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On the existence of a connection with curvature zérox)

by John Milnor

1. Introduction

Let M2 be a closed oriented C00-surface of genus g and let GL+(2) dénote
the group of 2x2 real matrices with positive déterminant. To each GL+(2)-
bundle2) over M2 there corresponds the Euler (or Stiefel-Whitney) class

XeH2(M\Z)
and conversely each class X cornes from a unique équivalence class of bundles.
Let X [M2] dénote the Kronecker index of X with the fondamental cycle
of M2.

Theorem 1. // |X[M2]\^g>0 then the GL+ (2)-bundle over M2 with Euler
class X does not possess a connection3) with curvature zéro.

By an affine connection on M2 is meant a connection in the tangent bundle
of M2. Bezecri [3] has shown that M2 can possess a symmetric affine connection

with curvature zéro if and only if gr 1. A somewhat stronger resuit
follows from Theorem 1. For the tangent bundle of M2 the integer X\M2] is
equal to the Euler characteristic 2 — 2g. Since 12 — 2g\ ^ g for g > 2 we
hâve:

Coroflary, A surface with genus g ^ 2 does not possess any (not necessarily
symmetric) affine connection with curvature zéro.

(The corresponding assertion for g 0 is easy. In fact a bundle over a
simply connected manifold can hâve a flat connection only if it is a product
bundle). A study of the flat affine connections which do exist on the torus has
been made by Kuiper [6].

It would be interesting to ask if every manifold with a flat affine connection
has Euler characteristic zéro, but only partial results hâve been obtained in
higher dimensions. (See Auslander [8].)

The foliowing shows that Theorem 1 was a best possible resuit.

Theorem 2. // |X[Jf2]|<^ then the GL+(2)-bundle over M2 with Euler class

X does hâve a connection with curvature zéro.

Corollary. // g ^ 2 then there exist GL+(2)-bundles over M2 with X ^ 0

which hâve connections with curvature zéro.

*) The author holds an Alfred P. Sloan fellowship.
a) By a GL+ (2)-bundle is meant a principal fibre bundle with structural group OL+(2).
3) For the theory of connections see Chebn [4] or Ambbosb and Singbb [1].
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This behavior of the Euleb class is in eontrast with the known behavior of
the Pontbjagin classes. (See § 4.)

The proofs of Theorems 1 and 2 are outlined in § 2 and completed in § 3.
Some related problems are discussed in § 4.

2. Prooï oî Theorems

Let G be a Lie group and M a C°°-manifold. The universal covering space of
M can be considered as a nx(M)-bundle over M. Therefore any homomorphism
nx(M) -> G induces a (?-bundle over M.

Lemma 1. A G-bundle over M possesses a connection with curvature zéro if
and only if it is induced from the universal covering bundle by a homomorphism h :

(Compare Steenbod [7], § 13. The image of h in G is called the holonomy
group. See Atjslandeb and Mabktts [2].) More generally for any cell complex
K a homomorphism h : nx (K) -> G induces a G-bundle over K. IfG is connected,
then the first obstruction to the existence of a cross-section in this bundle is an
élément /7

The next lemma gives an algorithm for Computing this obstruction.
Assume that K has only one vertex so that nx(K) has a canonical présentation

with generators (*i,...9&m corresponding to the oriented edges and
relations <px (<xx,..., <xm) 1,..., cpn (<xx,..., am) 1 corresponding to the
oriented faces. It is important that the relation <pk should be obtained by
listing the edges incident to the face e| (with appropriate signs) in the cyclic
order determined by the orientation of e|. Consider the exact séquence

where G is the universal covering group. For each edge of K define yi h (oc^) € G,
and choose a représentative ri*jrx(yi). Then for each face we hâve

p<pk{rx,..., FJ <pk(yx,. •., yj 1

sothat i~l<pk(rl,...,rm)ctt1(Q) is defined.

