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L'équation des ondes avec second membre invariant

par Piebre-Dents Methée, Lausanne

1. Introduction

Dans un travail antérieur (Ml) ont été obtenues toutes les distributions,
au sens de L. Schwabtz, qui sont invariantes par le groupe des rotations propres
de Lorentz (en abrégé : invariantes) et qui vérifient Féquation (q -f- x)T 0

ou ô0, x désignant une constante complexe quelconque, ô0 la distribution de
Dirac relative au centre 0 des rotations dans jRw (n entier ^ 3) et le da-
lembertien

32 y 32

Nous complétons ici cette étude en déterminant une solution invariante
(l'existence d'une telle solution n'est pas évidente a priori) de l'équation

D + x)T Z, où Z est une distribution invariante quelconque.
On sait (Ml, p. 234) qu'à toute distribution invariante T dans Rn — 0 on

peut associer un couple (^,^3) de distributions sur la droite Ou (u est la
n-l

forme quadratique a?£ — Zx\) qui coïncident sur la demi-droite u<0, et,

réciproquement, qu'un tel couple définit dans R* — 0 une distribution
invariante1). De plus (Ml, p. 235), le couple associé à D T s'écrit {D/C^D/C*),

d2 d
où Dn est l'opérateur différentiel iu-j-- + 2n-j—r du2 du

II est donc indiqué de commencer par résoudre l'équation différentielle sur
Ou : (Dn + x) U F, où F est une distribution quelconque sur Ou.

2. Solutions usuelles de l'équation (Dx + h)y b et de l'équation adjointe

L'équation (D1 + h) y 0 admet pour système fondamental de solutions

où e^u) et ez(u) sont, respectivement, cosV^xu et —-/=—, fonctions

entières de u non nulles en w=0. Le wronskien de yx et de y% vaut (2u)~x • | u |

pour tout u t£ 0.

Dans (M 1), ^ et <Ci sont notées respectivement T+ et 5T-.
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D'autre part, l'opérateur adjoint t{D1 + x) de l'opérateur (Dx -f- x) est
égal à (Z>8 + x). On peut prendre comme système fondamental de l'équation
t(D1 + x)y 0 le système

S/* \u\~ll\(u) (2.2)

dont le wronskien vaut — (2u)"1 -\u\~"1/2.

La méthode de la variation des constantes fournit alors une intégrale
particulière pour les deux équations (Dx + x)y b, t(D1 -f- x)y b, à savoir:
pour

{Dx + x)y 6: y(u) i(yf J 6y*cft - y, J by*dt) XWo6 (2.3)

pour

*(DX + x)y b: y(u) %(y*$ bytdt — y* $ byzdt) X*Qb (2.4)

en considérant JSlMo et JC*o comme des opérateurs.
Soit €v l'espace classique des fonctions (d'une variable u dans notre cas) à

dérivées continues jusqu'à l'ordre p inclusivement. Soit S7S° l'espace suivant :

une fonction g(u)e!7S0 si

a) g(u) est continue pour u ^ 0,

b) lim |u|r-<7(w) 0 si petit soit r>0.

Lemme 1. Z*o applique £/?° dans c?0, et âp dans âp+1, si et seulement si

& 0. (2.5)
o

Ecrivons X*ob(u) %(fi(u) — fi(u)). Comme yx et y* sont des fonctions
entières, il est immédiat que fx(u)€<5° si b(u)eïA!0, que ti(u)€<^v+1 ^ b{u)c£*.

Considérons f2(u). La condition énoncée est nécessaire, car y\ ->oo si
u -> 0. Supposons-la vérifiée.

a) Si b{u)€9P, /2(w)€C?° si l'on définit /2(w) à l'origine par sa limite pour
u -> 0, laquelle vaut 0 comme on le voit facilement ;

b) de plus, pour u ^ 0, ff2(u) s'écrit, après le changement de variable
t ux dans l'intégrale:

î
ft(u) bexe2 + (ue[ — \ex)§ b(ux)e2(uz)xll*dx ;

o

si Ton définit f2 (u) pour tout u par cette dernière expression, il est immédiat
que f%(u)€<5* si b(u)€âp. D'où le lemme.
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Lemme 2. XUo applique 3tQ dans â°. XUo applique âv dans c?**1 si et seule-
ment si

Moftt O (2.6)

Démonstration analogue à la précédente. Remarquons encore que Xo satisfait
manifestement à la condition énoncée.

