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On the existence of a connection with curvature zero*)

by JoEN MILNOR

1. Infroduction

Let M2 be a closed oriented C”-surface of genus g and let GL+*(2) denote
the group of 2 X2 real matrices with positive determinant. To each GL+(2)-
bundle?) over M2 there corresponds the EULER (or STIEFEL-WHITNEY) class

X eH2(M2,Z) ,

and conversely each class X comes from a unique equivalence class of bundles.
Let X[M?] denote the KRONECKER index of X with the fundamental cycle
of M2

Theorem 1. If | X[M2?]|>=g>0 then the GL+(2)-bundle over M? with EvLEr
class X does not possess a connection 3) with curvature zero.

By an affine connection on M2 is meant a connection in the tangent bundle
of M?. BEzECRI [3] has shown that M2 can possess a symmetric affine connec-
tion with curvature zero if and only if g = 1. A somewhat stronger result
follows from Theorem 1. For the tangent bundle of M?2 the integer X[M?] is
equal to the EULER characteristic 2 — 2g. Since |2 — 2g| > g for ¢ > 2 we
have:

Corollary. A surface with genus g > 2 does not possess any (not necessarily
symmelric) affine connection with curvature zero.

(The corresponding assertion for g =0 is easy. In fact a bundle over a
simply connected manifold can have a flat connection only if it is a product
bundle). A study of the flat affine connections which do exist on the torus has
been made by KuIpEr [6].

It would be interesting to ask if every manifold with a flat affine connection
has EuLER characteristic zero, but only partial results have been obtained in
higher dimensions. (See AUSLANDER [8].)

The following shows that Theorem 1 was a best possible result.

Theorem 2. If | X[M?2]|<g thenthe GL*(2)-bundle over M? with Evrzr class
X does have a connection with curvature zero.

Corollary. If g > 2 then there exist GL*(2)-bundles over M?* with X # 0
which have conmections with curvature zero.

1) The author holds an ALFRED P. SLoAN fellowship.
) By a GL+(2)-bundle is meant a principal fibre bundle with structural group GL*(2).
3) For the theory of connections see CHERN [4] or AMBROSE and SINGER [1].
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This behavior of the EULER class is in contrast with the known behavior of
the PONTRJAGIN classes. (See § 4.)

The proofs of Theorems 1 and 2 are outlined in § 2 and completed in § 3.
Some related problems are discussed in § 4.

2. Proof of Theorems

Let @ be a L1k group and M a C*-manifold. The universal covering space of
M can be considered as a 7,(M)-bundle over M . Therefore any homomorphism
7, (M) - G induces a G-bundle over M .

Lemma 1. A G-bundle over M possesses a connection with curvature zero if
and only if it is induced from the universal covering bundle by a homomorphism h :
(M) - G.

(Compare STEENROD [7], § 13. The image of A in @ is called the holonomy
group. See AUSLANDER and MARKUS [2].) More generally for any cell complex
K a homomorphism 4 : =, (K) — G induces a G-bundle over K . If G is connected,
then the first obstruction to the existence of a cross-section in this bundle is an

element c(h)e H¥( K ,7, (G)) .

The next lemma gives an algorithm for computing this obstruction.

Assume that K has only one vertex so that =, (K) has a canonical presen-
tation with generators «,,...,«, corresponding to the oriented edges and
relations @, (%y,...,4,)=1,..., @,(x,...,,) =1 corresponding to the
oriented faces. It is important that the relation ¢, should be obtained by
listing the edges incident to the face e} (with appropriate signs) in the cyclic
order determined by the orientation of e}. Consider the exact sequence

t ~p
1 >m((@)—>G—>G—>1

where G is the universal covering group. For each edge of K define y,=h(x;) @,
and choose a representative I;ep~1(y,). Then for each face we have

p¢k(1’1""’ Pm) = ¢k('}’1,-o.,‘ym) = 1

so that t—1,(Iy,..., Iy)en (G) is defined.

Lemma 2. The cocycle in K which assigns to the k-th face of K the element
1@y, ..., I'y) of 7y(G) represents the negative —c(h) of the obstruction
cohomology class.

The proofs of Lemmas 1 and 2 will be given in § 3.

