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Uber die Bestimmung des Typus einer RieManNschen Fliche

von Eva MaArIA WIrTH, Ziirich

I. Einleitung

1. Es handelt sich im folgenden um die Bestimmung des Typus von in ge-
wisser Weise dargestellten zweifach zusammenhingenden RiEmanNschen Fli-
chen. In der komplexen Ebene sei ein einfach zusammenhingendes Gebiet ge-
geben, dessen Rand aus drei stiickweise analytischen Jordanbogen mit den
Endpunkten O, P, @ bestehe. Zwischen zweien dieser (offenen) Bogen, etwa
PO und PQ, bestehe eine eineindeutige analytische Beziehung, welche die

Orientierung PO bzw. PQ erhslt. Werden alle mittels dieser Beziehung ein-
ander zugeordneten Punkte sowie O und @ identifiziert, so ist damit ein zwei-
fach zusammenhingendes RiEmMannsches Flichenstiick gegeben. Sein Rand
besteht aus der geschlossenen Kurve O@Q und der P zugeordneten idealen
Randkomponente. Nach dem Riemannschen Abbildungssatz ist jede solche
Fliache konform équivalent mit einem Kreisring 1 << |w| << R der komplexen
Ebene. Der #uBlere Radius R kann endlich oder unendlich sein. Ist R endlich —
geht also die zum Punkt P gehorige Randkomponente der Fliche in einen end-
lichen Kreis iiber — so heiBt die Fliche vom hyperbolischen Fypus. Unendliches
R ist gleichbedeutend mit parabolischem Flachentypus. Wegen des Zusammen-
hangs dieses Problems mit der allgemeineren Frage der Polygondarstellung
einer RieMANNschen Fliche vergleiche man zum Beispiel den Abschnitt iiber
geschlossene RremanNsche Flichen von [5].

Jede Aussage iiber den Typus einer in der oben beschriebenen Weise defi-
nierten RieMANNschen Fliche bezieht sich einerseits auf die geometrische Form
des zugrunde gelegten Gebietes und andererseits auf die Eigenschaften der
analytischen Beziehung zwischen zweien der Randkurven. P. J. MYRBERG [2]
hat fiir gewisse RiEmManNsche Flichen, die durch das Fundamentalpolygon
einer fuchsoiden Gruppe definiert sind, eine fiir den parabolischen Typus hin-
reichende Bedingung gegeben. Ein fiir den parabolischen Typus hinreichendes
Kriterium gibt auch R. NEVANLINNA [3]. Dieses Kriterium ist auf ein beliebiges
von drei JorpANkurven berandetes Gebiet anwendbar. Ebenso auf ein beliebi-
ges Gebiet anwendbar sind die beiden Kriterien von L. I. VoLkovYsk1y [6]2):
eines hinreichend fiir Parabolitit, das andere hinreichend fiir Hyperbolitit.

1) Herr Professor A. PFLuGER hat mich auf diese Arbeit aufmerksam gemacht und mir freund-
licherweise eine deutsche Ubersetzung zur Verfiigung gestellt.
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Die an sich verschiedenen Methoden der beiden letztgenannten Verfasser haben
das Gemeinsame, daf3 die Schiirfe der zur Herleitung des Kriteriums verwende-
ten Ungleichungen wesentlich von der effektiven Wahl einer quasikonformen
Hilfsabbildung abhéngt.

In der vorliegenden Arbeit betrachten wir nur ein ganz spezielles Gebiet, den
Parallelstreifen 0 << 2<oco, 0 <y <1, wobei der Randpunkt z =oco dem
Punkt P entspreche. Die eineindeutige analytische Beziehung zwischen den
beiden Halbgeraden y =0 und y = 1 (0 << x <oco) werde vermittelt durch
eine positive reelle Funktion f = f(x), derart, daB die Punkte P, = z auf
y =0 und P* = x + f(x) + ¢ auf y =1 identifiziert werden (vgl. Fig. 2).
Das Parabolitdtskriterium von NEVANLINNA, mittels einer besonders einfachen
quasikonformen Abbildung auf dieses spezielle Gebiet angewandt, sagt aus,
daB die Divergenz des Integrals

f dx
1 + f(x)?
den parabolischen Typus garantiert. Eine nidhere Betrachtung zeigt, dafl sich
dieses Resultat durch Variation der Hilfsabbildungen nicht wesentlich ver-
bessern la8t. Die Vermutung, daB es sich bei der Divergenz des obigen Integrals
um eine fiir die Parabolitédt nicht nur hinreichende, sondern auch notwendige
Bedingung handle, liegt deshalb nahe. Mit anderen Worten : Es stellt sich die
Frage, ob die Konvergenz dieses Integrals eine hinreichende Bedingung fiir die
Hyperbolitit darstelle. In so allgemeiner Form darf diese Frage wahrschein-
lich nicht bejaht werden. Hingegen wird die vorliegende Arbeit nachweisen,
daB dies unter gewissen zusitzlichen Voraussetzungen iiber f(x) wohl der Fall
ist. Bei der Herleitung des Kriteriums beniitzen wir nicht eine quasikonforme
Abbildung, sondern direkt die Eigenschaften einer eineindeutigen konformen
Abbildung der durch f(z) bestimmten Fliche auf den konform &quivalenten
Kreisring.

