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§ 1. Introduetion
This paper contains a proof of the following theorem in homotopy-theory.

Theorem 1.1. If II,, ,(S™) and II,, ,(S**) both contain elements of Horr
imvariant one, then n < 4.

This theorem, of course, is only significant if » is of the form 2™. We note
that it yields an independent proof of the following theorem of H. Topa [5];
there is no element of Hopr invariant one in I7,, (S9).

The author conjectures that this theorem can be improved ; it is included
mainly to motivate and illustrate the methods here introduced.

These methods depend on a certain spectral sequence. It leads, roughly
speaking, from the cohomology of the (mod p) STEENROD algebra?) to the p-
components of the stable homotopy groups of spheres. This spectral sequence
may by regarded, on the one hand, as an extension of ApEm’s method of
studying homotopy groups by considering cohomology operations of the
second and higher kinds. On the other hand, it may be regarded as a reformu-
lation of the method of killing homotopy groups.

Theorem 1.1 follows from a superficial study of this spectral sequence. It
requires, however, some knowledge (though very little) of the cohomology of
the STEENROD algebra. Our methods for studying the cohomology of the STEEN-
ROD algebra depend on a thorough knowledge of the structure of the STEENROD
algebra. This is obtained by classical methods (cf. [2])1%).

!) The (mod p) STEENROD algebra, where p is a prime, has as generators the symbols f,, P:

if p > 2, Sgkif p = 2. The relations are those which are universally satisfied by the BockSTEIN

boundary §, and the STEENROD operations P:,’ or Sqk in the cohomology of topological spaces.
See [2].

The cohomology of the STEENROD algebra is defined below.

12) Note added in proof. I learn that J. W. MiLNOR has made an elegant study of the structure
of the STEENROD algebra, which overlaps in eontent with § 5.
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§ 2. Summary of Results and Methods

We will next summarise these methods in more detail. We will consider the
spectral sequence, and its multiplicative structure ; we will give some data on
the cohomology of the STEENROD algebra, and show how to deduce Theorem 1.1.
We begin with the spectral sequence.

Let X be a space, let S*X be the iterated suspension of X, and let IT5 (X)
be the stable or S-homotopy group DirLim /7, . ,(8"X). Let p be a prime,
and let K™ be the subgroup of IT5(X) which consists of elements whose order
is finite and prime to p. Let H,(X) be the (augmented) singular homology
group of X ; we suppose H,(X) finitely generated for each ¢{. We make the
convention that when we write ‘“cohomology”, it means ‘“‘cohomology with
Z, coefficients”, and when we write “H*(X)” it means “H*(X;Z,)”, the
(augmented) singular cohomology group of X with Z, coefficients. The group
H*(X), then, has the structure of a left module over 4, the (mod p) STEENROD
algebra. We give Z, the trivial 4-module structure. That is, the unit in 4 acts
as a unit, while a(Z,)=0 if a e A, with ¢>0. (Here the grading ¢ of the
STEENROD algebra 4 = X'4, i defined by degf, =1, degP!=2k(p —1),
degSq¢* = k.) The group Ext%(H*(X),Z,) is now defined?). It is bigraded ;
the grading s is the grading of Ext%, while the grading ¢ arises from the
grading of H*(X) and that of the STEENROD algebra 42). With these notations,
we have the following theorem.

Theorem 2.1. There is a spectral sequence, with terms E** = E**(X) which
are zero if 8<0 or if t<<s, and with differentials

. 8,1 8+r,t+r—1
a.: E}' — E;

satisfying the following conditions.
(i) There is a canonical tsomorphism

Byt ~ Ext% (H*(X),Z,) .
(il) There is a canonical isomorphism
E::i-tl = H"t(Er; dr) .

(iii) There is a canonical monomorphism from E%* to Eb* for s <r <RB<oo.
(iv) If (using (1)) we regard E** as a subgroup of B/, for 8<r Koo,

we have Est— N EV.
ICr<
%) See [4].
3) See § 3.
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(v) There exist groups B*:* such that
Bt Bt Lt 1. .. CBo,t—a, BY™ — H”S,(X)

and
8,8 . P&t Re+1,t+1
E%' ~ B*'IB .

(vi) N B*'= Km,
t—s=m
This is the spectral sequence referred to in § 1. The convergence statements

(iv) and (vi) are not needed for the proof of Theorem 1.1.

If we take X = 8° then II5(X) becomes the stable group of the m-stem,
and the term K, becomes Ext}(Z,,Z,). We shall write this H*(4), and refer
to it as the cohomology of the STEENROD algebra.

We turn next to the products in this spectral sequence.

Theorem 2.2. If X = 89, then it is possible to define products
Ept@E; " — Byttt
,

(tn the spectral sequence of Theorem 2.1) with the following properties.
(i) The products are associative, and anticommutative for the degree t — s.
(i) The product E3*QES Y — B3t :1TY coincides, except for a sign (—1)¥',
with the cup-product*)

H”t(A)®H"’t'(A) _ Ha+s',t+t' (A) .

(iii) d,(uv) = (d,u)v + (—1)"u(d,v).
(iv) The products commute with the isomorphisms E!, ~ H*YE,;d,) and
with the monomorphisms from E%* to B (if s<r <R <oo).
(v) The products in E _ may be obtained by passing to quotients from the com-
position product
IT5(89) ® IT5,(8%) —> I3 (5°)

We offer next some remarks on the interpretation of these theorems. We
should explain that it is possible to define a filtration F, of IT5(8°) by con-
sidering cohomology operations of higher kinds. We consider only those ope-
rations which act on cohomology with Z, coefficients. Let o: S%*™ — 8™ be
a map. Form a complex K = S"v Entm+l by using « as an attaching map.
Then H*(K) = Z, and H™™+1(K) = Z,, at least so long as « induces the
zero map of cohomology. Suppose that the following condition holds: if @ is
any non-trivial stable cohomology operation of the r* kind, with r<s, and
of degree (m + 1), then @: H"(K) - H*tm+1(K) is defined and zero. Then
we set « e F,; this defines F,cIT5(S°. It is a subgroup, and F,oF,,,. We

4) This cup-product will be defined in § 4.
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complete the definition by setting « ¢ F'; if « induces the zero map of cohomo-
logy.

The author supposes that this filtration coincides with that given by Theo-
rem 2.1 (in case X = §9); thatis, F, = B, ,,,. However, he has not tried
to prove this proposition, which is not material to this paper.

We have next to compare the classical method of killing homotopy groups
with the method of calculation provided by Theorem 2.1. It is clear that both
rely on the information contained in CARTAN’s calculation of H*(I7;n). How-
ever, from accounts of the classical method, one obtains the impression that
i1t enables one to calculate a great deal, but that one cannot guarantee in ad-
vance exactly how much. With the formalism of Theorem 2.1 the situation is
more clear ; we can effectively compute the term £, (to any finite dimension) ;
we cannot, at present, give a convenient method for effective computation of
the differentials d,, or of the group extensions involved.

In the case X = 89, it is possible to obtain information about the group
extensions involved in IT5(8° from Theorem 2.2; for this theorem will in
particular inform us about the composite of an element in I75(S° and the
element of degree p in IT5 (8°).

The author’s interest is particularly attracted to the phenomena which arise
because the differentials d, may not be zero ; it will appear that Theorem 1.1
18 a case in point.

It is clear that in order to study the spectral sequence of Theorems 2.1, 2.2
we shall need some information at least about the term E,. Although H*(4)
is defined by means of resolutions, to study it in this way seems unrewarding.
We therefore employ the spectral sequence which relates the cohomology
rings H*(A), H*(I') and H*(2) of an algebra I', a normal subalgebra A
and the corresponding quotient algebra £2°5). To make use of this spectral
sequence, we prove results on the structure of the STEENROD algebra. Some of
these concern a descending sequence of subalgebras A" of the STEENROD algebra
A = A'. These are such that

(i) NAr has the unit as a base.

r

(ii) Aris a normal subalgebra of 4% if r>s; and A*® is then a free module
over AT,

(iii) The quotient A7//AT™' is an algebra whose cohomology is known.

Such results enable one to apply the method of calculation indicated. They
form a large part of the technical labour of this paper.

We will show next how Theorem 1.1 can be deduced (using Theorems 2.1
and 2.2) from a very superficial knowledge of H*(A4) (in the case p =2). We

5) See [4], p. 349.
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write H®(A) = %‘H"‘(A), and catalogue various facts we suppose known.
First, we suppose it known that H°(4) has as a base the element 1 in dimen-
sion ¢{ = 0, and that H'(4) has as a base elements 4,, in dimension § = 2™,
m=20,1,2,...9). ‘

We further suppose known the following lemma.

Lemma 2.3. If there is an element of Horr imvariant one in II,, ,(S"),
whose S-class is b", then n = 2™, and the class b’ of h" in E%:™ passes by the
canonical monomorphism to the class h,, in E3".

Conversely, if h,, lies in the image of EL2", then there is an element of Hopr
wnvariant one in Il,, ,(S") for n = 2m,

This lemma will follow as soon as the spectral sequence is set up. In case
m = 0, the lemma is still true with a suitable interpretation; we may take
(and now define) a “map of HopF invariant one in 7, (8')” to be the map of
degree two 7).

Lastly, we will assume the following theorem on H*(A) (in case p = 2).

Theorem 2.4. The products h;h; in H2(A) are subject to the following rela-

tion only : — S —
The products h;h;h, in H3(A) are subject to the following three relations only : —
hibiprhy =0, (Bl = (hipy)® , hy(hye)* =0 .