Lemma 2. The cocyde in K which assigns to the k-th face of K the élément

i-xq)k(rx,..., Fm) of nx(G) represents the négative —c(h) of the obstruction

cohomology class.

The proofs of Lemmas 1 and 2 will be given in § 3.

Now let K be the surface Jf* of genus g> 0. Using the cell subdivision of
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M2 obtained by matching the edges of a 4gr-gon} we obtain the présentation
for nx(M2) with generators <xl9...,<x2g and relation

9?(^1?.. .,ocu) oc^oc^ocï1... octg-1octgoÇt\.1oÇl1 1

The problem of determining which classes c(h) can occur is therefore
équivalent to the following : Which éléments of nx (G) hâve the form

Every nonsingular matrix y can be written uniquely in the form

(1) y r(y)s(y)
where r(y) is orthogonal and s (y) is symmetric and positive definite. This
defines a retraction r. ql+^ _+ S0(n)

It is easily verified that r has the following properties :

(2) r(y-i) r(y)-i
(3) if yx or y2 is orthogonal then

Now consider the spécial case n 2. For the rest of the section let G

dénote GL+(2) and let 8 dénote the circle group S0(2).
The universal covering group 8 is isomorphic to the real numbers M under

the isomorphism Exp : R -> 8 which covers the homomorphism

(cos
oc sin oc\

— sin oc cos oc)

The retraction r is covered by a retraction 7 : G -> 8. Define 6 Exp""1?
so that the following diagram is commutative.

R
\Exp

7
G > 8

Lemma 3. The map 0: G ~> R satisfies

1
for ail rl9rt€G.

Prooî. By direct computation we obtain the following explicit formula for r :

r(a b\= x / * y]
\c df Vx* + y* \-y x)

where x a -f- d, y b — c. This implies that
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(4) if yeO has positive trace then r(y)c$ also has positive trace.
If ax and a2 are two positive definite matrices then the product axa2 has

positive trace. (Proof. Choose an orthogonal matrix q so that qgxQ*1 is diagonal.

Then Trace {<yiaj Trace

which is clearly a sum of positive terms.) Together with (4) this implies
(5) if ax and a2 are two positive definite éléments of 0, then r(oxo2) has

positive trace.
Now let yx and y2 ^e arbitrary éléments of G. According to (1)

where ax r(y2)'-1s(y1)r(y2), a2 s(y2). According to (3) this implies that

Therefore according to (5) we hâve :

(6) for any yXiy2e0 the matrix T(y2)'~1r(yx)-1r(yxy2) has positive trace.
Given éléments /\, F2 of G set p{rt) y{ and define

Then p"EàxpA(rXir2) r(YiY2)r(Yi)~~lr(Yt)'~l has positive trace by (6). Since

p Exp A I J by définition, this implies that cos A is posi-* \— sm J cos A) J r ^
tive. But since zl is a continuous function of Fx and -Ta which vanishes for

Fx 1, this impUes that —— < A <-^ ; which complètes the proof of
Lemma 3.

Prooî oî Theorem 1. The maps which are used are summarized in the
following diagram.

1 0

I

n^O) >Z

>Q > 8

Hère "2tz" dénotes multiplication by 2n. The above maps are homomorphisms,
with the exception of 6 and r. The coefficient homomorphism nx(O) -> Z
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carries the obstruction class c(h)€H2(M*,7ix(G)) into the Euler class X. The
cocycle representing — c (h) cames the unique 2-cell of Ma into

Therefore X [M2] is equal to

Applying the previous lemma àg — 1 times we hâve

Cancelling the terms — 0(i^) — ^{Fy1) and dividing bj 2n this gives

\X[M*]\<g-l<g
which complètes the proof of Theorem 1.

Let yQ dénote the matrix I -I and let Fo be the matrix in

satisfying 0 (Fo) 0. Let K and K dénote the conjugate classes of y0 and
Fo respectively.

