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On the cohomology of smooth manifolds

by CArRL B. ALLENDOERFER and JaMEs EErLLS, Jr.

1. Introduction

A fundamental result relating the topology of a smooth (i. e., C**) manifold X
and its global differential geometry is the Theorem of pE REAM [5], which we
state in the following form: Let € (X, R) denote the exterior differential
algebra (over the real numbers R) of smooth differential forms on X, and let
$H (X, R) be its derived cohomology algebra. For each 6¢C (X, R) we define
the smooth singular cochain hf by the formula

ho-c= (6 (1)

for smooth real chains ¢. It follows from SToxEs’ Formula that & induces
a homomorphism A* on cohomology classes, and bE Ruam’s Theorem asserts
that h* is an algebra isomorphism of § (X, R) onto the stngular cokomology
algebra (cup product) H (X, R) of X.

Now let 4 be an integral subdomain of R. We will consider certain smooth
differential forms with singularities (i.e., forms w defined on X except perhaps
for a closed rare set e (w)). For such forms the hypotheses of STokEs’ Formula
are not satisfied; however, the deviation (called the residue relative to the integral

chain c) fdo — [ 2)

plays a fundamental role in the theory. We will construct a differential graded
A-module € (X, A) of forms with singularities (more precisely, of certain
equivalence classes defined by these forms), requiring that all residues lie in 4.
A product is defined on the cohomology classes of ¢ (X, A) (but not the
elements of @ (X, 4) themselves). Qur basic result (Theorem 4A) is an
analogue of pE REaM’s Theorem, asserting that the derived cohomology A-
algebra § (X, A) of € (X, A) 18 canonically isomorphic to the singular coho-
mology H (X, A) of X with coefficients in A ; the isomorphism is given essen-
tially by means of the residues (2); see Section 5. Included in § (X, 4) are
those cohomology classes of X represented by closed forms (without singu-
larities) which correspond under (1) to cocycles with coefficients in 4; see
Theorem 5C.

The motivating idea of constructing suitable forms with singularities came
from a study of the KRONECOKER index (see Section 2 for examples) and more
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166 C. B. ALLENDOERFER | J. EELLS

generally from DE RuAM’s Intersection Formula (Section 6). OQur proof of
Theorem 4A uses the CARTAN-LERAY sheaf theory. In Section 5 we use a simpli-
cial subdivision of X to show that ¢n every cohomology class of $"(X, A) we can
find a representative whose singularity is an (n — r)-cycle (dim X = n). This is
a simplification of the construction made in ALLENDOERFER [ 2] of integer residue
forms relative to a particular subdivision of X, and the present work should
be considered as an outgrowth of that paper. We end by indicating briefly
some applications of the methods of harmonic integrals to the theory of forms
with singularities.

Notations

X: a paracompact, connected, differentiable manifold of dimension » and
class C* (= smooth).

A': an integral subdomain of the real number field R.

Z (Z,): the integers (integers modulo m).

S, (X, A): the A-module of locally finite smooth singular 7-chains of X with
coefficients in 4.

S,(X, A): the submodule of finite chains.

D(A4): the twisted coefficient domain of 4 (see CARTAN [4, XX ] or DE RHAM-
Kobpaira [8]; a chain (or form) with twisted coefficients is sometimes said to be
of even (or odd) kind); ©(4) = 4 if X is orientable.

2. On singular forms and their residues

(A) Suppose we choose an orthonormal coordinate system in EUCLIDEAN space
E, (n > 2) and write the coordinates of a point = as (2;,..., %,). We will let

0@ =k®m) X (— 1)z, (@ +... 4+ )z, V..V de, V..V de, (1)
i=1
denote Kronecker’s index form, where k (n) is the reciprocal of the area of the
unit (n — 1)-sphere in &, and V denotes the exterior product. Then w is a
harmonic (and in particular a closed, analytic) (n — 1)-form in E, — O;
furthermore, see HADAMARD [9, p. 453], for any oriented n-simplex ¢ whose
boundary do does not contain O,

0if O is not in ¢

a{“’ = { -+ 1 otherwise, (2)

the sign depending on whether the orientation of o agrees with or is opposite
to that of E,. If w is the index form in E, — O, then there is an analytic
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(n — 2)-form ¢ in E, — Ef, where Ef = {x = (2,,0,...,0): 2z, >0},
such that if o is an oriented (2 — 1) simplex not containing O and whose
boundary does not intersect Z;", then

fo-g=|

An explicit construction for £ has been given by HApAmMARD (loc. cit.; see also
our Proposition 4B); e. g.,for n = 2, & (x) = k (2) arctan (z,/x,) and forn = 3,

0 if o does not intersect E;
+ 1 otherwise.