Now let K be the surface M2 of genus ¢g>0. Using the cell subdivision of
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M? obtained by matching the edges of a 4g-gon, we obtain the presentation
for =,(M?) with generators «,,...,«,, and relation
I — —
@Pons v ey Bgg) == Gy0a0y YOGt L gy 1 Bgggt 0at =1 .

The problem of determining which classes ¢(h) can occur is therefore equi-
valent to the following : Which elements of =, (@) have the form

i1y, ..., Ty,) with Ty, ..., Ty eG?

Every nonsingular matrix y can be written uniquely in the form

(1) y =r{»)s()
where r(y) is orthogonal and s(y) is symmetric and positive definite. This
defines a retraction r: GL*(n) - SO(n) .

It is easily verified that r has the following properties :
(2) , riy=h) =r(y?t,
(3) if y, or y, is orthogonal then

r(v1y2) = r(yi)r(ve) .

Now consider the special case n = 2. For the rest of the section let @
denote GL*(2) and let S denote the circle group SO(2).

The universal covering group 8§ is isomorphic to the real numbers R under
the isomorphism Exp: R — 8§ which covers the homomorphism

CcOos & Sin «
“ -9. - L]
— 8In & COS &

The retraction r is covered by a retraction 7 : G - S. Define 0 = Exp-17
so that the following diagram is commutative.

R
0 \\Exp
e Y
G—— 8

Lemma 3. The map 0: G — R satisfies
|0(Ty Ty — 6(I) — 6(I'y)| <5

~

forall I'y,T,eQ.
Proof. By direct computation we obtain the following explicit formula for r:

(o) = v (5 7)
cd Vet \—yw
where 2 = a + d, y = b — ¢. This implies that
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(4) if ye@ has positive trace then r(y)eS also has positive trace.
If 0, and o, are two positive definite matrices then the product ¢,0, has
positive trace. (Proof. Choose an orthogonal matrix g so that po,p™! is diag-

onal. Then Trace (0,0,) = Trace ((¢0;07)(e0s0™))

which is clearly a sum of positive terms.) Together with (4) this implies
(6) if o, and o, are two positive definite elements of @, then r(s,0,) has
positive trace.
Now let y, and y, be arbitrary elements of G. According to (1)
Y1v2 = r(Y1)7(ys) o103

where o, = 7(p5)~1s(p1)7(ys), 03 = 8(ys). According to (3) this implies that
r(y172) = (Y7 (ye)7(0103) .

Therefore according to (5) we have:
(6) for any y,,y,¢@ the matrix r(yy)~1r(y,)~1r(y,v:) has positive trace.

Given elements I'y, I'y of G set p(I';) = y, and define

ATy, Ty) = 6(I0 1) — 6(1y) — 6(1y) -
Then pExpA(Iy,I) = r(yyys)7(y1)~1r(vs)~! has positive trace by (6). Since
cos 4 sin 4 -y . s . .
pExp 4 = (__~ sin A cos A) by definition, this implies that cos 4 is posi-
tive. But since 4 is a continuous function of I'; and I'; which vanishes for
I'y = 1, this implies that — —Z— <4< —g~ ;  which completes the proof of
Lemma 3.

Proot of Theorem 1. The maps which are used are summarized in the
following diagram.

1 0

I
7 (G) — Z

li 127:

Here “2x’’ denotes multiplication by 2z. The above maps are homomorphisms,
with the exception of 8 and r. The coefficient homomorphism =, (G) — Z
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carries the obstruction class c(h)e H2(M2 n,(G)) into the Euler class X. The
cocycle representing — c(h) carries the unique 2-cell of M2 into

v LI L T emy ()
Therefore X [M?] is equal to

1

2750(1—’1]12.[11—1.['2—10-.)5Z .

Applying the previous lemma 4g — 1 times we have
0L oI I ) — (1) — 6(T) — O(ITY). .. [<(4g — 1) 5 -

Cancelling the terms — 6(I;) — 6(I;") and dividing by 2x this gives
| X[M2]|<g — ¢<g
which completes the proof of Theorem 1.

