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Transmutations d'opérateurs différentiels
dans le domaine complexe

par J. Delsakte et J. L. Lions, Nancy

Introduction

Etant donnés deux opérateurs différentiels A et J3, sur un espace H, on dit
que X est un opérateur de transmutation de A en B, si X est un isomorphisme
de H sur H, tel que BX XA.

Cette notion dépend de A, de B, et aussi de l'espace H choisi. Elle a été
introduite en 1938, dans [2]: A et B étaient deux opérateurs différentiels du
deuxième ordre, H était un espace de fonctions d'une variable, définies pour
x ^ 0. Diverses généralisations et applications ont été données à partir de
1950, dans [5], [7], [8], [9], [10], [12].

Si A et B sont d'ordre m>2, à coefficients indéfiniment différentiables,
H étant l'espace des fonctions indéfiniment différentiables sur R, il n'existe pas,
en général, d'opérateurs de transmutations. Le problème de la classification
des opérateurs différentiels, sur B, d'ordre >2, se pose donc naturellement.
Il semble difficile. Un cas particulier, correspondant à une équation singulière,
est traité dans [9].

La situation est, au contraire, fort simple si l'on prend pour A et B des
opérateurs différentiels sans singularité, dans le domaine complexe, H étant
l'espace des fonctions entières d'une variable complexe. Dans ce cas, on peut
toujours transmuer A en B, pourvu qu'ils soient de même ordre. C'est ce que nous
montrons au numéro 1.

Nous donnons ensuite quelques applications simples de ce résultat, à la
théorie de la moyenne-périodicité, dans le complexe, à la théorie de la commutation

de deux opérateurs différentiels, etc.
Ce travail a été résumé dans une note aux C. R. Acad. Se. Paris, t. 244, p. 832-

834(1957).

1. Théorème de transmutation - Construction d'un isomorphisme particulier

Soit H l'espace des fonctions holomorphes d'une variable complexe x, muni
de la topologie usuelle de la convergence uniforme sur tout compact. Soit
D djdx ; on désigne par A l'opérateur différentiel:

^ (1.1)
y-o

où a^H pour tout j\ et am 1.
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On appelle opérateur de transmutation de A en Dm sur H un opérateur X, s'il
existe, ayant les propriétés suivantes :

(i) X est un isomorphisme de H sur H,
(ii) D^X^XA.

Nous allons montrer dans ce numéro le

Théorème 1.1. Il existe toujours un opérateur de transmutation de A en Dm

sur H.
On verra au numéro suivant (et c'est d'ailleurs immédiat) qu'il existe alors

une infinité d'opérateurs de transmutations de A en Dm.

Par ailleurs, il résulte aussitôt du théorème 1.1 le

Corollaire 1.1. Si B est un deuxième opérateur d'ordre m, du même type que
A, il existe un opérateur de transmutation de A en B.

Démonstration du théorème 1.1.

1) Pour tout /cJBT, posons à priori

2 Jfo

et admettons provisoirement le

Lemme 1.1. La série (1.2) converge dans H et Vapplication linéaire de H
dans H ainsi définie est continue.

Ce lemme admis pour l'instant, nous avons

DmXf(x) Z
1

ce qui, en changeant h en h — 1 s'écrit XAf(x), donc

(1.3)
pour tout feH.

On va maintenant démontrer que X est un isomorphisme de H sur lui-même.
La démonstration va se faire en plusieurs points.

2) L'opérateur X est biunivoque.

Notons d'abord la propriété suivante, immédiate à partir de (1.2)

*/(0) /(0), DX/(0) D/(0),..., D^Xf(0) Z>»^/(0) (1.4)

Montrons maintenant que si Xf 0 alors / 0. Vu (1.4) on sait déjà que

0. (1.5)



Transmutations d'opérateurs différentiels dans le domaine complexe 115

De (1.3) il résulte, puisque Xf 0

XAf^O
donc, en appliquant (1.4) avec A f au lieu de /

Af(O) 2X4/(0) Dw-M/(0) 0

ce qui, en utilisant la forme de A et (1.5), entraîne

Dmf(O) Dm^f{0) 2)«w-l/(°) ° »

et ainsi de suite :

Dnf(O) 0 pour tout n,

donc / 0. C. Q.F. D.

