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Cohomology Opérations derived from Cyclic Groups*)

by N. E. Steenbod, Princeton (N. J.), and Emeby Thomas, Berkeley (Cal.)

§1. Introduction

In a previous paper [2], Steenbod defined a family of cohomology opérations,

called reduced powers, each being associated with some permutation group.
It was also shown that thèse opérations hâve a basis, in the sensé of composition,

consisting of, firstly, four primitive types of opérations (which are : addition,

cup-product, homomorphisms induced by coefficient homomorphisms,
and Bockstein-Whitney coboundary operators) and, secondly, those reduced

powers associated with cyclic permutation groups having degree p and order p
where p ranges over primes.

In this paper, we shall improve the resuit by showing that there is a smaller
basis consisting of the same primitive opérations and only particular opérations

associated with cyclic groups : namely, for each prime p the cyclic reduced

powers

2» : H«(K ;Z9) -* H*+"<*-»(K \ZP) $ 0,1,...,
and the Poisttbjagin pth. powers

The latter were defined for p 2 by Pontbjagin [1], and generalized for
p>2 by Thomas [5]. When p 2, £P% is usually written Sqat.

Throughout the paper an elementary cohomology opération will mean one
which is a composition of opérations of the four primitive types.

§2. Récapitulation

Let p be a prime, and n the cyclic permutation group of order p and degree p.
The reduced power opérations based on n are obtained as éléments of coho-

mologygroups H'(WQmM>*G) (2.1)

In this expression W dénotes a rc-free acyclic chain complex, 0 is any coefficient

group, and M is a cochain complex having two free generators u,v of
dimensions q,q + 1, respectively, and the coboundary relation

du dv (2.2)
*) Work supported in part by U. S. Air Force Contract AF 18 (600)-1494.
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where 0 is an integer > 1. Finally, n acts on Mp M ® • • • ® M (p factors)
by cyclic permutations of the factors. Then an élément £ of the group 2.1
détermines a cohomology opération

S: H*(K;Ze)->H'(K;G) (2.3)

defined for ail complexes K.
We refer to Zq G as the initial and terminal coefficient groups respectively.

In a paper by Steenrod [3], it is shown that a basis for cohomology opérations
is provided by the four primitive types and those opérations whose initial and
terminal coefficient groups are cyclic of infinité or prime power order. Thus
we hâve only to consider the cases 0 0, 6 a prime power, and G Zm
where m 0 or m a prime power. In case 0 0, the cochain complex
M is simplified by setting v 0 ; then Mp is a cyclic group generated by the
cocycle up.

Since the group 2.1 is independent of the choice of W, we shall choose the
simplest known rc-free acyclic complex W. Let T dénote the generator of n
which moves each factor of Mp one step to the right and moves the last factor
to the first position. In the group ring Z(n) set

A T - 1 and S E T* (2.4)

The group of r-chains (r 0,1,...) of W is the jr-free module having one
generator er (i. e. as a complex W has a single r-cell and its distinct transforms
in each dimension r). The boundary operator in W is defined by

de2i+1 Ae2i 3e2t+2 27ew+1 i 0,1,... (2.5)

Since each of A, E générâtes the annihilator of the other in Z(n), it follows
that W is acyclic.

We hâve therefore, the problem of Computing the cohomology of the spécifie
cochain complex W ®n Mp. Speaking roughly our method consists in re-
ducing the complex to normal form and reading off the results. We must
distinguish spécial cases depending on the integers p, q, 6, m, r, principally,
p 2 and p>2, q odd and q even, 0 0, 0 pk and 0 prime to p. The
case 0 0 will be obtained as a subcase of 0 pk by the device of setting
v 0.

§3. The ease 0 prime to p

In case 0 is prime to p, we will show that each $€Hr(W<8)n MPÇ$G) gives an
ékmentary opération. In aU subséquent sections it will be assumed that 0 is a
power of p.



Cohomology Opérations derived from Cyclic Groups 131

Let a be the subgroup of n consisting of the unit élément. Then W is cr-free,
and

g
Mp W® Mp-+

where g m the natural factorization. In [2 ; 10.4] it is shown that

3.1. Each élément of Hr(W ® MP®G) defines an elementary opération.
If we now apply the resuit [2 ; 3.4], we hâve

3.2. Each élément of the image of

g*: H'(W®Mp®G)->H'{W®nMp®G)
defines an elementary opération.

As a corollary we hâve

3.3. Each cocycle of W®nMp®G of the form eo®nw} where w is a cocycle

of MP®G, defines an elementary opération.
Now let r dénote the transfer chain transformation defined relative to the

subgroup a of n (see [2 ; 11.1]

r: W®nMv -> W® M*

Since p is the index of a in n, [2 ; 11.2] gives gr p where p means multiplication

by p. Passing to cohomology with coefficients in G, it foliows that
g* t* p ; and therefore

3.4. Each élément of Hr(W'®nMvÇ§G) which is divisible by p defines an
elementary opération.

Assume now that 6 is prime to p. Then there are integers a, /? such that

ocO + fip 1

Consider now the cochain mappings M -> M which are multiplications by
ad, Pp and 1. We construct a cochain homotopy D of ftp into 1 by setting

Du 0 Dv au

The relation ôD + Dô <x6 1 — ftp follows directly. By [2; 5.2], we
hâve that

is cochain homotopic to the identity. If we tensor with G and pass to coho-

mok>gy> it follows that each élément of Hr(W®nMp®G) is divisible by
(fip)p ; and so by 3.4 it defines an elementary opération.



