_fc oder afc — an_k.
Ein Polynom, dessen Koeffizienten dièse Eigenschaften haben, lâBt sich aber
immer in der Form q(x) schreiben.

Es gilt nun :

Satz 4.3. Ist K formal-reell, so ist ein Polynom q(x) dann und nur dann
Minimalpolynom einer orihogonalen K-Matrix, wenn seine Wurzeln in F liegen,
einfach sind und ûber A die Norm 1 haben ; ist K nicht formal-reell, so ist jedes

Polynom q(x) Minimalpolynom einer solchen Matrix.
Beweis.
1. Die Bedingung ist im formal-reellen Fall notwendig. Ist q(x) das Minimalpolynom

der orthogonalen if-Matrix Q und A eine Wurzel von q(x), so ist X

Eigenwert von Q. Die Matrix Q + Q* ist symmetrisch, und A + A"1 ist
wegen Q* Q*1 Eigenwert von Q + Ç* • Ebenso ist K — X~l Eigenwert der
schiefsymmetrischen if-Matrix Q — #*. Setzen wir 2oc X + A"1 und
2pi X — A"1, so sind a und p nach 3.3 und 4.2 total-reell. Da A oc + pi
und A"1 a — pi wird, so ist oc2 + p2 1 ; mithin ist X € F, und seine Norm
iiber A ist 1. Da des weiteren Q innerhalb Q auf Diagonalform transformiert
werden kann, sind die Wurzeln von q(x) einfach.

2. Die Bedingung ist hinreichend.
Sei K vorerst formal-reell. Wir unterscheiden 2 Fâlle :

a) q(x) ist irreduzibel.JHat q(x) den Grad n= 1, so ist die Behauptung

trivial. Ist n^2, so ist q(x) xmg(x -\—), wobeig(y) vom Grade m -^,\ x J l
irreduzibel ist und lauter total-reelle Wurzeln hat. Ist A oc + pi Wurzel von
q (x), so ist 2oc Wurzel von g (y). Da oc und p total-reell sind, gibt es nach
3.4 eine Darstellung des Kôrpers K(oc, P) durch symmetrische if-Matrizen.
In dieser seien A und B die den Elementen oc und P entsprechenden sym-
metrischen if-Matrizen. Da nach Voraussetzung oc2+p2=l, so ist A2+B2=E

{E Einheitsmatrix). Seien j&2=/j, J I A E2x A und

B=zJxB. Da ÂB BA, so ist AB BA. Die if-Matrix Q A + B
ist orthogonal, denn A ist symmetrisch, B schiefsymmetrisch und QQ*

B)-=A*-B2 E. Da g(2A) 0 ist, ist

q(Q) «mg (Q + Q-1) «m^ (Q + Q*) ew^(2^) 0
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Somit ist q (x) das Minimalpolynom von Q.

b) q{x) ist reduzibel. Sei q(x) q±(x) qr{x)y wo qx(x) xmg% Ix + - ]
\ x I

oder x ± 1, seine Zerlegung in lauter verschiedene irreduzible Faktoren.
Zu jedem qt(x) gibt es nach a) ein orthogonales Qt, welches qx{x) als
Minimalpolynom hat. Dann ist q(x) das Minimalpolynom der direkten Summe

Q Qi + Q* + • • + Qr -

Sei nun if nicht formal-reell. Wir unterscheiden 3 Fàlle :

a) q (x) habe keine Wurzeln + 1 oder — 1. Dann ist q(x) xmg(x -\

_ \ x
Nach 3.5 gibt es symmetrische if-Matrizen A und / derart, daB g (y) Minimalpolynom

von 2 A und y2 + 1 Minimalpolynom von / ist. Dabei kônnen A und
/fjj IÂ\I als vertauschbar angenommen werden. Es seien nun B j — —

_ _ __ # __ _ #
__\i^4 —Ej

E Einheitsmatrix, B J x B und A=AJrA-\-A-JrA. Dann ist
Q A + B orthogonal, und man bestàtigt leicht, daB q(x) das
Minimalpolynom von Q ist.

b) Sei q(x) (x — l)r. Ist r 2s, bzw. r 2$ + 1, so sei

der Anfang der Entwicklung von (1 + x)% in eine formale Potenzreihe. Es ist
dann (hs(x))2 1 + x, rnodœ*4"1. B sei eine schiefsymmetrische if-Matrix
mit dem Minimalpolynom xr. Dann ist A h^BP) symmetrisch und
Q A + B wegen QQ* (hs(B*))2 — B2 E + B2 — B* E orthogonal.

Da Br (\{Q — Q~1))r — Q~r(Q + E)r (Q — Ef 0 und sowohl Q als

auch Q+E nicht singulâr sind, so ist (Q —E)r= 0. Anderseits ist (Q — Ef-1 # 0,
also ist (x — \)r das Minimalpolynom von Q.

Eine analoge Betrachtung zeigt, daB auch (x + l)r Minimalpolynom einer

orthogonalen if-Matrix ist.

c) q(x) habe neben anderen Wurzeln auch die Wurzeln + 1 und — 1.

Dann ist: q (x) (x — If1 (x + l)rzq(x) wo q(x) keine Wurzeln + 1 und
— 1 mehr besitzt. Zu jedem dieser drei teilerfremden Faktoren gibt es nach dem
eben bewiesenen eine orthogonale if-Matrix, welche diesen Faktor als Minimalpolynom

hat. Somit gibt es auch eine orthogonale if-Matrix, nâmlich die
direkte Summe dieser drei Matrizen, deren Minimalpolynom q(x) ist. Damit
ist der Satz bewiesen.
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Da jedes Elément ^ 0 von Q, wenn K nicht formal-reell ist, Wurzel eines

Polynoms der Gestalt q(x) ist, so folgt unmittelbar :

Sâtz 4.4, Ist K formal-reell, so ist XeQ dann und nur dann Eigenwert
einer orthogonalen K-Matrix, wenn XeA(i) und ûber A die Norm 1 hatz);
ist K nicht formal-reell, so ist jedes von 0 verschiedene Elément von Q Eigenwert
einer orthogonalen K-Matrix.

Fur Kôrper der Charakteristik p 2 ist Satz 4.4 falsch.
Gegenbeispiel : q (x) x2 + #+1 • Wâre Q eine orthogonale K-Matrix mit q (x)

als Mnimalpolynom, so mûBte Q2 + Q + E 0, also Q + Q* + E 0
sein. Aber in der Hauptdiagonalen von Q + Q* stehen lauter Nullen.
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