3. L'opérateur X*

Soit 9 l'espace des fonctions de la variable u indéfiniment différentiables à

support compact, et * (D1 + x) 9 le sous-espace de 9 formé des fonctions
t{D1-{-x)(p où ç>c9. Notons, d'autre part, JT'le sous-espace de 9'(dual de 9)
formé des distributions U vérifiant (Dt + x) U 0. On sait (Ml, p. 263) que
^est de dimension 3 et admet pour base l'ensemble des trois distributions

Ui PfVeVt > U* P/(l - y_e)y, U% ylt (3.1)

où ye(u) est la fonction de Heaviside valant lsi u>e, Osi u<e.
Pour toute fonction y* 9, on a

+ x)Ui,cpduy iUi,i{Dl + x)q>du> -
Les conditions

0f i=l,2,3 (3.2)

sont donc nécessaires pour qu'une fonction 6 appartienne à t(D1 + *)9.
Elles sont aussi suffisantes, en vertu d'un théorème d'algèbre (B, p. 50, proposition

10). Dans la suite, 0 désignera exclusivement une fonction de

*(Dt + h) 9

L'application de 9 sur t(D1 + x) 9 est biunivoque, car *(Di + x) q> 0
entraîne ç> 0. En effet, une fonction ç? satisfaisant à cette équation devrait
être égale, pour u ^ 0, à une solution (2.2) et avoir un support compact, ce

qui est contradictoire. Il suit de là que, pour toute fonction 0, l'équation
t(D1 + x)q> 6 possède une solution et une seule e9.

Montrons que la solution X* ^0 est cette solution. Elle est indéfiniment
o

dérivable, en vertu du lemme 1, puisque J Oy2dt 0 par orthogonalité de 0
— 00

à Ï72. Elle a même support que 0 ; c'est évident à gauche, et c'est vrai à droite

2) Nous considérons une distribution comme un courant de degré 0. La valeur de la distribution
T pour la forme a est notée {T,a >.
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00 00

parce que l'on a J 6yxdt 0 et J 6y%dl 0 d'après les conditions d'ortho-
— 00 —00

gonalité (3.2).
Désormais, nous écrirons simplement X* pour X* O0. On a donc :

^*0 MÏQVidt - yîSOy2dt) (3.3)
— oo 0

Remarque. On vérifierait facilement que, si une suite 0, de fonctions 0, à

supports dans un compact K, tend uniformément vers 0 ainsi que ses p — 1

premières dérivées, la suite de fonctions X*6j (à supports dans K) tend
uniformément vers 0 ainsi que ses p premières dérivées.

4. L'opérateur X

Considérons, pour une fonction h à variation bornée, l'opérateur X défini par

Xh(u) \(yi}(yt)'hdt - y2](yî)'hdt) (4.1)
0 ±a

où a est un nombre >0 arbitrairement choisi et où l'on prend pour limite
inférieure +a ou —a suivant que u est >0 ou <0. Xh(u) est une fonction

continue pour u ^ 0, indéterminée pour u 0. Mais on voit sans peine

que le produit \u\r-Xh(u) tend vers 0 avec u pour r>0, de sorte que X
transforme une fonction à variation bornée en une fonction c S/?0. On a, d'autre
part: dh

<~~, X*6du> (Xhjdu) (4.2)du

la dérivée --=-- étant prise au sens des distributions. On peut écrire en effet,

d'après (3.3):

<-2A, (X*O)'duy Jhdu((yïy]j6y2dt - (y*)' J 0yiA) (4.3)
— oo 0 —oo

Posons tt tt

0 ±a

la limite inférieure étant prise comme il a été dit plus haut. Décomposons
l'intégrale du second membre de (4.3) en deux intégrales, de — oo à 0 et de 0

à +oo. Une intégration par parties donne:

Jhdu((y*2Y •/fly,*) (*•«•/•*¦*)?- ÏH%6y%du
0 0 0 0 0

- Jhdu((y*)' /OftdQ (- ffi(«) •/0ViA)"+ Ï
0 -oo —oo 0 0
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Les parties tout intégrées sont nulles : à la limite +00, par orthogonalité de
0 à Ux et U3 ; à la limite 0, parce que, d'une part, Hx(u) s'annule à l'origine,

u
et que, d'autre part, comme on peut le vérifier aisément, J 6yzdt est un in-

0

finiment petit avec u d'ordre > 1 tandis que H2(u)*\u\* tend vers 0 avec u
dès que $>£.

En traitant de la même manière l'intégrale de —00 à 0, on obtient

<- 2K9(X*0)'du > jH^du - jH2dy2du

ce qu'il fallait démontrer.