132 N. E. Stbbnrod - Embby Thomas

4. The case p 2 and y even

We shall give a normal form for the complex W' ®nM2, i. e. we express it as

a direct sum of elementary subcomplexes each with two generators, say x and y,
and a coboundary relation of the form ôx ky.

In M2 we shall abbreviate u®u byw2, u®v by uv, etc. Then M2 has the
four generators u2, uv, vu and v2. Since (î7^)®^ ej®JT-1w, it follows
that W®n M2 has the generators eô®nu2, ej®nuv, ei®nvu and e^®nv2
for ail y'^0. Recall that the définition of the grading of a tensor product of
a chain and a cochain complex [2; 2.2] gives dim^.®^) dimw — j.
Hence, in the highest non-zero dimension 2 (q -f- 1), there is just one genera-
tor, and we set

* (4.1)

In the dimension 2q + 1 there are three generators, and we define a uni-
modular transformation to a new basis a0> ^0, y0 by the matrix

A

a0

1

-1
0

0 — |0
1 *— (s

0 1

(4.2)

By virtue of § 3, we are working under the assumption that 6 is a power of
p 2, so — | 0 is an integer. The déterminant is 1, hence a0, /?0, y0 form
a basis in this dimension.

In the dimension 2q, we hâve four generators, and we define a new basis

b0, c0, olx <?! by the unimodular transformation

1

0

0

0

e

i
i
0

0

0

i
0

0

0

0

1

(4.3)

In the dimensions 2q — 2i for

at+i ^y the unimodular matrix
^l, we define new generators
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e2i<8>nu2 e%w0nuv eZi+1<g)nvu

133

1

0

0

0

0

1

1

0

0

0

1

0

0

0

0

1

(4.4)

Finally, in dimensions 2q — 2% + 1, for i^t 1, we define new generators

A

a4

1

0

0

0

4«
1

— 1

0

4»
0

1

0

0

4«

-0
1

(4.5)

With this new basis the coboundary in W ®nM% takes the normal form

ôdi — 2^ i^O (4.6)

(4.7)

(4.8)

(4.9)

ddi=^ôi i^l (4.10)

As an example, we compute 4.7 in détail.

+ uv)
since q is even.

Now use A i

Therefore

(de1)®nuv —

(Aeo)0nuv —

— 1, and i. Then

w2 + det®nuv)

10 Commentaril Mathematici Helvetici
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The computations of the other coboundaries are similar. It should be pointed
ont that the assumption that q is even is used in obtaining the relations

Tu2 u2 Tv2 — v2 ô(u2) 0(vu + uv)

Using this normal form, we can now read off the cohomology of W®nM2 ;

it is the direct sum of the cohomologies of the subcomplexes 4.6 to 4.10.
Obviously 4.9 and 4.10 are acyclic complexes, and their cohomologies are
zéro. Before treating the other three, we will prove a lemma which greatly
reduces the task of showing that the cohomology opérations corresponding to
the various cocycles are compositions of the opérations specified in § 1. In partie-
tdar the lemma éliminâtes the need of considering various terminal coefficient
groupsZm.

4.11. Lemma. Let N be an elementary subcomplex of W®nMv generated

by x, y with àx ky. Then the cohomology opération which corresponds to any
cocycle of N®G is a composition of elementary opérations and the opération
corresponding to the cocycle x mod h.

Let us recall the way in which a cocycle of W®nMp corresponds to a

cohomology opération on an élément ûeHq(K\Zo) (see [2; § 2]). A map-
pingy> : M ->.£* representing u is chosen (i. e. ipu is a cocycle of the class u).
Then y) détermines a mapping

<py>:

which induces a cohomology homomorphism

0: Hr(W®nM»®G)-+Hr(K;G)

If i€Hr(W®nMp<8)G)y then £(«) is defined to be *(f). Now let

be the class of the cocycle x mod&. Then q>\p(x) is a cocycle of the class

| (u) €Hr (K ; Zk). Therefore <py \ N : N -> K* represents f (u). Apply now
[2; Lemma 10.1] which asserts that the image H*(N®G) ->H'(K;G) is
generated by f (u) and elementary opérations. This proves the lemma.

By virtue of the lemma, it suffices to identify the cohomology opérations
corresponding to the cocycle 60 mod 20, the cocycles b4 mod 2 for i ^ 1, and
the cocycles a4 mod 2 for i ^ 0. Now

corresponds by définition to the Pontrjagin squaring opération ^2 (see

[5; 3.4]). And
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corresponds by définition to the cyclic reduced square Sq2t Sqq~~2i (see

[2 ; p. 6] and [4 ; § 4]). If it is felt désirable that Sq2i should operate only on
cocycles mod 2, then the opération represented by 6t. can be written as

Sq2t% where rj : Z% -> Z% is réduction mod 2. Note that Sq5~2< has an even
superscript since q is even.

It remains to identify the opération corresponding to the cocycle a{ mod 2.
Let <5* dénote the Bocksteik coboundary operator corresponding to the exact

0

séquence 0 -> Z->Z ->Ze -> 0. If U€H«(K;Zq) andyr. Jf->Z* re-
presents u, then \p(v) represents ô*û; and finally (py>{e2i+i®nv2) represents

Therefore a€ corresponds to the cohomology opération Sqfl"~2* (5*. Note again
that the upper index is even.

In the spécial case 0 0, we set v 0, and then W(&nM2 is in the
normal form 5(®2) °

The cocycle eo<g>nu2 corresponds to the opération of squaring in the sensé of
the cup product (see 3.3 and [2; 10.2]). As before e2i®nu2 mod 2
corresponds to Sq«-2<.