Lemma 4. Any élément of the conjugate class (Expn)K can be expressed

as the produet of two éléments in K.
(Note that Exp n is in the center of the group G.) Proof. Consider the

identity ^ g

The first two matrices hâve déterminant 1 and trace 2£, and therefore

belong to the conjugate class K. Similarly the third belongs to I 1 K
Let ri9F2€K be the éléments corresponding to the first two matrices. Then

rtr2 must belong to (Exp nn)K for some odd integer n. We will prove that
n ± 1. (Actually n + 1.)

Since éléments ofK hâve positive trace, assertion (4) implies that cos 6 (F) > 0

for FcK. Since K is connected this implies that |0 (/*)!<-©- for
5

Therefore |fl(jr)|>4-w for ^(Exp^Z, n > 3.

But since
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it follows that rxF% can only belong to (Exp nn)K for n ±1. If n +1
then every élément of (Exp ti) K can be written in the form

If n — 1 then JTJ"1/^1 can be substituted for Ji/^ in this formula. This
complètes the proof of Lemma 4.

One conséquence of this lemma is the following
(7) Every élément F of (Exp n)K has the form F^F^F'1.
In fact choose F1}FzcK so that FXF9 F. Since Fî1 also belongs to K,

there exists an élément F2eG so that F2F1~1F^1 F3i and hence

We are now ready to give the proof of Theorem 2. First recall the statement :

Theorem 2. // | X [M2] \ <g then the G-bundle over M2 tvith Euler class X
does hâve a connection with curvature zéro.

According to Lemma 1 it is sufficient to prove that this bundle is induced
by a homomorphism n^M2) -> 0. We will concentrate on the case

l-g g>2
since the other cases can easily be obtained by the same method.

Applying the previous lemma g—2 times there exist éléments Ft,..., Fg_X€K

so that the product F1...Fg_1 is equal to (Exp(g — 2)n)F0. Setting

j\ J^cj? thisgives

Now choc^e éléments F2i_ti Fu in G so that Fu^1rur^lmir^1 (Exp ^)jTf..
Then

_ _AA^/V1 • • • Amr^F^F^ (Exp n) F,... (Exp n) Fg

(Exp n)9 Exp (g — 2)tz Exp 2n(g — 1).

Since this is in the kernel of p : G -» #, we can define h : tzx(M2) -> G by
^(a^) piFi). The characteristic number of the corresponding G-bundle is

which complètes the proof.
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3. Proof of Lemmas

Suppose that q : E -> M is the projection map of a (?-bundle with a flat
connection. Then each <7°°-path A: [0, 1] -> M induces an isomorphism of
g*~1A(l) onto #-^(0), invariant under O^-homotopies of the path which
keep the end points fixed. Identify G with the fibre over a base point. If A is a
closed path representing the élément oc of n(M), then the corresponding
isomorphism of the fiber G onto itself is left-translation by an élément h (oc) of G.

It is easily verified that
h: nx(M) ->(?

is a homomorphism. ^
Define a map rç: M xG -> E as follows, where M dénotes the universal

covering space. Given (x,y)e M xG choose a C°°-path from x to the base

point in M, and project onto a path A in M. Then the isomorphism along A

carries yeG into a point rj(x,y) in the fibre corresponding to x. The identity

tl(x-<x,y) Tj(x,h(<K)-y)

which is easily verified, shows that E is the (?-bundle over M induced by h.
This proves the first half of Lemma 1.

It will be convenient to Jet nx(M) act on the left of M by the rule

for a en! (M), X€ M ; and on the left of G by the rule

*.y h(oc)y

Then nx(M) acts on the left of M xG, and the collapsed space E is the total

space of the (?-bundle over M induced by h. The product bundle M xG has a

canonical flat connection. Since this connection is invariant under the action
of 7it(M), it induces a flat connection in E. This complètes the proof of
Lemma 1.