Xy Xz dxy — X, Z,d7,
(@ + 3 + 23)'* (0 + )
That & might be called the (generalized) angle form; in this connection see

ALLENDOERFER [3, p. 256].
(B) In the following proposition we will use o to generalize these statements.

Let B, = {zeE,:x < 1}, B» "= {zeE,:x = (0,...,0, x,,,...,2,)}
Brr = B, N E*".

£ () =k (3)

Proposition. There is a smooth (r — 1)-form w in E, — B (2<r < n)
such that 1) its exterior differential is uniquely extendable to a smooth r-form 6
on B, — d B*", and 2) for any oriented r-simplex ¢ in E, not intersecting 0 B»"
and whose boundary does not intersect B*",

0 ¢f o does not intersect Bn—
6‘ ° _aiw | £+ 1 otherwise, (3)

the sign again depending on the orientation of o.

Proof. Let C={zek,: 4ai+...+ 4224+ 2}, +...+22 <1} and
D={zek,:|2z|>1}. Then C'=C — dB*" and D' =D — 9B are
disjoint closed subsets of the manifold E, — ¢ B»~". By a well known con-
struction (see WHITNEY [12, App. 3]) there is a smooth real function y on
E,—0B"" suchthat 0 <yp<1l,y(x)=0 ifxeD , p(x)=1if 2eC’.

If n: E, — E, is the projection map = (2,,...,%,) = (2;,...,%,) and w,
is the index form in E, — O, then the induced form #n* w, is a closed (r — 1)-
form on X, — E*". Set

| y(x) 7*aw,y (x) in B, — E*T
“’(“”“{o if zeErrand |x|>1;

__ | do (%) in E, — BT
9“‘)_{0 if zeBvr and |o|<1.

Clearly w and 0 have the properties described in 1); the uniqueness of the
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extension of dw follows from its continuity (and the fact that B»-r is rare in
E,). The equation (3) follows from (2) by a simple computation (or by appeal
to Proposition 2.D below).

Remark. Another method of constructing such pairs (0, w) and valid on any
closed R1IEMANN manifold can be given by means of GREEN’s form ; see Section 6.

(C) Let X be a smooth manifold, and let @ be a smooth (r — 1)-form
(r > 0) defined on X except perhaps for a closed rare (= nowhere dense)
set e(w); we do not require that X — e(w) is the maximal domain of definition
for w. Let us agree that if » = 0 then w is the function identically zero on X,
whence e(w) = @. Suppose that 0 is an extension of dw to X — e(0), where
e (0) is a closed subset of e (w); the extension of 0 is necessarily unique, although
of course it depends on e (6). We will call (6, w) a pair on X.

Definitions. Let ¢ be a smooth finite singular r-chain on X with real coeffi-
cients, and let | ¢ | denote its support i.e., | ¢ | is the union of point set images
| ;| in X of the simplexes s; in the unique expression ¢ = Xa;s;, where
a; # 0 and the s, are distinct. Then

lee+elclalUleal, [aclcle], o] ce]. (4)

We say that ¢ i3 admissible for the pair (0, w) if |c|Ne(0)=p,
|dc|Ne(w) =9.

Given such a chain, we define the residue of (0, w) with respect to ¢ as the num-
ber
R[(0, w),c] = [6 ——aj'w : (5)

[ ¢
It follows from StokEs’ Formula that if e (w) = &, then every smooth r-chain
18 admassible and all residues are zero.

Properties (4) show that the residue is bilinear in the arguments (6, ) and c
when all terms are defined ; however, it can happen for example that ¢, + ¢,
is admissible for (6, w) and yet neither ¢, is admissible.

(D) Proposition. Let c, (0 < t < 1) be a smooth deformation of the chatn c,
on X which 8 admissible for the pair (8, w); i. e., every chain c, 18 admissible for

(6, ®). Then R[(0, ®), c] = R[(8, w), 1]

Proof. We have the usual smooth chain homotopy formula ¢, — ¢, = Dadc,
+ @Dc,, where Db denotes the deformation chain of b. Then by hypothesis
| Doc, | Ne(w) = o, whence Dac, is admissible for (6, w) and has zero residue;
similarly | 0Dc,|Ne (8) = o, and we have

R[(0, w), e, — 6] = R[(0, w), Ddc,] + f6=0.