We will now deduce Theorem 1.1. Let us suppose (for a contradiction) that
ki, by, ., are S-classes containing maps of HopF invariant one, and that m > 3.
Consider the element k,(h,,)? in E>?™"'+1, By Theorem 2.4 it is non-zero.
It is a cycle for dy by Theorem 2.2. It is not a boundary for d,, because
d, BL*" " is generated by dgh,,,,, and this is zero because &, +1 18 in the image
of B! (Lemma 2. 3). Therefore h, (h,,)? yields a non-zero element in 32" '+1,
This implies that, in IT$m+1_,, the element &g (%)* is non-zero, that is,
2(hy)? is non-zero. But since composition in stable homotopy groups is anti-
commutative and the dimension of &/ is odd, we have 2(h.)2 = 0. This
contradiction proves Theorem 1.1.

We note as a corollary of the proof, that the differential d2: Ej'* — E3Y7
maps h, to hy(hs)2, and is thus non-zero. This remark may be paraphrased as

follows.
Corollary 2.56. If Sq'® is considered as a cohomology operation of the second
kind, it has a non-trivial decomposition.

%) These are related to the elements S¢*™ in 4, and will be defined at the beginning of § 6.
7) When we use this map as an attaching map, S¢! is non-zero in the resulting complex.




On the Structure and Applications of the STEENROD Algebra 185
The decomposition asserted is of the form
Sqtéy = %’aidi,. () (mod @) (if u ¢ K).

Here a;e¢ X A;, ®,is of the second kind, and for the space X concerned

1<ji<15

we have
H¥(X)oDK> NKera, H¥(X)oQc X2 Ima.
aeA,- aeA,-
1<i<16 1<5<16

Such a decomposition evidently shows that it is impossible to form a complex
8" v E»+18 in which Sg¢ is non-zero. It would be interesting to know whether
such decompositions can be proved directly by ADEM’s method, or by any other
method.

Theorem 2.4 has the following obvious corollary.

Corollary 2.6. If A}, k], hy are S-classes of dimensions 2¢ —1, 21 —1,
2k — 1 containing elements of Horr invariant one, then the S-classes hih] and
hik] by are non-zero except perhaps in the following cases (where hq is to be inter-
preted as the class 2 of dimension 0).

MMl BMLB] BB BB

The case which concerns (k})? is due to ADEM [1].
This concludes our summary of results and methods.

§ 3. The Spectral Sequence

In this section we prove Theorem 2.1 by constructing the spectral sequence.
We do this, roughly speaking, by taking the homotopy exact couple of a
sequence Y,DY,>Y,... of spaces. These are such that Y is equivalent to
an iterated suspension S*X, and %;‘H *(Y,,Y,,,) (with the cohomology

boundary) is an A-free resolution of H*(X). Actually we only obtain this
property for a finite number of dimensions at one time, as we have to keep to
a stable range. We shall therefore consider a finite sequence Y¢>Y,D5---2Y,
of spaces which have the required properties in a finite range of dimensions,
specified by a parameter !. By increasing ¥ and ! we obtain increasing
portions of the spectral sequence. The reader will lose little (except the details
needed for rigour) if he replaces formulae containing £ and I by suitable
phrases containing the words “‘sufficiently large”. We conclude by proving
the convergence of the spectral sequence. -
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We proceed to give the details. Let X be a space and C' a chain complex of
left A-modules, with augmentation onto H*(X): -

€ d
%:Ht(x) <-'4:]00’t<—'2t—.'01’, D ?C’s,t*" e

Here, for example, C may be an acyclic resolution of H*(X) by free left
A-modules : it is understood that a free bigraded module has a base whose
elements are bihomogeneous. The algebra A4 is still the (mod p) STEENROD
algebra. The second grading ¢ is to be preserved by d and ¢ and to become
the topological dimension in H?*(X); the operations of 4 on C satisfy

Aq' Cs,tCCs,t+q .

We suppose that C,, = 0 if {<s and that each O, , is finitely generated ;
it is always possible to find resolutions satisfying these conditions (recall that
H*(X) is finitely generated).

Suppose given also integers k,l. By a realisation of the resolution C, we
understand an integer » (» >1-4 1) and a sequence Y o Y,5-.--2Y, of
CW-complexes and subcomplexes with the following properties.

(1) Y, and S*X are of the same singular homotopy type. (This induces iso-
morphisms 8) ¢: H!(X) >~ H"*(Y,)).

Y,is (n — 1)-connected (for 0 <s <k); I1,(Y,,Y,,,) is finite and p-
primary (for all r, 0 < s<k).

(2) There are isomorphisms ¢: C,,~ H"**(Y, Y, for 0 <s<k,
t <I.

(3) The following diagrams are commutative (for ¢ <! and for s + 1<k,
t <1 respectively).

d
¢ < Crer s HY(X) «— C,,

I7 l7 & Io

Hw4(Y,, ¥ppa) e BT, Y,g)  HYH(T) —— HM(T,, Ty

We note that a realisation for some [ is also a realisation for any less [.
Similarly, from a realisation we can obtain realisations with less &k, by ignor-
ing some subspaces Y,, or with greater #, by suspension. This is the reason
for the sign (—1)*d; it is inserted so that the diagram is preserved on sus-
pension. (The suspension isomorphism is defined using a coboundary map,
and it anticommutes with other coboundary maps.)

We know that resolutions of H*(X) exist; it is necessary to prove that
realisations of them exist.

8) The symbol =, indicates an isomorphism commuting with the operations from 4.



On the Structure and Applications of the STEENROD Algebra 187

Lemma 3.1. Let C be an acyclic resolution of H*(X) by free left A-modules
(as above) ; let k,1 be integers. Then X, C, k, 1 have a realisation.

Proof. Suppose given X, C, k and I, as above. We take n =14 1. Let
Z,,; be the subgroup of cycles in C, ;. Let Hom ,(C, ,,Z,) stand by convention
for the “component’”” of Hom ,(C,Z,) in dimension (s,?), that is, the image
of Hom , (;‘S‘Os Z,) in Hom(C,,,Z,). Suppose, as an inductive hypothesis,

PR T

that we have defined a space F, such that
H'=Y(F ) ~,2Z,, for t<n .
Take a space B, ; with
Hn+t—s—1(Bs+1) = HomA (Cs+1,t9Zp) ’ kn+t—c<Bs+1) =0 .

Since %’C’s +1,¢ 18 a free left A-module and C,,, ; is finitely generated, we

deduce that
Hﬂ+t—8~1(B8+1) gAOS-{"l,f (fOI‘ t —8 — 1 <n) .

Take also a CW-complex F. of the same singular homotopy type as F,,

and take a (singular) equivalence?) F. — F,. We may now take a map

for1: F) — B,,, such that the following diagram is commutative (for ¢<n).
Hr-0-\(F)) < HM-(B, )

¢+1
l%A 1%4

(—Dnd

Zs,t ¢ Os+1,t

Factor the map f,.; through an equivalence and a fibration; we obtain a
fibre-space F,,, - K, ; — B,,; and a (singular) equivalence ¢,: K, ; - F,.
The spectral sequence of the fibre-space reduces to an exact sequence in the
low dimensions, and we easily show that

Hm+t=3(F, ) > 42,,,, for t<n.
This induction is started (with s = —1) by interpreting F_, as S*X
and (—1)*d: Cy,—>2Z_,, a8 ¢: Cy,— H*(X). We use it to define pairs
E,, F,for s <k —1, with singular equivalences ¢,: E, - F,_;.
Let Y, be the total mapping cylinder of the maps e, for v > s; it is ob-
tained from P, U IXxE,

s<v<k—-1

by identifying 0xz with 1Xxe,(x) if zeE, for v>s, and 0xz with
e,(z) if x ¢ E,. We have embeddings Y;o Y ;>---2 Y.
?) A singular equivalence is a map inducing isomorphisms of all homotopy groups.
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It is clear that Y, is equivalent to S*X, and that IT.(Y,,Y. ,) is finite
and p-primary. Applying the HurEwIcz isomorphism mod p to F,, we see
that Y is (n — 1)-connected. With a routine use of spectral theory, we see that

Hr-5(Y!,Y!, ) =~,C,, (for t —s<n) .

We have also two commutative diagrams, namely those set out in the defini-
tion of a realisation as condition (3). These follow on setting up the appropriate
inclusive diagrams, and hold for ¢<n, ¢ —s<n respectively.

It remains only to replace these spaces Y, by CW-complexes Y,. The proof
of Lemma 3.1 is complete.

It is clear that a resolution admits more than one realisation. Therefore, if
we construct anything from a realisation, we must prove a uniqueness theorem.
Such a theorem will follow by standard naturality arguments from two natu-
rality lemmas, which we give as lemmas 3.4, 3.5. We preface them with some
remarks on realisations.

Let C be an acyclic left A-complex, and let {Y,} be a realisation of it ; we
have the following lemma.

Lemma 3.2. (i) For s<k, t <l we have the following commulative dia-
gram, tn which the columns are isomorphisms.

Hr+t=5(Y,, Y,.,) ‘i“' Hnt+=-1(Y 1,)

7T

Cs,t < Zs,t

i) For s<k, t <l the map H™*4(Y, — H**8(Y,,,) 1s zero.

This lemma is proved by a trivial induction over s, using the exact cohomo-
logy sequence of the pair (Y,,Y,,,).

Now let C be a complex of free left 4-modules, and let {¥,} be a realisation
of it ; we have the following lemma.

Lemma 3.3. (i) For complexes W of dimension <mn +1, the compression
ofamap f: W — Y, into Y,., is equivalent to its compression to a point in
Y s/ Y s+1°

() If t<l, then

Hn+t~s(Yn Ys+1) == Hn+t—-s(Ys/ Ys—i—l) == HOID.A (Os,t:Zp)
kst (Y /¥ ,,,) = 0.

