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Eigenwerte und Minimalpolynome symmetrischer Matrizen
in kommutativen Korpern

von FRED KRARKOWSKI

Einleitung

Es ist bekannt, daB jedes iiber einem kommutativen!) Koérper K alge-
braische Element 4 Eigenwert einer Matrix mit Elementen aus K — kurz einer
K-Matrix — ist. Bei Beschrinkung auf symmetrische Matrizen gilt dies nicht
allgemein : die Eigenwerte einer reellen symmetrischen Matrix sind reell, und

somit ist zum Beispiel ¢ =V — 1 kein solcher Eigenwert. Die Frage nach
einer Charakterisierung derjenigen Elemente der algebraischen, algebraisch-
abgeschlossenen Erweiterung (2 eines Kérpers K, welche als Eigenwerte sym-
metrischer K-Matrizen auftreten, bildet den Ausgangspunkt der vorliegenden
Arbeit.

Fiir einen beliebigen Koérper K bilden nun die Eigenwerte symmetrischer
K-Matrizen ihrerseits wieder einen Korper A. Dieser ist in dem Sinne abge-
schlossen, daBl er auch alle Eigenwerte symmetrischer A-Matrizen enthilt.
Auf Grund dieser beiden in Paragraph 2 bewiesenen Sidtze gelingt es durch
Induktion nach dem Grad von A iiber K, die gestellte Frage vollstindig zu
beantworten: Ist K formal-reell (das heift — 1 keine Quadratsumme), so
ist ein Element 4 aus 2 genau dann Eigenwert einer symmetrischen K-Matrix,
wenn es zu allen reell-abgeschlossenen Erweiterungskorpern in Q gehort (das
heiflt total-reell ist); ist dagegen K nicht formal-reell, so ist iiberhaupt jedes
Element von 2 ein solcher Eigenwert. Insbesondere ist somit eine algebraische
Zah] genau dann Eigenwert einer rationalzahligen symmetrischen Matrix,
wenn sie und alle ihre Konjugierten reell sind.

In Verallgemeinerung dieser Sitze werden fiir Korper der Charakteristik
p # 2 auch die Polynome charakterisiert, welche als Minimalpolynome sym-
metrischer Matrizen auftreten. Im Falle eines formal-reellen Korpers sind es
die Polynome mit lauter einfachen, total-reellen Nullstellen, und im nicht
formal-reellen Fall sind es alle Polynome ohne Ausnahme. Das zweite trifft
hingegen nicht zu, wenn die Charakteristik 2 ist.

Unter Beniitzung dieser Resultate kénnen wir auch die analogen Fragen fiir
schiefsymmetrische und orthogonale Matrizen beantworten.

Ob in dhnlicher Weise auch die Eigenwerte von symmetrischen Matrizen
mit ganzzahligen Elementen durch die Eigenschaft ganz-algebraisch und

1) Es werden in dieser Arbeit durchwegs nur kommutative Korper betrachtet.
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total-reell zu sein, charakterisiert sind, ist mir auBer fiir den Grad »n = 2
unbekannt. Ebenfalls ungeldst ist das entsprechende Problem fiir die Minimal-
polynome von hoherem als 2. Grad.

Herrn Professor E. SPECKER, der diese Arbeit angeregt hat, danke ich herz-
lich fiir vielfdaltige Ratschlige und Ermunterung.

§1. Die Korpereigenschatten der Eigenwerte symmetrischer Matrizen

K sei ein beliebiger Korper, 4 eine symmetrische Matrix mit Elementen aus
K — kurz eine symmetrische K-Matrix — und A ein Eigenwert von 4.

Satz 1.1. Jedes Element von L = K(A) 1ist Eigenwert einer symmetrischen
K-Matriz.

Beweis. Ist n der Grad von L iiber K, so gibt es zu jedem ueL eine Dar-

n—1 n—1

stellung u = Z ¢, A%, c e K. Nun ist aber X ¢, A*¥ Eigenwert der K-Matrix
n—1 k=0 k=0
B = Yc, A%, und wenn A symmetrisch ist, so ist es auch B.

k=0
Satz1.2. Die Menge A derjenigen Elemente einer algebraisch-abgeschlossenen
Erweiterung Q2 von K , welche Higenwerte symmetrischer K-Matrizen sind, 18t ein
Korper.

Beweis. Nach 1.1 ist mit A auch A-! Eigenwert einer symmetrischen K-
Matrix. Sind 2 und x Eigenwerte der r- bzw. s-reihigen symmetrischen K-
Matrizen A und B, so ist Au Eigenwert des Kroneckerproduktes P = 4 x B
(vgl. [4], S. 84), und 1 + p ist Eigenwert von 8§ = AxE,+ E,x B, wenn
E, und E, die 7- bzw. s-reihigen Einheitsmatrizen sind. Sind 4 und B sym-
metrisch, so sind es auch P und S.

Da A ein Unterkérper von £ ist, ist es sinnvoll, nach denjenigen Elementen
von 2 zu fragen, welche Eigenwerte symmetrischer 4-Matrizen sind. Nach
1.2 bilden diese wiederum einen Korper A’, der 4 enthilt. Es zeigt sich aber,
daB A gegeniiber der Operation der Bildung von Eigenwerten symmetrischer
Matrizen abgeschlossen ist, denn es gilt :

Satz 1.3. Der Korper A' der Eigenwerte symmetrischer A-Matrizen stimmit
mit A dberein.

Beweis. Seien L = ((4,,)) eine symmetrische A-Matrix und K der end-
liche Erweiterungskorper, welcher aus K durch Adjunktion siémtlicher Ele-
mente A,, von L entsteht. K ist Endglied einer Kette

A~

K=K\,cK,c---cK,=K



226 FrED KRAKOWSKI

von sukzessiven einfachen Erweiterungen, wobei K, aus K, ,fir I=1,...,p
durch Adjunktion eines Eigenwertes einer symmetrischen K, ,-Matrix hervor-
geht. Unser Satz wird bewiesen sein, wenn wir gezeigt haben, dafl ein Eigen-
wert einer symmetrischen K,-Matrix auch schon Eigenwert einer symmetri-
schen K, ,-Matrix ist.