VoLKOVYSKIJ hat sein Hyperbolitdtskriterium selbst auch auf den Parallel-
streifen 0 < x<oo, 0 <y < 1 angewandt. Fiir einen Vergleich seines Resul-
tats mit dem unsrigen verweisen wir auf den Schlufi.

II. Ein Hyperbolititskriterium

2. Wir gehen aus vom Streifen §,: 0 <z<oo, 0 <y <1 in der kom-
plexen z-Ebene. Mittels der reellen Funktion f = f(x) ordnen wir die Punkte
P, =2 auf y =0 und dic Punkte P* =2 + f(z) +¢ auf y =1 ein-
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ander zu. Die Funktion f(x) sei so gewihlt, daB die Zuordnung P, <> P* eine
eineindeutige und stiickweise analytische Abbildung von y =0 auf y =1
darstellt. Die durch Identifikation aller P, und P* gegebene zweifach zu-
sammenhingende RieMaNNsche Fliche werde durch die Funktion

w = w(2)

eineindeutig und konform auf den Kreisring 1 <|w| < R abgebildet ; etwa
80, daf3 die beiden (identifizierten) Punkte 2 = 0 und z =1 in o = 1 iiber-
gehen. Das Bild der identifizierten Strahlen y =0 und y =1 (0 << 2 <co)
bei dieser Abbildung ist eine stiickweise analytische Kurve, die durch ¢ = {(z)
in Parameterform dargestellt sei. Denkt man sich die w-Ebene lings der Kurve
{(x) aufgeschnitten und diese im Sinne wachsender = durchlaufen, so ist der
linke Schnittrand Bild von y = 0, der rechte Bild von y = 1.

o] =0 (1 < o< R <o) sei ein fester Kreis ; wir betrachten seine gemein-
samen Punkte mit der Kurve ((z). Entweder sind dies isolierte Punkte :
wenn |{(xy)| = o und |{(2)| # o in | — z,| <e; oder es sind gemeinsame
Bogenstiicke : wenn |{(x)| = o fiir ein geschlossenes Intervall z; <z <z, .
Wegen der Analytizitat ist sowohl die Anzahl der isolierten gemeinsamen
Punkte, als auch die Anzahl der gemeinsamen Bogenstiicke, fiir jedes g endlich.
Von den isolierten Punkten interessieren uns im folgenden nur die Schnitt-
punkte, das heiflt diejenigen, fiir welche |{(z)|<p in 2y — e<x<x,, und
|{(x)| >0 In zo<z<2y) + £, oder umgekehrt. Entsprechend interessieren
uns von den gemeinsamen Bogen nur diejenigen, wo, wenn {(z,) und {(x,) die
Randpunkte sind, entweder |{(z)|<p in 2, —e<z <z, und |{(x)|>p in
2y, <xr<Zy + £, oder umgekehrt.

Wir durchlaufen die Kurve {(z) im Sinne wachsender z-Werte und numerie-
ren die Schnittpunkte mit |w| = ¢ und, bei den oben charakterisierten ge-
meinsamen Bogen, einen der beiden Randpunkte fortlaufend mit ¢;, ¢,,...,¢,.
(Welcher der Randpunkte dafiir gew#hlt wird, ist zundchst unwichtig.) Fiir
jeden Kreis |w| = ¢ (1 < p<R) sind auf diese Weise n = n(p) Punkte
{; = {;(o) ausgezeichnet. Der Einfachheit halber nennen wir im folgenden
alle diese Punkte ,,Schnittpunkte”. Thre Anzahl n(p) ist eine ganzzahlige
Treppenfunktion, die fiir ¢ — R unbeschrankt wachsen kann.

Satz. Der Kreisring 1 <|w| < R hat einen endlichen duferen Radius R,
wenn die folgenden drev Bedingungen erfullt sind:

(1) f(=) st esne monoton wachsende Funktion von x.

(2) Das Integral f konvergtert.

1+f( )?
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(3) Die Anzahl n(p) der Schnittpunkte ist gleichmdifig beschrdinkt in
1<o<R:n(d <N .