3Dc°
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3. The complex ¢ (X, 4) of forms

(A) Definition. An (4, r)-pair (0, ) of forms on X (r > 0) is a pair as in
Section 2 C such that 1) the singular sets e (6) and e (w) lie on smooth locally
finite polyhedra of dimensions not exceeding » — r — 1 and » — r, respec-
tively, and 2) for every smooth r-chain ¢ ¢ S, (X, 4) which is admissible for
(0, w) the residue R [(0, w), c] is an element of 4.

Thus if (8, 0) is an (4, 0)-pair, then 6 is a function with constant 4-values on
the components of X —e(0), and R[(0,0),c,] =27 ,a,0(x,) if ce=27",0,z,.
If (0, w) is an (4, n)-pair, then e(0) = o.

Remark. By (1) of Section 5 below each (4, r)-pair (0, w) on X determines a
geometric r — A-cochain of X in the sense of WHITNEY [11] with nucleus e (w)
and nuclear boundary e (6). With this identification WHITNEY’s theory can be
considered as an abstract form (for polyhedra) of the calculus of (4, r)-pairs
just as the theory of flat cochains (for polyhedra; see WHITNEY [12; Part IT])
abstracts the exterior differential calculus.

(B) We will need the following well known result: Any two smooth chains
c,and ¢, (p + g < n) on X can be brought into general position (| oc,|N|c,| =g,
Fe,| N | 9c, | = @) by an arbitrarily small smooth deformation.

The sum (6,, w,) + (0,, w,) of two (4, r)-pairs is defined as the (4, r)-pair
(0 + 0z, 0, + @,), where e(0,+ 0,) =e(6) Ue(0y), e(w, + w,) = e(wy) Ue(w,);
similarly for a (8, w) = (af, aw) for ae A. The (4, r)-pairs on X do not
form an A-module, for the inverse of (6, w) is not defined if e (w) #% 0. We are
thus led to take equivalence classes of (4, r)-pairs: Let us say that (6, w) =
0',w') if R[(6, w),c]= R[(6',w'),c] for all chains ceS, (X, 4) which
are admissible for both pairs. It is clear that = is reflexive and symmetric; to
show that it is transitive let (6, w) = (6', 0') = (0", »"), and take any ¢
admissible for both (0, w) and (6", w”). We now make an admissible smooth
deformation of ¢ to @ chain ¢, which is admissible for all three pairs. By
Proposition 2D we have R[(0, w),c] = R[(0, w), ;] = R[(6", ®"), c]; i.e.,
0, w) = (0", 0").

Let [0, w] denote the equivalence class of (0, w); it is easily checked that
these classes form an A-module, denoted by Cr (X, A) (r > 0).

(C) If (6, w) is an (A4, r)-pair, then (0, 0) is an (4, r 4 1)-pair; it follows
easily that we can properly define the exterior differential d:

Cr(X,4) > € (X,4) by d[f, w]=1[0,0].

Then d is an A-homomorphism such that d-d = 0; its kernel 3" (X, 4)
consists of those classes [0, w] such that for any representative (6, w) we have

[ 6=0 if jdc, |Ne(d)=8g. (1)

der+1
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Thus if the class of (8, w) is in 37 (X, A) and if e(8) = @, then 0 is a closed
form on X.

Two (4, 0)-pairs (0, 0), (6', 0) are equivalent if and only if 6 () = 6’ (x)
for all  in their common domain; (1) shows that if they represent an element of
3°(X, 4) then 6 and 6’ have constant A-value in their domains (X is con-
nected), whence the

Proposition. T'he natural map 3° (X, A) - A is an isomorphism.

Definition. The direct sum € (X, 4) = X,_,C"(X, 4) is a cochain complex,
called the complex of A-pairs of forms on X. We let H(X,A) =X, _, H"(X, 4)
denote the derived cohomology module. a

(D) We consider briefly now the problem of introducing products in $ (X, A4).

Example. Let (67, »?-1) be an (4, p)-pair in oriented EUCLIDEAN n-space E,,
with e (w?~1) = an (n — p)-simplex and e (6?) its frontier. We observe that if
(67, w?-1) has any non-zero residue, then the orientation of E, induces an
orientation of e(w?-'); namely, we take an admissible oriented p-simplex
o, such that R[6?, w?-1), 0,] > 0 and then define the orientation of ¢ (w?-1)
such that the ordered pair o, e (w?~1) has orientation compatible with that in
E,.If (602, ®? 1) is an (4, g)-pair of the same type whose singularities are in
general position with respect to those of (67, w?-1) (see (B) above), then we
define the exterior product [07, w?~1]\ [02, w2-1] of their classes as follows:
If p+ g>mn or if either pair has only zero residues, then we define the prod-
uct to be zero. Otherwise, the (n — p — ¢)-simplex e = e (w?1) N e (w21)
has orientation induced from that in e (w?-1), e (w%1); we use Proposition 2B
to construct an (4, p + ¢)-pair (6, w) with e, de as singularities and with
R[(6?, w*1),0,] R[(07, 021), 0,] as residue on the product cell ¢, X g, .
Set [07, wP-1]V [0, 02 1] = [0, w].