Es sei also K, = K, ,(x), wo &« Eigenwert einer s-reihigen symmetrischen
K, ,-Matrix A ist, und A sei ein Eigenwert der r-reihigen symmetrischen
K ,-Matrix B = ((«;;)). Wir konstruieren nun eine rs-reihige K, ,-Matrix S,
welche 4 als Eigenwert hat.

Da «;,eK,;(x), gibt es eine Darstellung

n-—1

v v
X = Zcék)(x" ’ C%k)szq ’
y=0

und «,; ist daher Eigenwert der symmetrischen K, ;-Matrix

n—1
— (v)

v=0

Vi, ..., V! seien r isomorphe Exemplare eines s-dimensionalen Vektorraumes
V* (mit K, als Koeffizientenbereich), und J, sei ein Isomorphismus von V*
auf V§, j=1,...,r. Wir deuten A4 als Matrix einer Abbildung % von V* in

sich beziiglich einer Basis (e¢;) von V*, und es sei

n—1
W =2 A .
v=0
Ferner sei xeV*® ein zum Eigenwert « gehoriger Eigenvektor von 9 und
x;e V! das J,-Bild von x.
Wir betrachten nun die direkte Summe W7¢ der Vektorrdume Vi,...,V;
und definieren auf folgende Weise eine Abbildung & von W7 in sich:
Ist w ein Vektor aus Wr* und w = v, + 03+ -+ v,, v;e V], seine Zer-
legung in direkte Summanden, so sei:

S(w) =2 J, N, Iy (v,) .

i,k

(J1e1s - 185, Jaly, v, oy, e, iy, e, d,0))

In der Basis

des Raumes W hat die rs-reihige Matrix S dieser Abbildung folgende Gestalt :

Ay Ay ... A4y

S————-' 421 A22"' A2r

Arl Arz e Arr
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S entsteht also aus B, wenn man an Stelle der Elemente «,, die symmetrischen
«Kistchen» 4, einsetzt. Da auch A4,, = 4,, ist, so folgt, daB S eine sym-
metrische K-Matrix ist. Diese Matrix S hat nun A als Eigenwert. Es ist ndmlich :

S(x) = ‘:):"JiQIikJ;l(xk) = _Z'JiQIik(x)
= _Z‘Ji((xz'kx) = 2oy, (x) = :‘xz’kxz' .

%
Das bedeutet aber, daBl der von x,,...,x, als Basisvektoren aufgespannte
Unterraum X* durch & in sich abgebildet wird, und, wenn wir mit B die von
S in X' induzierte Abbildung bezeichnen, dafl die Matrix von B beziiglich
der Basis (x;,...,%,) gerade B = ((x;)) ist. Ist nun pe X" ein zum Eigen-
wert A gehoriger Eigenvektor von 8B, so ist er natiirlich auch Eigenvektor von
S mit demselben Eigenwert 4. Damit ist alles bewiesen.

§2. Quadratische Polynome und Irrationalititen

Wir betrachten quadratische Polynome mit Koeffizienten aus einem Kérper
K, und zwar beliebige, wenn die Charakteristik p 7% 2, nur reinquadratische
Polynome, wenn p = 2 ist. Solche Polynome kénnen in der Form f(x)= 22+
2ax -+ b angeschrieben werden. Wir fragen nun nach der notwendigen und hin-
reichenden Bedingung dafiir, dal f(x) Minimalpolynom einer symmetrischen
K-Matrix ist.

Satz 2.1. Ein quadratisches Polynom f(x) = x® + 2ax + b st dann und
nur dann Minimalpolynom einer symmetrischen K-Matrixz, wenn seine Dis-
kriminante a® — b Quadratsumme (von nicht-verschwindenden Korperelementen)
18t.

Beweis. Da 22 4 2ax 4+ b = (x + a)®? — (a® — b) ist, so geniigt es, den
Satz fiir reinquadratische Polynome 22 — ¢ zu beweisen.

1. Die Bedingung ist notwendig.

Seien a,, die Elemente von 4; i,k=1,...,n. Ist 2> —c das Minimal-
polynom von A4, so ist A% = cZ (& Einheitsmatrix). Das Element in der ¢-ten
Zeile und i-ten Kolonne von A2 ist a2, + a2, +---+ af, =c¢; c¢ ist also
Quadratsumme in K von Elementen, die nicht alle = 0 sind.

2. Die Bedingung ist hinreichend.
Sei c=wu2+ul - -+ u, w;eK, u;, 40, j=1,...,r.
Ist die Charakteristik des Korpers 2, so ist c=u ...+ u2=(u2+...+ u,)?

= «?, und die zweireihige Matrix (2, g’) hat die gewiinschte Eigenschaft. Ist
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die Charakteristik von K aber von 2 verschieden, so beweisen wir die Be-
hauptung durch Induktion nach r. Fiir r = 1,¢ = u} hat die zweireihige

Matrix
4. — (" 0
! (0 — ul)

das Minimalpolynom 2 — ¢. Die Behauptung sei bewiesen fiir » — 1. Es
seien ¢ = uf +...+ »’_, und A, , eine symmetrische s-reihige K-Matrix

mit A2_, = ¢'E’ (B’ s-reihige Einheitsmatrix). Wir bilden nun die 2s-reihige
symmetrische K-Matrix (e B A,
T \4,, —u,E')
Es ist
A2 — (ufE' + A2, 0
r 0 wlB' + A3,
2((uf+...+uf__1+uf)1f7’ 0 )=cE’
0 (W +...+ul_ +ud)E ‘

A, erfiillt daher die Gleichung z? — ¢ = 0. Anderseits kommen in der Haupt-
diagonalen von 4, die Elemente u, und — %, vor, welche voneinander ver-
schieden sind. Daher kann A4, nicht einer Gleichung x — d = 0 geniigen;
x® — ¢ ist also das Minimalpolynom von 4,.