3. Die folgenden Bemerkungen sollen den Beweis des Satzes vorbereiten.
Ausgehend vom Kreis [w| = p und seinen Schnittpunkten ¢{; = {;(p)
(t=1,2,...,n(p)) betrachten wir die durch diese Punkte bestimmte Auf-
teilung der Kreisperipherie in » Bogenstiicke {{;, {;}. {; und , seien auf dem
Kreis aufeinanderfolgende Punkte ; die Gesamtheit aller Bogen {¢,, ¢} bildet
also wiederum den ganzen Kreis. Wir interessieren uns fiir ihre Urbilder in
S,. Die Urbildpunkte von ¢, {,,..., {, seien auf y = 0 die von links nach
rechts aufeinanderfolgenden Punkte P,,P,,...,P,. Ihre #quivalenten
Punkte auf y = 1 bezeichnen wir mit P, P% ..., P". Falls der Bogen
{¢;, &} kein mit {(z) gemeinsames Bogenstiick enthilt, so verbindet seine
Urbildkurve entweder zwei Punkte desselben Strahls miteinander, oder sie
verbindet zwei Punkte auf verschiedenen Strahlen, je nachdem ob {{;, {,}
zwischen zwei Punkten desselben Ufers oder zwischen den Punkten verschie-
dener Ufer von () liegt. Ist hingegen {{(zx,), {(%,)} ein beliebiges gemein-
sames Bogenstiick von {(z) mit |o| =90 (|{(2)| =0 in x, <z < 2,), 80
unterscheiden wir die Fille

a) Das linke Ufer von {(z) ist innen: Hier gilt nur die Strecke z,z, als
Urbild von {{(x,), {(x,)}. Ist einer der Randpunkte von {{(2,), {;)} als
Schnittpunkt zu zihlen, dann der, bei dem das rechte Ufer aulen liegt.

b) Das rechte Ufer von {(z) ist innen : Hier gilt nur die dquivalente Strecke
von w; z, auf y = 1 als Urbild von {((=,), {(x,)}; und ist einer der Rand-
punkte als Schnittpunkt zu zihlen, dann der, bei dem das linke Ufer auBlen ist.

Man iiberlegt sich, daB
mit dieser Ubereinkunft von
jedem. Punkt P, und von
jedem Punkt P genau eine
Urbildkurve ausgeht. Die
Gesamtlinge aller dieser
Kurven sei L = L(p). Ist
A = A(p) die Urbildfliche
des Kreisrings 1 <r < g,
so grenzt jede der Kurven
P,P, und P*P! und P, P"
an A. AuBerdem wird 4 berandet von der Strecke # =0 (0 <y < 1) und
den beiden Halbgeraden y = 0 und y = 1 (0 < #<o0). Vgl. auch Figur 3.
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4. Wir wollen eine Beziehung herleiten zwischen L = L(p) und 4 = A (p).
Um die Rechnung zu erleichtern, fiithren wir als HilfsgroGe

w=u-+1v = (log w)/2x

ein, wobei die Vieldeutigkeit des Logarithmus unberiicksichtigt bleiben kann,
da nur das Differential dw = du + idv vorkommt, und dieses eindeutig ist.
Unsere Behauptung heiflt : Fiir jedes o(1 < o<R) gilt die Ungleichung

d4
< @
wobei u = (log g)/2x.
Den Beweis von (I) fiihren wir mittels einer von AELFORS [1], GROTZSCH und
anderen oft angewandten Methode. L setze sich zusammen aus den n Kurven

n
der Linge I,: L = 2’ I,; 1, und A lassen sich darstellen als

i1=1

2
o [ ao. gy

Hier ist —(%% eindeutig bestimmt durch die in Nummer 2 definierte Funktion

o = w(z) bzw. ihre Umkehrfunktion 2z = z(w) = z(e***). B, bezeichnet die
logarithmische Linge des Bildbogens von I,. Durch Anwendung der SCHWARz-
schen Ungleichung auf I :

) g 'f

ek,

n 712
PR
1

)

2

7 dv

dw

dz

ergibt sich zuniichst
dv =

Beriicksichtigt man nun noch, dal Z’ B; = 1 ist, so folgt aus
1

o= s (ko8 <(2 1)

2

l

L 2]

|

n
= d
1

=

die Behauptung. /
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II1. Beweis fiir N =1

5. Wir kommen zum Beweis des in Nr. 2 ausgesprochenen Satzes. Die Funk-
tion f(x) erfiille also die Voraussetzungen (1) und (2), wihrend (3) vorléufig
durch die Forderung N =1 verschirft ist. N =1 bedeutet n(p) =1
(1 <e<R). Zunichst habe g einen festen aber beliebigen Wert.

Wegen n(p) =1 hat der Kreis |w| = ¢ als Urbild in S, eine von einem
Punkt P, auf y = 0 nach seinem équivalenten Punkt P* auf y = 1 fiithrende

Kurve. Diese enthilt auler den

f P* beiden Randpunkten P, und P*

- keine Punkte auf y =0 oder

y = 1. Zwischen ihrer Linge

L = L(p) und der links von ihr

liegenden Fliche A = A(p) be-

P, — ; v Fig. 2 steht die in Nr. 4 hergeleitete Un-

gleichung (I). Wir setzen P, =«

(wobei x = z(p)), so daB P*¥ =z 4 f(z) +¢. Ist dann 8 = s(p) die

,,Schwankung® der Kurve P,P* nach rechts, das heiflt die Differenz der

Abszisse ihres am weitesten rechts liegenden Punktes und z, so gelten offen-
bar die Ungleichungen