5. Recherche d'une solution U de (Dx + x) U F, avec F distribution

quelconque sur Ou

La condition nécessaire et suffisante pour qu'une distribution U soit solution
de cette équation est qu'elle vérifie, pour toute fonction q>€ Q:

x)U,<pduy <U9t(D1 + x)<pdu} {
donc

(5.1)

Dans le cas particulier où F est une fonction geS^° (resp. âv)y une solution c c?°

(resp. <5P+1) est Xog, car

{D1 + x)X*0du} <(DX + x)XQg,X*0duy

<g,X*Oduy (5.2)

puisque (Dx + x) Xog g pour m ^ 0.
Soit F quelconque. Choisissons trois fonctions 9^ de Q telles que (Ui9
(5^ (iw symbole de Kboneckeb; f,7 1,2,3), et posons

La fonction 2iç> est orthogonale à chacune des distributions Ui9 donc elle

appartient à ^Dj + «) 9.
(Considérons alors la forme linéaire

(5.3)
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C'est une distribution : si <p -> 0 dans0, L<p-*O dans 3, et aussi X*Lq>
(remarque du numéro 3). C'est une solution de l'équation : elle vérifie (5.1), car
£0 0. Toute autre solution s'obtient par adjonction d'une combinaison
linéaire des V\ définies par les formules (3. l)3).

On peut dire plus. Désignons désormais par / un intervalle — %<w<% de
Ou (ux > 0 quelconque). Une distribution sur Ou est toujours continue d'ordre
fini dans / (SI, p. 85). Soit p l'ordre de continuité de F dans /. D'autre part,
<p représentant le support de ç>, choisissons (ce qui est toujours possible) yx dans

In(u>0), <p2 et ç>8 dans /^ (u<0). La solution (5.3) possède alors les deux

propriétés suivantes :

a) elle est continue d'ordre p — 1 dans / (car, si <pczl, X*Lq> Lcpczl,
et l'affirmation résulte de la remarque du numéro 3) ;

b) F 0 sur u<0 entraîne £7 0 sur u<0 (car, si

X*Ly L<pcz (u < 0) en vertu du choix de q>2 et ç?3 et du fait que Ut est nulle

sur u<0).
On peut maintenant démontrer le

Théorème 1. Soit m entier > 0 quelconque. Si p est Vordre de continuité de V
dans I, il existe toujours une solution U de (Dt + n)m+p+z U V telle que:
a) Ueë™ dans /, b) sur u<0; F 0->Z7==0.

En effet, la distribution Uo définie par

<U0,(pdu) (V,{X*LY<pdu>

est solution de (Dx + x)pU F, et de ce qui vient d'être dit pour (5.3) il
suit que Uo est continue d'ordre 0 dans /, et nulle sur u<0 &i V l'est.

Or, on sait que Î7O peut s'écrire -=— dans /, où h est une fonction à variation

bornée. Soit U la solution de (Dx -f- x) U Uo fournie par (5.3); on a :

<U,<pdu> <U0,X*L<pdu>

ou, dans /, en vertu de (4.2) :

<<JJ, <pdu) <r-,

(Xh^du) -
3) Cette méthode est une généralisation naturelle de celle utilisée par L. Schwabtz

pour déterminer la primitive d'une distribution (SI, p. 52). Elle a déjà été suivie pour d'autres
équations différentielles (cf. G).
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en notant &, la constante (Xh^idu}. La distribution

U 17 + 274,17,

est encore une solution de l'équation. Elle se réduit manifestement dans / à

Xh € 91* ; elle est nulle sur u < 0 si Uo l'est. En effet, sur u<0: Uo 0 -> U
0 (propriété de (5.3)); U1 est nulle par définition; enfin, comme on peut

prendre h 0, XA est nulle (définition (4.1)), ce qui entraîne k2 &3 0

par le choix de <p2 et de ç?3.

Un raisonnement analogue, avec utilisation de Xo et de (5.2), mène à une
solution qui, dans /, est une fonction c <?°, puis, par itération, on passe à une
solution e <f> dans /.

6. Problème analogue pour (Z>2 + x) U V

On résout cette équation par une méthode en tous points semblable à celle

qui vient d'être suivie dans les numéros 2 à 5. Seuls les calculs diffèrent légèrement.

Nous nous contenterons de donner les définitions (en gardant les mêmes
notations pour les quantités correspondantes), et les résultats.

Ce cas a ceci de particulier que t(D2 + x) (D2 + x), de sorte qu'il est
inutile d'introduire des fonctions ou opérateurs astérisques.