3) Fonction 0(x,X) et opérateur S£.
On désigne par 0(x,X) la solution de

AmB(x,X) - kmB{x,X) 0 UC (1.6)
avec 1) A^ (1.7)

La fonction & est entière de x et de X ; considérons le développement

x)fr±->, (1.8)

on a
6n€H pour tout n,

et les relations

u40n O si n^m-1, D*dn(0) j\ônj j 0,1,.. .,m - 1 (1.9)

et

ABn
nl

6n_m si n>m9 6n(0) 2)^0n(O) 0 (1.10)

relations qui caractérisent complètement les 0n

Considérons maintenant la série

5ff(x) ZD"f(0)6n(x)-±- (LU)

et admettons provisoirement le

Lemme 1.2. La série (1.11) converge dans H et Vapplication linéaire ainsi
définie de H dans H est continue.
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Ce lemme admis pour l'instant, il résulte aussitôt de (1.9) et (1.10) que
1>On a A9Tf SfD^i pour tout f*H (1.12)

Notons également que

O) P/(0),...,i)^^7(0) D^/(0) (1.13)

4) L'application X est sur.

Il résulte de (1.11) que

Posons XOn q>n. Nous avons Dmq>n XA6n, d'où en utilisant (1.9)
et (1.10)

n\

et D*ç?w(O) jï ônj ji ^ n

II en résulte que
<Pn(x)

donc que

et par conséquent ^

-1
% — 1

a;w

/ /

—¦ en *\\ 1
(n — m)l

pour tout w

pour tout n,

pour tout feH

(1.

(1.

14)

15)

Ceci montre que X applique H sur H ; comme X est déjà biunivoque, il en
résulte que X est un isomorphisme (algébrique) de H sur H, d'inverse Qf \

donc X est un isomorphisme topologique (si l'on ne savait pas que 3f est
continu, le résultat serait également vrai, par application du théorème d'iso-
morphisme de Banach).

Démonstration du lemme 1.1. Il résulte de la formule de Cattchy que

où /œM

B(x,y) Z(y- xr^a§{x)j\ (1.17)

et, où, pour fixer les idées, G est un cercle de centre x. On en déduit

**
Ci

où Gx est un cercle quelconque de centre x; on peut remplacer

par Ji,yt) _
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où C2 est un cercle quelconque de centre y1. Finalement, on peut écrire

CCi C2 Cjfc

où nous prenons les Ct comme suit: Soit R>0 fixe quelconque; alors

Ck a pour centre yk-lf pour rayon Bftk + 1) ;

C&-i a pour centre 2/fc_23 pour rayon R/(k + 1) ;

C2 a pour centre y1, pour rayon R/(k + 1 ;

Cj a pour centre x pour rayon RJ(k +1)
En utilisant maintenant la relation

où (70 a pour centre l'origine et pour rayon R/(k + 1), on a finalement

C O C CO,

où CO9Cl9... Ck sont choisis comme ci-dessus et où G1 a pour centre y0 et
pour rayon J?/(4 +1).

Du choix des rayons il résulte que dans (1.19) on a

De façon générale si geH, posons

\g\R ma,x\g(x)\ \x\
On a

où

K
et l'on déduit alors de (1.19)

|DM*(/(0))| ^pl(m\)*(l + oc(R>k))*(^±±ym+P\f\R (1.20)

II en résulte que

Umsup
xn l/n \ (yYi )V1

j ^^
/ Rm \x\

Puisque iî est fixé quelconque, le lemme 1.1 en résulte.