Clearly we cannot hope to define the exterior product of elements of € (X, A4)
in general, for we cannot always alter the position of the singularities of a pair
without changing its equivalence class. (The same sort of problem is faced in
defining the intersection product of cycles of X.) On the other hand we can
use the above construction to define the exterior product of cohomology
classes of pairs. In fact, given two classes 27 e $H? (X, 4),22¢ H?2(X, 4),
we can choose (using (B)) representations [07, w?-1],[0?, w?~'] whose sin-
gularities are in general position, and then define their exterior product. It
follows from standard reasoning that this tnduces an associative, distributive,
anti-commulative (2P \/ 29 = (— 1)P222 \/ 2?) product pasring $HP (X, 4),
H?(X,4) to Hr+te (X, A).

(E) A smooth (or even regular) map f: X — ¥ of one manifold into
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another may not carry (4, r)-pairs into (4, r)-pairs ; however, if f is a bi-regular
homeomorphism then any (4, r)-pair (6, ) on ¥ is transformed into an
(4, r)-pair (6* = f*0, w* = f*w) on X. Furthermore, if ¢ is a smooth admis-
sible r-chain for (0%, w*), then fc is admissible for (6, w), and by the trans-
formation of integral formula R [(6*, w*),c] = R[(0, ), fc].

4. The isomorphism theorem

(A) We will now make the appropriate modifications in the sheaf proof
of pE Ruam’s Theorem (see CARTAN [4] or HirzEBRUCH [6] for properties of
sheaves) to obtain our basic result.

Theorem. Let X be a paracompact smooth manifold of dimension n, and let A
be an integral subdomain of R. Then there is a canonical (algebra) tsomorphism of
the cohomology algebra $ (X, A) of the A-pairs of forms onto the cohomology
algebra H (X, A) of X .

Example 1. Suppose X is compact and A = Z; then H" (X, Z) is iso-
morphic to Z or Z,, depending on whether X is orientable or not. In either
case a generator [0, w] for $* (X, Z) can be given as follows (n > 2): Take any
%o e X and let y: U — B, (the unit ball in R,) be a coordinate system (U is a
coordinate ball) such that o (x,) = 0. Let w, be the index form in R, with
singularity at 0, and let ¢ be a smooth real function in R, such that ¢(z) =1
if [z]<3} and ¢(2)=0 if || >$%; then w,=¢pw, and 6, =dw, (extended
over all R,) is a (Z, n)-pair on R,,. It follows easily that 6 = ¢* 0,, v = p* w,
(both defined to be zero outside U) determines the desired class [0, ] on X.
If X is not compact, then the same construction gives a generator of H}, (X, Z),
the n** singular cohomology module with compact supports.

Example 2. We will see in Section 5C that any closed r-form on X with
integral periods determines a closed (Z, r)-pair. It follows that such pairs can
be used to generate the integral cohomology algebras of manifolds without
torsion (e. g., the complex STIEFEL and GRASSMANN manifolds, the L1t groups

8U (n), 8p (n)).

Example 3. Let P, denote the real projective n-space (» > 2). Then genera-
tors for § (P,, Z) are given by the previous examples if r = 0,n (n > 2).
Supposing % > 2, the other generators can be constructed as follows: Using
the notations of Section 2B, let us represent P, by identifying the antipodal
points of the boundary of B,. Then the pair (0, w) constructed in Proposition
2B determines a closed (Z, r)-pair (2 <7 <n) on P, with e(w)=|P*T|
(the antipodal identification of B"—") e () = | P~ |, which is noncobound-
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ing if » is even and cobounding if r is odd. We will see in Section 5B that (0, w)
i8 cohomologous to a pair (0;, w,) such that e (w,) = | P*» 7| and e (6,) = @.

(B} First of all, let us prove the theorem in case X is an open ball U in E,,.
If r = ¢, the result follows from Proposition 3C; if r > 0 we use a standard
homotopy construction (see e. g., WHITNEY [12, Chapter 4]).

Proposition. Suppose r>0 and [0,w]e 3" (U, A). Then there is an
[n,&]1e® -2 (U, 4A) such that d[n, ] = [0, w].