§ 6. The case p 2 and q odd

The change in the parity of q affects both the coboundary operator and the
action of T in M2. For the latter we hâve

Tu2 — u2 Tuv vu ï7^ ut; Tv2 v2

Starting with the same generators of W®nM2 as in § 4, we reduce to normal
form as foliows. In the highest dimension 2q + 2, we hâve one generator,
and we set

In the dimension 2q + 1, we define a new basis by the unimodular
transformation

<*0

1

— 1

0

0

1

0

0

0

1
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In aU dimensions 2q — 2i for i ^0, we define a new basis by the unimodular
transformation

1

0

0

0

-p
1

1

0

0

1

0

0

e

i

In ail dimension 2q — 2i + 1 for
modular transformation

1, we define a new basis by the uni¬

i
0

0

0

0

i
— i

0

0

0

1

0

0

0

0

1

In the terms of the new basis, the coboundary relations become

<5c0 0yo

ôbt - 2ft
dat 2<xi

dCi y,.

The last two subcomplexes hâve zéro cohomology. By 4.11, we need only
identify the cohomology opérations corresponding to the cocycles c0 mod 6,
at-mod 2, and b4 mod 2. Now cQ e0®nuv defines an elementary opération
by 3.3 (it is in fact the opération u -+û^>ô*û where d* is the obvious Bock-
stetn).

By définition, b4 e2i^i®nu2 is the cyclic reduced square

Sqg,.^ Sq«~2<+1

Since q is odd, q — 2% + 1 is even. Again the opération may be written
where w is réduction mod 2.
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The cocycle a{ e2t+2®«v2 mod2 can be identified with

exactly as the cocycle a{ of § 4. Again the upper index of the square is even.
In the spécial case 6 0, we set v 0 and then W®nM2 is in the

normal form
2) - 2e2i<g>nu* i^O

As above the cocycle e2i+1®nu% mod2 corresponds to the opération Sq^"2*"""1.

We may summarize our results in the case p 2 as follows. The only
opérations needed in addition to the elementary opérations are the squares
Sq2< (i>0) when q is odd or 0 0. When q is even and 6 2*, the Posr-
TEJAGiNr square is also needed.

§6. The automorphism g* of H(W ®nMp)

We assume henceforth that p is an odd prime. Our analysis must take
account now of a phenomenon not présent when p=2, namely : n is a proper
subgroup of the symmetric group cF^ of degree p. If stcgccS^, and U is a
£-free acyclic complex, then the inclusion nczq induces a homomorphism

h*: Hr(W®nMp®G) ->Hr(U®QMp®G) ; (6.1)

and, for any élément | on the left, the cohomology opérations corresponding
to f and h* (f coincide (see [2 ; 3.4]). In particular, if £ is in the kernel of h%,

the corresponding cohomology opération is zéro. The aim of this section is to
show that certain explicit éléments belong to ker h% when q is the normalizor of n
in Sv. It is a fact that thèse éléments generate the kernel even for q c5^ ;

but we omit the proof of this since the proof is complicated and the fact is
not needed.

We need at this point of the discussion a spécial case of a rather gênerai
proposition. Because it is just as easy and less confusing to présent the latter,
we shall do so. We shall consider objects (q,A) where q is a group, A is a
cochain complex, and q opérâtes as automorphisms of A. By a mapping f of
(q,A) into another such (cr,JB), we mean a homomorphism q ->or and a
cochain mapping A -> B, both denoted by /, such that

f(xa) f(x)f(a) for xeq, aeA. (6.2)

Thèse objects and mappingsform a category. A pair (g, G) where G is a ^-module

may be regarded as an object of the category by treating G as a cochain

complex having just one non-zero cochain group in the dimension zéro. Now
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the ordinary homology theory of groups, developed for this subcategory of
pairs (q,O), can be extended to the entire category in a fairly obvious way.
We shall review this extension briefly.

Let U be a g-free aeyclie chain eomplex. Defining the cochain complex
U®QA as in [2 ; 2.2], we proceed to show that Hr(U®QA) is independent
of the choice of U. If / : (q,A) -> (a,B) is a mapping, and F is a a-free acyelic
chain complex, let q operate on F through / : q -> a. Then the fundamental
lemma (see [2 ; 2.7]) gives a chain mapping /# : U -> F satisfying the equi-
variance condition

c€U. (6.3)

It follows that /#®/: ï7<8>-<4 -» F® jB induces a chain mapping

/*: U®QA-+V<8>aB (6.4)

and thereby induces homomorphisms of cohomology

/*: H'(U®QA)->Hr(V®aB) (6.5)

The second part of the fundamental lemma asserts that any two equivariant
chain maps /#, /^ of U into F are connected by an equivariant chain homo-

topy D. Then D®Qf gives a cochain homotopy of /* into /#/. Therefore /*
is independent of the choice of /#.