9 Commentarii Mathematici Helvetici
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Démonstration du lemine 1.2. Commençons par démontrer le lemme
suivant :

Lemme 1.3. Soit v une fonction donnée dans H telle que \v(x)\ < M \ x | *-*,
X entier, pour \x\^R (M dépend de R). Soit u la solution de

Au v (1.21)
avec

u(0) Du(0) Dwl-1w(0) 0 (1.22)

Alors, il existe une constante G dépendant de R et de A telle que pour tout x avec

\x\ < R, on ait

\u(x)\ < M-^^yy M"**-1 exp C\x\ (1.23)

Démonstration. On multiplie les deux membres de (1.21) par
1

(m - 1)!
(x - y)™-1

et on intégre de 0 à a;, sur le segment joignant 0 k x, pour fixer les idées. On
obtient

u{x)^ l f(x - y)m^v(y)dy + J H(x,y)u(y)dy (1.24)
(m — 1)1 0 o

où H{x,y) est une fonction entière de x et y, qui dépend de A.
Si l'on pose

1 *

on peut écrire, posant y tx

1^ÏTT S

d'où en utilisant l'hypothèse faire sur v

\w(x)\ ^M ™X) |*|«+^i |»| < JB (1.25)

On résout maintenant (1.24) par approximation successives

X

uQ w,..., *„ w + J
o

On voit facilement que, (7 désignant le maximum de H(x,y) pour \x\
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- »_i(*)| < MCn
r{m ™+ %)

|*|«*A-i+« j»! < R

On en déduit facilement (1.23).
Passons maintenant à la démonstration du lemme 1.2. Il résulte aussitôt de

la majoration suivante :

\x\ ^R (1.26)
où

M sup. \x\^\6t(z)\ • (1-27)
||

Reste donc à démontrer (1.26) ; ce que l'on fait, pour p fixé (0 ^p ^.m — l)
par récurrence sur k. Le résultat est vrai si k 0, par définition de M.
Admettons le pour 1,..., k — 1, donc

|0<*-Um+*(*)I < Jf|*|«fr-1»"+»exp(4- 1)0*

On utilise maintenant (1.10) et le lemme 1.3 pour avoir (1.26).
Le Théorème 1.1 est ainsi complètement démontré.

Remarque 1.1. Désignons par Jr l'espace des fonctions holomorphes à
m

l'origine, muni de la topologie de limite inductive usuelle. Soit A Ha^D*, avec
am 1 et a^Jff. Alors la démonstration du théorème 1.1 fournit également le

Théorème 1.2. Il existe toujours un isomorphisme X de Jjffsur lui-même tel

que DmX XA.

2. Détermination de tous les isomorphismes

II est évident que tout isomorphisme de transmutation de A en Dm s'obtient
en composant l'opérateur X construit au numéro 1 avec un élément quelconque
Y du groupe Çm des isomorphismes tels que

DmY YDm (2.1)

Nous allons dans ce numéro construire Qm.
Soit H' le dual de H; si / -><pt; f> est une forme linéaire continue sur H

(fAtH'), elle est déterminée de façon unique par

</i9 ex> 0(A) ex(x) exp (Xx) UC ; (2.2)

/i est une fonction entière de type exponentiel. - On appelle $ la transformée de

Fourier de p.
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Soit maintenant Y€j?(H,H); alors, pour tout aeC fixé, /-> Yf(a) est
une forme linéaire continue sur H, donc de la forme

,f> (2.3)

où [i(a)€Hf\ soit /i(a; X) la transformée de Fottrier de ju,(a); la fonction
a -> Yf(a) étant dans 1/, la fonction a ->//(a) est entière à valeurs dans Hr
ou, ce qui revient au même a, X -> jS(a, X) est entière en a et A, entière de

type exponentiel en X (de type borné lorsque a parcourt un compact).
Cherchons maintenant à construire les YeJJiE.^ H), ayant les deux propriétés
supplémentaires

(i) Y vérifie (2.1) (Y est un opérateur de commutation),

(ii) Y est un isomorphisme de H sur lui-même.

Recherche des Y vérifiant (i).
I] suffit d'écrire que DmYex YDmex pour tout XcC; mais Dmex= Xmex

donc

2>"7eA= ATO7eA (2.4)
Or

Yex(a) <fi{a),ex> £(a; A)

donc (2.4) équivaut à

i)^(a;A) /i(a;A) (2.5)
et

doivent être entières de type exponentiel, donc

m-l
îi{a\X)=-ZMi (A) exp (X coja) (2.6)

où >=0

m expr \ m
et où les fonctions

jyjL s [j -—= X • ¦ • Tïh ~~~~ XI

sont entières de type exponentiel. Donc

Proposition 2.1. Tout Y vérifiant (i) est représenté par (2.3) où la
transformée de Foubier de ju(a) est donnée par (2.6).