Da die Wurzeln des Minimalpolynoms einer Matrix 4 die Eigenwerte von 4
sind, so folgt aus 2.1 unter Anwendung von 1.1:

Satz 2.2. Ist p #% 2, so ist jedes Element einer quadratischen Erweiterung
L von K, deren Diskriminante Quadratsumme in K ist, Eigenwert einer symme-
treschen K-Matriz.

In nicht formal-reellen Korpern (d. h. — 1 ist Quadratsumme) der Charak
teristik p £ 2 ist jedes Element Quadratsumme. Demnach ist in ihnen jedes
quadratische Polynom Minimalpolynom einer symmetrischen Matrix. Ist
p = 2, so ist jede Quadratsumme selbst ein Quadrat. Es kann aber Elemente
geben, die keine Quadrate sind, wie z. B. das Element ¢ im Korper P, (),
wo P, der Primkorper mod 2 und ¢ eine Unbestimmte sind. Dementsprechend
tritt auch nicht jedes quadratische Polynom als Minimalpolynom einer sym-
metrischen P, (#)-Matrix auf. Dagegen gilt noch:

Satz 2.21. Ist p= 2, so st jede Quadratwurzel Eigenwert einer symme-
trischen K-Matrix. .

Beweis. Ist 2 = ¢, so ist y Eigenwert von

0 c 1
C=\|c¢c c c+1]}),
1 ¢+1 1
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denn das charakteristische Polynom von C ist y (z) = (2* + ¢) (x + ¢ + 1),
und C ist symmetrisch.

Bemerkung. Fiir den Korper der rationalen Zahlen kann man auf Grund
des von Legendre bewiesenen Satzes, wonach jede natiirliche Zahl =£0, 4, 7
(mod 8) Summe von 3 Quadraten ist (vgl. [56]), zeigen:

2.3 Jede reelle algebraische (ganz-algebraische) Zahl zweiten Grades ist
Eigenwert einer 3-reihigen rationalzahligen (ganzzahligen) symmetrischen
Matrix, und jedes quadratische Polynom mit rationalen (ganz-rationalen)
Koeffizienten und positiver Diskriminante ist Minimalpolynom einer 4-
reihigen rationalzahligen (ganzzahligen) symmetrischen Matrix. Im all-
gemeinen kommt man aber mit weniger Reihen als eben angegeben nicht aus.

§3. Charakterisierung der Eigenwerte und Minimalpolynome beliebigen Grades

Wir geben in diesem Abschnitt die in der Einleitung angekiindigte Charakteri-
sierung der Eigenwerte und Minimalpolynome symmetrischer Matrizen mit
Elementen aus einem beliebigen Kérper. Vorerst beweisen wir zwei Hilfssétze.

Hilfssatz 3.1.
E's seien :
K ewvn Korper;
Q eine algebraisch-abgeschlossene Erweiterung von K ;

f(z) =a™ 4+ a1 ... ein Polynom mn-ten Grades aus K [x] mit den
Wurzeln o, ..., «,;

g(x) = a1+ ba" 1+ ... ein Polynom (n — 1)-ten Grades aus K [x] mit
lauter einfachen Wurzeln B,..., Pp_1;

c, f(ﬂf) und ')’? ___: cj .

n—1
I8~ o
f(x) = (x —a)g (x) + r (x), wobei a e K und r (x) ein Polynom von hichstens

(n — 2)-tem Grad 7st.
Dann hat die symmetrische Matrix

@ Y1 Vna
1 fr0..0
M=y . O ..
0

Yn10 .0 B,
das charakteristische Polynom 7y, () = (— 1)*f(x).
Zusatz. Ist B, # «, fir alle j, k, dann ist xy (%) zugleich das Minimal-
polynom von M.

16 Commentarii Mathematici Helvetici
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Beweis. Es ist net me1
@) =(@—x)(fy —2)...(Byy — ) — Zc; I (B, — 2) =
n—1 n-1 =1 kZi

(=) (= —a)g (@) — (= 1)"2 2, [l (x — pp) =

n—1 n—1 t=1 kzi

(— " [(z — a) g (x) ""'icikg_(x — Bu)] . (1)
Sei n—1 n—1
h(x)=—2c,II (x—f,) .
Es ist dann bucd Bozh

hB)=— ¢, T (B, — B)=1(By); j=1,....n—1.
Da auch k2j

f(ﬂj):r(ﬂj); j=1,....,n—1
und r(x) hochstens vom Grade n — 2 ist, so folgt, daB %(z) = r(x), und
daher stimmt das Polynom in den eckigen Klammern von (1) iiberein mit
f(z).

Zum Beweise des Zusatzes haben wir zu zeigen, daf} der grofite gemeinsame
Teiler aller (n — 1)-reihigen Unterdeterminanten der charakteristischen Ma-
trix M — xE gleich 1 ist (vgl. [4], S. 20). Sei D, (x) diejenige (n — 1)-reihige
Unterdeterminante von M — zE, welche aus dieser durch Streichen der
ersten Zeile und der (¥ + 1)-ten Kolonne hervorgeht. Es ist :

Dy(z)= £ yx(br — ) (B — ). . .(Br—1 — ) By — %) . - (Boa — %) .
Weil 8, #«; fir t=1,...,n, soist f(8,) #0 und daher auch y,+#0.
Da auch §; # B, fiir j # k, so ist D, (x) nicht teilbar durch g, — x. Mithin
ist der groBte gemeinsame Teiler von D,(x),...,D,_,(z) und daher auch
aller (n — 1)-reihigen Unterdeterminanten von M — x & gleich 1.

Fir die im folgenden verwendeten Begriffe und Sitze aus der Theorie der
formal-reellen Korper verweisen wir auf [1] und [2] oder auch [3].