ALz +s (IT)
1+ <1+ 2. (I11)
(Vgl. hierzu auch [1].)
Im folgenden betrachten wir die von ¢ abhéngigen GréBen z, s und 4 als
Funktionen von wu = (log 0)/27 : 2 = z(u), 8 = s(u), A = A(u). Defini-
tionsbereich aller dieser Funktionen ist das Intervall

0<u<U = (log R)/2x .
Wir teilen es in zwei Teilmengen M, und M, ein:

u gehore zur Menge M,, wenn z(u) < s(u)

und u gehoére zur Menge M,, wenn z(u) =>s8(u) ,

und behaupten : Das lineare Map von M; und das lineare Map von M, ist end-
lich. Mit dieser Behauptung ist unser Satz fir N = 1 bewiesen. Denn U ist
die Summe der MaBzahlen von M, und M,, und bei endlichem U ist auch das
zugehtrige R = ¢*"U endlich.

6. Das Maf von M,. Aus den Ungleichungen (IIT) und (I) folgt

dA (u)
du

s(uf<L(u)® <
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und durch Integration “
fs(r)2dr<Ad(u) .
=0

Fir ueM, folgt aus (II) A (u) < x(u) + s(u)<2-s(u), so daBl

fa(r)“’dt<2-8(u) .

0

Mit der neuen Bezeichnung "
¢(u) = § 8(z)*dv
0
gilt also ¢ (u) <2 I/ % oder
du<4-%",§ (we M) . (1)

Die Ungleichung (1) integrieren wir, und zwar iiber eine Teilmenge M 1 von
M M, die den Nullpunkt nicht enthilt. Es sei deshalb M . definiert durch

liI1 M, — M,~I,, wo I, ein Intervall 0 <u <<wu, (4,>>0) ist. Unter
Beriicksichtigung der Monotonitét von ¢ (u) gilt dann

fdu<4 fd¢ o
. @ (uo)

Hieraus folgt

und zwar auch ohne die beim Beweis nirgends verwendeten Voraussetzungen
(1) und (2) aus Nr. 2.

7. Das Maf von M,. Aus den Ungleichungen (IIT) und (I) folgt 14 f2<< d—A

oder
dA

“STEpE

(2)

Wir werden das lineare MaB3 von M, durch Integration der Ungleichung (2)
iiber M, berechnen und abschitzen, miissen jedoch an dieser Stelle zundchst
eine Bemerkung iiber diese Menge bzw. ihre Komplementirmenge M, ein-
schieben. M, wurde definiert als die Menge derjenigen u, fiir welche x(u)<<s ().
Da diese beiden Funktionen stetig sind, ist M, eine offene Menge und als solche
die Vereinigung von abzihlbar vielen offenen Intervallen: M, =UI,.

Die Aufteilung von M, in Intervalle I, benutzen wir wie folgt zur Definition
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einer Funktion A=4 (w) in 0 <u<U. Es sei

Au) = A(u) fir ueM, .

Gehort w zur Menge M, , so liegt es in einem Intervall ;. Der linke Randpunkt
von I, sei der Punkt %, ; wir definieren

Aw) = Aw;) fir wel,cM, .
Mit dieser Festsetzung, behaupten wir, gilt die Ungleichung
Aw) < 2z(u) . (IT)

Fir ueM, gilt wegen (IT) A (u) < z(u) + s(u) < 2x(u), woraus sofort die
Behauptung folgt. Nun sei uel,CM,. Da das Intervall I, offen ist, gehort
sein linker Randpunkt «; zu M,, so daf}

Aw) <2e(w) <22(@)  (wel) |

letzteres wegen der Monotonitdt der Funktion x(u). Daraus folgt die Behaup-
tung.
Wir kommen zuriick auf die Ungleichung (2), die iiber M, integriert

ergibt. Da auf Grund der Definition von A (u) fir weM, dA (w) =0, ist
U

dA dA :
e &)

Mg 0

und in dieser Form erhilt man durch partielle Integration

Yad | A (1.l 1
— idl—
J+5r 01+f2+.[A | T TF
0 0
Aus d{ — —i-t}-l_—fé—} = _j - +1j(x)2 } dx ist ersichtlich, daBl wegen der
x

Monotonitéit von f(z) dieses Differential positiv ist. Wir kénnen deshalb mit-
tels (II') beide Summanden weiter nach oben abschétzen :

U U U

dA 27 1
. — cdy =——F1.
Jirrs|Ter of“ 7]

0 0

7 Commentarii Mathematici Helvetici
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Integriert man das Integral rechts noch einmal partiell :
U

of%d{lﬂz}”l 1+f=—2ngW’

so heben sich die beiden ausintegrierten Terme gegenseitig auf, und man erhilt
U ©

flﬁlfz \2.[1“%;(:(7)2'

0

Daraus folgt wegen (2’) und (2”)

fd'“ f1+f(w)2:

das MaB von M, ist endlich.