Let y, denote the matrix ((2) g) and let Iy, be the matrix in p~1(y,)
satisfying 0([;) = 0. Let K and K denote the conjugate classes of y, and

I’y respectively.
Lemma 4. Any element of the conjugate class (Exp n)Iz can be expressed

as the product of two elements in K . N
(Note that Exp a is in the center of the group G.) Proof. Consider the

identi
T IE-C

The first two matrices have determinant 1 and trace 2}, and therefore

belong to the conjugate class K. Similarly the third belongs to (_ (l) _ (1)) K.

Let FI,I’zeI‘f be the elements corresponding to the first two matrices. Then
I, I, must belong to (Exp am)ff for some odd integer n. We will prove that
n= +41. (Actually n = 4 1.)

Since elements of K have positive trace, assertion (4) implies that cos (") >0

for I'eK . Since K is connected this implies that |6([]")| <—7-2§- for I'eK .
Therefore |0(I')| >3- for I'e(Expan)K, n > 3.

But si
ut since 3

| 6(I Y| <] 6(I)| + |0 +5 <5,
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it follows that I'yI", can only belong to (Exp am)ff for n=4+1. If n = +1
then every element of (Exp z) K can be written in the form

[Ty It = (T, M-I, ) eKK .

If » = — 1 then I,'I7' can be substituted for I}, in this formula. This
completes the proof of Lemma 4.
One consequence of this lemma is the following

(7) Every element I of (Exp )K has the form I, I, I It
In fact choose I’I,I‘aeff so that Iy Iy = I'. Since I';* also belongs to K,
there exists an element I',eG so that I'yI';'I;' = I, and hence

I‘=F1F2F;1P;1 .
We are now ready to give the proof of Theorem 2. First recall the statement :

Theorem 2. If |X[M?]|<g then the G-bundle over M? with Euigr class X
does have a connection with curvature zero.

According to Lemma 1 it is sufficient to prove that this bundle is induced
by a homomorphism =, (M?) - G. We will concentrate on the case

X[le':l_ga g>2a

since the other cases can easily be obtained by the same method.

Applying the previous lemma g—2 times there exist elements 1_"1 e e f,_l K
so that the product f’l e Fg_l is equal to (Exp(g — 2)n)I,. Setting
I, = I'; <K this gives

— —— e

r...r,,r,==Exp(g—2)ax.

Now choose elements I'y; ,, I'y; in G so that Iy, (I, 15t I3t = (BExp n) I—’,-.
Then _ _
NN Iy Iyt .. Ty (T I3 T = (Exp ) Iy, .. (Expw) T,
= (Exp =)? Exp (9 — 2)n = Exp 2n(g — 1).

Since this is in the kernel of p: G - G, we can define k: =,(M?) - G by
h(x;) = p(I';). The characteristic number of the corresponding G-bundle is

— 5 O(ExpEalg — 1)) =19,

which completes the proof.
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3. Proof of Lemmas

Suppose that q: B — M is the projection map of a G-bundle with a flat
connection. Then each C®-path A: [0,1] > M induces an isomorphism of
g 1A(1) onto ¢~'A(0), invariant under C®-homotopies of the path which
keep the end points fixed. Identify G with the fibre over a base point. If 1is a
closed path representing the element x of #(M), then the corresponding iso-
morphism of the fiber G onto itself is left-translation by an element %(x) of G.
It is easily verified that

h: (M) > G
is a homomorphism. _ N

Define a map n: M xXG — E as follows, where M denotes the universal

covering space. Given (x,y)eﬂ X @ choose a C*-path from x to the base

point in M, and project onto a path 4 in M. Then the isomorphism along A
carries yeG into a point #(z,y) in the fibre corresponding to x. The identity

n(z-a,y) = n(z, b(x)-p)

which is easily verified, shows that X is the G-bundle over M induced by A.
This proves the first half of Lemma 1. N
It will be convenient to let =,(M) act on the left of M by the rule

6T = g}
for xem, (M), xe M ; and on the left of G by the rule

x-y=h(x)y .
Then n,(M) acts on the left of M x@, and the collapsed space X is the total

space of the G@-bundle over M induced by k. The product bundle M x@ has a
canonical flat connection. Since this connection is invariant under the action
of m,(M), it induces a flat connection in E. This completes the proof of
Lemma 1.

