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Transmutations d’opérateurs différentiels
dans le domaine complexe

par J. DELSARTE et J. L. Lions, Nancy

Introduction

Etant donnés deux opérateurs différentiels 4 et B, sur un espace H, on dit
que X est un opérateur de transmutation de A en B, si X est un isomorphisme
de H sur H, tel que BX = XA.

Cette notion dépend de 4, de B, et aussi de I'’espace H choisi. Elle a été
introduite en 1938, dans [2]: 4 et B étaient deux opérateurs différentiels du
deuxiéme ordre, H était un espace de fonctions d’une variable, définies pour
x > 0. Diverses généralisations et applications ont été données & partir de
1950, dans [5], [7], [8], [9], [10], [12].

Si A et B sont d’ordre m>2, a coefficients indéfiniment différentiables,
H étant ’espace des fonctions indéfiniment différentiables sur R, il n’existe pas,
en général, d’opérateurs de transmutations. Le probléme de la classification
des opérateurs différentiels, sur R, d’ordre >2, se pose donc naturellement.
Il semble difficile. Un cas particulier, correspondant a une équation singuliére,
est traité dans [9]. ,

La situation est, au contraire, fort simple si I’on prend pour 4 et B des opé-
rateurs différentiels sans singularité, dans le domaine complexe, H étant 1'es-
pace des fonctions entiéres d’'une variable complexe. Dans ce cas, on peut tou-
jours transmuer A en B, pourvu qu’ils soient de méme ordre. C’est ce que nous
montrons au numéro 1.

Nous donnons ensuite quelques applications simples de ce résultat, & la
théorie de la moyenne-périodicité, dans le complexe, & la théorie de la commu-
tation de deux opérateurs différentiels, etec.

Ce travail a été résumé dans une note aux C. R. Acad. Sc. Paris, t.244, p. 832-

834 (1957).

1. Théoréme de transmutation — Construction d’un isomorphisme particulier

Soit H I'espace des fonctions holomorphes d’une variable complexe z, muni
de la topologie usuelle de la convergence uniforme sur tout compact. Soit
D = d/dx ; on désigne par 4 'opérateur différentiel:

m
A=2aD (1.1)
j=0
ol a,eH pour tout §, et a,, = 1.
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On appelle opérateur de transmutation de A en D™ sur H un opérateur X, s’il
existe, ayant les propriétés suivantes:

(i) X est un isomorphisme de H sur H,
(i) DX = XA4.

Nous allons montrer dans ce numéro le

Théoréme 1.1. 11 existe toujours un opérateur de transmutation de A en D™

sur H.
On verra au numéro suivant (et c’est d’ailleurs immédiat) qu’il existe alors

une infinité d’opérateurs de transmutations de 4 en D™,
Par ailleurs, il résulte aussitét du théoréme 1.1 le

Corollaire 1.1. 8¢ B est un deuxiéme opérateur d’ordre m, du méme type que
A, il existe un opérateur de transmutation de A en B.

Démonstration du théoréme 1.1.
1) Pour tout feH, posons a priori

o m—

1 1
=X X DPAXf(0)xPtbm —
k=0 p=0 f(0)= (p + km)!

et admettons provisoirement le

Xf(x) (1.2)

Lemme 1.1. La série (1.2) converge dans H et Uapplication linéaire de H
dans H ainst définte est continue.
Ce lemme admis pour l'instant, nous avons

1
(+ (& —1)ym)! ’

ce qui, en changeant k en k£ — 1 s’écrit XAf(z), donc
DmXf= XAf (1.3)

Dm X f(x) =k§ ;‘:’ D? A f(0) g7+ k—1m

pour tout feH.
On va maintenant démontrer que X est un isomorphisme de H sur lui-méme.
La démonstration va se faire en plusieurs points.