IV. Beweis fiir beliebiges endliches N

8. Soweit dies moglich ist, wird dieser Beweis demjenigen fiir den Spezial-
fall N = 1 analog gefiihrt. Es ist deshalb unser Ziel, die Ungleichungen (II)
und (III) aus Nr. 5 sinngeméB zu verallgemeinern.

o habe also wieder einen festen, aber beliebigen Wert (1 < o <R). Auf dem
Kreis |w| = ¢ sind die n = n(p) Schnittpunkte {, = {;(p) ausgezeichnet.
Sie teilen die Kreisperipherie in » Bogen {;, {,} auf, deren Urbilder in S,
wir betrachten (vgl. Nr. 3). Zwischen der Gesamtlinge L = L(p) dieser Kur-
ven und der Urbildfliche A = A4 (¢) des Kreisinnern besteht die in Nr. 4 her-
geleitete Ungleichung (I). Mindestens eine der Kurven verbindet einen Punkt
P, auf y = 0 mit einem Punkt P* auf y = 1; wir nennen sie einen ,,Quer-
schnitt“ P,P¥. Nur fir n(¢) = 1 ist ¢ = k und zugleich dieser Querschnitt
die einzige Urbildkurve ; fiir »(p) > 3, also insbesondere dann, wenn mehrere
Querschnitte vorhanden sind, ist fiir jeden derselben 7+ # k. P,P*® sei im
folgenden stets der am weitesten links liegende Querschnitt, und der zu P*
dquivalente Punkt heile : P, = x. Als Schwankung ¢ des Querschnitts
P,P? nach rechts bezeichnen wir die Differenz der Abszisse seines am weitesten
rechts liegenden Punktes und «. Rechts von P,P*¢ liegt entweder kein Quer-
schnitt mehr oder dann eine gerade Anzahl solcher. Wir fassen sie von links
nach rechts in Gruppen von je zweien, die fortlaufend numeriert seien, zu-
sammen. Fiir die i-te aus den Querschnitten P,Pf und P, P? (x<yp) be-
stehende Gruppe sei die GréBe o, definiert als die Differenz des Maximums der
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Abszisse x auf P,P? und des Minimums von  auf P,PE. Es gilt dann die
Ungleichung » ‘
A<z+o+2Zo,+2Zo;,

i=1 1=1
wenn mit ¢y, g,,..., 0, diejenigen Strecken bezeichnet werden, iiber (bzw.
unter) welchen noch nicht beriicksichtigte Teile der Fliche A4 liegen. Setzen wir
noch

P _ 7
S=0c+20,+20;,

1=1 t=1

so heiflt die obige Ungleichung

9. Eine Verallgemeinerung der Ungleichung (III) aus Nr. 5 bedeutet, daBl S
und f = f(x) mit L zu vergleichen sind. S werde zu diesem Zweck in seine
urspriinglichen Summanden zerlegt. Fiir die Summe der o; geht direkt aus
deren Definition die Giiltigkeit der Ungleichung

q
2o, <L (1%)

=1

hervor. Eine entsprechende Abschitzung der Summe aller o, zu finden, ist das
Ziel der folgenden Ausfiihrungen. Wir betrachten die beiden zusammengehori-
gen Querschnitte P,PFf und P,,P8 und definieren eine Kurve, deren Linge

Z,- groBer ist als g, : Falls o >p beim linken Querschnitt P,P5, so sei dies die
Kurve PPP,, P,P,, P, P% fiir welche offenbar

31’<Lt=lg+PaPy+lg).

(I = Lénge des Querschnitts P, Pr.) Ist hingegen x<f, so sei M, die Ab-
szisse des am weitesten links liegenden Punktes von P,P8, und die Kurve
definiert als M,P,, P, P? Fir ihre Linge L, = M;Pg + PgP, + 1), gilt

o,<L,<lf + PgP, + I .
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Setzt man deshalb P, = P, fir «>f, fir « <f hingegen P; = Pg, so gilt
jedenfalls _ = _
o;<L; <8+ P,P,+1, .

Eine weitere zu den Querschnitten der ¢-ten Gruppe gehérige GréBe L, defi-
nieren wir folgendermaflen : Zwischen den beiden senkrechten Geraden in P,
und P, verlduft im allgemeinen eine Anzahl von Kurven P, P, oder Teile von
solchen, und ebenso liegen zwischen den beiden senkrechten Geraden in P°
und P? eine Anzahl von Kurven P¥P¢, oder Teilstiicke solcher. Die Gesamt-
linge aller dieser Kurven bzw. Kurvenstiicke, vermehrt um 12 - I, sei L,.
Aus dieser Definition folgt, daBl L,~L, = 0 fiir 1+ £ k.