Hilfssatz 3.2.
Es seien:
K ewn formal-reeller Korper;
L0 eine algebraisch-abgeschlossene Erweiterung von K ;
A der Korper der total-reellen Elemente von Q2);
f(x) = 2" + a,2" ! 4 ... ein Polynom aus K [x] mit lauter verschiedenen und
total-reellen Wurzeln «,,...,x,;
f' () die Ablestung von f(x) und B,,..., B.,_1 thre Wurzeln;

L = K(ﬂl: csey ﬂn-—l) und € = — n—1 f(ﬂj)
1T (B; — Bs)
kZj

?) Das heit, 4 ist der Durchschnitt aller reell-abgeschlossenen Erweiterungen von K.
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Dann ist L formal-reell, Lc A, und die n — 1 Qrofen c;e L sind total-
postitiv.

Beweis. Nach dem Rolleschen Theorem liegen f,,...,8,.; in 4. L ist
daher in A enthalten und mithin auch formal-reell. Wir haben noch zu beweisen,
daB c; in jeder Anordnung von L positiv ist. Da jede Anordnung von L AnlaB
zu einer angeordneten reell-abgeschlossenen Erweiterung gibt, welche 4 ent-
hilt und deren Anordnung diejenige von L fortsetzt, so wird die Behauptung
bewiesen sein, wenn wir gezeigt haben, daB ¢; in jeder Anordnung von 4
positiv ist.

Da eine Anderung der Numerierung der GroBen «; und #; nur eine Per-
mutation der Grofen c,; unter sich bewirkt, so kénnen wir ohne Einschréinkung
der Allgemeinheit annehmen, daf in der betrachteten Anordnung von 4 gilt:

o <Py <oy <Py < ... <Oy <Py <o, .

Es ist

(@) = (2 — o) (x — &) ... (x — o)
und somit

f(ﬂ:) = (f; — o) (B; — xa) ... (B; — &) .
Da

B; <op fir k>4 und B,>«, fir k<7,
150 s91(B) = 59 (B; — yan) -+ (B; — ) = (— 17 .
Ebenso

n—1
Sgkg (B; — Be) = 89(B; — Bysd) - - - (B; — Bnr) = (— )
Daher ist sgc; = + 1 und somit ¢; > 0 in jeder Anordnung von 4.

Wir sind nun imstande, unser Problem fiir die Eigenwerte symmetrischer
K-Matrizen zu losen.

Satz 3.3. Ser Q die algebraische, algebraisch-abgeschlossene Erweiterung des
Korpers K. Ist K formal-reell, so ist AeQ dann und nur dann Eigenwert einer
symmetrischen K-Matriz, wenn A total-reell ist; ist aber K micht formal-reell,
o st jedes Element von 2 Eigenwert einer symmetrischen K-Matrix.

Das bedeutet, daB der Korper aller Eigenwerte symmetrischer K-Matrizen
im nicht formal-reellen Fall algebraisch-abgeschlossen ist und im formal-
reellen Fall mit dem Durchschnitt aller reell-abgeschlossenen Erweiterungen
von K iibereinstimmt.

Beweis. Ist L ein formal-reeller Korper und liegen die Eigenwerte der sym-
metrischen L-Matrix 4 in L(i),s =¥ — 1, so liegen sie, wie bekannt, auch
schon in L. Ist L Unterkorper von £2 und reell-abgeschlossen, so ist L () = £.
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Somit gehoren die Eigenwerte jeder symmetrischen K-Matrix, wenn K formal-
reell ist, zu allen reell-abgeschlossenen Erweiterungskérpern von K in Q.
Die Bedingung ist daher notwendig.

Den Beweis der Umkehrung fiihren wir durch Induktion nach dem Grad =
von 4 iiber K. Fir n» = 1 ist die Behauptung trivial. Sie sei bewiesen fiir
n — 1. Ist f(z) das irreduzible Polynom, von welchem 4 eine Nullstelle ist,
so betrachten wir die Matrix

a Y1 ... Ypa

yr B 0..0
M = . 0 ..

. . O

771—10 .. 0 ﬂn-—l
Die GroBlen a, B,,..., 8,1 und y4,..., 9, , sollen dabei dieselbe Bedeu-
tung haben wie in den Hilfssidtzen 3.1 und 3.2. Im formal-reellen Fall sind
Pis. -5 Bny die Wurzeln der Ableitung f' (x) und sind total-reell, @ ist in K und
Yis+++5>Yn_y 8ind nach 3.2 Quadratwurzeln aus total-positiven Elementen
von K(B,...,B,—1). Ist K nicht formal-reell, so sind f,,...,f,_; die
(lauter einfachen) Wurzeln irgendeines Polynoms (n — 1)-ten Grades, und
Y1s-++>Yn_1 8ind Quadratwurzeln aus Elementen von K (f,,..., f,_;). Ineinem
formal-reellen Korper sind die total-positiven und in einem nicht formal-reellen
Korper der Charakteristik p 5= 2 alle Elemente Quadratsummen (vgl. [2],
S. 103; [3], S. 248); demnach sind nach 2.2 und fiir die Charakteristik 2 nach
2.21 sdmtliche y, Eigenwerte symmetrischer K(8,,..., f,_;)-Matrizen. Da
+ f(x) nach 3.1 das charakteristische Polynom von M ist, so ist 4 Eigenwert
von M. M ist symmetrisch, und seine Elemente sind Eigenwerte symmetri-
scher K(f,, ..., f,—1)-Matrizen. Mithin ist auch 4 nach 1.3 Eigenwert einer
symmetrischen K (8,, ..., 8,_,)-Matrix. Da 8,, ..., B,_; iber K hochstens den
Grad » — 1 haben, so sind die Elemente dieser Matrix nach Induktionsvor-
aussetzung Eigenwerte symmetrischer K-Matrizen; nach 1.3 ist daher auch 4

ein solcher Eigenwert. Damit ist der Satz bewiesen.