Proof. By 8Section 3E we reduce the problem to the case that the singu-
larities of a representative (0, w) ¢ [0, ] lie along rectilinear polyhedra of the
appropriate dimensions. Choose z,¢ U — e (w), and let ¥V be the maximal
region in U — e (w) which is star-shaped with respect to z,; take a neigh-
borhood Wof V xI in ¥V x R such that g: W — V, where

g(z,ty=(1 —t)x + tx,.

If r>1 set ke (w)= U — V, a (rectilinear) locally finite polyhedron of
dimension <% — # -+ 1. Then for all x¢ V we define

(ko) z = | (¢*o) (z, 1) dt 1)

a smooth (r — 2)-form in U — ke (w); if o is a O-form set ke (w) = @ and
(kw) z = 0. Similarly for the definition of ke (§) and k0 in an appropriate
maximal star-shaped region V' > V. Then o (x) = dk (w) z + k0 (x) in V.

Set £(z) = (kw)x in U — e (&) and 5 (x) = 0 () — (k0) z in U — e(y),
where e¢(£) =ke(w)=U — V and e(y) = ke (@) Ue (w). If ¢ is a (recti-
linear) chain in 8, , (U, 4) which is admissible for (5, &) then the join
J(2,, ¢) is an r-chain admissible for (0, w), and R[(n, £),c]= — R[(0, w),
J (%, ¢)] since

fk0= [ Oand fko= [ w;
¢ J(Zg,0) 8¢ J(Zg,9¢)
it follows in particular that (, &) is an (4, r — 1)-pair in U. Because [0, w]
is closed we have (0,7) = (0, w); i.e., d[5, ] = [0, w], forif ¢ is admissible
for both pairs,
RI(0,m),61=R[(6, w),c}— f 6.
aJ(zg,c)

The integral in the right member is zero by (1) of Section 3C. This completes
the proof of the propesition.

(C) We now proceed to the proof of the theorem. Given any coordinate ball
U on X we let Cy denate the complex of A-pairs on U; since the restriction of
any clags [0, o] to an open subball ¥V is in Cp, we have the natural restriction
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homomorphism Cj; — C;,, which is clearly reflexive and transitive. The
differential graded sheaf associated with this presheaf is denoted by

e = 2,-2—0 G'-

Letting d: C* — (Cr+1 denote the sheaf homomorphism associated with the
exterior differential, we have the sheaf sequence

0sdsoscrlo, 2)

where 4 — (° is the natural imbedding; it follows as usual from the pro-
position in (B) and the identity d-d = 0 that the sequence (2) is exact.

Lemma. (2) 18 a sheaf resolution of A; . e., the Czor modules HP X,cn=0
for p>0,r>0.

Apparently (2) is not a fine resolution; however, we can use a slight modi-
fieation of the method used to prove the lemma in the fine case. For simplicity
we will make use of 4. WEIL’s construction [10, § 1] of a differentiably simple
cover U = (U,),; of X; U is a locally finite cover by open coordinate balls
such that every intersection U; A ..... N U;, of elements of U can be
smoothly retracted to a point. Then (see WEIL [10]) the nerve N (U) of U
has the same homotopy type as X, and we have a canonical isomorphism
H?»(X, C")~ H?(U, C7).

To prove the lemma we take any fe Z? (U, C7); for each simplex

@)= (ip...5,) in N ()

we choose a representative (0, , w(;) e f(¢). Let e, denote the union of all
singular points of all the w; which lie in U,; then e, lies on a locally finite
(with respect to U,) polyhedron of dimension < n — r. Set

szzin(fjj— i)

then B = U, B, is a locally finite union of closed sets and therefore is closed.
Let e; = e, N (X — B), and take a locally finite open covering B = (V,);¢;
of X — B suchthat ¢, c ¥V, c V, c U,.

Take a smooth function g; on the manifold X — B such that g, (z) =1
if zeV,, g(x) =0 if 2¢U,, ;(z) > 0 in U,; of course g, cannot be smoothly
extended to X. Setting ¢, = ¢,/Z, p,, we obtain a smooth partition of
unity on X — B (depending on the choices of f and (0, w(,)). We extend
@, to be zero outside -l'_], in Uy, N....N U, ; similarly for ®,0.4 . It follows
eagily that (p,0,, ¢,w(y) is an (4, r)-pair in U,,, with

e(p;0¢) = U,Ne(wey), elp,0) = U;Netby,) .
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Define g,e C?-1 (U, C") by

[%eii.,...ip_l"Pi“’ﬁo...ip_l] n Uii....ip__l

Bpeoolpy) =
g; (% »-1) {Oin the rest of U,

cip—y
Then g = X9, (locally finite sum) is a cochain easily seen to satisfy dg = f;
the lemma follows.