Ps

7/:% /////’/////‘%/////////

M, P, P,=Pg i P,

\\\

Fig. 4

10. Wir behaupten, da fiir die beiden am weitesten rechts liegenden Quer-
schnitte, die wir wieder mit P,P? und P,P3 bezeichnen, gilt

L,<L,. (1)
Zum Beweis zunichst folgende Bemerkungen : Fiir eine Strecke P P, auf
P,P,, die nicht an A grenzt, ist lelcht einzusehen, daB es eine zugeh'o'rige
Randkurve P, P, von A mit p' <u, p+1<u" geben muB. Grenzt
P,P,,and, und liegt PvP*+1 rechts von P8 (8 <), so muB es eine Kurve
PYPv" mit » <v, v+ 1 <»" geben, denn die Fliche A wird ausschlieB-
lich von Bildkurven begrenzt, und P},P8 ist nach Voraussetzung der duBlerste
Querschnitt rechts. Liegt P”P¥+! hingegen zwischen den beiden Querschnitten
(» + 1 < 8), so gibt es entweder eine Kurve P, P, oder eine Kurve P*' Pv"
mit »' <v, v+ 1 <»". Die Gegenannahme fiihrt sofort auf einen Wider-

spruch. Das bedeutet : Zu jeder beliebigen Strecke P,P,,, auf P, P, gibt es
entweder eine Kurve P, P, oder eine Kurve P P*" (v' <v, » + 1 <v').

PB ps pPr=pv p=p’

'Py+1 Pr 'Fig.5
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Liegt tiiber der Strecke PP P:u +1 eine Kurve P, P, (' <p, p+1<p'),
und bezeichnet !, die Linge eines zwischen den senkrechten Geraden in P,
und P, verlaufenden Teiles dieser Kurve, so ist offenbar

PP, <l,.

Ist andererseits PYP¥*l eine Strecke, unter welcher eine Kurve PY' Pv’
(v <v,v+1<L»") verliuft, und bezeichnet /¥ die Linge eines von den
senkrechten Geraden in P¥ und P¥+! aus ihr herausgeschnittenen Kurven-
stiickes, so gilt auch hier

Zum Beweis setzen wir P, = x, und P, , = z,,,; die dquivalenten Punkte
sind dann P =2, + f(2,) +¢ und P = ., + f(z,.,) +¢; und es
gilt

PP =2, + [(%,4) — o, + f(2)] <P .

Wegen der Monotonitdt von f(z) (vgl. Nr. 2, Voraussetzung (1)) folgt hieraus

PvPv-i—l =Ty — Xy < Ty — 2 = f(xv—i-l) - f(xv) < i

Daraus, da3, wie oben erldutert, jede der Strecken f’v-l.’-vﬂ auf P,P, durch
ein [, oder ein ¥ majoriert wird und daB je zwei dieser zu L, gehtrenden
Kurven hichstens einen Punkt gemeinsam haben, folgt unsere Behauptung,
néamlich

—_ Y1
L,<f+2P,P,,+1<L

v=p

11. Will man die Uberlegungen aus Nr. 10 auf eine beliebige Strecke f’:ﬁy
(1 <i<p) tibertragen, so zeigt sich (vgl. Fig. 4): Ist PP wPui1 eine Strecke
auf P,P,, die nicht an 4 grenzt, oder P,P,,, eine an 4 grenzende Strecke
mit v + 1 < 8, so laBt sich alles wortlich iibertragen. Grenzt PP P, an A4
und liegt PvPv+1 rechts von P3 (6<w), so braucht weder iiber P,P, +1 hoch

unter PYPvt! eine Bildkurve zu liegen, aber PYP¥+1 liegt in diesem Fall
zwischen den zwei Querschnitten einer Gruppe mit dem Index % >7 4 1.

Ein Teil der Kurve Ek liegt deshalb unter PP+, Wird der Teil von I_/k, der
zwischen den senkrechten Geraden in P* und P? verlduft, mit E,c (s) bezeichnet,
so gilt demnach : Ist P,P,,, eine beliebige Strecke auf P,P,, so gibt es ent-
weder iiber P,P,., eine Kurve P, P,, oder unter P"P'”r1 eine Kurve
PP (v <v, v+ 1<7v") oder eine Kurve Lk(,, (k >1¢ + 1). Daraus
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folgt die Ungleichung
L <L+ Lip + Lo+ + Ly
deren Beweis demjenigen von (1) in Nr. 10 genau analog verliduft.