2) L'opérateur X est biunivoque.
. Notons d’abord la propriété suivante, immédiate & partir de (1.2)

Xf(0) =f(0), DXf(0)= Df(0),..., D"1Xf(0) = Dm-1f(0) . (1.4)
Montrons maintenant que si Xf = 0 alors f = 0. Vu (1.4) on sait déja que
f(0) = Df(0) =...= D™ 1f(0) =0 . (1.5)
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De (1.3) il résulte, puisque Xf =0
XAf=0,
donc, en appliquant (1.4) avec 4 f au lieu de f
Af(0) =DAf(0)= ... =D"14f0)=0,

ce qui, en utilisant la forme de 4 et (1.5), entraine

Dmf(0) = D™+1f(0) =...= D*™1f(0) =0 ,
et ainsi de suite:

D*f(0) =0 pour tout n,

donc f=0. C.Q.F.D.

3) Fonction O(x,3) et opérateur .
On désigne par ©@(x,2) la solution de

A,0(x,A) — imO(x,A) =0, AeC (1.6)
avec

60,2)=1, D,00,2)=241,...,D"0(0,) =am1 . (1.7)

La fonction @ est entiére de = et de 4; considérons le développement

0(x,2) =20n(x)}."—;17 : (1.8)

n=0
on a
6,eH pour tout n,
et les relations

40,=0 si n<m—1, DO,0)=4'é,,, j=0,1,...m—1 (1.9)
et

!
A0, = by, s n>m, 0,(0)=...=D™30,0)=0 (110

relations qui caractérisent complétement les 6, .
Considérons maintenant la série

Fi(x) = £ D (0) () 1 (1.11)

et admettons provisoirement le

Lemme 1.2. La série (1.11) converge dans H et Vapplication linéaire ainsi
définie de H dans H est continue.
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Ce lemme admis pour linstant, il résulte aussitét de (1.9) et (1.10) que
Fon a - A} =XDmf pourtout feH . (1.12)

Notons également que
ZF0) =1(0); DZ}(0) = Df0),..., Dm1}(0) = Dm-1f(0) . (1.13)

4) L’application X est sur.

11 résulte de (1.11) que
Far =0, .

Posons X0, = ¢,. Nous avons Dmg, = XA60,, d’oit en utilisant (1.9)
et (1.10)
n!

=T —m P si n>=>m,

D, =0 s8i am-—1,

et Dig (0)=418,,, j<m—1.

Il en résulte que
@n(z) = 2 pour tout n ,

donc que
4 X Zar = am  pour tout n, (1.14)

ot par conséquent XX f=f pour tout feH . (1.15)
Ceci montre que X applique H sur H; comme X est déja biunivoque, il en
résulte que X est un isomorphisme (algébrique) de H sur H, d’inverse 7 ;
donc X est un isomorphisme topologique (si 'on ne savait pas que ¥ est
continu, le résultat serait également vrai, par application du théoréme d’iso-
morphisme de BANACH).

Démonstration du lemme 1.1. Il résulte de la formule de CAUCHY que

A1@) = g [ Blo) e 10 (1.16)
C

oll j=m
B(z,y) = Z (y — z)"7a,(2)j! , (1.17)
j=0
et, oli, pour fixer les idées, C est un cercle de centre 2. On en déduit

1 1
A2f(z) =—— [ B(,y) 7——  4f()dy,
271 c’[ (y, — )™t

ou C, est un cercle quelconque de centre z; on peut remplacer

Af(y,) par "2’;1;{0 f B(yy,9s) s ““211)"”'1 1(ys)dys
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ol C, est un cercle quelconque de centre y,. Finalement, on peut écrire

A* (,9.) _d B(yy,y2) T Byi_1.9x)
fo) = 2n'»)’°f (y—zymHi f (ya—y,)1 0 C[ (yk——yk_l)’"“/ (?{’1‘) Oll%’;

2
ol nous prenons les C,; comme suit: Soit R>0 fixe quelconque; alors

C, a pour centre y, ,, pour rayon R/(k 4+ 1) ;
C,-, a pour centre vy, ,, pour rayon R/(k + 1) ;

C, a pour centre y,, pour rayon R/(k + 1
C, a pour centre x , pour rayon R/(k + 1)