Proof. The first part depends only on the data that ¥, and Y, , are (n —1)-
connected and (by the definition of a realisation) n >1-+ 1. As for the

second, the projection
p ] Hr(YuYH—l) _>H7(Ys/'Ya+1)
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is isomorphic for r << 2n — 2, hence for r<n + [. For a prime o’ distinct
from p the p’-component of I7,(Y,/Y,. ;) is zero, by inspecting homology.
Since At‘] C, ; is A-free, there is a map from Y, /Y., to

X K (Hom (C, ;,Z,),n +t — )

which induces isomorphisms of cohomology in dimensions <#n +1 — s.

Next suppose that we have the following data.

(1) f: X - Z is a map.

(2) C, D are left A-complexes, with augmentations onto H*(X), H*(Z);
C is acyclic and D is A-free.

(3) {Y,}, {W,} are realisations of C, D.

We will suppose that these realisations have the same », k and I; this will
be sufficient for our purposes, by remarks above. Then we have the following
lemma.

Lemma 3.4. Thereisa map g: Y, > W, equivalent to S™f with
gYrti=5yc wrti=*  (for s <k) .

We postpone the proof of this lemma until we have stated Lemma 3.5.
Next suppose that we have the following data.

(1) {Y,}, {W,} are realisations, as above.

(2) go, 9, are homotopic maps, with

ge(YPHi-yc Wrti—* (for s <k, e=0,1) .
Then we have the following lemma.
Lemma 3.56. There s a homotopy b : g, ~ g, with
(I x Y-y Wrtl-++1 (0<s <Ek) .

It is clear that the map g constructed by Lemma 3.4 will yield a map
g*: D, , > C, , of resolutions (at least for s <k, ¢ <l —1). Similarly, the homo-
topy constructed by Lemma 3.5 will yield a homotopy A*: D, ,—>C,,
between two such maps.

Proof of Lemma 3.4. Let us assume that f: X - Z, C, D, {Y,} and
{W,} are as given in the data. There is some map g: Y, - W, equivalent to
Srf: S X — 8»Z; we have to examine the obstruction to compressing it so
that Y**!~* maps into W»*!~*, Suppose we have compressed it so that

g(Yrti-vyc wati-v for u <s.
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By Lemma 3.3 we can deform g| ¥7]~*~! through W, into W,,, if (and only
if) the map
H 4= (W[ W 1) > H* 2 (Y ,44)

is zero (for t<). But this map can be factored through
H4-4(F,) > B4 (Y1) |

which is zero by Lemma 3.2. This completes the proof of Lemma 3.4 by
induction over s.

The proof of Lemma 3.5 is analogous to that of Lemma 3.4 ; the obstruc-
tion is the composite map

H+=o (W, W) ~ B (I x ¥,,[ X Y)

— HAnti-s+1(] x Ys+1:j X Y1) -

We next proceed to obtain the spectral sequence of Theorem 2.1. As indi-
cated above, this is that determined by the homotopy exact couple of the
complexes Y,. Each particular group or homomorphism in it may be obtained
from some realisation with finite £ and I. Corresponding terms obtained from
different realisations may be identified, using homomorphisms constructed
with the use of Lemma 3.4.

The details are as follows. Let X be a space, C an acyclic 4-free resolution
of H*(X), and let {Y,} be a realisation of C with £k >s+r, I>r 4.
Let Gs ! Ds ! be the i 1mages by ” d Of Hn+t—s(ys, Ya+r)’ n+t—s+1(Ys—r+1’ s)
in Hn+,_,(Y s» Ygp1) (If s —r4+1<0, Y, .., is to be interpreted as ¥,.)
Then we may define E!* = Q¢'/D**,

Similarly, let {Y,} be a reahsatlon with £k >s+ 1, I>t+ 1. Let G%¢,
D*:t be the images of IT, ., (Y,), I, , ,.1(Y,,Y,) in H,,H_,(Y s» Yor1). Then
we may define E%' = G%:'/D%*.

The map d, : E:" — E,’.*"”"’l is obtained (if both groups are defined) by
passing to the quotient from the homotopy boundary (—1)*d. (The sign is
introduced so that d, is preserved on suspension.)

If we consider only the terms which can be obtained from a single realisa-
tion, the formal properties of a spectral sequence are easily verified. In par-
ticular, we have £}, ~ H*!(E,;d,); there is a canonical monomorphism
Eyt — Bt for s<r<R <oo; and E%' o~ B*!/B**L:'*1  where B** is the
image of I7,,, (Y,) in IT,,, ,(Y,). Thus E%?, for ¢ —s = m, is a quotient
obtained by filtering B*™ = IT3(X). We may also identify E%'%. In fact, if
k>s8+2, I>t-+ 2 we have
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Y 2
Ei - Hn+t—s( Ys’ Ys+1) = HomA(Cs,t’Zp)

and similarly for (s + 1). The map d,: Ei* — E:t1:¢ ig obtained by trans-
position fromd: C,,, , — C, ;, as one sees by using the pairing of /7, and H*.

Thus B! ~ Ext"'(H*(X),Z,).

The next point we should consider is the identification of corresponding
terms obtained from different realisations. This follows by standard methods
from Lemmas 3.4, 3.5, and is omitted.

It remains only to prove the convergence of the spectral sequence, by

rovin
o (vi) N B**=Km", (v) n0B'=Ey.

t—s=m r>8
The inclusions
n B*'>Km, 1 E’:"DE‘;’,‘
t—8=m r>8

are elementary ; we have to prove the opposite inclusions.

We begin with (vi), in the case when H,(X) is finite and p-primary for
each ¢, so that the same is true of I75,(X). Given m, we will construct a reali-
sation {Y,} and an integer u such that I, ,..(Y,) =0 for m' <<m. The
corresponding complex C will be 4-free but not necessarily acyclic. The con-
struction is by induction, as for Lemma 3.1. Suppose constructed a space F,
with finite p-primary homotopy groups; let II,.,..(F,) (= G say) be the
first that is not zero. Let F, be an equivalent complex, and let

fo: F,—>K(@GIpG,n -+ m')

be a map inducing the projection G — G/pG of homotopy groups. Factor f,
through an equivalence and a fibration ; let the fibre be ¥, ,. The induction
is started with F_, = S$*"X. If we form a mapping-cylinder and take
equivalent complexes, as in the proof of Lemma 3.1, we obtain a realisation
{Y,} with the required properties.

This construction gives the integer «; for if integers f, are taken so that

m
pIT3(X) =0 (0 <t <m) it is sufficient to take u = Z f;. Thus  depends

only on X. We see that n, k and [ can be taken as large as required.

Now let {Y.} be a realisation of a resolution C' of H*(X), for the same n.
According to Lemmas 3.4, 3.5 there is a well-defined map from that part of
a spectral sequence defined by {Y,} to that part of a spectral sequence defined
by {Y,}. Now, in the latter we have

n B*Y(Y)=0.
t—8=m
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Therefore, if k and ! are taken large enough, we have

n B*Y(Y)=0
t—s=m
8<u

in the former. This concludes the proof in this case.
We next transfer this result to the case in which H,(X) (though finitely-
generated, as always) is not necessarily finite or p-primary. In fact, let

x « ITS (X)

be an element not in K™, that is, not of finite order prime to p. Let f be such
an integer that the equation z = p’y has no roots y in IT5(X). Let Z be
formed by attaching the cone on SX to SX by a map of degree p’ on the sus-
pension coordinate. Then there is an inclusion map SX —> Z; this induces a
map of spectral sequences. The image of z in I75 ., (Z) is non-zero ; so it does
not lie in n B2

t—s=m+1
a<U

(for a certain u). Therefore x itself does not lie in

n B“Y(X).
t—g=m
a<u

This argument gives a value for the integer w ; for if I75(X) is non-zero for
just g values of + with ¢« << m, then it is sufficient to take u = 2fg.

At this point we have completed the proof of (vi).

We turn next to the proof of (iv). Here we have to argue from the structure
of IT,,, ,(Y,). Now this structure is not invariant, presumably, unless we
restrict {Y,}. We therefore proceed as follows.

We call a resolution C minimal if the numer of A-free generators in C, , is
the least possible, given the structure of C, ,, for ¢’ <¢ and of C,, ,, for s’ <s.
Since each C, , is finitely-generated, one can prove by induction that if C, ¢’
are minimal resolutions of H*(X), then any map f: C — C’ (compatible with
the identity map of H*(X)) is an isomorphism. It follows from this (using
the five-lemma) that if {¥,}, {¥.} are realisations of C, €', and if

fAY} > {Y}

is & map constructed by Lemma 3.4, then f, maps I7,,, ,(Y,) isomorphically
(for s <k, t<l —1). In the same range, 17, ., ,(Y,) is preserved on sus-
pending {Y,}.

We suppose, then, that C is a minimal resolution of H*(X). Let {Y,} be
a realisation of C with ¥ > 2s + 1, I>s+ 1 + ¢, so that E},, E.' are
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detined. Let F?:* be the p-component of the torsion subgroup of

Hn+t—-s—-1 ( Ys+'r) ’

let K¥* be the image (by d) of IT,,, (Y,1y,Y,,) in I, . (¥Y,.,). Then
K»'cFit, F'is finite, and there is & monomorphism (induced by d) from
EY B to Fit/K:' (if r>s). If we take this monomorphism for two
values of r, it commutes with the maps induced by inclusions.