Die obige Ungleichung, nacheinander auf +=p —1, 1=p—2,...,
¢t = 1 angewandt und mit

L,<L, (1)
kombiniert, ergibt schlieBlich die gesuchte Abschitzung der iibrigen L,:
Aus (2 =
( ) L p 1 Lr(m—l)
L,

folgt wegen L, ) <L, <

Lw—-l < Lw—l + L ’ (2)
Aus (3’ =
( ) Lm—E »—2 + LD-1(12 2 T Lm(m—z)
folgt auf Grund von L, ., 5 < L,_, und (2') zunsichst

Lm-—z p —2 + Lp—l + Lm(m—l) + Lm(p—-z)

und hieraus wegen L,(,,_l, + L,,(,_g, < 1_3;, <L,

Lm—z m—2 + Lp—l + L (3)

Aus (') L,y <L,o+ Lysip + Ly-sp-nr + Lpty—ny folgt auf Grund von
L, s(p—3 < L, _, und (3') zundchst

Lp—a p -3 + Lz»-—2 + Lm—-l(p-—ﬂ) + Lp-l(’—S) + Lm(9—2) + Lp(r—a) .
Weiter ist L,,_u,,_z, -+ L,,_l(,,__a) < L,,_l, so dafl wegen (2)

Lp—3 < Lp—s + Lp--2 + Lw—-l + Ep(p—l) + Ep(p—ﬂ) + Ep(ﬁ—s) y
Aus Z,(,,_l, -+ E,(,_a, + Zp(,_3, < E < L, folgt schlieBlich

L,s<L,y3+L,y+L,,+L, (4)
Durch dieses rekursive Verfahren erhilt man p Ungleichungen, deren letzte
L1+L2+”'+Ly—1+Lp (P)

lautet. Wir schlieBen aus ihnen, daB fiir jedes 7 =1,2,...,p

— .
L, <L, dasheiBt XL, <pL.

t=1
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Aus Nr. 9 ist ersichtlich, daB daraus

»
o, <pL (2%)
folgt. i=1
12. Es fehlt nun nur noch der Vergleich von ¢ mit L. Wir behaupten, da
1+PR<1+or<Lr  (f=f(2), (ITL;)
gilt, woraus
o<l (3%)

folgt. Ist beim ersten Querschnitt P,P* r <s, so ist (III}) evident. Fiir den
Fall r>s definieren wir als Linge der Kurve P,P,, P,P*

L,=P,P, +1 .

Es ist dann : _
14+ LY,

und durch Weiterfiihren des rekursiven Verfahrens in Nr. 11 um einen Schritt
erhilt man

L0<L0+L1+"'+Lp<Ls

wobei L, definiert ist als Gesamtlinge der Kurven P, P, oder Teile solcher,
die zwischen den senkrechten Geraden in P, und P, liegen, zusammen mit den
Kurven (stiicken) P*P¢ zwischen den Geraden in P* und P7, vermehrt um I;.
(I11}) folgt so auch fiir »>s.

Durch Addition der Ungleichungen (1*), (2*), (3*) erhdlt man

V4 q
S=c+25,+Za,<(p+ 2L .

t=1 =1

Da p < n ; ist, und dies p + 2 < n fiir » > 1 bedeutet, konnen wir
daraus

S2<n?l? (1117
schlieflen.

13. Auf Grund von (IT*), (IIL}) und (III}) lassen sich die Abschnitte Nr. 6
und Nr. 7 auf den allgemeinen Fall iibertragen.

z, S und A seien wiederum als Funktionen von % mit z(u), S(u), 4 (%)
bezeichnet. Definitionsbereich dieser Funktionen ist das Intervall 0 <u<U
= (log B)/2x, in dem z(u) und S(u) aber nun nicht mehr stetig zu sein
brauchen. In jedem Intervall u, << u < %y (<U) gibt es jedoch nur endlich
viele Unstetigkeitspunkte beider Funktionen, in 0 <#<U also hichstens
abzéhlbar viele. Definieren wir M als die Menge, die entsteht, wenn aus
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0 < u<U eben diese Unstetigkeitspunkte entfernt werden, so sind 2 (%) und
S (u) in M stetig. M werde wie folgt in zwei Teilmengen M, und M, eingeteilt :

u gehore zur Menge M,, wenn z(u) < S(u)

und u gehore zur Menge M,, wenn x(u) > S(u) .

Wir behaupten : Das lineare Maf von M, und das lineare Maf von M, ist end-
lich. Hieraus folgt, dafl die Summe der beiden MafBe, das lineare Mal von M,

endlich ist. Da M das Mal U = (log R)/2x hat, haben wir mit der obigen
Behauptung den Satz in Nr. 2 bewiesen.

Das Map von M,. Aus (IIT¥) und (I) folgt

Su)2<n(u)L(u)? < n(u)? —— dA

Auf Grund der Voraussetzung (3) in Nr. 2 schlielen wir daraus auf

adA
2
S(u):< N T’

um durch Integration "
J S(r)2dr<N% A(u)

7=0

zu erhalten. Auf genau dieselbe Weise wie in Nr. 6 aus der entsprechenden
Ungleichung fiir N =1 folgt hieraus

(ue>0) .