Bemerkung. Ist K der Korper der rationalen Zahlen, so it sich der Beweis
infolge der Eigenschaft, daB sich die reellen Wurzeln eines Polynoms durch
rationale Zahlen voneinander trennen lassen, vereinfachen. Es geniigt ndmlich,
um reelle y,,...,%,; zu erhalten, welche dann Eigenwerte symmetrischer
rationaler Matrizen sind, fiir §,,..., 8,_, rationale Zahlen zu nehmen, welche
zwischen je zwei Wurzeln von f(x) liegen. Die Induktion fillt weg, und eine
einmalige Anwendung von 1.3 liefert das Gewiinschte. Dieser Schlufl versagt
hingegen in allgemeinen formal-reellen Koérpern, wo es nicht immer moglich
ist, die in einer rell-abgeschlossenen Erweiterung liegenden Wurzeln eines
Polynoms durch Elemente aus dem Grundkoérper zu trennen (vgl. [1], S. 99).
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Der folgende Satz erlaubt die Beantwortung der Frage nach der Charak-
terisierung der Minimalpolynome symmetrischer K-Matrizen. Wir betrachten
dabei endliche Erweiterungen K (x,,...,«,) von K und fragen nach den Be-
dingungen, unter denen der Korper K(x,,...,«,) eine Darstellung durch
symmetrische K-Matrizen, kurz, eine symmetrische K-Darstellung, besitzt.
Eine solche Darstellung besteht aus einem Matrixring K [4,,...,4,], wo
A;,..., A, symmetrische K-Matrizen sind, und einem Homomorphismus von
K(xg,...,,) auf K[4,,...,4,], welcher, da K(x,,...,«,) ein Korper
ist, zu einem Isomorphismus wird.

Satz 3.4. Ist K formal-reell, so gibt es dann und nur dann eine symmetrische
K-Darstellung der endlichen Erweiterung K(x,,...,x,), wenn die r adjun-
gierten Elemente «,, . . ., x, total-reell sind ; ist K nicht formal-reell, seine Charak-
teristik aber von 2 verschieden, so besitzt jede endliche Erweiterung K (x,,.. ., «,)
etne symmetrische K-Darstellung.

Beweis. DafB}, im formal-reellen Fall, die Bedingung notwendig ist, folgt
sofort aus 3.3; denn ist 4; die dem Element «, in der Darstellung entspre-
chende Matrix, so ist &, Eigenwert von 4,, nach 3.3 also total-reell.

Den Beweis des Satzes in der umgekehrten Richtung zerlegen wir in drei
Schritte. Wir zeigen der Reihe nach:

1. Ist der Satz richtig fiir eine einfache Erweiterung vom Grade < =,
so ist er auch richtig fiir jede endliche Erweiterung, vorausgesetzt, daB der
Grad simtlicher adjungierter Elemente iiber K nicht groBer als n ist.

2. Der Satz ist richtig, wenn die adjungierten Elemente Quadratwurzeln
sind.

3. Der Satz ist richtig fiir eine einfache Erweiterung.

Zu 1. Wir fiihren den Beweis des ersten Schrittes durch Induktion nach r.
®y,...,0, seien algebraische Elemente, welche unsere Voraussetzungen er-
fiillen und deren Grade iiber K nicht grofer sind als n. Fiir » = 1 ist die Be-
hauptung trivial. Sie sei bewiesen fiir r — 1, d. h. wir nehmen an, es exi-
stieren r — 1 symmetrische K-Matrizen A 45++-,A,_; und ein Isomorphis-
mus J von K(xy,...,x,_;) auf K [Al, cen r_1]. Der Grad ¢ von «, iiber
L = K(x,...,%,_;) ist nicht grofer als der Grad von «, iiber K. Mithin ist
9 < n. Ist K formal-reell, so ist es auch L. Da der Satz fiir einfache Erweite-
rungen vom Grade < 7 richtig sein soll, so glbt es eine symmetrische L-
Matrix A = ((oci,,)) derart, daB L(x,) o>~ L [A,.] ist. 4, habe m-Reihen, und

es sei J (o) = . Die Matrix
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211 o A—m
A, =

A?-—lm o o o -Az—mm

ist eine symmetrische K [Zl, cens Zr_l]-Matrix, und es gilt
L[A4,]~KI[4,,...,4,][4,] .
Ist F die m-reihige K [;1_ Ireeees A, 1 J]-Einheitsmatrix, so sei
A, = A,E fir j=1,...,r—1.
Da die Elemente von A4,,..., A, symmetrische K-Matrizen sind, so kénnen
auch 4,,...,4, selbst als symmetrische K-Matrizen betrachtet werden.
Es ist dann
K[A,,...., A, ,][4,]>~K[4,,..., 4,4, 4,],

also

K(%g,...,00_4,0,) =L(o,)~L[A,]=KI[Ay,..., 4, ,,4,] .

Damit ist unsere Behauptung bewiesen.

Zu 2. Sind K formal-reell, ce K,y total-reell und 92 = ¢, so ist ¢ total-
positiv und somit Quadratsumme in K . Ist K nicht formal-reell, seine Charak-
teristik aber £ 2, so ist jedes Element ¢ e K Quadratsumme. Nach 2.1 gibt
es in beiden Fillen eine symmetrische K-Matrix ¢ mit a® — ¢ als Minimal-
polynom. Infolgedessen ist K ()~ K[C]. Sind nun ¢,...,c,¢K,
P =¢,...,y2=c¢, und y,,...,y, total-reell, wenn K formal-reell ist,
80 gibt es, nach dem unter 1. bewiesenen angewendet fiir » = 2, r symmetri-
sche K-Matrizen C,,...,C,, so daB K(yy,...,y,) =K [C,,...,0,], was
zu beweisen war.