Using the resolution (2) the theorem is now completed by application of
standard methods in sheaf theory. (For the canonical isomorphism of $7(X, 4)
onto HT (X, A) see HIrZEBRUCH [6, § 2]; for the product isomorphism, see
CarraN [4, XX].)

Remarks. The theorem and proof are valid for manifolds of class
Ck+1 (k> 0) with @7 (X, 4) based on (4, r)-pairs of forms, requiring both 6
and o to be of class C*. The theorem can be modified by requiring that the
(A4, r)-pairs and the cochains have compact supports.

(D) Let m be any positive integer; the quotient €r (X,Z)/C" (X, mZ)
is (roughly speaking) the module of (Z, r)-pairs whose residues are in Z,.
We let € (X, Z,,) denote the complex defined by these quotient modules. The
following statement is an application of the five-lemma and Theorem 4A.

Corollary. There is a canonical 1somorphism of $* (X, Z,) onto H" (X, Z,,).

(E) pe ReaM’s Theorem was originally formulated in terms of existence
and uniqueness of a class of closed forms having prescribed real periods on a set
of linearly independent (with respect to real homology) cycles on a compact
manifold; see pE RaAM [5, Chapitre III]. We will now give an analogous
formulation of Theorem 4A, restricted (for simplicity of statement) to the
compact case and 4 = Z.

Definitions. An integral chain ce S, (X, Z) is said to be a cycle mod m
(m > 2) if 9c = ma for some ae S, (X,Z); two r-cycles ¢, ¢’ mod m are
homologous mod m if there are integral chains @ and b such that

¢’ —c=oa-+ mb.

We must not confuse the r-cycles mod m with the elements of Z, (X, Z,);
however, it is easy to see that if r,: Z — Z, is the coset homomorphism,
then 7, induces an isomorphism of the module H™(X,Z) of homology
classes mod m onto H, (X, Z,).

Because X is compact its integral homology modules are finitely generated;
let B denote its r** Betti number and 7, <...< 7, its (r — 1)** torsion num-
bers (z, divides z,,, for ¢ = 1,..., %k — 1). Let us take a system of integral
r-chains

¢, o, el (1<i<k) (3)
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such that 1) the ¢ (1 < j < #) form a base for the free part of H, (X, Z),
and 2) the ¢{? (1 < j < «,) are linearly independent with respect to homology
mod 7, and the classes of the (r — 1)-cycles c{"/v,,..., 8c(?/r, generate
the part of H,_, (X, Z) of order 7,. It is well known that such a system (3)
exists (and in fact for simplicial homology (3) is part of a canonical base for
the integral r-chains).

Remark. A system (3) for X (for every r) is adequate for a description of the
integral homology of X; in fact, it is known (ALExANDROFF-HOPF [1, p. 228])
that H (X, Z) is determined by the collection H,(X,Z,).

Given a system (3) and an integral r-cocycle f, the periods n{” ¢ Z(1 <j < p)
and modular periods n{" e Z, (1 <j < a,) of f are defined by

a) =f-c and A =r [f-]. (4)

Clearly these n’s depend only on the homology classes (integral or mod m)
of the ¢’s and on the cohomology class of f. Conversely, for any set of periods

and modular periods relative to (3) there is a cohomology class )T e H"(X ,Z),

such that (4) is satisfied for any fe 7, the proof is elementary.
We can now reformulate a special case of Theorem 4 A as follows:

Theorem. Let X be a compact smooth manifold, and let (3) be a system of
integral r-chains on X .

1) If (8, w) is a closed (Z, r) pair on X for which the chains (3) are admissible
and if all periods and modular periods are zero, then (0, w) is derived.

2) For any set of periods and modular periods there is a closed (Z, r)-paiwr
(0, w) on X for which the chains in (3) are admissible, and

fJO—fo=am i m=0 ad 1<j<§;
™ adm

i J :n".m) modm ¢ m=7z, and 1)< .

b. Pairs relative to a subdivision of X

(A) Let X be simplicially subdivided into a locally finite combinatorial
manifold K, and let K, denote its dual cell complex; we will suppose that the
star of every vertex of K is contained in a coordinate ball of X . It is known
(see WHITNEY [12, Chapter 4]) that any smooth manifold admits such a sub-
division.

For each 0<r<mn let € (K,A4)= {0, w]eCr(X,4): e(w)c KI"
and e(0) c K"‘""”} where K® denotes the p-skeleton of K,. Then
C(K,A)=ZX} ,C(K,A4) i easﬂy seen to be a cochain subcomplex of
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€ (X, 4). Letting €* (K, A) denote the module of simplicial 7-eochains of K
(with coefficients in 4) we have the

Proposition. The map h: Q" (K, A) — C" (K, A) defined by
h ([0, w])-c= [0 ——aj'w (1)
for all simplicial chains ¢ € C, (K, Z) 1is an isomorphism satisfying dh = — hd.