The proof of Lemma 2 will be based on the following. Since nx (K) acts on

the left of K without fixed points, and also acts on the left of G, we can ask

if there exists a ^(JQ-equivariant map K ->G. Let

be the first obstruction to the existence of such a map. We will first compute
this class c'(h).

For each edge e) of K let Xs : [0, 1] ~> K dénote a characteristic map, and

let A$ : [0, 1 ] -> K be the unique lifting which cames 0 into the base point e °.
Then At(l) will be equal to ^-e°.
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Let /^: [0, 1] -> G be any path from 1 to yr An equivariant map / from
the 1-skeleton (K)1 to G is defined by

foreach acn^K), te[O, 1], and 1 <? <m.
Consider the boundary of the &-th 2-cell e| in K. This closed path, which

représenta the élément

of ^(JK1), lifts into a path in K which goes from e ° to afj • e ° to «fJafj • e °

to to <pk{oti9. •., ocm)-e° c° Mapping this closed path into we
obtain a représentative /3e| of the required homotopy class

To evaluate this homotopy class we will lift the path to G. Suppose that the

path [A$i when lifted to G, goes from 1 to Ft. Then the path fdel, lifted to G,
goes from 1 to JTfj to Tfjrfj to to ^(A,..., TJ Therefore this path
represents the élément — i~'1q?k(ri,..., rm) of nx(G).

To complète the proof of Lemma 2 the following is needed.

Lemma 5. The obstruction class c' (h) is equal to the obstruction class c(h).

Proof, A cross section K1 -+E rj(K xG) over the 1-skeleton is defined

bytherule *(,)
for each ^e[0, 1] and each j. The obstruction to extending this over the 2 cell
e\ is defined as follows. Lifting e\ to the 2-cell e \, over which the bundle is a

product, the given cross section on the 1-skeleton can be considered as a map
de | -> de | X0. Projecting into G we obtain a représentative of the required
class c(h){el)€7ti(G). But evidently the class obtained in this way is the same
as the class & (A)(e|) studied previously. This complètes the proof of Lemma 2.

4. Further remarks

Although the following two results are topological in nature, the author only
knows how to prove them by methods of differential geometry, using theorems
of Chbbn and Wbil.

Theorem 3. Let Kbea finite comptez.
(a) The 80(n)-hundk over K induced by any homomorphism 7tt(K) -> 80(n)

has trivial Exjler class with rational coefficients.
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(b) The GL(n)-bundle over K induced by any homomorphism nx(K) -> OL(n)
has trivial Pontrjaqin classes with rational coefficients.

Thèse results are in contrast with Theorem 2, which showed that a
homomorphism tz1 (K) -» GL+ (ri) may induce a bundle with non-trivial Euler class.

Both results would be false with integer coefficients. For example consider
the Lens space K=85IZV and a non-trivial homomorphism h : nl(K)->80(2).
The Exjleb class X€H2(K,Z) &ZP can be computed by Lemma 2, and turns
out to be non-zero. This implies that the Pontrjagin class px -X2 is also

non-zero.

Prooî of 3a. Imbed K in some euclidean space as a déformation retract of
a neighborhood U. Then we may replace K by the O°°-manifold U for the rest
of the proof. The foliowing assertion foliows easily from Chern [4]. (See also

[5].) For any SO(n)-bundle over U choose a connection with curvature forms
Qu. Then the form v n nZeh...inUhh"'SJin-lin
represents a cohomology class which is a non-zero multiple of the Euler class.

If this #O(w)-bundle is induced by a homomorphism n^U) -> 80(ri), then
according to Lemma 1 there exists a connection with Q{j 0. Therefore the
Euler class must be zéro.

The proof of 3 b is similar, being based on the foliowing assertion which also
follows easily from [4], For any #£(%)-bundle over U choose a connection with
curvature forms ity. Then the form

represents a cohomology class which is a non-zero multiple of the k-th
Pontrjagin class. The rest of the proof is clear.
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