An obvious property of /* is

/ identity map of (q,A) implies /* identity. (6-6)

For /# can be taken as the identity.
Let/: (q,A) ~> (a,B) andgr: (a,B) -^ (r,C) be mappings. Then

(gf)*=9*f* • (6.7)

For, having chosen g# and /#, we may choose (<?/)# to be the composition

Now let U, V be two g-free acyelic complexes. Corresponding to the identity

map/of (q,A), we obtain two induced homomorphisms

whose compositions in either order again correspond to / by the property 6.7.
Then 6 6 asserts that both compositions give identity maps. Therefore the
various choices of the g-free acyelic complex U give a family of cohomology
groups, any two connected by an isomorphism, and the family of thèse iso-

morphisms is transitive by virtue of 6.7. As is customary in such a case, we
identify this family of groups with a single group. To emphasize its analogy
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with the ordinary homology group of a group, we shall call it the rth homo-
logy group of q with coefficients in A, thus :

(6.8)

If / : (g,A) -> (a,B), then 6.5 becomes

/„: Hr(eîA)-+Hr(o;B) (6.9)

It is clear that 6.6 and 6.7 continue to hold for the induced homomorphisms
taken in this more gênerai sensé.

A mapping /: (q,A) -+ (q,A) is called an automorphism if both mappings
q -> q and A -> A are automorphisms. Then / has an inverse mapping, and
we may apply 6.7 and 6.6 to conclude that /* is an automorphism of Hr (q ;A).

The inner automorphism / corresponding to an élément ycg is defined by

f(x) =yxy~x f(a) ya9 X€Q, a€A. (6.10)
Then we hâve

/ an inner automorphism implies /* identity. (6.11)

To see this, let /# be the chain mapping U -> U defined by /# (c) yc. Since

the equivariance condition 6.3 is fulfilled. Then

(/? ®/)(c®a) f*c®fa yc®ya y(c®a)

This implies that the induced mapping /* of U ® QA into itself is the identity ;

and so /* identity.
This complètes the discussion of the gênerai theory, and we return now to

the spécial case with which we began this section. In applying the above
results, we take

in this case n, its normalizor q, and the symmetric group ç$9 operate in A by
permuting the factors of Mp and acting as the identity in G. Let y be any
élément of q, let f be the corresponding inner automorphism given by 6.10,
and let g be the automorphism of (tc,A) obtained by restricting /. Let h:
{n,A) -> (q,A) be the inclusion ncq and the identity on A. Obviously

hg^fh (6.12)

If we pass to the induced homomorphisms and apply 6.7 and 6.11, we obtain

A*jr* =/***=*•• (6.13)



140 N. E. Steenrod - Embby Thomas

Thus we hâve proved

6.14 Lemma. // g% is the automorphism of Hr(W(&nMv®O) determined
by any élément y of the norrnalizor Qofn, then g* | — £ belongs to the kernel of h*
where h is the inclusion ticlq and £€Hr(W®nM*®G). Thus, as remarked
after 6.1, the cohomohgy opération corresponding to g% | — f is zéro.

In order to use the lemma efïectively in computations, we shall choose an
explicit y and a corresponding chain mapping g#. Let the factors of Mp be
numbered 0,1,..., p — 1 so that the generator T of n can be described as
the transformation T(i) i + 1 modp in terms of integers. Let k be a
primitive root of the prime p (i. e. W 1 mod p implies that j is a multiple
of p — 1). Let y be the permutation of 0, 1,..., p — 1 defined by

y{i)~kimoàp (6.15)

Then y~x(i) kp~2i mod p, and this gives

Tk (6.16)

Thus y belongs to the normalizor q of n. (Since the order of y is p — 1, it is
a generator of qJtz.) If we arrange the integers 0 to p — 1 in the order

0, 1, £,*«,...,4»-» modp

it is seen that y leaves 0 fixed and permutes the remaining p — 1 éléments
eyclically. This shows that y is an odd permutation because p — 1 is even.
Therefore

yu* (— Vpu* yv» (— l)*wv* (6.17)

Letting W be as in § 2, we define a chain mapping gr# : W-> W by speci-
fying first its values on the ^r-basis {e^} :

g*e2i ¥e2i ^#6a+1 k^T^e2i+1 i^O (6.18)
TO-0

Then, for each « 1,. •., p — 1, we set

(6.19)

From this it follows that gr# satisfies the equivariance condition 6.3 for the
automorphism 6.16 of n. It is now an easy matter to verify g#d 9<7#. Then
the resulting chain transformation g* of W®nMp (see 6.4) is defined by

)^(g*e)®nyc (6.20)

Thèse spécifie calculations will be needed in sections 8, 9, and 10.
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§ 7. The décomposition: W ®nMp Lx + L + L2

As a first step in analysing the structure of W®nMp (p odd), we shall
décompose it into a direct sum of three cochain subcomplexes as indicated
above. Of importance is the fact that each is transformed into itself by the
g* of 6.20.

A cochain of W ®nMp is said to be in canonical form if it is written J£ iti ®nci
where ci is a cochain of Mp. Since Te®nc e<8)nî7~1c, each cochain has one
and only one canonical form.

Recall that Mp has ail cochain groups equal to zéro save in the range pq to
p(q + 1) inclusive, Cpq{Mp) has one generator up, and Cp{q+1)(MP) has one
generator v9. In the dimensions pq + j for Q<j<p, Mp is generated by
products having p — j factors u and j factors v. Therefore n opérâtes freely
in thèse dimensions.