Proof. First of all, & ([0, w]) is clearly well defined for all ¢ and satisfies
dh = — hd. If Rk ([0, w]) = 0, then for any representative (6, w) all residues
with respect to the chains of K are zero; we apply Proposition 2D to show that
[0, w] = 0; i. e, khis one-one. Now take any cochain f e Cr (K, 4) and express
it f=2a,f;, where f,(0;) = d;; (KRONECKER delta) with a;e A. Using
Proposition 2B we construct a (Z, r)-pair (0;, w;) on X with residue §,; on
g, and such that e (w) is the support of the cell ai in K, dual to o, and e (0) is
the support of 90}, . Then setting 0 = 2 a,0,, o = 2 a,w, (locally finite sums),
we have an (4, r)-pair satisfying

flc)=f6 ——afw (2)
for all ceC, (K, Z); thus & is onto, and the proof is complete.

Corollary. h induces an isomorphism h* of the r-cohomology module $(K, A)
derived from Cr (K, A) onto H™ (K, A) (and therefore onto HT (X, A)).

Remark. A proof of Theorem 4A can be given based on the above pro-
position and the construction of deformations of arbitrary (4, r)-pairs into
those relative to K. Such a proof parallels DE REAM’s original, with the elements
of € (K, A) playing the role of the ‘“‘elementary forms’; see DE REHAM [5,24].

(B) Let 5,, (K4, ©(A)) denote the module of locally finite simplicial p-chains
of K, with twisted coefficient domain ©(4). We construct an isomorphism
k: C,_.(K,B(4)) — € (K, A) by taking for each oriented (n — r)-cell 7 in
K, its (unique) orthogonal oriented r-simplex o; in K and defining k (7) as
the class of an (A4, r)-pair (6, w) constructed as in Proposition 2B, with
e(w)=]7|,e(0)=|07|, and R [(0, w), 0,] = d,; for all r-simplexes ¢,in K.
Compare the construction in Proposition 6 A below. Then

€ (K, A)_}i Cr (K, A)
k 4 | D
Co-r (Ky, ©(4)) (3)

is easily seen to be a commutative diagram of isomorphisms, where P is the cap
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product of an r-cochain with the fundamental n-cycle of X . As a consequence
of this and Proposition 5A we have the

Proposition. The class [0, w]e 3" (K, 4) if and only if the class contains
a pair (0, ) such that the singular set e (w) corresponds to an (n — r)-cycle of
K,,and e (0) =g.

Corollary. Every cohomology class of §™ (X, A) has a representative [0, w]
with 6 defined and closed on all X .

(C) Theorem. Given a closed smooth r-form 0 on X with periods (relative to &
base of integral r-cycles) in A, there is a smooth (r — 1)-form w on X — e (w),
where e(w) lies on an (n — r)-cycle, such that (6, w) is an (A, r)-pair.

Proof. Construct a simplicial subdivision K of X as in (A4), and let

feCr (K, A) be such that
f(z) = Jo (4)

for all ze Z, (K, Z). By the propositions in (A) and (B) there is an (4, r)-pair
(a, B) such that 1) f(¢c) = R[(«, B),c] for all ceC, (K, Z), 2) « is defined
and closed on all X, and 3) e (8) lies on an (n — 7)-cycle of K, . Now the closed
form 6 — « has zero periods relative to a base of r-cycles of K, whence by DE
RuAM’s Theorem there is a smooth (r — 1)-form y on X such that dy =0 — «.
Setting w = f§ + ¢, we conclude that R[(0, w),c] = R [(«, f), c] for any
ceC, (K, 4); in particular (6, w) is an (4, r)-pair on K and e (w) = e (f).

Taking A = R we obtain the following result of ALLENDOERFER [2, Theo-
rem 6]:

Corollary. Any smooth closed r-form on X is derivable from a smooth (r — 1)-
form with singularities lying on an (n — r)-cycle.

(D) Replacing (3) by its induced homology-cohomology diagram, we see the
role played by the A-pairs of forms in the PoINCARE duality of X (see CARTAN

[4, XX]). In fact, we have the

Proposition. The map k induces an isomorphism of H,_.(X,D(A)) onto
97 (X, A); furthermore, by this isomorphism the intersection of homology classes
corresponds to the product of elements in $ (X, 4); i. e,

k (-c_n—'r ° Zn——s) =k (En—r) Vk (En—s) )
where ¢, denotes the homology class of c,,.