Next take r = s + 1, and take an element e # 0 in E%}/E%'. For each
member x of the correspondmg coset ¢/ in Fo:f [K%F | the equation z = p'y
is insoluble in 17, , ;(Y,.,,), provided that f is suitably chosen; for ex-
ample, let p’ be the order of F*°*.

It is next neeessary to suppose that the realisation {Y,} has n, k and [ so
large that £’ 5/;_,41) i8 defined. This is possible, because by our supposition
that C is minimal, we may replace {Y,} by another realisation with increased
n, k and [, without changing f.

Next note that for suitable »’, {S* Y} (over s > 2s 4 1) is a realisation
of a resolution of H*(Y,,,,). Applying to this our results on (vi), we see that
for each z ee’, 8"z is not in the image of II. .., . 1+(S™Y s 1 0r(t—st1))-
Desuspending, we see that for each z ee’, x is not in the image of

Hn+t——s-—1 ( Y28+1+2f( t-—-s+1)) .

Therefore e is not in the image of B3} ., o0y, -
This concludes the proof of (iv), and of Theorem 2.1.

§ 4. Multiplicative Properties of the Spectral Sequence

In this section we prove Theorem 2.2, by establishing the multiplicative
properties of the spectral sequence in case X = S§° For clarity, we proceed
in slightly greater generality. Let X, X’ be spaces, andlet X" = X xX'/XvX'.
We will show that there is a pairing

BrYX)QEY Y (X') » Byt V(X"

Our method is to take realisations {Y,}, {Y.} corresponding to X, X’ and
form a realisation {¥7,}, using the join operation, so that Y, is the join
Y Y. If Y,~8"X, Y,~8"X', then Y, ~ §+n'+1(X"). We have a
join operation in relative homotopy groups; it will appear that it gives a

painng (Y, Y,) QI (Y., Y.) - I (Y, ¥

for 8" =8+ &, " = Min(s + u',u + 8'). Such pairings yield a pairing of
spectral sequences, by passing to quotients.
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It is convenient to begin the detailed work by describing the cup-product
Ext%'(H*(X),Z,)  Ext’ ¥ (H*(X'),Z,) — Ext}*" " (H*(X"),Z,) .

This depends on the diagonal map 4: 4 - A® A of the STEENROD algebra,
which is defined as follows. There is one and only one universal formula for
expanding the result of an operation a applied to a cup-product v ; let it be

a(uv) = X (— 1)(a™*u) (@®*v)
where a e A, deg(v) =g, a®*ed; (j=7()) and a®*c A. Then we set
Ada = %’aL’i@aR’i .

One verifies that this defines a diagonal map19).

We next remark that since our cohomology groups are augmented, we have
H*(X") >~ H¥*(X)® H*(X'); the isomorphism is defined using the external
cup-product. The operations of 4 on H*(X”) are given by

a(u®v) = —1)a%ty @a®tv) ;

here ve H?(X'), while a, a’*?, a®* and j are as above.

Next suppose that C', ¢’ are resolutions of H*(X), H*(X'). Then we may
make C®C’' into an acyclic A-complex, whose homology in dimension
§=0, & =0 is H¥*(X"). In fact, we set

d(c®c') =dec®c + (—1)¢c®dc’  (ceC, )
a(c®c’) = z;‘(——1)“'(a”"'c@aR"‘c’) (e Cy ) .

It follows that if C” is a resolution of H*(X"), thereisamapm: C"->CQC'.
On the other hand, there is a pairing

p: Hom,(C,Z,)®Hom,(C',Z,) - Hom,(CQC(C',Z,)
defined by (u(h®~'))(c®c') = (kc)(h'c’). The composite m*u* yields the
required cup-product

Ext%‘(H*(X),Z,) QExt’,'" (H*(X"),Z,) — Ext’* """ (H*(X"),Z,) .

Now that we have considered the acyclic A-complex C®C’, we will con-
sider a realisation of it. Let {Y,}, {Y..} be realisations of C, C'. We will
define Y, by setting ¥, = Y,*Y,, and subcomplexes of Y, by setting

Y:,rlz U Ys*Y:I.

8+8'=g"

19) The products in 4 @ A are defined by (a @b)(c ®d) = (— 1)il(ac Qbd) (for ae 4,,
de A)).
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We may suppose that Y,, Y, are enumerable CW-complexes; Y, is then an
enumerable CW-complex. We repeat that since Yo~ S*X and Y~ S X'
we have Y| ~ Srin'+1(X"),
In order to show that {Y,.} is a realisation of C ®(C’, we must display
H*(Y7,,Y.,). Let
2 Cs,t - Hn+t—8(ys> Ys+1) ’
¢ Cp p— H+4=8" (Y0, Vo yy)

be the given isomorphisms?!!), Then we may define a ma
g rp y P
¢": 0,,®Cy p—> HV (Y, V)
(where n" =n+n' 4+ 1, 8" =8+ 8, t" =1t + ') by setting
Pu®v) = (—1)+-"+%" E(pu-¢'v) .

Here we employ the fact that Y *x ¥y~ S(Y,xY,/Y,vY,). The element
pu-¢'v is defined using the exterior cup-product ; the map E is defined using
excision and suspension. The map

(p” - X Os,t ®0:’,t' _— Hn"+s'r_t"( Y:/”, Y;,”+1)

8+8/ =3s"
t+t =t"

is an isomorphism. One verifies that it commutes with the operations of A.
One also verifies that it satisfies the third condition imposed on a realisation,
by making the diagrams for d and ¢ commutative. (The sign in the definition
of ¢” is essential at these points.)

We have now verified that {Y.,} is a realisation of C®C’. Maps or

homotopies of {Y¥,} or {Y),} induce maps or homotopies of {¥7,}. It follows

8 n

that the spectral sequence associated with {¥7,} is well-defined. Since C®C’

8"

is acyclic, there is (by Lemmas 3.4, 3.5) a well-defined map from this spectral
sequence to that associated with X”. It remains, therefore, to define a pairing

By (Y)@E) ¥ (Y') » B0 (1) .

To do this, we now introduce the join operation in relative homotopy groups.
This is defined by the join of maps of oriented cells!2). We obtain a pairing

., (K,LyeHl,.(M,N) >1II,, ..., KxM, KxN v LxM) .
This is natural with respect to maps of K, L and M, N. If «, f lie in the groups
paired, then ;1 (ax f) = —i(da* B) + (— )13’ (axdf) .
1) In, this section we omit to make explicit the finite ranges of dimensions in which these iso-

morphisms are supposed to hold. The details are similar to those in § 3.
12) The join K#*L is oriented as S(KxL/KvL), and we suspend over the first coordinate.
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Here 4, ¢, ' are the canonical maps with valuesin 17, .. (K* NvL*M,6 L*N).
The products we require, however, represent composition products, not join
products ; the two differ by a sign. With this in mind, we define the product

Hn+t—s(ys’ Yu) ®Hn'+t’-—s’ ( Y;" Y;') —> Hn”+t"—-s"(Y:/”’ YZ")
by axf = (—1)0t-9"qx8. (Here we have n" =n 4+ n' + 1, 8" =s 4+ &,
t" =t +t, " = Min(s + u',u + 8').) We now have the boundary formula
J(—1)"d(axB) = i ((—1)rda xB) + (—1)¢=i'(a x(— 11" dp) .

The following statements are now open to verification. Firstly, the pairing
of relative homotopy groups passes to quotients, and defines a pairing

BN (Y) @B (') > BLF ¢ () |
Secondly, the boundary d, satisfies
dp(uv) = (d,u)v + (—1)"u(d,v) .
Thirdly, the products are natural with respect to the isomorphisms
EY}, ~ H"'(E,;d,)

and with respect to the monomorphisms E%® — E** for s<r<R <oo.
Fourthly, the composite map

EyY(X) @By Y (X') - By (XY
coincides, except for the sign (—1)*¥’, with the pairing
Extt (H* (X), Z,) @ Exty " (H*(X'),Z,) - Bxt* ¥ (H¥(X"), 2,) .

(This follows from the description above, on considering the pairing of II,
and H*.)

Fifthly, the products are associative, and anticommutative for the grading
(¢ — 8). This follows from analogous facts for the join operation, together with
naturality arguments. We note that the products in Ext%(Z,,Z,) are asso-
ciative, and satisfy the anticommutative law

nNY = (__1)33'+tt',vu (fOl' U € Exts,t , Ve Eth"t’) .

Sixthly, consider the case X = X' = X" = §° Then a composition prod-
uct is defined in II;"‘7 (8°). This passes to the quotient and defines products in
E*:*(8°), which coincide with those considered above. (This follows from the
known equivalence between composition products and join products.)

This concludes the proof of Theorem 2.2.
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§ 5. The Structure of the STEENROD Algebra

We collect our results on the subalgebras of the (mod p) STEENROD algebra
A in Theorem 5.1. This theorem is followed by explanatory definitions, and
a great deal of proof. This is followed by two further theorems (5.12, 5.13)
giving further information needed in considering H*(A4). One concerns a self-
map A — A; the other concerns the commutators in 4.

If p>2 we have:

Theorem 5.1,. (a) Any finite set of elements of A generates a finite algebra.

(6) A contains subalgebras A®T for each 1 < R<oo, 1 < T <Loo with the
following properties.

() ABT= AYTA AR If Q < T, then AV%cAYT. If P < R, then
AP 2 AR >, ABT ig the unit subalgebra if R>T. The subalgebra AYT is
that generated by p and P* for k<pT='. We have AV* = A,

(@) If R T<oo, the rank of A®T is 2Up¥, where U=T — R + 1,
V —3(T —R)\T —R + 1).

(e) If P<Q, AT is normal in AT'T, so that AT'T[|A%'T exists; and AT T
v8 free, qua (left or right) module over A%'T.