Let us adopt the convention that the index j of the canonical cochain

ei®nci signifies that c^ has dimension pq + j. Thus ci is zéro unless O^j^p,
cQ is a multiple of up, and cp is a multiple of vp. In the highest non-zero dimension,

a canonical cochain has a single term eo(g)ncp. In dimensions pq + j
for 0<j<pt a canonical cochain has p — j + 1 terms

«o®»^ + «i®««i+i + • • •+ e*-*®*^ (7.1)

and in ail dimensions ^pq, it has p + 1 terms

«.®«co + et+i ®*cx H h e8+p ®ncp (7.2)

We define Lx to consist of ail cochains having canonical forms of one of the
two following types for some i^ 0 :

«2i+2 ®* c0 or eM+1 ®w c0 + e2i+2 ®ff — ^c0 (7.3)

The second type is described explicitly by requiring c^ 0 for / > 1, and

cx — ôc0 (recall that any coboundary in M9 is divisible by 0, and 6 is a

power of p). Since 27tt* up, it follows that ZcQ pc0 ; hence

n dc0 (7.4)

This shows that a cochain of the first type has a coboundary of the second

type, and each cochain of the second type is a cocycle. Therefore L% is a cochain

subcomplex. Clearly Lx is generated by the cochains £2i+*®nup and
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(ii+2®nv>p) for ail i^O, and is already in normal form with respect to

thèse generators. Applying 6.20, 6.18 and 6.17, we obtain

^ (7.5)

From this it follows that g* transforms Lx into itself.
Define L2 to consist of ail cochains having canonical forms of the type

e8®ncp for s>0 (7.6)
It is in normal form :

à(tu®nv») ve2i_x®nv* i^l (7.7)

It is obvious from 6.18 and 6.20 that g* maps L2 into itself.
We shall deseribe L by imposing conditions on the initial and final terms of

a cochain in canonical form as follows :

(7.8) If the initial term is e,®rtc0 with s>0, see 7.2, we require that
co O.

(7.9) If the final term is et®ncp with t odd, we require that cp 0.

(7.10) If the final term is et®ncp with t even and positive, we require that

Of course, ail cochains e0 ®ncv are in L. The condition 7.8 is obviously stable
under à. If £ is odd and > 2

*(«*-i ®«<W) ^*-i®«<W + «w®^^
e#-«®*-£<W + e*-i®« •r^^p-i

because âc^j is a multiple of vp. Therefore a cochain satisfying 7.9 has a
coboundary satisfying 7.10. If t is even and > 1

- àc^A

—

The last term is zéro since àc^x is a multiple of vp. Therefore a cochain
satisfying 7.10 bas a coboundary satisfying 7.9. This proves that L is a cochain
subcomplex.
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The conditions 7.8, 7.9 are obviously stable under the chain mapping g*.
As for 7.10, we hâve

Since ôCj^x is a multiple of vp, 6.17 gives

and therefore

p * ~0 « v^> p

This shows that condition 7.10 is stable under g*. Therefore g* maps L into
itself.

It remains to show that the entire complex is the direct sum of the three
subcomplexes. That LX^L2 0 is clear by comparing 7.3 and 7.6, i. e.

cp 0 for any élément of Lx, and cp ^ 0 for a non-zero élément of L2. A
non-zero élément of Lx + L2 has a non-zero c0 if its component in Lx is non-
zero, or else it lies in L2 and then cp^x 0 and cp^z 0. In the first case 7.8
does not hold, in the second neither 7.9 nor 7.10 could hold. Thus

Given any cochain in normal form, if it has an initial term e8 ®ncQ with s > 0
and c0 =£ 0, we may subtract from it an élément of Lx (the first or second
élément of 7.3 according as s is even or odd) and obtain a cochain satisfying
7.8. If the resulting cochain has a final term et ®ncp with t odd and cp ^ 0,
we subtract et®ncp in L2, and obtain a cochain satisfying both 7.8 and 7.9
which is therefore a cochain of L. On the other hand, if the final term etÇ$nc9

has t even and >0, we subtract &t®n\c9 àcp_-A in L2, and obtain a

cochain satisfying both 7.8 and 7.10 which is therefore in L. This complètes
the proof of the direct sum décomposition.
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§8. Cohomology opérations obtained from Lx and L2

The subcomplex Lx defined in 7.3 is in the normal form

i>l (8.1)

According to 4.11, we hâve only to identify the cohomology opération cor-
responding to each of the cocycles e%i®nu* modp. By 6.20, 18 and 17

Therefore, by 6.4, the cocycle

(<7* ~ l)(%<aX) [(- !)«*' - I1*u®*v>9 (8.2)

belongs to the kernel of h*, and therefore is zéro as a eohomology opération.
If q is even and i is not a multiple of p — 1, the coefficient (— l)Qk* — 1

is non-zero modp because k is a primitive root. Working modp, we may
divide 8.2 by this coefficient, and conclude that eu®nup represents zéro as

a cohomology opération.
Again let q be even, and suppose i s(p — 1). In this case the coefficient

in 8.2 is zéro modp, so it imposes no relation on the cohomology opération
corresponding to e%i®nup. The opération is in fact a suitable multiple of the
cyclic reduced power <7fa-*9 namely :

0{<W-«®«**} (- l)9&**-** • (8.3)

In this formula 0 is as defined in [2 ; 2.11], and the braces { } mean to take
the cohomology class of the cocycle enclosed. To prove 8.3, we must recall
the définition [4 ;6.8] of 9>% namely

<7*V (- lJ^-H^Ctf-D/i^iji^îp/e^^^^ (8.4)

In this formula m ^ (p — 1), and the coefficient is computed in the field Zp.
Also, by [4; 2.8]

(ûp/e) • a up • <p' (e ® or)

where <pf : W<$$K ->K9 has the same meaning as in [2; 2.6]. Comparing
this with [2 ; 2.8], we obtain

*{««®^} (-l)'«»/ew (8.5)

In 8.4, wetake q — 2t 2s (i. e. t \q —¦ s), in 8.5 we take i s(p —- 1),
then we eliminate Wje between the two équations, and obtain 8.3. In the
computation one must use properties of m namely, by Wilson's theorem,
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m is non-zero moàp ; if m is even, (m !)2 — 1 ; if m is odd, (m !)2 1 ;

so in either case (m !)2 (— l)1**1.
Now let q be odd. The coefficient in 8.2 becomes — (k* + 1). Since h is a

primitive root of p, k* + 1 0 mod^ if and only if i is an odd multiple of
\(p — 1). If this is not the case, we may divide 8.2 by Je* + 1, and conclude
as before that e2i®nup represents zéro as a cohomology opération.