En utilisant maintenant la relation

ou U, a pour centre I'origine et pour rayon R/(k 4+ 1), on a finalement
! d
» Ak p: Yo B (yy,41) ?/k—u?/k
DA% (0)= (27v3)k+ y”“ (¥1—¥o) "‘“ f f —Yp)™1 fydy
Go " Ca (1.19)

ou C,,C,,...C, sont ch0131s comme ci-dessus et ol C; a pour centre y, et

pour rayon R/(k
Du choix des rayons il résulte que dans (1.19) on a

lyx]l < B .
De facon générale si geH, posons

|g|p = max|g(z)]| , lz] <R
On a
| B(y1—1,9) | <m! (1 + «(B,k)) ,

A

ou
R R 2 R \m
5(R.D) = |G ln( 1) + mala( )+ + Lol 5T
et I’on déduit alors de (1.19)
| D24 O)] < plml(1 + (R ) 1) e . (1.20)

Il en résulte que

n {1/n 1\1/m
lim sup <DpAkf(0)_~iv_ )g_(ﬁ'_).,_f.lx
n=p+ km—>oo Rm

Puisque R est fixé quelconque, le lemme 1.1 en résulte.

9 Commentarii Mathematici Helvetici
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Démonstration du lemme 1.2. Commengons par démontrer le lemme
suivant:

Lemme 1.3. Soit v une fonction donnée dans H telle que |v(z)| < M|x|*1,
A entier, pour |z|<XR (M dépend de R). Soit u la solution de

Au=v , (1.21)
avec
#(0) = Du(0) =...= D™ 1y(0) = 0 . (1.22)
Alors, il existe une constante C dépendant de R et de A telle que pour tout x avec
|z]| < R, on ait
I'(A)

Iu(x)l <Mm|xlm+A~leXp0|xl . (1.23)

Démonstration. On multiplie les deux membres de (1.21) par

1
m(x —y)m1,

et on intégre de 0 & z, sur le segment joignant 0 & z, pour fixer les idées. On
obtient

u@) = ey § @ — @y + [H@yu@dy (.24

ou H(z,y) est une fonction entiére de z et y, qui dépend de 4.
Si I’on pose

0

w(e) = =y | (= — o)y,

on peut écrire, posant y = tx

ﬁju — t)ymly(tx)dt

d’ol1 en utilisant I’hypothése faire sur v

()] <M.(_n{_fé% g™t |o| <R. (1.25)

On résout maintenant (1.24) par approximation successives

w(z) =

4
Ug=W,...,u,=w+ [ Hu, ,dy,...
0

On voit facilement que, C désignant le maximum de H(z,y) pour |z| < R,
ly| <R
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I'(3)
(m + 4+ n)

lx‘m+)\—1+n , |x| <R )

Iun(x) - un—l(x)l < MCn T

On en déduit facilement (1.23).
Passons maintenant & la démonstration du lemme 1. 2. Il résulte aussitot de
la majoration suivante:

|Opmin ()| < M|2|*m+? exp (KCR) , lz| < B, (1.26)
ou
M = sup. | [~716,(x)] . (1.27)
j=0,....,m—1,|¢|<R

Reste donc 4 démontrer (1.26); ce que L’on fait, pour p fixé (0 <p <m — 1)
par récurrence sur k. Le résultat est vrai si & = 0, par définition de M.
Admettons le pour 1,...,% — 1, donc

10(—1) mp (2) | < M|2|*-)m+? exp(k — 1)CR .

On utilise maintenant (1.10) et le lemme 1.3 pour avoir (1.26).
Le Théoréme 1.1 est ainsi compléetement démontré.

Remarque 1.1. Désignons par ‘7 l'espace des fonctions holomorphes

m
I’origine, muni de la topologie de limite inductive usuelle. Soit 4 = Xa,D’, avec
a,, = 1 et a,e F. Alors la démonstration du théoréme 1.1 fournit également le

Théordme 1.2. I1 existe toujours un isomorphisme X de F sur lui-méme tel
que DX = XA. '

2. Détermination de tous les isomorphismes

I1 est évident que fout isomorphisme de transmutation de 4 en D™ g’obtient
en composant I’opérateur X construit au numéro 1 avec un élément quelconque
Y du groupe G, des isomorphismes tels que

DnY = YD™ . (2.1)