(H If P<Q <R, then A% T||A®T i3 embedded monomorphically in AT'T|[A®T,
the former 18 normal in the latter, with quotient isomorphic to AT T[|A%T,

(9,) Moreover, if B <P +Q, then A%T|[A®T is central in ATT[|ART,
in the sense that if a,; € ADT, b , ¢ AYT, then in APT[[ART we have

{a,-.,} {bk,l} = (— l)ﬂ{bk,l}{ai,i} .
(b)) If R < T, we have
R—2 R-1
AR’T//AR“'T ~ E(Zp,1)QP (X p',0;pT k) .

t=0 t=0

If p =2 we have:

Theorem b.1,. The statements (a) to (f) hold word for word on interpreting
“p” as 2, “B” as Sq' and “P*’ as S¢**. The statements (g,), (h,) become :

(g5) Moreover, if R < P 4 Q, then AYGT|[ART is central in ATT[|ART

(hg) If R KT, we have

AR,T//AR+1,T gI)(zR —1 : 2T—-R+1) .

Explanatory definitions. All our algebras are algebras with unit and with
diagonal [4, p. 211] over the field Z,. They are graded if p = 2 and bigraded
if p>2. Their components in dimension 0 or (0,0) are their unit subalgebras
(here the unit subalgebra has the unit as a Z, base). All our maps of algebras
preserve this structure; in particular, the injections of subalgebras and pro-
jections onto quotient algebras do so.

14 Commentarii Mathematici Helvetici
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The STEENROD algebra A (over Z,) is defined as above. If p>2 it may be
bigraded by setting Deg(P%) = (k£,0), Deg(f,) = (0,1)). The single grad-
ing ¢q corresponding to the bigrading (s,) is given by ¢ = 2(p —1)7 + j.

The other algebras introduced are as follows. The exterior algebra E(7,7)
(over Z,) has a Z -base {1,f'}. The element 1 is the unit; the element f' has
bidegree (z,7). The product is given by (f')? = 0; the diagonal is given by
A(f') = ®1 4+ 1®f'. The integer § must be odd (if p>2).

The truncated divided polynomial algebra P(s,j;k) (over Z,) has a Z -base
containing one element f, of bidegree (I¢, lj) for each I such that 0 <I<k.
The product is given by f,-f,, = (I,m)f,,,,; the diagonal is given by

Afi = 2 [n®fa -

m+n=1

!
(Here the binomial coefficients mod p are defined by (I,m) = —(l_l_:;n—?%_) . The

integer j must be even (if p>2); and ¥ must be a power of p, or else oo.
If k =o00, the algebra is not truncated. The algebra P(¢;k) is similarly
defined, but graded instead of bigraded. For the tensor product of algebras,
see [4].

If A is a bigraded algebra, as above, we define I(4)= X A4,;;
(,9)72(0,0)

similarly for a graded algebra. If 4 is an algebra containing B as a subalgebra,
we call B normal in A (cf. [4] p. 349) if A-I(B) = 1(B)-4; we then define
Al|B = A/I(B)-A.

Since the word “dimension” is already in use for the grading, we speak of
the rank of a subalgebra, meaning its dimension when considered as a vector
space over Z,,.

This concludes the explanatory definitions.

Proof. The proof will proceed in several stages. Following SERRE, THOM and
CARTAN, we shall make use of a faithful representation of the STEENROD algebra,
obtained by allowing it to operate on a Cartesian product of spaces of type
(Z,,1). We take first the case p>2.

Let X be the Cartesian product of n 4 n’ spaces, each of type (Z,,1); let
their fundamental classes be z,,...,x,, 2},...,z,,. Set

Y = Bo(x), i = Bo(xi) .

Let u ¢ H¥ (X) be the cup-product ¥,...y, Z|... ).
H*(X) is the tensor product of exterior algebras generated by the z,, ]
and polynomial algebras generated by the y,,y;. We shall need a notation

12) In [2] the second grading is called the “type”.
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for certain polynomials Dj ,. lying in H*(X). Let
I — {81,11, .. .,Si,ﬂ.i, . .}

be a sequence of integers with 4, > 0, ¢, = 0 or 1; only a finite number are
to be non-zero. Following CARTAN [2], we define the polynomial wa, as follows.
Among the monomials y*...y*" consider those in which just A; exponents
are p* (for each 4), the remainder being 1. Let the sum of such monomials
be s1). Next consider the monomials obtained from «j...z), by replacing
; by (y;)»* for just ¢,,, values of § (this for each 7). Each such monomial is to
be taken with a sign, namely the signature of a certain permutation ¢ of
1,...,n'. Here p brings the factors z}, in the monomial to the left (arranged
from left to right in increasing order of k) and the factors (y;)»* to the right
(arranged in increasing order of ¢). Let the sum of such signed monomials be ¢.
Then we define D] . = s¢.

The elements D] ., in H?"'+2(X) generate a submodule D?*+*'+¢; they
are linearly independent if n, n’ are sufficiently large (depending on g).

Evidently a Z -linear function 0: 4 — H*(X) is defined by 6(a) = a(u).
This is the representation used.

Theorem 5.2. If n, n' are sufficiently large (depending on q) then
0,: A, > H?>»+'+9(X) has kernel zero and image D?**+"'+a,

This theorem is due to CARTAN [2]. His proof shows also that 6 preserves
the bigrading, if the second degree of polynomials D] ,, is defined by j = %‘.’s,- .

We next note that this representation has a convenient relation to the diag-
onal in A. In fact, if the space Y is defined using m + m' factors of
type (Z,,1), then X xY is homeomorphic to the space Z defined using
(m + m) 4+ (n' + m') factors of type (Z,,1). If v and w are the analogues of
u for Y and Z, then uv corresponds to w in this homeomorphism. Let 6, 05,
6, be the functions 6 for the three spaces. By evaluating a(»v) and a(w) we
have the following obvious lemma.

Lemma 5.3. If aed and 6,0 = D], ..., then

(6X®ey)(Aa) - 2 (""- I)BD'{,"p ®.D£’m'
J+E=1I
Here, for sequences I = {¢;,4,}, J = {n;,u;} and K = {{,;,»;}, the equa-
tion J + K = I means that #, + {;, =¢, and u, + v, = A, foreach ¢ > 1.
The sign is gi b
e sign is given by e=Znt, .

i>k

14) Thus, s will be zero if '211. > n. Similarly, later, for ¢.

1
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Since Aa has among its components the term a®1, Lemma 5.3 has the
following corollary: if 0,a = Dy, 41 p, then 6za = Df .. Tt follows that
we may write 6a = D' to mean that 6ya = D], forall n,n'; similarly

for the equation fa = X, D,

Theorem 5.2 allows us to exhibit certain distinguished elements in the
STEENROD algebra. In fact, let us define I(r,k) (r >1,k>0) by 4, =k,
A, =0 for i 47, ¢ =0 for all i. Define e, . ed by 0O, ,) = D'"»,
Define I (r>1) by 2,=0 forall¢, &, =1, & =0 for i #«r. Define
e,e A by 6(e]) = D',

These elements have the following properties, which indeed characterise
them.

(1) e, 4is 1, the unit.

r—1

(2) Dege, , = (k X p%0) .

f_t2=0
Dege, = (Zp'1).

t=0

(3) de,, = 2 €r,; D€ g
it+i=k
de] =601+ 1Qe .
(4) If =, y are the generators of H*(Z,,1;Z,), then
e (2) = 0 e () =y
y (k=0
ek (y) =¥ (k=1) e(y) =0 .
0 otherwise

For example, (3) follows immediately from Lemma 5.3 by using Theorem 5. 2.
From (3) and (4) we deduce the following property by induction :

y* (k= 0)
(5) ek (¥?') = | Y (k = p?) el(y*) = 0.
0 otherwise

Our next theorem will show in what sense the elements e, ,, e, are generators
for A. In order to state it, let us regard e, ,,, for each r > 1, as an expres-
gion in the variable k,. Let us order together in some fixed order the expres-
sions e, , and e,;. Let us form monomials by omitting from this ordering all
but a finite number of terms, and then inserting integer values %, > 1 for the
remaining variables k,. These monomials then represent elements of A. The
identity element is included, as the empty product. We then have :
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Theorem 5.4. For each fixed ordering, such monomials form a base for A.

Proof. Let M be a typical monomial, of single grading ¢. By Theorem 5.2,
it is sufficient to show that the elements M (u) form a base for D2n+n'+2 (for
n, n' sufficiently large). To this end, we order the base D! of D¥+n'+a by or-
dering the sequences /. Following CARTAN [2], we order them lexicographi-
cally from the right?%).

Using (3) and (5), we deduce:

(6) e xD* = (A, k) D’ + Xy D¥

K>J
¢D! — (—1FD* (if & = 0)
ee DT =0 (Gf & =1) .

Here I = {¢;,4;}, J =1+ I(r,k), and L =14 I'(r) if &, = 0; the sign

is given by & = X ¢,.
<r
Let I'={¢},A}} be another sequence, J'=1'+1I(r,k), and L'=I'+41'(r)
if & = 0. Then we have, trivially :

(7) If I<I’, then J<J', and L<L' if ¢ =¢, = 0.
From (6) and (7) we deduce, by induction, that :

(8) If M is a typical monomial, then

M) =D + Zp,D’
I>I
where 7 = 41, and the sequence [ is determined by M as follows. ¢, is 1
or 0 according as ¢/ is in M or omitted ; 4,is 0 if e, 18 omitted from M, and
otherwise it is the integer substituted for %, .