L'équation (D% + x)y 0 a pour système fondamental usuel

Vx eiW > #2 ei(u) logM + et(u)

où ex et e2 sont des fonctions entières de u, non nulles à l'origine. On pourrait
prendre, J, F et if étant les fonctions classiques de Bbssel :

y% |
î/2 nYQ(Vxu) pour «et u>0, —2K0(\/x\u\) pour x>0 et u<0. J

Une solution particulière s'écrit, pour l'équation (D2 + x)y b, sachant

que le wronskien de yx et y2 vaut —:

y(u) Xtt,b(u) îteJbyidt - yl]byidt}
Uo u0

Aux énoncés des lemmes 1 et 2 se substitue renoncé unique : XU0 applique
dans c?°, et €9 dans é?**1, si et seulement si

J byxdt 0
o
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Les distributions solutions de (Da + x) U 0 sont (Ml, p. 267) les
combinaisons linéaires de

La fonction XO X^d est encore l'unique solution c2 de l'équation
2 + k)ç> 0, avec ç>e9, d€(Dz + k)<3.
On définit X par;

±a 0

et cet opérateur transforme encore une fonction à variation bornée en une
fonction c£^°.

La distribution
(V,XL(pdu>

est une solution particulière de l'équation (D2 -}~ x)U V, et qui possède
encore les propriétés a) et b) du numéro 5, les fonctions <pt étant choisies de la
même manière. Il en résulte que U théorème 1 reste vrai pour l'opérateur (D2+ x).

7. Cas général: (Dn + x) U F

Notons n le nombre valant \(n — 1) si w est impair, £(w — 2) si w est pair,
et y le nombre valant 1 si n est impair, 2 si w est pair.

On a l'identité ;

-~.J"= f JLV'(Dy + *)« g entier

Théorème Ibis. Soit m entier ^0, et I un intervalle — %<w<% sur Ou.
Pour q assez grand, il existe une solution U de (Dn + x)qU F telle que ;

a) ï/€<f> dans 19 b) sur u<0: F 0 -> Î7 0.

Soit, en effet, F une primitive d'ordre n de F - qu'on choisit nulle sur u < 0

si F est nulle sur % < 0. D'après le théorème 1, l'entier m et l'intervalle / étant
donnés, on peut trouver en choisissant q assez grand, une solution U de

qui est une fonction c &*+* dans J, et qui est nulle sur u < 0 si F l'est. H suit

immédiatement de l'identité que la distribution 17= (-r—I # vérifie les
conditions du théorème. ^ '
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(d \* <+>

-r—J Xo g est

une

8. L'équation des ondes avec second membre invariant

Nous allons déterminer une solution invariante de (a + n)kT Z, où Z
est une distribution invariante quelconque dans R* et k un entier > 0.
Commençons par deux remarques.

Remarque 1. Si Z est une fonction p fois (p ^ 0) continuement différen-
tiable de u dans JR™, il existe toujours une solution T de (D + k)T Z qui
est une fonction p + 1 fois continuement différentiable de u dans JSn. Soit, en
effet, / l'application qui envoie le point (xl9..., xn) de Rn sur le point de la

n—1

droite Ou d'abscisse u a£ — 27 a} On a, par hypothèse, Z /*gr, avec

gr fonction de w sur Ou appartenant à €<f?p, et f*g image transposée de g

par /. On peut prendre T /* (-7—1 -X^ qui possède bien la propriété

indiquée, car (cf. fin du numéro 7, et M1, p. 235) :

+ X)T f*(Dn +

Remarque 2, Une distribution invariante de support 0, qui est de la forme
L
Sat nlô0 (M 1, p. 230), peut toujours s'écrire (d + x)qF, où F est une

fonction continue de u dans jBw et q un entier > 0. En effet, ô0 est un dalem-
bertien itéré d'une fonction continue de u (cf. SI, p. 51, form. II, 3 ; 34; cf.

n-i-l
aussi M 1, § 7 et 8 : des formules données, on déduit aisément que D 2 S1

n+2

pour n impair et n 2 S2 pour n pair sont proportionnels à d0). D'autre part,
i

avec des constantes cm convenables, on a : D1 Ecm(u + #)m • Grâce à la

remarque 1, on met alors toute combinaison Eat n1 ô0 sous la forme indiquée.
Celle-ci n'est évidemment pas unique: q est au moins égal à L + \{n + 1)

si n est impair, ou L + %(n + 2) si w est pair, mais on peut prendre ce nombre
aussi grand qu'on le désire.