Recherche des Y vérifiant (i) et (ii).
Si Y vérifie (i) et (ii) alors Fisomorphisme inverse

Z 7-1
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vérifie également

121

J)mZ _
donc, vu la proposition 2.1 on a

Zf(a)=<v(a),f>
avec

v(a; A) =?Z N,(X) exp

(2.7)

(2.8)

II faut trouver la condition nécessaire et suffisante pour que, F étant donné,
il existe Z donné par (2.7) et (2.8) avec

YZf ZYf /
pour tout feH; il suffit naturellement d'écrire

ex (2.9)

m_x

pour tout XeC. Or

et alors

De même

ZYex(a)

de sorte que (2.9) équivaut à

HNf(X) Mk{Xa>i) exp Xaœ^k SM^N^Xco^) exp

ou encore, tous les calculs d'indices étant faits modulo m

X) exp (Xacok) exp (la)
exP (^^«>fc) exp {Xa)

1 si h 0

; 0 si ifc 1,2,..., m — 1

1 si k 0

0 si jfc 1,2,..., m — 1

exp (Aa)

donc

et

/

(2.10)

(2.11)

Introduisons les matrices (m,m)

M0(X) MX(X) ;...;
M0(Xœ); ;
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Alors (2.10) et (2.11) équivalent à

^T E (E matrice unité) (2.12)

=E (2.13)

II résulte de (2.12) par exemple qu'une condition nécessaire est

dét. 37F(X) # 0 pour tout A (2.14)
Mais la fonction

A -> dét.

est entière de type exponentiel et

dét. 37T(Xo>) dét.

donc (en utilisant le théorème de Weerstrass)

Dét. 37T(X) Cfffî-= Constante ^ 0 si m^2 (2.15)

(si m 1, alors dét. £ffl°(X) C exp (6 A)).
Le système (2.10) détermine de façon unique les fonctions Nf(X) - et les

Nj(X) sont entières de type exponentiel.
La matrice tJT(K) construite à partir des fonctions N$(X) que Ton vient de

trouver vérifie (2.12), donc (2.13). Donc (2.10) et (2.11) ont lieu.
On a donc obtenu le

Théorème 2.1. Tout isomorphisme Y de H sur lui-même tel que Dm Y YDm

avec m > 2, est delà forme

où mmml

,exy ^(a; A) EMS{X) exp

Ï65 fonctions Mi étant entières de type exponentiel telles que dét. 11 Mk^_i (A eo^) 11

constante non nulle.

Remarque 2.1. Si m=l, dét. ^T(A) Jf0W c exp (6A) et 7-/(a;)
c/(a; + 6) (c ^ 0). Enfin, on a la

Proposition 2.2. Si m ^ 2, le groupe Qm des isomorphismes Y tels que
D»*y= YD™ admet une représentation fidèle, de degré m, formée par les

matrices

où les fonctions M sont entières de type exponentiel, et telles que dét. £77F(X) ^0.
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Remarque 2.2. D'après le théorème 1.1, le groupe QA des isomorphismes
X tels que AX XA est isomorphe à Çm.

3. Fonctions moyenne-périodiques par rapport à Dm

Pour feH, on désignera par Tm(f) le sous-espace vectoriel fermé de H
engendré par Xf quand X parcourt Çm.

Définition 3.1. On dit qu'une fonction fcH est moyenne-périodique par
rapport à Dm lorsque Tm(f) est différent de H.

Si m 1, on retrouve la notion usuelle dans le domaine complexe ([4], [13]).
Mais en fait la définition 3.1 n'introduit pas de notion nouvelle.

Proposition 3.1. Il y a identité entre fonctions moyenne-périodiques par rapport

à Dm et fonctions moyenne-périodique usuelles.

Démonstration. Puisque Çm^Çl9 il est évident que toute fonction
moyenne-périodique par rapport à Dm est moyenne-périodique usuelle.