Nous allons dans ce numéro construire &, .
Soit H' le dual de H; si f —<u; f> est une forme linéaire continue sur H
(ueH’), elle est déterminée de fagon unique par

<p,er>=pRA), e(z)=-exp(dz), AC; (2.2)

7 est une fonction entiére de type exponentiel. — On appelle 7 la transformée de
Fourier de u.
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Soit maintenant Y e [(H,H); alors, pour tout aeC fixé, f — Yf(a) est
une forme linéaire continue sur H, donc de la forme

Yi(a) = <u(a), f> (2.3)

ot u(a)eH’; soit Z(a; A) la transformée de FOURIER de u(a); la fonction
a - Yf(a) étant dans H, la fonction a — u(a) est entiére & valeurs dans H’
ou, ce qui revient au méme a, 1 — U(a, 1) est entiére en a et A, entiére de
type exponentiel en 4 (de type borné lorsque @ parcourt un compact). Cher-
chons maintenant & construire les Y e J(H; H), ayant les deux propriétés
supplémentaires

(i) Y wvérifie (2.1) (Y est un opérateur de commutation),

(ii) Y est un isomorphisme de H sur lui-méme.

Recherche des Y vérifiant (i).
I1 suffit d’écrire que D™Y ey = Y D™e, pour tout A1eC; mais D™e) = A™e,

donc

DmY e, = A"Ye, . (2.4)
Or

Yey(a) = <u(a),er> = fi(a; A)

donc (2.4) équivaut a

Dri(a; 4) = fi(a; A) (2.5)
et

A—T7(a; ), A~ Dij(a; )

doivent étre entieres de type exponentiel, done

m—1
u(a; ) = X M,(2) exp (Aw'a) (2.6)
j=0
(2ni)
W = exp oo

M, (=1,....m—1)

et ou les fonctions

sont entiéres de type exponentiel. Donc

Proposition 2.1. Tout Y vérifiant (i) est représenté par (2.3) ow la trans-
formée de Fourigr de u(a) est donnée par (2.6).

Recherche des Y vérifiant (i) et (ii).

Si Y vérifie (i) et (ii) alors 'isomorphisme znverse

Z =Y
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vérifie également pmg — ZDm
done, vu la proposition 2.1 on a
Zf(a) =<v(a), f> (2.7)
avec —_—
Y(a;A) = 2 N,;(4) exp (Awia) . (2.8)
j=0

I1 faut trouver la condition nécessaire et suffisante pour que, ¥ étant donné,
il existe Z donné par (2.7) et (2. 8) avec

YZf =ZYf=f
pour tout feH; il suffit naturellement d’écrire
YZe)‘:ZYe,\—_-—eA (2.9)

pour tout Ae¢C. Or
Zey(a) =7 (a; 4)

et alors m—1
YZey(a) = Z N;(A)fi(a; Ao) .
De méme =
ZYey(a)=... X M,(2)V(a; i)
j=0

de sorte que (2.9) équivaut &
2 N,;(A) M, (Awf) exp Aawith = X M ()N, (4 o?) exp (Aa w/+*) = exp (Aa)
j ik

ik
ou encore, tous les calculs d’indices étant faits modulo m

ZM, ,(Ao')N,;(A) exp (Aaw¥) = exp (Aa) ,
2 Ny_;(Aw?) M, (2) exp (Aa w¥) = exp (1a) ,

1 si k=0

done
{‘:Mk—i(zwj)Niu) = { (2.10)

0 si k=1,2,...,m—1

1 si k=0
ZN, ;(Ae?) M,(2) = (2.11)
i 0 si k=1,2,...,m—1

Introduisons les matrices (m,m)

M,(2) M) ;... Mpy(R)
M, (Ao) My(Aw); ... ; My o(lo)
-‘7/7‘(1)=||Mk*5(1w’)ll = || Mp_s(le?) - 3eees
"M, (Aw™ 1) ce s My(Aw™ 1)

9?‘(1) = ||Nk-—5(2wj)|| .
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Alors (2.10) et (2.11) équivalent &

T Tl(A) =E (E = matrice unité) (2.12)
TCNT4) =E (2.13)

Il résulte de (2.12) par exemple qu'une condition nécessaire est
dét. /() #0 pour tout 4 . (2.14)

Mais la fonction

A —dét. TI(A)
est entiére de type exponentiel et
dét. T (Aw) = dét. T/ (A)
donc (en utilisant le théoréme de WEIRSTRASS)
Dét. T/ (A) = Cqr= Constante 20 si m > 2 (2.15)

(si m = 1, alors dét. T/ (A) = Cexp (bA)).