We see that there isa (1 — 1) correspondence between M and 7. Therefore
the elements M (u) in D2+'+2¢ form a base for it. This concludes the proof of
Theorem 5.4.

The statement and proof of Theorem 5.4 remain valid if, instead of using
expressions e, ;. , one for each r, we use expressions (,,1)%i, one for each r
and each 7 > 0. We have theun to substitute, for the variables d, ;, integer
values such that 0<d, ;<p.

We may now obtain the subalgebras 4%7, Given a fixed ordering, as in
Theorem 5.4, we may consider the monomials M in which the factors e, ;, have
r >R, k<pT " and the factors ¢, have B <r < 7T. These form a base for

1) However, our argument differs from his in that our inductions (if stated) would proceed in
the opposite direction along the ordering. Since the bases ordered are finite (for each g) this is
immaterial.
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a submodule 4%:7 of 4. This is so whenever 1 < R<oo, 1 < T <oco; but
we note that the base reduces to the unit element if 7'<<R. The inclusion
and intersection properties in Theorem 5.1 (c) are trivial.

Theorem 5.5. A®T is independent of the ordering chosen. It is a subalgebra
of A and closed for the diagonal.

Proof. Cousider the polynomials D’ for which the sequence I = {;, 1,} sat-
isfies A, <p? " foreachi, 4, =0 for i<R, and & = 0 unless R <1 < T.
These generate a submodule D®T of H*(X).

Lemma 5.6. e, DBTcD®T if r > R, k<p®",
e, DPTDRT 4f R<Lr < T.

We will defer the proof of this lemma in order to show how the theorem
follows from it. In fact, the lemma clearly implies that 6(4%7)c D®T. But
further, if 7' is finite, A®'T and D®7T have the same rank, namely 279" where
U=T—~R+1, V=3}T —R(T — R+ 1). Therefore 6(4%7T) = D®T
if T is finite ; this implies the same equation with 7' infinite. The equation
6(A®T) = D®BT shows that A®T is independent of the ordering chosen ;
and with Lemma 5.6, it implies that A®7 is a subring. Lastly, it is clear from
Lemma 5.3 and the definition of D®T that 6-(D®T) is closed for the diag-
onal. This concludes the deduction of the theorem from the lemma. We note
that we have proved Theorem 5.1 (d).

Proof of Lemma 5.6. The property (6) above shows trivially that
e, DRI DRT if R<r<T.
Let us take D', where I = {¢,;,4,}, and form the expansion
e, D' = %'lKDK .

The sum may be given explicitly as follows, by using (3) and (5). It extends
over sequences J = {Ug,”Ny, M1, .., Nyslhis--.} With %'(,u,- + n)pt = k.
The term given by J will correspond to the summands in which, for each ¢,
just u, of the factors y2* (1 <<j<n) and just #,,, of the factors (y;)?*
(1 <j < n') are operated on by e, ,i. The sequence K = {{;,»,;} is given by
vi= DAy —p; + fir
Co=8 — N+ My -

If 2, —p, <0, & —n,<0 or & —n; + 7, = 2, then the term given by
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J is zero. The coefficient Ay is given as follows.
Ag = (— 1)8{1(3:‘ — Mi>Mir)
where e = X (& — )y, -

i<i<itr

We now introduce the assumption that DfeD®T, v > R, and k<p? .

In fact, since D'e D®T we have 4, =0 and ¢ = 0 for t<R; we also
have r > R. Using the formulae for »;, {; we see that », =0 and ;=0
for 1 <R.

Similarly, since ) _
Y §(Ni + )Pt =k <p™ ",
we have #,,, = 0 unless ¢ <7 —r. Thus #»,_, = 0 unless 7 <7T. We also
have ¢, = 0 unless ¢+ <<7'; thus {, =0 unless 7 < 7.

Lastly, we have A, <pT™% so 4, —u;<p®*. We also have

%‘(ﬂi + )Pt =k<p™ ",

so u,<pT "% and u,_,<pTt. Tt follows that (i, — u;,u,,) = 0 whenever
Ai — i+ pie =0T

These remarks in combination show that if D'e D®T, r > R, and k<p’™*,
then the non-zero terms of the expansion

e,..kDI == glK.DK

lie in D®7T, The proof of the lemma is complete.
The statement and proof of Theorem 5.5 remain valid if, in defining 4%7,
we use, instead of the expressions e, ;. , the expressions

(er p)?r¢  (0<d,;<p) .
We have to take those for which » > R and 1<T —r.
Corollary 5.7. AY7 is the subalgebra generated by f and by P* for k<p™.

Proof. Since f = ¢}, it lies in A»T for 7' > 1. Since P* = e, ,, it liesin
AYT for k<p'!. On the other hand, by the remarks immediately above,

r—1

AT admits a system of multiplicative generators in bidegrees (p* X p', 0)
r—2 0
(where 2 <T —r) and (2 pt, 1) (where r <7T'). These can be written in terms

0
of the elements § and P*, and by their dimensions we shall have &k <p*3,
each k. This concludes the proof of the corollary.

Corollary b.8. Any finite set F of elements of A generates a finite subalgebra.
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Proof. The elements of F may be expressed in terms of 8 and P* for & < pT~?,
some finite 7". Thus the subalgebra generated by F is contained in the finite
subalgebra 47,

In order to obtain our next result we will consider the representations of 4
by its operations on a different space. Let Y, be the Cartesian product of »
lens spaces Y,,...,Y, ofdimension 2p° — 1 and «’ lens spaces Y;,..., Y.,
of dimension 2p%~* — 1, so that we have

H*(Y,) = E()®T(2;p°)
H*(Y)) =E1)®T(2;p?7) ,

where 7' is a truncated polynomial algebra. We introduce notations for the
elements of H*(Y,) exactly as before, writing » instead of %, and E' instead
of D' for the distinguished polynomials. The submodule E®T of H*(Y,) is
defined word for word as D®T is. Consider the sequences I = {e;,,} of
grading ¢ which satisfy ¢, = 0 and 4, = 0 if ¢+ > @ ; the corresponding poly-
nomials ET are linearly independent and form a base of E2r+n'+e (at least if
n, n' are sufficiently large, depending on ¢). All other polynomials E! of grad-
ing g are zero.

Theorem 5.9. AT is normal in APT if P<Q. The rule 0{M} = M(v)
defines a Z,-linear function

0, : (AP'T//AQ’T)G ey Ham’+?(yq s Zp)

If n, n' are sufficiently large (depending on q) then 0, has kernel zero and image
EPT A ponin'+a

Proof. The proof that A9-7 is normal in A”'T will be as follows. Each ele-
ment of APT gives a Z,linear map from H*(Y,) to itself; these maps
constitute a quotient ring AP'T/K of A”'T. We will show that the kernel K
is both I(497T).APT and APT.1(4%7).

Let us use the representation of Theorem 5.4, with the ordering e], €1k, > e,
€s.x,, .- Let us divide the monomials of A¥> onto two classes ; one, say B,
shall consist of monomials formed from factors e, , with P <r<@, k<p™™’
and ¢/ with P < r<@Q; the other, say C, shall consist of the remaining mono-
mials. C is a base for a submodule L. Then, by the choice of ordering,
LcAPT.1(49T). We also note that if r > ¢, then

e H¥(Yg) =0, e H*(Yy)=0.

This shows that A7'T.1(49T)c K. On the other hand, let M run through
B then, by property (8) (which remains valid for Y,) the elements M (v) are
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linearly independent elements of H*(Y,). Hence the classes {M} are linearly
independent elements of A¥*T/K, and K = L. We conclude that

APT. [(A%T) = K ;
by using the opposite order in the monomials, we see that
I(A9T).APT =K |

We have shown that 49T isnormalin A¥'T, and incidentally established the
representation 6 of A¥'T//A%T. The proof of Theorem 5.9 is complete.

Corollary 5.10. If P<Q<R, the injection A%T|[ART — APT|[ART g
monomorphic.

Proof. Both quotient algebras are represented by operations on the same
module H*(Y ).

This corollary, with Theorem 5.9, implies Theorem 5.1 (f).

For Theorem 5.1 (g), it is sufficient to prove the anticommutativity relation
when a, ; and b, , are generators e, , or e,. This is easily done by expanding
abv and bav.

It remains to obtain the structure of A®T|/AR*1'T (for R < T). We have
eq e ABT if k<p™ B, e e A®T; let their images in A®T//AR*1T De f,, f'.

Lemma 5.11. 7The elements f,(f)¢ (e =0o0r 1, 0 <k<p?®) form a base
for ART||ARTLT The product is given by

Nne+ _
fk(f')s.fl(f/)n — { g"’l)flwl(f) ? g: ::__— z - (2))01' 1)

The diagonal 1s given by
Afe(f)f = Z LV ()

i+j=k
n+i=¢

Proof. According to Theorem 5.9, the elements {M} of A®T/[A®+1.T are
faithfully represented by the corresponding elements M (v) of H*(Y,,,). The
image module E®T has as a base the polynomials E?, where I runs over the
sequences {s;,A,} for which 0 < Ap<p"™ %, e=0o0r 1, and 4, =0,
e, =0 if i % R. By (6), such a polynomial E’ is exactly ez ;(e;)°» with
k = Ap, &¢=¢p. Therefore the elements f,(f')¢ form a base of A®T[/AR+LT,

The product formula for M, M, now follows by expanding M,(M,v),
using (6). The diagonal formula follows similarly from Lemma §5.3.

The proof of Theorem 5.1, is now complete.