Zu 3. Sei « algebraisch iiber K vom Grade » und total-reell, wenn K formal-
reell ist. f(x) = O sei die irreduzible Gleichung, welcher « geniigt. Wir haben
nachzuweisen, daBl eine symmetrische Matrix A existiert, derart, daf(
K(x) >~ K [A] oder, was auf dasselbe herauskommt, daB f(x) das Minimal-
polynom von A4 ist.

Fir n =1, d.h. wenn « in K liegt, ist die Behauptung trivial. Sie sei
bewiesen fiir alle algebraischen Elemente, deren Grade iiber K kleiner als n
sind. Wir betrachten nun wieder die mit Hilfe von f(x) konstruierte sym-

metrische Matrix a

Y1 - -« Vu
v f10..0
M = 0 .. ,
0

Vn—1 0 ..0 ﬂn-—l
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WO @,%1,+++5Yn-1>B1>+++,Pn_1 dieselbe Bedeutung haben sollen wie im
Beweis von Satz 3.3. Ist L = K(f,,..., f,_1), 8o gibt es nach dem
unter 2. bewiesenen n — 1 symmetrische L-Matrizen C,,...,C,_,, so daB
L(Yl’ MR yn—l) == L [Ola et On—-l] *

Ersetzen wir in M die Matrixelemente durch die ihnen in L [C,,...,C,_,]
entsprechenden symmetrischen L-Matrizen, so erhalten wir eine symmetrische
Matrix : xE C, ...C.,

¢, BEO..O0 -
M, =y . O . :
. 0

C, .0 ..08, B

deren Elemente nun in L liegen. & ist dabei die Einheitsmatrix in L [C4, ...,
C,11. Da L(yy,..., Y1) =L[C,,...,C,_;], ist das Minimalpolynom
von M; dasselbe wie dasjenige von M ; dieses ist aber f(x), denn f(x) ist
irreduzibel und charakteristisches Polynom von M .

Nun haben die Elemente g,,..., f,_; iiber K hochstens den Grad » — 1,
und sie erfiillen die Voraussetzungen von Satz 3.4. Nach Induktionsvoraus-
setzung besitzt eine einfache Erweiterung von K, deren Grad » — 1 ist,
eine symmetrische K-Darstellung. Mithin gibt es nach dem unter 1. bewiesenen
auch eine symmetrische K-Darstellung K[ B,,..., B, ;] von K(f;,...,8.-1) -

Ersetzen wir nun in gleicher Weise wie oben die Elemente von M ; durch
die ihnen in K [B,,..., B,_;] entsprechenden symmetrischen K-Matrizen,
so erhalten wir eine neue symmetrische Matrix M ;, deren Elemente aus K
stammen. Weil K (8,,...,8,-1) =~ K [B,,..., B,_,] ist, so haben M, und
M, das gleiche Minimalpolynom. Damit ist aber eine symmetrische K-Matrix,
nidmlich M ; gefunden, deren Minimalpolynom f(z) ist, so dal} alles bewiesen ist.

Es folgt nun ohne weiteres der

Satz 3.5. Ist K formal-reell, so ist ein Polynom dann und nur dann Minimal-
polynom einer symmetrischen K-Matriz, wenn seine Wurzeln einfach und total-
reell sind ; ist K nicht formal-reell und seine Charakteristik p % 2, so ist jedes
Polynom Minimalpolynom einer symmetrischen K-Matriz.

Beweis. Fiir irreduzible Polynome ergibt sich der Satz sofort aus 3.4.
Er bleibt daher nur noch fiir reduzible Polynome zu beweisen.

Da eine symmetrische Matrix mit Elementen aus einem formal-reellen Kor-
per K innerhalb jeder rell-abgeschlossenen Erweiterung von K auf Diagonal-
form transformiert werden kann, so ist die Bedingung notwendig.

Fiir die Umkehrung beachten wir, da8 sich in nicht formal-reellen Kérpern
der Charakteristik p % 2 zu jedem Polynom f(x) ein Polynom g(z) finden
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1aB8t, welches die Voraussetzungen von Hilfssatz 3.1 und seinem Zusatz er-
fiillt. Ist K formal-reell, so sei g(x) = f'(x). In beiden Féllen hat die nach
2.1 mit Hilfe von f(x) und g(x) konstruierte symmetrische Matrix M das
Minimalpolynom f(z). Die Elemente von M erfiillen die Voraussetzungen von
Satz 3.4. Somit besitzt der aus K durch Adjunktion dieser Elemente entste-
hende Erweiterungskoérper L eine symmetrische K-Darstellung D. Da
L ~ D, hat die der symmetrischen L-Matrix M entsprechende symmetrische

D-Matrix M dasselbe Minimalpolynom wie M, also f(z). Jede symmetrische
D-Matrix kann aber auch als symmetrische K-Matrix aufgefaf3t werden. Damit
ist der Satz bewiesen.

Bemerkungen :

3.51. Wie wir schon in § 2 gesehen haben, ist Satz 3.5 ohne die Voraus-
setzung p # 2 nicht richtig.

3.52. Im Korper der rationalen Zahlen gelten auf Grund von 2.3 die fol-
genden Abschéitzungen :

Ist r die Zeilenzahl der kleinsten symmetrischen Matrix, von welcher 4 ein
Eigenwert ist, und ist n der Grad von 4, so ist r < n-3"1.

Ist ¢ die Zeilenzahl der kleinsten symmetrischen Matrix, von der f(x) Mini-
malpolynom ist, und ist » der Grad von f(z), soist s < n - 472,

§4. Schietsymmetrische und orthogonale Matrizen

Auf Grund der Ergebnisse des vorhergehenden Abschnittes sind wir nun
imstande, die entsprechenden Fragen fiir schiefsymmetrische und orthogonale
Matrizen zu beantworten. Im folgenden sei die Charakteristik der betrachteten
Korper, ohne ausdriickliche Nennung, als # 2 vorausgesetzt. Wir behandeln
zuerst den Fall der schiefsymmetrischen Matrizen.