Let q be odd, and suppose i (2s + l)$(p — 1). In this case, the cocycle
corresponds again to a suitable iT7*, namely

* {«<ih.i><*-i>®,*p} (~ l)8+m(m\)S?ïie~»-°û (8.6)

As in the case of 8.3, this is derived from 8.4 and 8.5 by setting

* m -1) - «

in 8.4, i (2s + l)m in 8.5, and eliminating ûp/e. This complètes the
analysis of the cohomology opérations derived from Lx.

The subcomplex L2 defined in 7.6 is already in normal form (see 7.7). Let
Mf be the subcomplex of M generated by v. Let \p: M -> K* be a cochain

map representing the class û. Then tp | Mf y>f : M' -> K* represents the
cohomology class V€HqJrl(K ; Z) containing the cocycle \p'{v). Then v ô*ïï
where ô* is the Bockstein coboundary for the coefficient séquence

6
0 -

(see [2 ; 10.1]). Define L[ in W®nM'9 in the same manner as Lx in Tf ®„ Jfp,
replacing t^ by v and g by g + 1. It is seen that, under the inclusion mapping
W®n M'*<z WÇ$n Mp, we hâve L[ L2- The analysis given above for Lx
applies to L[ and hence to L2. It follows that each e%i®nvv corresponds to a

cohomology opération which is zéro or to a suitable multiple of &**d*.
In the spécial case 0 0, we set v 0. Then W®n Mp reduces to the

normal form: ô(e0Ç$nuv) 0 and

à(e2i ®nuV) P««-i ®«w* » » ^ •

Now eo®w-up corresponds to the pth power opération in the sensé of cup
products with integer coefficients (see [2; 10.1-4]). The remaining cocycles
lie in Lx and hâve already been analysed. This concludes the case 0 0, and
we may suppose 6 pk henceforth.

§9. The équivalence of L and ZMP

The analysis of L (see 7.8-10) is more complicated and devious. The
remaining two sections are devoted to the task. The conclusion however is not
complicated to state :
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9.1. If q is odd, each cohomohgy opération derived from L is elementary. If
q is even, the only non-elementary opérations derivable from L are obtained from
cocycles of the elementary subcomplex

^v - e^Z*— ^(^-1v)l (9.2)

where £* in the group ring of tz is defined by

27* jg kT*-k (9.3)

In checking the formula 9.2, the following identity is useful :

(î7-1- 1)27* —Z + pl (9.4)

The cochain on the left of 9.2 is a cocycle mod pd, and its corresponding
cohomology opération is the Pontrjagin pth power as defined by Thomas
[5 ; 3.3, 3.4]. Once 9.1 is proved the proof of the main resuit of this paper
will be complète.

Define S Mp to be the subcomplex of Mp consisting of cochains of the
form Zc where c is a cochain of Mp. Define a cochain mapping

/: L-+ZM* (9.5)

as follows. If the initial term of a cochain in canonical form is e^ ®nc0 where

j> 0, its image under / is 0. If its initial term is e0 ®ncé, its image is Eci :

/(e,®*c0 +...+ e^®ncp) 0 j>0 (9.6)

/(«o®««i +• • •+ e,-,®*^) 2ct (9.7)

Qearly / is a homomorphism. To prove ôf fà, we suppose in the first case

j 2t>0. Then the initial term of ô(eu®nc0 H is eu^10n£eo ; and
so its /-image is zéro. Suppose next that j 2i + l>0. Then the initial
term of à(e2i+i®nCo H is ea<®n(îT~1— l)c0. If ï>0, 9.6 applies, and
its /-image is zéro. If i 0, 9.7 applies, and its /-image is 27(jP"1-— l)c0 0.
In the second case, the initial term of ô(eo®nCj -\ is

«o®n[àcê + (T-i - l)ci+1]
Thus, its /-image is

£dCi ôZc, ôf(eQ®nci + ".)
Therefore, ôf fà in ail cases.

9.8. The automorphism y of M9 {defined by 6.15) transforma EMP into
itself. If g* is the cochain mapping 6.20 restricted to L, then fg* (z) yf(z) for
ail cochains z of L.
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The first assertion follows from yE Ey which is an immédiate
conséquence of 6.16. To prove the second, suppose z is such that 9.6 applies. Then
yf(z) y(0) 0. By 6.18 and 6.20, g*(z) has the same type of initial
term as z, so fg* (z) 0. If z is as in 9.7, then yf (z) y(Ecj) Eycr But
g*(z) has the initial term ^®nyci so fg*(z) is Eyc^.