The proof of Theorem 5.1, is analogous, but somewhat simpler. As already
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remarked, we interpret “p” as 2, “B,” as Sg* and “P%” as Sg**. We replace X by
the CARTESIAN product of n spaces, each of type (Z,,1), and delete all refer-
ence to the other »n’ factors. H*(X ;Z,) is now a polynomial algebra. In the
arguments, we replace each y; (1 <¢ << %) by z,, and delete all references to
z;. Thus, we take w = x,%,... z,, the product of the fundamental classes.
Our indices I become sequences {o;,5,...,0;,...}; o replaces 4; and ¢, is
deleted. D' is the sum of all monomials (in the z,) in which exactly o; expo-
nents are 2, the rest being 1. We define I(r,k) by a. =%, o, =0 for
i #%r; we define e, ,eAd by e, (u) =D'"P Thus Dege, ,=Fk(2" —1).
These e, ; replace those defined for p>2; we do not define any e/, and
delete all references to them. In the proof of Theorem 5.4, we order the
sequences {o;} lexicographically from the right. In defining A%T and D®7,
and in all subsequent arguments, we replace 7' by T -+ 1 in each inequality
restricting the choice of generators e, , or of entries «; in sequences. The rank
of A®T is thus 2V where V = }(T" — R + 1)(T — R + 2). We represent
APT[[A9T on a CARTESIAN product Y, of n real projective spaces of dimen-
sion 29 — 1. In Theorem 5.11, we obtain base elements f, = {ep ;} Without

elements f'.
With these alterations and interpretations, all our intermediate theorems

remain valid.
We next pass on to the last theorems of this section. If p>2, we have

Theorem 5.12,. There is a homomorphism h: A — A of algebras with diag-
onal such that

k= 0mod p h(e) =0 .

. er,k/y T‘f
h(ers) = { 0 otherwise

If p =2, the theorem remains valid on interpreting ““p’’ as 2 and omitting
all reference to e].

Proof. Let us take the space X as before, but with »' = 0; and in what
follows, let us suppose as necessary that = is sufficiently large.

Let I be a sequence. Let the polynomial E' be formed from D! by sub-
stituting (y,)? for y, (1 <7 < n); similarly, let v=ylyl...y,. Let B
be the submodule of H*(X) generated by the £’ ; it is clearly closed under 4.

Each element of A induces a linear map of ¥, and these constitute a quo-
tient ring R of 4. We will next show that the linear map {a} is determined
by a(v). In fact, we have an analogue of Lemma 5.3; if da= f_‘:'aL"'®aR"‘,

then a(v) determines a’:*(v), a®*(v). This implies the following statement.
Suppose that a (v) determines a (w) and @ (2) for all a € A and certain w, 2. Then



On the Structure and Applications of the STEENROD Algebra 207

a(v) determines a(wz) for all a e A. But a(v) determines a(y?) for all @ and
each ¢ ; therefore a(v) determines a (E¥).
This argument shows that in the epimorphism 4 — R, the diagonal map

passes to the quotient.
Next let S be the subalgebra %’Ai,o of A. We will identify R with §. In

fact, let J run over the sequences in which ¢, = 0 for all ¢ ; and define a func-
tiong: R —8 by g{a} = b where
a(v) = JZAJE" and b(u) = JZ‘AJDJ .

It is clear that g commutes with the diagonal. We will show that ¢ is a homo-
morphism. In fact, by the definition of g, we have the following statement, in
which y stands for a fundamental class y; :

If acA, and ay® = ?‘:'A,y”", then (g9{a})y = %‘l,yf.
From this we deduce, by passing to products, that :
If aed, and ay?* = ‘F/‘zym, then (g{a})y* = %‘szl-

It follows that g{a}((9{b})y) = (9{abd})y .

Again, since g commutes with the diagonal, the statements

gi{a}g{b}w =gfablw , g{a}g{b}z =g{adb}z (forall a,bd)

imply g{a}g{b}wz = g{ab}wz. Therefore, for the fundamental class «, we
have g{a}g{b}u = g{ab}u. Thus g{a}g{b} =g{ad}, and g is homomor-
phic.

It is also clear that g is monomorphic.

Lastly, the composite h: 4 — R 2 8 satisfies

| e gy if h =0 (mod p)
h(er,) = { 0 otherwise
he)) = 0

Thus ¢ is epimorphic. The existence and properties of h are established.
We state explicitly that A does not preserve the grading. We have

_J Ay f ¢t=0(modp) and j=0
h(ds,) = { 0 otherwise

The proof remains valid for » = 2 on interpreting “y,” as x, and “S” as 4.

For the next theorem, we will fix on an ordering of the generators e, and
(e, ,i):i. For definiteness, we take the ordering e, (€1,1)%:9, (e1,,)%,. ..,
6;, (82,1)d2’o: (ez,g)dz’ls sees e:,;s .o c

Next consider the anticommutator [e,f] = ef — (— 1)°fe. Here e, f are
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distinot generators, with indices 7, ssay: e=1if e=¢/, f=1¢, and ¢ =0
otherwise. One of ef, fe is a permitted monomial for the ordering above ; the
other is not. The anticommutator can be expanded as a sum of permitted
monomials. The dimension concerned contains at most one generator g, if any ;
let its coefficient in this expansion be A, or if there is no generator in this
dimension, set 4 = 0. Since the anticommutator maps to zero in A%%//Ar+# >
(by Theorem 5. 1) its expansion takes the following form :

[e,f] = Ag + %'-MiNi .

Here M,eI(A), g, N,eI(A™*>), and ¢ is a generator. If p > 2 we have the
following theorem :

Theorem 5.13,. 1 5% 0 (mod p) in the following cases, and in these only.

(a) The paire, fise, i, e, ,+i in either order.

(b) The paire,fise, , e, -1 in either order.

If p=2 the theorem remains valid on interpreting “p” as 2 and omitting all
references to e, , including case (b).

Proof. We may first eliminate the case e = e,, f = e,, since there is then
no g.

We take next the case e=c¢,, f=¢,,i, g=-e;. The dimensions must
satisfy

r—2 8—1 t—2
Zpt+pf Tpv=Zpv.
©u=0 u=0 ©=0

The only solution is j =7 —1, t =r + 8. We then have [e,f]= —g by
direct use of the CARTAN representation.

We take third the case e = e, ,i, f = ¢, ,i, § = ¢, ,¢. The dimensions must
satisfy

.f-—l 8—1 t—1
pt X pt 4 pf Tt = p* T pv .
u=0 u=0 u=0

There are only two solutions; oneis k¥ =14, j =r + ¢, t =r 4 s; the other
is obtained by interchanging e and f. It is sufficient to consider the first.
Consider the case ¢ = 0. Here [e,f] = —g by direct use of the CARTAN
representation.
Consider the case 1>0. Form the expansion

[e.f1=Ag + ZM,N, .
Apply, ¢ times over, the homomorphism % of Theorem 5.12,. We obtain (say)
[¢.f'1=4¢g' + Z M N; .
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Here the monomials M} N} are still permitted (by the special choice of
ordering) ; while ¢’ =e,,, f =e, +, 9 =¢,,,,. We have 41 =1 by the
case t = 0.

This concludes the proof in case p>2.

In case p = 2, we omit all references to e,. We have also to consider two
further solutions of the equation for the dimensions.

Case (i) © =4, and either r =1 or s =1; say s=1. Then { =1 and
kE=r-41q.

Case (i) ¢ = 4§, but neither » =1 nor s = 1. We then have kt =1 4 1
=j+1, t=r=s.

Both cases may be eliminated, since g ¢ A""*'®, so that ¢t >r + s.

This concludes the proof in case p = 2. We have now obtained sufficient
data on the structure of the STEENROD algebra.

§ 6. The Cohomology of the STEENROD Algebra

In this article we prove Theorem 2.4. The results of this section, therefore,
are very far from complete, compared with those of § 5.

We take p = 2 throughout this article, and will be free to use the letter p
for other purposes. Tensor products are taken over Z, unless otherwise stated.

When we wish to display specific elements in H*(4), we use the notation
of the bar construction (see [3] p. 3-09). Thus we define

I(4A)=24,, (I(4)°=12Z, and ([(4))*=1(4)®((4))** .

>0

We define E(A) 2 (I1(4))®, and write a typical element as [a,|a,]...|a,].
820 __

The second grading ¢ of B(4) is defined by ¢ = Z‘q, when a, ¢ 4,,. A bound-
ary in B(A) is defined by

d[ali...lda]z Z' (—"l)i[all..-laiai_“_l!...las] ;
1<i<s
d is of degree (— 1,0). The cohomology group H"‘(E (A),Z,) is Ext%;(Z,,Z,),
that is H*:*(4).

For example, let us calculate H'(4). (Here, by convention, H® (A)=.t§.‘ H*%(A).)
There are no coboundaries (except the zero cochain); while a cocycle is a
Z,-linear function f, with values in Z,, defined for arguments [a](a € [(4)),
and such that f[a,a,] =0 (each a,,a, €I(4).) By the known structure of
the STEENROD algebra, there are unique cocycles f, of dimension f= 2™
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(m = 0) such that f,[S¢*™] = 1; and these form a base for the cocycles.
Define h,, = {f,,} ; we have a base for H*(4).
The cup-product of two cocycles is obtained by transposition from the diag-
onal map _ _ _
4: B(A) - B(A)® B(4) .
This is defined by
Alay]as]. . Ja,] = 2 [a4]...]8]R[Cp44]. . |a.] .
o<psn

As stated in § 2, our methods depend on a spectral sequence ([4], p. 349)
relating the cohomology rings H*(A), H*(I') and H*(Q) of an algebra I,
a normal subalgebra A and the corresponding quotient algebra Q = I'//A.
It is sufficient to take A central in I'; this has the result that the operations
of 2 on H*(A) become trivial, and we have Ej ~ H*(A)QH*(Q).