Diejenigen Polynome f(z) aus K [z], welche als Minimalpolynome schief-
symmetrischer K-Matrizen auftreten konnen, haben entweder die Gestalt
f(x) = g(x?) oder f(x)= zg(2?). Ist ndmlich f(x) das Minimalpolynom
der schiefsymmetrischen K-Matrix S, so ist f(8)* = f(8*) = f(— S§) =0,
wenn mit A* die Transponierte einer Matrix A bezeichnet wird. Bedeutet
n den Grad von f(z), so ist f(8) + (— 1)»1f(— 8) = 0. Da der Grad von
f(x) + (— 1)»1 f(— z) kleiner als n, anderseits f(x) das Minimalpolynom von
S ist, so muB f(z) + (— 1)"»! f(— x) identisch verschwinden. Somit ist,
wenn n gerade ist, f(— x) = f(x), also f(x) = g(2?) und anderseits, wenn
n ungerade ist, f(— z) = — f(x), also f(x) = xg(x?).

Ist K formal-reell und 4 der Korper der total-reellen Elemente der alge-
braischen, algebraisch-abgeschlossenen Erweiterung £ von K ,sosei I' = 4(¢)
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der aus 4 durch Adjunktion einer Wurzel von 22 4 1 = 0 erhaltene Erwei-
terungskorper. Jedes Element A von I" 148t sich in der Form 4 = « -+ f7,
«, B ed, darstellen. Ist o« = 0, so soll 1 total-imaginér heiflen.

Bezeichnen wir mit s(x) ein Polynom aus K [z], welches sich entweder in der
Form g¢g(2?) oder in der Form zg(«?) schreiben lifit, so lautet nun der 3.5
entsprechende Satz fiir schiefsymmetrische Matrizen :

Satz 4.1. Ist K formal-reell, so ist ein Polynom s(x) dann und nur dann
Minimalpolynom einer schiefsymmetrischen K-Matrix, wenn seine Wurzeln ein-
fach und total-imagindr sind; ist K nicht formal-reell, so ist jedes Polynom
s(x) Minvmalpolynom einer solchen Matrix.

Beweis.

1. Die Bedingung ist notwendig im Falle eines formal-reellen Korpers. Sei
8(z) das Minimalpolynom der schiefsymmetrischen K-Matrix S und sei
J = (_(1) (1)) Das Kroneckerprodukt 7' =J x § ist symmetrisch und
T = (J x 8)2=E x (— 82 (F Einheitsmatrix). Fiir das Minimalpolynom
t(x) von T gilt daher t(x) = g(— 2?) oder ¢(x) = xg(— 2?), je nachdem
8(x) = g(2?) oder s(x) = xg(x?) ist. Ist § Wurzel von (), so ist g7 Wurzel
von $(z) und umgekehrt. Da die Wurzeln von ¢(x) total-reell und einfach sind,
so sind die Wurzeln von s(z) total-imagindr und ebenfalls einfach.

2. Die Bedingung ist hinreichend. Da s(z) im formal-reellen Fall lauter ver-
schiedene und total-imagindre Wurzeln haben soll, so sind die Wurzeln von
g(— a?) bzw. zg(— 2?) total-reell und ebenfalls einfach. Nach 3.5 gibt es in
beiden Fillen eine symmetrische K-Matrix 4, deren Minimalpolynom g(— 2%)
bzw. zg(— 2?) ist. Nunist § = J Xx A schiefsymmetrisch, und das Minimal-
polynom von 8 ist s(z).

Wenn K nicht formal-reell ist, so tritt jedes Element von £ als Wurzel
eines Polynoms s(x) auf. Daher:

Satz 4.2. Ist K formal-reell, so sind die total-imagindren Elemente von £,
und nur diese, Eigenwerte schiefsymmetrischer K-Matrizen; ist K nicht formal-
reell, so ist jedes Element von Q2 Eigenwert einer solchen Matrix.

Wir betrachten nun noch orthogonale K-Matrizen. Als Minimalpolynome
konnen in diesem Fall nur solche Polynome auftreten, welche sich in der Ge-

stalt ¢q(x) = 2™ (x + 1)°(x — l)sg(x —+ —91;), wo d, ¢ entweder 0 oder 1 sind,
schreiben lassen. Ist nimlich @ eine orthogonale K-Matrix mit dem Minimal-

n n n
polynom f(z) =X a,2*,a, =1, so gilt: Za,Q*=0 und ZXa,Q* =
n

k=0 k=0 k=0

2a,Q % = 0. Die Multiplikation der letzten Gleichung mit @ ergibt:

k=0
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n n
X a,Q" % = 0 oder, nach Anderung des Summationsindexes: X a, ,Q,=0.
k=0 n k=0
Daher ist: X (a, —a,_;,) @*=0. Da 2 a,z* das Minimalpolynom von @
k=0 k=0
ist, so folgt: a,—a,_,=pa, fir k=0,1,...,n und daraus a,(l1—u)=a,_,

und a, (1 —u) =a,, also a, (1 —pul=a,,. Fir k=0 ergibt sich:
(1 —u)i=1, also p=0 oder y=2, mithin a,=a, , oder a,= —a,_,.
Ein Polynom, dessen Koeffizienten diese Eigenschaften haben, 148t sich aber
immer in der Form ¢(z) schreiben.

Es gilt nun:

Satz 4.3. Ist K formal-reell, so ist ein Polynom q(x) dann und nur dann
Minimalpolynom einer orthogonalen K-Matriz, wenn seine Wurzeln in I liegen,
etnfach sind und iber A die Norm 1 haben; ist K nicht formal-reell, so ist jedes
Polynom q(z) Minimalpolynom einer solchen Matrix.

Beweis.