Soit (Zt,Z9) le couple sur Ou associé à Z dans R* — 0 : Z% — Zz 0 sur

D'après le théorème Ibis, pour tout nombre q0 assez grand, et / étant un
intervalle —%<%<% sur Ou, on peut trouver une distribution 'Si sur Ou,
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fonction continue dans /, vérifiant (Dn + xf0^ Zl9 et une distribution
'Ci — 'ZTa, fonction continue dans / et nulle sur u<0, solution de

Autrement dit, rC1 et ^z sont des fonctions continues dans I, coïncident sur
u<0, et satisfont respectivement à (Dn + x)90^ Zx et (Dn + x)qo(77s=Z3.

Le couple fCi,^) définit donc, dans JR^ — O, une distribution invariante
To, fonction continue de u dans le domaine f^1I^(Rn — 0), vérifiant

+ x)q»T0 Z dans Rn — 0.
Comme /-1! est un voisinage du cône w 0, To se prolonge par continuité

en 04). Notons encore TQ ce prolongement.
La différence D + x)q° To — Z est une distribution invariante de

support O, bien déterminée, donc (remarque 2) de la forme + x)QlFi, où F±
est fonction continue de u dans Bn. L'entier k > 0 étant donné, prenons g0 >&
et qi>k. La distribution

T (a + x)q°~kT0 - (a + x)q*~1cF1 (8.1)

est alors une solution invariante de (d + ^)* T Z.
En reprenant un raisonnement connu (S 3, p. 9-01), on détermine aisément

une solution invariante de l'équation (P( + x))T Z, où P(x) est un
polynôme quelconque en x. En effet, supposons P(x) de degré p, et soient x{
(i 1,..., p) ses racines. On peut écrire, en décomposant en éléments simples

i y a tv r \-fc
P(x)

Dans cette somme sur i et k, les Aik sont certaines constantes, on donne à i
toutes les valeurs correspondant à des racines xt distinctes, et pour chacune de

ces valeurs on fait varier k de 1 jusqu'à l'ordre de multiplicité de la racine x{.
Posons Pi1e(x) P(x){x — xt)~k. On a les identités opératorielles

P(D + x) (D + ^^^(D + x) avec «, * — xt

Notons Tih une solution invariante de (d + xi)kTik Z, et soit

T ZAitkTitJt (8.2)

T est encore une distribution invariante, et vérifie (P(D -\- x))T Z, puis-

*) On adapte ici à l'opérateur D + « une méthode déjà utilisée par G. de Rham (R1, p. 352).
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que l'on peut écrire :

(P(D + x)) ZAiikTiik EAithPuh(u + x)(a + x^Ti%h

ZAithPith(u + x)Z Z
On a ainsi le

Théorème 2. L'équation (P(n + x))T Z, où Z est une distribution
invariante, P un polynôme, admet toujours une solution invariante. Les formules
(8.1) et (8.2) définissent une telle solution.

D'autre part, soit q sup {?0>?i}« Comme To est fonction continue de u
dans /"*/, on pourra toujours, dans ce domaine, en se servant de la remarque 1,

écrire Z + x)q(T — F), avec T — F fonction continue de u. D'où un
théorème de «structure locale» des distributions invariantes :

Théorème 3. Dans tout domaine —%<%<% deRn (u^O), une distribution
invariante est le (d + x) itéré d'un certain ordre d'une fonction continue de

Vinvariant u.

9. Extension des résultats au cas ultrahyperbolique

Désignons maintenant par l'opérateur ultrahyperbolique

92 32 92 32

où p>l et n — p>l. Soit G le plus grand groupe linéaire connexe qui laisse
invariante la forme quadratique

Les théorèmes 2 et 3 sont encore vrais dans le cas ultrahyperbolique, u étant
défini par (9.1) et invariant signifiant invariant par G6).

En effet, on sait (R1, p. 351) qu'à toute distribution invariante dans Rn — 0
on peut associer une distribution sur la droite Ou (au lieu d'un couple coïncidant

sur u<09 dans le cas hyperbolique), et, réciproquement, qu'une
distribution sur Ou définit dans Bn — O une distribution invariante.

Comme Dn (introduit au numéro 1) est encore l'opérateur sur Ou associé à n
(R2, p. 12), on est ramené, comme dans le cas hyperbolique, à résoudre l'équation

sur Ou (Dn + x) U F. Le théorème Ibis reste donc utilisable.
D'autre part, dans le cas ultrahyperbolique, les distributions invariantes de

support O sont encore les combinaisons linéaires des Dld0 (R2, p. 23), et ô0

B) On se reportera à (RI) et (R2) pour Pétude des distributions invariantes dans le cas
ultrahyperbolique.
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est encore un dalembertien itéré d'une fonction continue de l'invariant u (cela
résulte aisément des formules de R2).

On peut donc suivre un raisonnement analogue à celui du numéro 8, et
parvenir aux mêmes énoncés.
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