9.9. If J dénotes the kernel of f, then J is acyclic. This implies

/*: Hr{L®G) ^Hr(EMp®0)
Recall that the cochains of L are defîned by conditions 7.8-10. In par-

ticular, then, a cochain of J in canonical form has a first non-zero term of the
form et®nci9 where i^O, and 0<j<p. If i 0, then Ecj 0y since
the cochain is in J. Suppose that i is even and >0, and that the cochain
is a cocycle. This again implies that Eci 0. Thus, in either case, we must
hâve ci (î7"1 — l)d for some d, since Mp is free in the dimension j, Then

à(ei+1®nd) et®ncs - ei+1®ndd

Subtracting this from the cocycle gives a cohomologous cocycle whose first
non-zero term has an index >i. If i is odd, then we hâve (T"1 — l)c^ 0.
The freeness of Mp implies that c^ Ed, and

à{ei+1®nd) e^^ + ei+1®ndd

Subtracting this gives again a cohomologous cocycle whose first non-zero
term has an index > i.

Repeating the process we obtain eventually a cohomologous cocycle having
one of the two forms (see 7.9, 10)

In the first case, we alter the first method of the preceding paragraph by ob-
serving that

In the second case, we apply the second method unaltered, and observe that

dd —- ôcp_1 because Tvp vp. This sho

coboundary, and complètes the proof of 9.9.

—- ôcp_1 because Tvp vp. This shows that every cocycle of J is a

§10. The cohomology oî EMP

By [2 ; 11.7], each élément of Hr(W ®nMp) has an order dividing pd. The
same must be true of Hr(L) and, by 9.9, of Hr(EM*). It follows that a
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normal form for EMP will consist of elementary subcomplexes whose torsion
numbers divide pO.

10.1. If P is an elementary subcomplex of EMP whose torsion number m
divides 8, then there is a mapping Ç: P -> Mp such ihat EÇ is the identity.
Therefore each cohomology opération corresponding to a cohomology class of P is
elementary.

We may dénote the generators of P by Ec and Ed with ôEc mEd. Since
each coboundary in Mp is divisible by 8, we hâve de 6df, and d'is a cocycle.
It follows that 0Edr mEd. If we set

we obtain the required £. If w is any cocycle of P®0, then eQ®nÇw is a
cocycle of L®0 whose image in EMP(&G under / is w. By 3.3, eo®nÇw
and therefore w corresponds to an elementary opération.

Because of this resuit, we hâve only to analyse the torsions of order exactly
p6 in EMV. To this end, we define a category N of cochain complexes having
certain properties of Mp. A cochain complex N belongs to N if
(10.2) n opérâtes as automorphisms of N.

(10.3) 0(N) 0 if j<pq or j>p(q + 1).

(10.4) Cpq(N) has a single generator a0 fixed under n.

(10.5) CP{Q+1)(N) has a single generator ocp fixed under n.

(10.6) C^^{N) is rc-free if 0<j<p.
(10.7) An intégral cocycle of JV is a coboundary if and only if it is divisible

by0.
A mapping A : JV -+Nr of the category N is a cochain mapping which is

7r-equivariant. Let kx be the integer such that Xav k\a!p. Under compositions

of two mappings X, p, we hâve

10.9. // Ny N' are in N, and h is an integer, then there exists a mapping X :

N -+N' such that kx k.
This is proved by a downward induction on the dimension. Start by setting

Xap kap. Suppose À has been properly defined in dimensions >pq + j.
If ?>0, by 10.6 we can choose a rc-basis {/îj of G^K By 10.7, ôfi€ 0yt.
Then Xyi is defined. Since ÔXyt Xdy4 0, Xyi is a cocycle. By 10.7,
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6 Xy{ is the coboundary of some cochain. We sélect one such and dénote it by
Xfo. For any xctz, we define Xx^ xX^. Since X is rc-equivariant in the
dimension pq + j + 1, it foliows that Xôxfli ôXx^. In this fashion the
induction continues down to the dimension pq. To define X on <x0> we prove
as aboyé that Xôot0 is a cocycle and it is divisible by 0. Hence we may choose
a cochain Xot0 such that ôXol0 Xôoc0. Byl0.4, Cpq(N') has a single gênera-
tor fixed under n. Therefore Xoc0 is fixed and so X is equivariant.

10.10. If N,Nf are in Nand XQiXx are two mappings N-±Nr ofNsuch
that

JcK tXi mod p

ihen there exista an equivariant cochain homotopy

D: eXoC^OX!

i, e. for each j, D is a n-homomorphism of 0 (N) into C^~~1(Nf) such that

ôD<x 6X1a--6Xoa- Dôoc aeCHN) (10.11)

This is also proved by a downward induction. By hypothesis

dXlOcp - eXoaP 0(kXl - kK)oc'v Pr0o£

for some r. By 10.7, rdap is a coboundary of some cochain, say y. Then

àZy ZrOotp prO<x'p

So we may set D<xp Ey, and D is equivariant and satisfies 10.11 with

Suppose D has been defined properly in dimensions >pq + j. Let {^}
be a rc-free basis in dimension pq + j (assuming ;>0). Then the right side
of 10.11 is defined for a (lt. The standard calculation shows that it is a

cocycle. It is also divisible by d because ôp{ is divisible by 0. Hence it is a

coboundary of some cochain, we define Z)/3i to be one such. We extend D to
be a rc-homomorphism, and then verify that 10.11 still holds in the dimension

pq + j- When j 0, we set Da0 0. This is clearly equivariant. Also
the right side of 10.11 with a a0 must be zéro. For it is a cocycle divisible
by 6, and hence it is a coboundary ; but by 10.3, 09^mml(Nf) 0.