Le systéme (2.10) détermine de fagon unique les fonctions N,(1) — et les
N,(A) sont entiéres de type exponentiel.

La matrice J7((4) construite & partir des fonctions N,(4) que ’on vient de
trouver vérifie (2.12), donc (2.13). Done (2.10) et (2.11) ont lieu.

On a donc obtenu le

Théoréme 2.1. Tout isomorphisme Y de H sur lut-méme tel que D™Y = Y D™
avec m = 2, est de la forme
Yf(a) = <u(a), >
ol m=1
{u(a), ey = fi(a; 2) =j20M;(l) exp (Aw'a) ,
les fonctions M, élant entiéres de type exponentiel telles que dét.|| M, _;(Awf)|| =
constante non nulle.

Remarque 2.1. Si m =1, dét. (L) = M,(A) = cexp (b4) et Y-f(x)
=cf(xz + b) (c # 0). Enfin, on a la

Proposition 2.2. Si m > 2, le groupe G, des isomorphismes Y tels que
DmnY = YD™ admet une représentation fidéle, de degré m, formée par les
matrices

T = || M y(Aa)||

ou les fonctions M sont entiéres de type exponentiel, et telles que dét. T/ (A) #0.
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Remarque 2.2. D’aprés le théoréme 1.1, le groupe &, des isomorphismes
X tels que AX = XA est isomorphe & G,,.

3. Fonctions moyenne-périodiques par rapport & D™

Pour feH, on désignera par 7,(f) le sous-espace vectoriel fermé de H
engendré par Xf quand X parcourt &,,.

Définition 3.1. On dit qu’une fonction feH est moyenne-périodique par
rapport & D™ lorsque 7',,(f) est différent de H .

Si m = 1, onretrouve la notion usuelle dans le domaine complexe ([4], [13]).
Mais en fait la définition 3.1 n’introduit pas de notion nouvelle.

Proposition 3.1. Il y a identité entre fonctions moyenne-périodiques par rap-
port & D™ et fonctions moyenne-périodique usuelles.

Démonstration. Puisque (&,>5C,, il est évident que toute fonction
moyenne-périodique par rapport & D™ est moyenne-périodique usuelle.

Réciproquement, soit f moyenne-périodique usuelle. On veut montrer que f
est moyenne-périodique par rapport & D™ donc qu’il existe Te¢H’, non nulle,

avec
(T,Xf)=0 pourtout XeC, . (3.1)

Soit SeH’, #0, orthogonale & T,(f); soit S (A) la transformée de FOURIER

de S et posons m—1 A
F(A) =1 8(o'2) . (3.2)

j=0

La fonction F est entiére de type exponentiel, donc de la forme
FA)=T@), TeH' , 0. (3.3)

On va montrer qu’avec ce choizx de T', (1) a lieu.

On sait que si I’on appelle spectre de f ’ensemble des zéros de S comptés
avec leur multiplicité, alors 7',(f) est engendré par les z?expaz, q < p,
(x,p) espectre de f.

Donc T, (f) est engendré par les X (x%expaz), ¢ <p, XeG,. Il suffit
donc de montrer que

T,X(x2expoaz)) =0 (3.4)

pour tout Xe (G, et tout ¢ < p, (x,p)espectre de f.
Or, d’aprés (2.6), X (27 exp xx) est combinaison linéaire de 2" exp aw’z,
r<p, j=0,...,m — 1. Donc (3.4) a lieu si, pour tout j, aw’ est un zéro
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de F(A) = T (1), de multiplicité p. Or, il en est bien ainsi d’apres (3.2), d’ou
la proposition.