Das Maf von M,. Aus (III;‘) und (I) folgt 1 + 2 << % oder
dA
rp

Der Fortgang des Beweises kann aus Nr. 7 iibertragen werden. Die Funktion

du <

—y) (w) wird zwar auf diese Weise zunichst nur fiir weM definiert, wih-
rend bei der partiellen Integration auch hier iiber das ganze Intervall 0 <u<U
integriert werden mufl. Da M das MaBl U hat, kann jedoch die Definition
irgendwie erweitert werden. Man erhélt so auch hier :

fdu 1+fx)2'
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Y. Vergleich mit dem Ergebnis von L. I. VoLKoVYSKIJ

14. Bei der Anwendung seiner beiden Kriterien auf den Fall des Parallel-
streifens 0 < z<oo, 0 <y <1 kommt VoLrovysk1y fiir das Hyperbolitéits-
kriterium zu folgendem Ergebnis : Die durch Identifikation der Punkte P,==x
und P*= z + f(x) + ¢ definierte RieMaNNsche Flidche ist vom hyperboli-
schen Typus, wenn die Bedingungen

(a) f' () ist eine monoton fallende Funktion mit dem Grenzwert 0 fiir  —oo,

(b) die Summe Z konvergiert

f( z,)

erfiillt sind. Dabel ist x,, 2, T,,... eine Folge, die ausgehend von einem
beliebigen Wert z,>0 berechnet wird mittels der Rekursionsformel

Tyyr — & = f(wv)

Zur Frage, wieweit sich dieser Satz mit dem unsrigen decke, bemerken wir
zunichst folgendes : Die Summe

e dx
Z (@)

konvergieren gleichzeitig, vorausgesetzt, dal 0 < f'(z) < m(<o0).

und das Integral

Bewezis. 1. Aus

S |
b5 <oo fol f ,
o fmy < 8 [ @ <
denn es ist 2, +1
-5 [T <L 5 - A
I‘(ﬂv)2 v=0J [(2)? ——~o ( p)z v=o f(,)
2. Aus o
dx ® 1
< folgt 2 ——+ <oo,
J 7@ =TT L) T
denn es ist
o Zy41
dx * dx ® N | f(x,)
_— 2/ > P v+l T = ¥ . v ,
ff(x)2 v=0. f(®)? 7 voo f(241)° veo [(%y11)  [(%p4a)
und wegen

f(xv+1) -1+ f(xv+1) - f(xv) f’(f)(xv+1 _ xv)
f(z,) f(=,) f(=,)

=14+fE<1+m (v, <E&<2,,)

=1+
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gilt

/ AT
f(z)? = 1+m v=0 [ (Z,41)

Damit ist gezeigt, daBl unter der Voraussetzung 0 <<f (x) <m (b) gleich-
bedeutend ist mit unserer Voraussetzung (2) in Nr. 2. Um die beiden Sitze
gegeneinander abwigen zu konnen, miiite jedoch zudem ein Vergleich der
tibrigen Voraussetzungen, nimlich der Bedingung (a) einerseits und (1) und (3)
andererseits, moglich sein. F, sei die Klasse der Funktionen f(z), die der Be-
dingung (a) geniigen, und F'; die Klasse der den Bedingungen (1) und (3) ge-
niigenden Funktionen. Das einzige, was wir iiber F, und F, sagen konnen, ist
dies : F, kann nicht in F, enthalten sein, denn die Funktion

f(x) =cx (¢>1 und konstant)

gehort offensichtlich nicht zu F,, wohl aber gehort sie zu F,. Das letztere ent-
nehmen wir den Ausfithrungen von NEVANLINNA in [3], wo die eineindeutige
konforme Abbildung der durch f(z) = cx bestimmten Fliche auf den Kreis-
ring 1 <| w| < R explizit angegeben ist als

2 (2t log R)/2n .
, wobei R = er*/logc,

w(z)=R(z—|— P

Man iiberzeugt sich durch die entsprechende Rechnung leicht davon, dafl bei
dieser Abbildung die Strahlen ¥y = 0 und y = 1 (0 <  <co) in eine Spirale
iibergehen, die jeden Kreis | w | = ¢ nur einmal schneidet, so daf3

n(e)=1=N.

Daraus laf3t sich jedoch nur der SchluBl ziehen, daBl unser Satz nicht eine
Folge des Kriteriums von VOLKOVYSKIJ sein kann.

Zum SchluB3 beniitzen wir noch das Parabolitétskriterium von NEVANLINNA,
um den folgenden Satz zu formulieren :

Unter den Voraussetzungen
(1) f(x) ist etne monoton wachsende Funktion von x
(3) Die Anzahl n(g) der Schnittpunkte ist gleichmdfig beschrinkt in 1 < o < R

i8t die durch f(x) definierte Fliche vom hyperbolischen oder vom parabolischen
Typus, je nachdem, ob das Integral

[ -]

j‘ dx
1+ f(x)?
konvergiert oder divergiert.
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insbesondere unter der Voraussetzung (a,) besteht, konnen auf Grund des
Kriteriums von VOLKOVYSKIJ im obigen Satz die Voraussetzungen (1) und (3)
auch durch

Uber die Bestimmung des Typus einer Riaannschen Fliche

(a) f'(x) ist eine monton gegen O fallende Funktion

ersetzt werden.
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