Réciproquement, soit / moyenne-périodique usuelle. On veut montrer que /
est moyenne-périodique par rapport à Dm, donc qu'il existe TeH', non nulle,
avec

<7\X/> 0 pour tout X*Çm (3.1)

Soit SeH =£0, orthogonale à Tt(f); soit S (À) la transformée de Fottbieb
de S et posons m_x

F{X) =11 S(con) (3.2)

La fonction F est entière de type exponentiel, donc de la forme

F(X) T(X) TeH' ^0 (3.3)

On va montrer qu'avec ce choix de T, (1) a lieu. ^
On sait que si l'on appelle spectre de / l'ensemble des zéros de S, comptés

avec leur multiplicité, alors Tx(f) est engendré par les xQexp<xx, q^p,
(oc,p)espectre de /.

Donc Tm(f) est engendré par les X(xqex$<xx), q^pf X*Qm. Il suffit
donc de montrer que

<r,X(a:«exp*aO> 0 (3.4)

pour tout XcÇm et tout <?<p, (oc,p)espectre de /.
Or, d'après (2.6), X(x* exp ocx) est combinaison linéaire de of exp occo^x,

r ^ p, j 0,..., m — 1. Donc (3.4) a lieu si, pour tout j, occof est un zéro
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de F (A) T(k), de multiplicité 2?. Or, il en est bien ainsi d'après (3.2), d'où
la proposition.

4. Fonctions moyenne-périodiques et commutateurs de Dm

Soit S%m l'algèbre des endomorpMsmes F de H -> H tels que

DmY YDm (4.1)

On dit que S¥m es^ Valgèbre des commutateurs de Dm. D'après le numéro 2,

est représentée fidèlement par l'algèbre des matrices

Définition 4.1. Le commutateur Y est dit non dégénéré si la fonction
dét. £ffî(k) n'est pas identiquement nulle.

Lemme 4.1. La condition nécessaire et suffisante pour qu'un commutateur Y
de Dm ne soit pas dégénéré est qu'il existe un deuxième commutateur Z de Dm tel que

YZ ZY S (4.2)
où SeS^t, non nul.

Démonstration. La condition est suffisante; en effet si OViK) est la matrice
correspondant à Z, il résulte de (4.2) (puisque la matrice correspondant à S est

/\
de la forme: 8(À)-E, E matrice unité {m,m))

S{X)

donc dét. £77F(X) n'est pas nul.
La condition est nécessaire: désignons par N^k) le mineur relatif à

l'élément Mj(X) sur lequel se croisent la première ligne et la ;-ème colonne de

£ffî); la fonction Ni est entière de type exponentiel; formons la matrice

elle représente un élément Z de S%m\ or

!%rw £7T{k) <7T(k) ïffîW [dét. <ffi(k)\-E ; (4.3)

la fonction dét. SW(k) étant entière de type exponentiel, la matrice

représente un élément S de J3£ (considéré dans J^m)} et (4.3) entraîne (4.2)
d'où le lemme. On en déduit
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Proposition 4.1. La condition nécessaire et suffisante pour qu'un élément f de

H soit moyenne-périodique est qu'il existe un commutateur Y de Dm, non dégénéré,
tel que

r/ 0. (4.4)

Si / est moyenne-périodique, il existe ScJ^, 8 =£0, avec Sf 0. D'où
(4.4) avec Y S considéré dans J^. Réciproquement, soit / vérifiant (4.4).
Comme Y est non-dégénéré, il existe Z dans S¥m, satisfaisant à la condition
(4.2). Alors

ZYf Sf=O
Donc / est moyenne-périodique.

Eemarque 4.1. Soit

7/=V Sgt(t)f(t + o^x)dt

les fonctions gô étant analytiques et holomorphes à l'infini. Alors, le commutateur

S ZY du lemme 4.1, s'explicite comme suit

Sf $--$dét\\gk_j(tj)\\-f(x +mî: œHjd^dt,.. .dtm (4.5)

Remarque 4.2. La proposition 4.4 est inexacte si Y est dégénéré, comme
le montre, pour m 2, le commutateur

qui est annulé par toute fonction impaire.
Nous reviendrons ultérieurement sur le cas des commutateurs dégénérés.