4. Fonections moyenne-périodiques et commutateurs de D™

Soit 7., 'algébre des endomorphismes ¥ de H — H tels que
DmY — YD | (4.1)

On dit que 7, est Ualgébre des commutateurs de D™. D’aprés le numéro 2, 7.,
est représentée fidelement par 1’algébre des matrices

T2 = | My y(Aoh)]] .

Détinition 4.1. Le commutateur Y est dit non dégénéré si la fonction
dét. T/7(1) n’est pas identiquement nulle.

Lemme 4.1. La condition nécessaire et suffisante pour qu'un commutateur Y
de D™ ne soit pas dégénéré est qu’il existe un deuxiéme commutateur Z de D™ tel que

YZ—2Y =8 (4.2)
ot Se A, non nul.

Démonstration. La condition est suffisante; en effet si 77 (1) est la matrice
correspondant & Z, il résulte de (4.2) (puisque la matrice correspondant & § est

de la forme: S (1)-E, E = matrice unité (m,m))
(dét. T(A)) (dét. TTA)) = 8(4)

donc dét. G/ (1) n’est pas nul.

La condition est nécessaire: désignons par N,(A) le mineur relatif & 1’é1é-
ment M,(4) sur lequel se croisent la premiére ligne et la j-éme colonne de
G/(2); la fonction N, est entitre de type exponentiel; formons la matrice

TCA) = || Ny (A))]] ;
elle représente un élément Z de 4,,; or
T2 T(A) = T T(A) = [déb. TW-E ; (4.3)
la fonction dét. T/ (4) étant entiére de type exponentiel, la matrice
[dét. TA)]-E

représente un élément S de 7, (considéré dans 7,,), et (4.3) entraine (4.2)
d’oli le lemme. On en déduit
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Proposition 4.1. La condition nécessaire et suffisanie pour qu’un élément f de
H soit moyenne-périodique est qu’il existe un commutateur Y de D™, non dégénéré,
tel que

Yf=0. (4.4)
Si f est moyenne-périodique, il existe Se 7, 8§ #0, avec Sf=0. D’ou
(4.4) avec Y = S considéré dans 4,,. Réciproquement, soit f vérifiant (4.4).
Comme Y est non-dégénéré, il existe Z dans 77,,, satisfaisant & la condition

(4.2). Alors
ZYf=8f=0 .

Donc f est moyenne-périodique.

Remarque 4.1. Soit
m—1
Yf=2 [g,0)f¢t + oI z)dt
T

j=0
les fonctions g, étant analytiques et holomorphes & I'infini. Alors, le commu-
tateur § = ZY du lemme 4.1, s’explicite comme suit

m—1

196 )] —{—’Zowftf)dtldtz. ..dt,, . (4.5)
i

Sf={---fdét
m

Remarque 4.2. La proposition 4.4 est inexacte si ¥ est dégénéré, comme
le montre, pour m = 2, le commutateur

Y-f(2) = f(2) + f(—=)

qui est annulé par toute fonction impaire.
Nous reviendrons ultérieurement sur le cas des commutateurs dégénérés.

5. Fonctions moyenne-périodiques par rapport 3 C,
Soit &, le groupe des isomorphismes Y de H sur H, tels que
AY = YA (5.1)

ol 4 désigne, comme au paragraphe 1, 'opérateur différentiel d’ordre m

m
A=2Xa,D
j=0
ou a,eH pour tout j, et ol a,, = 1.
Si feH, on désigne par 7 ,(f) le sous-espace vectoriel fermé engendré par
les Yf, Ye &, (donc Tpm(f) = T,(f)-
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Définition 6.1. TUn fonction feH est dite moyenne-périodique par rapport
a Asi T (f) est différent de H.

Soit X un isomorphisme de transmutation de 4 en D™: D™X = XA4; donc
A = X1DmX et (5.1) équivaut a

XYX1Dm=DmXYX! (5.2)
donec

XYX =2, ZC,. (5.3)
Alors

Ti(f) = XT,(X1f) (5.4)

de sorte que l'on a:

Proposition b.1. La condition nécessaire et suffisante pour que f soit moyenne-
périodique par rapport a A est que X-f soit moyenne-périodique, X étant un
1somorphisme de transmutation quelconque de A en D™.