6. Use of a RIEMANN meftric

In this section we will suppose that X is a closed smooth (or analytic) mani-
fold with smooth (or analytic) RIEMANN structure. Using the metric properties
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of X we will construct (4, r)-pairs (0, w) whose singularities are the supports
of a given (n — 7)-chain and its boundary; w (and therefore 0) are currents on X .
This implies that w and 0 have singularities of a special ‘“integrable’ type;
it follows easily that :n Theorem 4.4 we can replace € (X, A) by a cochain com-
plex based on pairs (0, w) which are currents on X . The construction is merely
a reformulation of the development of pE RuaM’s Intersection Formula [8,
p- 75]; we assume familiarity with the notations and results of that paper.
For further properties of harmonic forms with singularities, we refer to
Kobpaira [7, Chapter 4].

(A) For each r(0<r<n) let g,(x,y) be GREEN’s form on X; then
g, (x, y) is a symmetric double form (z # y) satisfying

dwgr (xa y) = Oyfry1 (xa y) s (1)

where 6, denotes the codifferential taken with respect to y. Recall that the
adjoint of a form on X is twisted (is of odd kind, in pE REAM’s terminology)
if X is non-orientable. Given any chain c,_, ¢8,_.(X, ©(4)) we associate a

smooth (or analytic) r-form @ (c,_,) =a« on X — |¢,_,| by the formula
G (Chy) = a(x) = j g- (x,¥%), (2)
en—r (¥)

the integration taken with respect to y (of a twisted form on a twisted chain
if X is non-orientable); then « is a current on X . It follows easily from (1) and
the properties of the adjoint operator that d,g, (z, y*) = (— 1)™1d,g,,,(x,y*),
whence « is closed (derived from a form of type (2)) if ¢,_, is a cycle (boundary).
Set w (x) = — 6§, « (z); because of the identity [8, p. 73]

dy 85 9r (2, y*) + dy by g, (¢, y*) = — b, (2, y¥) (3)
for a suitable harmonic double form %, on X (in fact, A, (%, y) is the kernel of
the harmonic projection operator), we have

do@) = [ 49.(x,y)+ [ he(x,y%) (4)

den—r(y) en—r(y)
on X-|c,_,|; the right member of (4) is actually an r-form defined on

X — | dc,_,|, which we denote by 6.
Given ¢, ¢ 8, (X, A) admissible for the pair (6, w), we have R[(0, w), ¢,] =

f f g, y+ §  § bz, g+ § [ b.9.(x,9%)

er(z) den-r(y) er(z) ep—ply) dep(%) en—yp(y)
= [ [d0,9.(x,y*)— § [ d,0.9.(x,y*%) ,
en—p(y) ep(2) cr(z) en—p(y)

the last identity being pE REAM’s integral expression for the algebraic number
¢, o¢,_, of intersections of ¢, and ¢,_,. Thus we obtain the
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Proposition. Given any chain c¢,_,e8, (X, D(A)) there is an (4, r)-
pair (6, w) on X with e (w) = |c,_,|,e(0)=|0c,_,|, and

R [(6, (D), c’r] = Cp 0 Cy_,

for any admissible chain c,e 8, (X, A). If c,_, is a cycle (boundary), then
(0, w) determines a closed (derived) pair, such that 6 is harmonic on X (18 zero).

If in (4) we make the substitution 4,9, (z, y*) = (— 1) 4,9, (%, ¥*)
we find that the defining expressions for both currents w and 6 are given in
terms of their HopgE decomposition; see [8, p. 65]. In particular we note that
although (6, w) is a pair, the current differential of w is not generally equal to
0 (considered as a current), for 6 = 0 if derived from a current.

(B) Let G: §,_,(X,5(4)) - C (X, 4) be the map constructed in Pro-
position 6A. If (§, w) is a pair defined by an (n — r)-cycle ¢, then the harmonic
r-form 0 (but not ) is unique in its cohomology and equivalence classes. For if
(6’, »’) is a second such pair which is cohomologous to (6, w), then 6’ and 0
have the same periods on a base of integral r-cycles of X, whence by HopgEr’s
Theorem we have 0’ = 6. In combination with the PoiNncarf Duality
Theorem we obtain the

Theorem. Let X be a compact smooth (or analytic) Riemany manifold, and let
A be an integral subdomain of R. Then every cohomology class of $HT (X, A)
can be represented by an (4, r)-pair (0, w) such that 6 is harmonic on X; further-
more, 0 18 unique in its cohomology class.
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