The proof of Lemma 2 will be based on the following. Since =,(K) acts on
the left of K without fixed points, and also acts on the left of @, we can ask

if there exists a x, (K)-equivariant map K —>@. Let
¢’ (h)eH*(K, 7, (G))
be the first obstruction to the existence of such a map. We will first compute
this class ¢’ (h).
For each edge ¢; of K let 4;: [0, 1] — K denote a characteristic map, and
let 4,: [0,1] — K be the unique lifting which carries 0 into the base point e°.
Then A,(1) will be equal to «,-e°.
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Let u;: [0,1] — G be any path from 1 to y,. An equivariant map f from
the 1-skeleton (K)! to G is defined by

oA, () — oy ()

for each xem,(K), te[0,1], and 1 < j < m.
Consider the boundary of the k-th 2-cell €} in K. This closed path, which
represents the element

Y - &
Pr(Ors e or ) =0t ... 7]

of m,(KY), lifts into a path in K which goes from ¢° to ajt-e® to oflaf-ef
to ... to @g(xy,...,%,) €% =¢°. Mapping this closed path into G we
obtain a representative fde: of the required homotopy class

¢'(h)(€x) emy (G)

To evaluate this homotopy class we will lift the path to qQ. Suppose that the
path u,, when lifted to G, goes from 1 to I';. Then the path fde3, lifted to G,
goes from 1 to I'y to I'P I’ to ... to @, (l1,...,I,). Therefore this path
represents the element — ¢~1¢,(Iy,...,I,) of =, (G).

To complete the proof of Lemma 2 the following is needed.

Lemma 5. The obstruction class ¢’ (k) s equal to the obstruction class c(h).

Proof. A cross section K! - E = n(K~ X (@) over the 1-skeleton is defined
by the rule

’ 35(8) > 1 (4,0, 5, )

for each te[0, 1] and each 5. The obstruction to extending this over the 2 cell
¢; is defined as follows. Lifting €} to the 2-cell 3, over which the bundle is a
product, the given cross section on the 1-skeleton can be considered as a map
del — del x@. Projecting into @ we obtain a representative of the required
class c(h)(e}) e, (G). But evidently the class obtained in this way is the same
as the class ¢’ (h)(¢}) studied previously. This completes the proof of Lemma 2.

4. Further remarks

Although the following two results are topological in nature, the author only
knows how to prove them by methods of differential geometry, using theorems
of CHERN and WEIL.

Theorem 3. Let K be a finite complex.
(a) The 8O (n)-bundle over K induced by any homomorphism n,(K) — 80 (n)
has trivial Evier class with rational coefficients.
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(b) The GL(n)-bundle over K induced by any homomorphism m,(K) — GL(n)
has trivial PonTriAqIN classes with rational coefficients.

These results are in contrast with Theorem 2, which showed that a homo-
morphism 7, (K) — GL*(n) may induce a bundle with non-trivial EULER class.

Both results would be false with integer coefficients. For example consider
the Lens space K=_8%/Z , and a non-trivial homomorphism % : z, (K)—S0(2).
The EULER class X eH?(K,Z) ~ Z, can be computed by Lemma 2, and turns
out to be non-zero. This implies that the PONTRJAGIN class p, = X? is also
non-zero.

Proof of 3a. Imbed K in some euclidean space as a deformation retract of
a neighborhood U. Then we may replace K by the C*-manifold U for the rest
of the proof. The following assertion follows easily from CHERN [4]. (See also
[5].) For any SO (n)-bundle over U choose a connection with curvature forms
Q,;. Then the form

i 28,:1 i Q . 'Qin—lin

R 7 Rk T P IR

represents a cohomology class which is a non-zero multiple of the EULER class.
If this SO (n)-bundle is induced by a homomorphism =z, (U) - SO (n), then
according to Lemma 1 there exists a connection with Q,, = 0. Therefore the
EuLER class must be zero. ,
The proof of 3b is similar, being based on the following assertion which also
follows easily from [4]. For any GL (n)-bundle over U choose a connection with
curvature forms . Then the form

j1.--jsk O 2y
2651' Q;’lo.o Q

7Y Jok

represents a cohomology class which is a non-zero multiple of the k-th
PoNTRIAGIN class. The rest of the proof is clear.
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