1. Die Bedingung ist im formal-reellen Fall notwendig. Ist ¢(x) das Minimal-
polynom der orthogonalen K-Matrix @ und A eine Wurzel von ¢(x), so ist 4
Eigenwert von . Die Matrix ¢ + @* ist symmetrisch, und 2 + 21 ist
wegen @* = @' Eigenwert von @ + @*. Ebensoist 4 — A-! Eigenwert der
schiefsymmetrischen K-Matrix @ — @*. Setzen wir 24 =41+ 47! und
281 = A — A7!, sosind « und f nach 3.3 und 4.2 total-reell. Da A =« + ¢
und A-! =« — B¢ wird,soist a? + B2 = 1; mithinist 4 € I', und seine Norm
iiber 4 ist 1. Da des weiteren @ innerhalb £ auf Diagonalform transformiert
werden kann, sind die Wurzeln von ¢ (x) einfach.

2. Die Bedingung ist hinreichend.

Sei K vorerst formal-reell. Wir unterscheiden 2 Fille:

a) q(x) ist irreduzibel.l Hat g(z) den Grad n =1, so ist die Behauptung

trivial. Ist n > 2, s0 ist ¢(z) = xmg<x —[—%), wobei g (y) vom Grade m = g—,

irreduzibel ist und lauter total-reelle Wurzeln hat. Ist 4 = « + f7 Wurzel von
q(z), so ist 20 Wurzel von g(y). Da « und § total-reell sind, gibt es nach
3.4 eine Darstellung des Kc)rpers K(x, p) durch symmetrische K-Matrizen.

In dieser seien A4 und B die den Elementen x und p entsprechenden sym-
metrischen K-Matrizen. Da nach Voraussetzung o24-f*=1, so ist Az—i—B2 .y

(Z Einheitsmatrix). Seien &, =.—((1) (1’) J = (~(1) (1)) A=FE,x A und
B=JxB. Da AB=BA, so ist AB= BA. Die K-Matrix Q= A + B
ist orthogonal, denn A ist symmetrisch, B schiefsymmetrisch und Q@* =

(A+B)A—B)=A:—B*=FE. Da g(24) = 0 ist, ist
@) =¢mg (@ + Q) =@™g (@ + @*) =Qmg(24) =0 .
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Somit ist ¢(x) das Minimalpolynom von Q.
b) q(x) ist reduzibel. Sei q(x) =g¢,(2) ... ¢,(2), wo g¢,(x) = x™y, (x o —2)

oder = z 41, seine Zerlegung in lauter verschiedene irreduzible Faktoren.
Zu jedem g¢,(x) gibt es nach a) ein orthogonales @,, welches g,(z) als Mini-
malpolynom hat. Dann ist ¢q(x) das Minimalpolynom der direkten Summe

Q=0Q, +Q+ ... +@, .
Sei nun K nicht formal-reell. Wir unterscheiden 3 Fille:
a) ¢q(x) habe keine Wurzeln + 1 oder — 1. Dann ist ¢q(x) = a™g (w + ;10—) .

Nach 3.5 gibt es symmetrische K-Matrizen A und I derart, daB g (y) Minimal-
polynom von 24 und y®> + 1 Minimalpolynom von I ist. Dabei kénnen 4 und

_ _ o _ IA —F

E ZEinheitsmatrix, B=J x B und A=A4 {A}+A4+A4. Dann ist
Q = A + B orthogonal, und man bestdtigt leicht, daBl ¢(z) das Minimal-
polynom von @ ist.

b) Sei ¢q(z) = (x — 1). Ist r = 28, bzw. r = 28 + 1, 80 sei

I als vertauschbar angenommen werden. Es seien nun B = (E IA) ,

1
hy(x) =2 (Izc)xk
k=0
der Anfang der Entwicklung von (1 + z)¥ in eine formale Potenzreihe. Es ist
dann (h,(x))? = 1 + x, mod z*"!. B sei eine schiefsymmetrische K-Matrix
mit dem Minimalpolynom 2. Dann ist A = h,(B?) symmetrisch und
Q@ = A + B wegen Q@Q*= (h,(B?)? — B*=FE 4+ B® — B*= FE orthogonal.
Da B = (3@ — Q@) =5 @@+ Er(@— By =0 und sowohl @ als
auch Q-+ E nicht singulir sind, so ist (§ —E) = 0. Anderseits ist (¢ — E)"1#0,
also ist (x — 1) das Minimalpolynom von @.
Eine analoge Betrachtung zeigt, da auch (z 4 1) Minimalpolynom einer
orthogonalen K-Matrix ist.

¢) q(z) habe neben anderen Wurzeln auch die Wurzeln + 1 und — 1.

Dann ist: q(z) = (x — 1) (z + 1)"2g(xz) wo g(x) keine Wurzeln + 1 und
— 1 mehr besitzt. Zu jedem dieser drei teilerfremden Faktoren gibt es nach dem
eben bewiesenen eine orthogonale K-Matrix, welche diesen Faktor als Minimal-
polynom hat. Somit gibt es auch eine orthogonale K -Matrix, ndmlich die
direkte Summe dieser drei Matrizen, deren Minimalpolynom ¢ () ist. Damit
ist der Satz bewiesen.
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Da jedes Element = 0 von £, wenn K nicht formal-reell ist, Wurzel eines
Polynoms der Gestalt g(z) ist, so folgt unmittelbar :

Satz 4.4. Ist K formal-reell, so ist ieQ dann und nur dann Eigenwert
etner orthogonalen K-Matrixz, wenn Ae A(¢) und iber A die Norm 1 hat3);
18t K micht formal-reell, so ist jedes von O verschiedene Element von 2 Kigenwert
einer orthogonalen K-Matrizx.

Fiir Korper der Charakteristik p = 2 ist Satz 4.4 falsch.

Gegenbeispiel : ¢ (z) =22+ x+ 1. Wire @ eine orthogonale K-Matrix mit ¢ (x)
als Minimalpolynom, so miilte 2+ @ + £ =0, also @ +Q*+ E =0
sein. Aber in der Hauptdiagonalen von @ -+ @* stehen lauter Nullen.
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3) Das heit fiir den Korper der rationalen Zahlen, wenn A und alle seine Konjugierten den
absoluten Betrag 1 haben.
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