Puisque le choix de X est arbitraire, prenons désormais X défini au numéro 1
(i.e. D*X}f(0) = D*f(0), p=10,1,...,m — 1).

L’espace 7',,(X-1f) est engendré par les exponentielles monomes qu'’il con-
tient. Donc d’aprés (5.4), T ,(f) est engendré par les fonctions de la forme

X (2? exp ax) (5.5)
qu’il contient. En utilisant

DnX =XA e D?Xf(0)=D?0), p=01,....m—1,

il est facile de déterminer les fonctions (5.5).

6. Nouveaux développements en série

Appliquons opérateur X-1 =¥ aux deux membres de (1.2). Ennotant que
X axr=0, ,

on a le

Théoréme 6.1. Soit A donné par (1.1) et les fonctions 0, données par (1.9)
et (1.10). Pour tout feH, on a

_ p=m—1 0p+km
f=2 2 D AO G T - (6.1)

Si A = Dm, c’est la série de TAYLOR, dont on donne ainsi une généralisation.
Remarque 6.1. Puisque 4 = X-1DmX, et D! = (Dm)f'm on posera
Ailm — X-1DIX | (6.2)
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Comme X f(0) = f(0), on a
Aa’/mf(o) = Dif(0) , donc D?A¥f(0) = Ap/mAkf(O) - A(k+km)lm,(0)

et par conséquent

f = Z Avinf(0) Jx.

n>0 n

(6.3)

7. Résolution d’équations aux dérivées partielles

Soit xeC, yeC, zeC"; H, (resp.H,, H,, H, , ,) désigne I'espace des fonc-
tions entiéres en x (resp. ¥, 2, et x,¥,2). On donne

A = Xa,(x)Di , a;cH , a,=1 ; (7.1)
j=0

B = ybi(y)D; ’ biGH H bn =1 5 (7'2)
j=0

(7.3) @ = opérateur différentiel dans H, & coefficients constants. On donne
ensuite un polynome p(t,,t,,7), t;eC, 7eC¥, et l'on considére 'opérateur
différentiel

A=p(4,B) . (7.4)
On va démontrer le

Théoréme 7.1. Soit f une fonction donnée dans H, , ,. Il existe toujours w
dans H, , , solution de
Au=f. (7.5)

Démonstration. Soit X opérateur de transmutation de 4 en D™, et ¥ opé-
rateur de transmutation de B en D*. On rappelle (cf. [6]) que

H,,.=H®HQH, .
Soit @ 'opérateur
=X ¥YQ®1, (7.8)

1 désignant 1’application identique de H, sur lui-méme. On a

G'(Eaﬁ?Aa'BB'Qy) = EaBY(Dm)a'(Dn)B’Qy'G ’
done
QA = p(D™ D".Q)-@

et par conséquent (7.5) équivaut &
p(D™, D", Q)(Qu) = Gf . (7.7)
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Mais p(D™,D"Q) est & coefficients constants, et d’apres [11] (Chap. II), (7.7)
admet une solution (au moins): soit v. Alors

u = G-1(v)

vérifie (7.5), ce qui démontre le théoréme.
La méthode précédente donne des théorémes d’existence et d’unicité. Par
exemple:

Théoréme 7.2. On donne A et B comme en (7.1) et (7.2). Il existe une fonc-
tion wu(x,y) et une seule, entiére en x et y, telle que

Awu(x:y) = B,,u(x,y) (7°8)
avec les conditrons de CAUCHY :
Diw(x,0)=f;(x), §=0,....,m—1 (7.9)

les f, étant données dans H .
Naturellement ’existence locale de u est bien connue (CAUCHY-KOVALEWSKA);
Pexistence globale n’était peut-étre pas complétement évidente.
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Note ajoutée a la correction des épreuves, —
M, K. FaGg, [Doklady, Akad. Nauk, (1957) t. 112, n® 6] vient d’annoncer un théoréme local
de transmutation, pour certaines classes de fonctions de variables réelles.
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