We introduced the category N for the purpose of studying the subcomplex
ZMP. Now if N and N1 are any complexes in N, we compare the cohomology
of EN and EN1 as follows :

10.12. If A : N -> N! is in N and kx is prime to p, then X induces an iso-

morphiam ^
11 Commentaril Mathematici Helvetici
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By 10.9, there is a p: Nf ->N such that k^kx 1 modp. By 10.8
and 10.10, there is a cochain homotopy D of dp X into 01, where 1 is the iden-

tity map. Then if Eoc is any cocycle of EN, 10.11 gives

ôDEoc àZDoL OfiXZoL — 6 Eoc

Therefore (pA)* ^#A* induces the identity mapping of OH* (EN). By the
symmetry of the situation, X*jll% induces the identity in 6H1 (EN1). This

proves 10.12.
By 10.9, there are maps X with kx 1. It follows that 6H^(EN) has the

same structure for ail N in N. To compute thèse groups we construct a sim-

plest JVo in N as follows. It has a single fixed generator a0 for Cpq(N0) and otp

for CPiq+1)(N0), and has a single rc-free generator at for Cpq+1(NQ), 0<j<p.
Define ô by

ôa2* — 0^a2**+i > ^a2t+i ^ 6^a«f+2 > (10.13)

for 0<>i<:(p — l)/2. The conditions 10.2 to 10.6 are trivially true. The
truth of 10.7 follows from the fact that each of A, E générâtes the annihilator
of the other in the group ring of n.

The complex EN0 has a single generator Eol^ for each 0<Lj^p. The co-

boundary relations are

ôEoc2i p6Eoc2i+1 ^i7a2t.+1 0 (10.14)

Thus EN0 is in normal form, and it has torsion of order pd in every other
dimension from pq to p(q + !)• Since Mp is in JY, 10.12 implies that the
same conclusion holds for EMP. Thèse results are summarized in :

10.15. The torsion numbers pO of EMP occur just once in every other
dimension from pq to p(q + 1). One obtains elementary subœmplexes of EMP
containing thèse torsions by taking the A-image of EN0 where A : No -> Mp is an
equivariant mapping such that k\ is prime to p.

Cocycles of order pQ obtained in this way are not generally in the image
H(MP) ->H(EMP) under E. However in ail but one exceptional case they
correspond to elementary cohomology opérations. To see this we must study
the behavior of such cocycles under the automorphism y of EMP which, by
9.8, corresponds to the ehain mapping g* of L.

Let X : No -> Mp be a fixed equivariant mapping such that Jfc^ 1. Now

yMb a cochain mapping JVq -> Mp but it is not equivariant because yT Tky
where k is a primitive root of p. However for each integer i in the range 0 to
f (p — 1) we shali eonstruet an equivariant mapping /n depending on i such
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that y X and fi coincide on Cpq+2i(ZN0). Let the integer m be the inverse
modp of the primitive root k. Set

k-l m-l
A X Ti r=2P'

in Z (^). In the group ring of the normalizor of n, we obtain readily the relations

Zy, yA AAy, Ay^yTA. (10.16)
and therefore

1y, yT8A AyT8*1, s^O (10.17)

Define an equivariant mapping p: NQ -» Mv by specifying its values on basis
éléments as follows

a 0, 1,.. J(p — 1 — 2»)

a 0, 1,..., \{p — 1 — 2i)

* 0,l,...,i.
The relation ôfi [jLÔ follows directly from 10.13, 10.16, 10.17. When
restricted to ZN0, ju takes the form

(10 18)

The reason for this is that yZ Zy, AZ JcZ, and FZ — mZ. Taking
^ |(/p —- l) — i} we hâve

Now ocP and Acxp vp are fixed under jr ; so, by 6.17

Consider now the mapping (j, — X oî No into Jfp. It is obviously
equivariant ; and ^ A)^ _ [( 1

Beeause i is a primitive root of p, the only ease where the coefficient of vp is

divisible by p is the case q even and i 0. In any other case, ^_^ is prime
to p ; and so, by 10.15, fi — A applied to ZWq gives the torsions of order
pd of ZM*. By 10.18, we hâve

oLi for / 2i and 2t + 1 (10.20)
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For convenience set - „ ^A27a2{ p and X27a2i+1 y

Both y and (y — \)y are cocycles generating torsion of order pd in JE'Jf*.

Since 0£r^+2'+1(27JfJ>) is cyclic of order p, we must hâve 6y ~ 6(y — l)0y
for some integer 6 prime to p ; thus

du? 6y — 6(î/ — l)0y for weSM*

Sinoe <5/3 pSy, it follows that f} — b(y — 1)/? — pw is a cocycle. By
10.15, 0JÏ^+2l(rJf*) 0. Therefore there is a cochain w^SM» such that

àwx 6 (0 - b(y - 1)0 - pw)

By 10.1, any cocycle of this elementary complex corresponds to an elemen-

tary cohomology opération. Taking Zp0 as coefficient group, it follows that
(} — b(y — l)(S isa cocycle and corresponds to an elementary opération.
However (y — l)/3 corresponds to zéro as a cohomology opération; this is

seen by assembling 9.8, 6.20, 6.14 and 6.1. It follows that /? corresponds to
an elementary opération.

In the case q even and i 0, it is clear that

ôZup pôup pdZu*-xv (10.21)

is an elementary subcomplex giving the torsion of order pd in this case. By
the preceding argument, the only non-elementary cohomology opérations
derivable from ZMP are obtained from this subcomplex. If we apply / of 9.5
to 9.2, we obtain 10.21. This complètes the proof of 9.1 and, hence, our main
resuit.
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