5. Fonctions moyenne-périodiques par rapport à QA

Soit QA le groupe des isomorphismes Y de H sur H, tels que

AY=YA (5.1)

où A désigne, comme au paragraphe 1, l'opérateur différentiel d'ordre m

m

A

où aô€H pour tout j, et où am 1.
Si feH, on désigne par TA(f) le sous-espace vectoriel fermé engendré par

lesT/, Y*ÇA (donc TDm(f) ~ Tm(f)).
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Définition 6.1. Un fonction feH est dite moyenne-périodique par rapport
kÂBi TA(f) est différent de H.

Soit X un isomorphisme de transmutation de A en Dm : DmX XA ; donc
A X^DmX et (5.1) équivaut à

XYX^D™ D^XYX-1 (5.2)
donc

XYX~i Z, ZeÇm. (5.3)
Alors

TA(f) XTm(X~if) (5.4)
de sorte que Ton a :

Proposition 5.1. La condition nécessaire et suffisante pour que f soit moyenne-
périodique par rapport à A est que X~xf soit moyenne-périodique, X étant un
isomorphisme de transmutation quelconque de A en D™.

Puisque le choix de X est arbitraire, prenons désormais X défini au numéro 1

(Le. l)*X/(0)==Z>*/(0), p 0,1,..., m - 1).

L'espace T^X^f) est engendré par les exponentielles monômes qu'il
contient. Donc d'après (5.4), TA(f) est engendré par les fonctions de la forme

(5.5)
qu'il contient. En utilisant

DmX XA et DvXf(0) Dp(0) p 0,1,..., m — 1

il est facile de déterminer les fonctions (5.5).

6. Nouveaux développements en série

Appliquons l'opérateur X"1 ~5F aux deux membres de (1.2). Ennotant que

on a le

Théorème 6.1. Soit A donné par (1.1) et les fonctions 6n données par (1.9)
et (1.10). Pour tout feH, on a

f^ZE D*Akf(0) 7+îm xt (6.1)
h *-o /w (p + km)l

Si A Dm, c'est la série de Taylob, dont on donne ainsi une généralisation.

Remarque 6.1. Puisque A X^D^X, et D* (D™)^, on posera

^ (6.2)
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Comme Xf(O) /(0), on a

A^mf(O) Z»7(0) donc D»Akf{0) A*tmAkf{0) l«*+b»)/»/(O)

et par conséquent

A-. (6.3)
i

7. Résolution d'équations aux dérivées partielles

Soit xcC, yeC, Z€GN; Hx (resp. #„, Hz, HxyfZ) désigne l'espace des fonctions

entières en x (resp. y, z, et x,y,z). On donne

a,e^ am 1 ; (7.1)

Î 6i€£T 6n =1 ; (7.2)

(7.3) Q — opérateur différentiel dans Hz à coefficients constants. On donne
ensuite un polynôme p(tlyt2,T), t^C, reCN, et Ton considère l'opérateur
différentiel

A p(A,B,Q) (7.4)
On va démontrer le

Théorème 7.1. Soit f une fonction donnée dans Rxvz. Il existe toujours u
dans HXt Vt z solution de

Au=-j (7.5)

Démonstration. Soit X opérateur de transmutation de A en Dm, et Y
opérateur de transmutation de B en Dn. On rappelle (cf. [6]) que

Soit 0 l'opérateur
(7.6)

1 désignant l'application identique de Hz sur lui-même. On a

donc

et par conséquent (7.5) équivaut à

(7.7)
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Mais p(Dm,Dn,Q) est à coefficients constants, et d'après [11] (Chap. II), (7.7)
admet une solution (au moins) : soit v. Alors

vérifie (7.5), ce qui démontre le théorème.
La méthode précédente donne des théorèmes d'existence et d'unicité. Par

exemple :

Théorème 7.2. On donne A et B comme en (7.1) et (7.2). Il existe une fonction

u(x,y) et une seule, entière en x et y, telle que

Byu{x>y) (7.8)

avec les conditions de Cauchy :

2>J*(*,0) /,(*) j 0,..., m- 1 (7.9)

les fj étant données dans H.
Naturellement l'existence locale de u est bien connue (Cauchy-Kovalewska) ;

l'existence globale n'était peut-être pas complètement évidente.
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