It is convenient to have a specific construction for the spectral sequence. We
may obtain it by filtering B(I'). A chain [a,]|...|a,] is of filtration p if
a, e I(A) for (s — p) values of ¢; we thus obtain homology and cohomology
spectral sequences, in good duality. The isomorphisms

HY(A) < E%, EP« H?(Q)

are induced by the natural maps B(A) — B (M, B (I - B (2). The (coho-
mology) spectral sequence has good products; these induce the isomorphism

H?(Q)@H'(A) - EP°QE%Y — EP4

Since this section is not a final treatment, the reader will perhaps excuse it if
we do not give the details more fully.

We next proceed to the details of the calculation. We will write A" for A",
so that A* = A. We recall that Ar//4A™ is a divided polynomial algebra,
with a Z,-base {f,}. Take a cocycle f, ; in dimension (1,(2" —1)2°) such
that f; ;[fs]=1; let h, ; be its cohomology class. Then H*(A’[[A™+) is a
polynomial algebra with generators A, ; (for + > 0).

Let A, be the image in H*(A'//A*) of h, , in H*(A'//A?). This is con-
sistent, for the original A, in H*(A*) is the image of %, ,,. By the same argu-
ment as before, H*(A'/[A*) has as a base the elements A, in it.

Now take A=A™1[[A7+2, I'=A1|[AT+2, Q=A|A"+1. Let d*: E3' — E3°
be the differential in the spectral sequence. Since

H(AY|Ar+2) > H1(Ar+]]AT+2)
is zero (for r > 1), the classes d*h, ., , must be non-zero elements of H2(4!//A7+1).

Let us write d®hyyye = Gy s € HE(AY/[ATHY) .
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In case r=1, we have g, ;=h;h;,. This is proved as follows. In H,(A!//A?)
we have one non-zero class in dimension ¢ = 3.2¢; ; it is dual to h;h,,,, and
may be represented by the cycle

[ey,2i]€1,0i+1] + [€q,0i+1]€10i] (= 2, say).
By Theorem 5.13,, we have in 4 a relation

€1,20€1 2i+1 €1 9i+1€y gi = %’M,N, + g qi
where M,el(A'), N;el(A?). The chain

[e1,i| €1, gi+1] 4 [€q,9i+1] €y oi] + ,jZ’[MjIN,]

has as boundary [e, ,:]; it is thus a cycle in B} , and by the map A!—A41//A?
it passes to z. Thus d,{z} = {[e, 2i]}. Transposing into cohomology we have
d2hy ; = h;h,.,, as asserted.

In case r>1, we must consider the behaviour of the class g, ; in the spectral
sequence which arises when A = A7/[A™, I' = A}/[A™?, Q = A'[[/AT. We
know that HZ2(A!//A"+') is filtered. The class g, ; will have an image in the
first quotient, which is isomorphic to a subgroup of E3?; and if this image is
zero, then g, ; will have an image in the second quotient, which is isomorphic
to a subgroup of E}'. Now E3? ~ H2(Ar//Ar+'), which we know ; the image
of g, ; is necessarily zero, by considering the grading .

We seek, therefore, the image of g, , in a subgroup of E}'. We will show it
is exactly

hr,z’+1hi T hr,ikr+i s

here the products are formed by considering ; as an element of E}° and b, ,
as an element of EY'. In fact, by transposition, it is sufficient to determine
the pairing of g, ; with a certain quotient module of E} ;. We will construct
representative cycles for E} ;. By Theorem 5.13, we have relations

e,.’zi+1el’2i ‘+‘ el,zi e,’2i+1 == ’.Z.M,Nj + er+1’2‘i
Crgi €19r+1 & €5 or+1€, 50 = %‘P, Q5 + €19
where M, ,P; e I(4A'), N,;,Q; « I(A™?). Thus the chains

[er,ai‘*'llel,zi] + [91,2i ler,2"+1] (= w, say)
[er,zi lel,z"“] -+ [el,z"+"|er,ai] (= 2, say)

give classes in H,(A'//A™). These chains are of filtration 1, and yield a base
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for B} ; in dimension ¢ = (27+1 —1)2* (as one verifies, knowing the structure
of E3). On applying the map d,: H,(A'/[A™) — H,(A"+1/[A™+?), we have
do{w} = do{z} = {[€,41,2i]}. (This is proved by exactly the same argument as
was used in the case r = 1; note that this d, lies in the spectral sequence for
A = Ar+1/[A7+2 etc.) We have, then,

{w}gr,i = {z}g,,i == .

On transposing, we have in E}'! the relation

{gr,i} = by 11 by + hy i brysi
as asserted.

Lemma 6.1. In H2(AY/[A™) the elements g, ;, with the elements h;h, for
which §j <k —2 or j=2kFk, are linearly independent. The elements h;h,,, are
zero.

In fact, if »>1, then H2(A!//Ar+!) is filtered ; the elements g, ; map to a
linearly independent set in E3', while the elements Ak, map to zero. It re-
mains to prove (by induction over r) that the elements Ak, (j <k —2 or
9 = k) are linearly independent. If they are so in H2(A'//AT), then they are
so in H2?(A'/[A7+), unless in the spectral sequence concerned some linear
combination of elements Ak, is equal to d*(h, ;). This is impossible, by
considering the grading #. To begin the induction, the elements named are
linearly independent in H?2(4!//A®).

The elements h;h,,, are zeroin HZ2(A'/[A3), being dZ2(h, ,).

We next consider again the spectral sequence which arises when

A=Arj[A™ | T'=AYyjAr+, Q= AY/Ar .

Since g, , lies in H®(A//A"+!), the elements A, ;. h;+h, ;h,.; in B! are
cocycles for d2. Thus the elements (h, ;. h; + b, ;b )h; (=2, , ;say) in E3*
are cocycles for d2.
Lemma 6.2, If r > 2, theclasses {z, ; ;,} in E3* satisfy the following rela-
tions only :
(Zr,0,r4e01 T+ zf,£+1,c'} =0 (r=2),
{294,441} =0 (r=2).

If r > 2, EY*® has as a base the classes {(h, ;)*}.

Proof. We have to examine d2: EY® — E3'. Here E2? has as a base the
elements &, ;k, ,. In E3* (if r>2) the elements

hr,igr—l,js hr,ihjhk G<k—2o0r j=k)
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are linearly independent, while the elements %, %, h,,, are zero; this is by
Lemma 6.1. The boundaries are given by

dz(hr,ikr,j) = Ry iJr—1,; T hr,jgr-l,i .

From this, the conclusion follows.
In case r = 2, E%! has as a base the elements by ;l;h;, while the bound-
aries are given by

da(hﬁ,ihz,a‘) = ha,ihjhj+1 + h2,5hihi+1 .
The couclusion is again elementary.

Lemma 6.3. If r > 2, the classes {g, ;h;} in H3(A/[AT+')[p* H?(4Y/[A7)
satisfy the following relations only :

(i) gr,ihr+i+1 4= gr,i+1hi =0 (r=2),

(1i) {92,ihi+1} =0 (r=2).

Proof. The image of g, ;k; in E3'is {2z, ,,}. On applying Lemma 6.2,
we obtain the results of this lemma, except for the exact relation (i). This
follows immediately from the remark (above) that h, ,.,h; + k. b, i8 &
cocycle for d2.

Lemma 6.4. In H3(A/[A™1Y) (r = 3) the elements h,h;h, are subject to
the following relations only.

(i) hihi-{-lhf _ O .
(i) (hi)zhi+2 = (hi-i-l)a ’

(iil) A, (hyye)® =0 .

Proof. We know the structure of H?(A'//A?) and will prove the lemma
by induction over r. We have to consider the spectral sequence in which
A= Ar+1[A™+2 ' = A'[[A™+? and Q = A!//A™+., In this we have to con-
sider the differentials d2: Ej' — E¥° and d®: E3? — E3°.

We have d2(h,, ;h;) = g, ;h;. By Lemma 6.3 this introduces no new rela-
tions into p*H3(4Y/[A7) if r>2. If r =2, we have only to consider the
case j =1 4 1. We verify that

ds(ha,ohl) = hy (hy)?
by a direct calculation (given below) ; the result
d? (hs,ihi—i-l) = hi (hi+2)2
follows by using the homomorphism of Theorem 5.12,. If r = 1, we have
d2(hg ;hy) = bbby

16 Commentarit Mathematici Helvetici
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We next consider dy. By Lemma 6.2, E3* has as a base the classes

{(hr+1,i)2} .

By considering the grading ¢, we see that d® introduces no new relations be-
tween the classes h;h;h; unless r = 1. We then verify

da{(kz,o)z} = (h0)2h2 + (751)3
by direct calculations (given below) ; the result
ds{(hz,i)z} = (hi)2k¢+2 + (hi+1)3

follows by using the homomorphism of Theorem 5.12,.

The direct calculations are similar to those above. They are carried out in
homology, and are as follows (for brevity we have replaced the symbol e, .
by its dimension (2" — 1)2%.)

[1]4]4] 4 [4]|1]4] + [4]4|1] |
dy+ [1]2[6] + [2|1[6]+ [2]6]1] f = [2]7] + [7]2]
+ [4|3]|2] + [3|4|2] + [3|2]|4]

[(2/1]81 4 [1]213] + [1]3]2]) _
d{ + [2]2]2] }"[3‘3]

[4]1]1] + [1]4|1] 4+ [1]1]4]) _
d{ + [1]2]3] + [2]1]3] + [2]3'1]} = [3]3] .

This concludes the proof of Lemma 6.4, of Theorem 2.4, and of Theorem 1.1,
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