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(Iber die Bestimmung des Typas einer RiEMANNschen Flâche

von Eva Maria Werth, Zurich

I. Einleitung

1. Es handelt sich im folgenden um die Bestimmung des Typus von in ge-
wisser Weise dargestellten zweifach zusammenhângenden RiEMANNschen Flâ-
chen. In der komplexen Ebene sei ein einfach zusammenhàngendes Gebiet ge-
geben, dessen Rand aus drei stûckweise analytischen Jordanbôgen mit den
Endpunkten 0, P, Q bestehe. Zwischen zweien dieser (offenen) Bôgen, etwa
PO und PQ, bestehe eine eineindeutige analytische Beziehung, welche die

Orientierung PO bzw. PQ erhâlt. Werden aile mittels dieser Beziehung ein-
ander zugeordneten Punkte sowie 0 und Q identifiziert, so ist damit ein zweifach

zusammenhàngendes RiEMANNsches Flâchenstûck gegeben. Sein Rand
besteht aus der geschlossenen Kurve OQ und der P zugeordneten idealen
Randkomponente. Nach dem RiEMANNschen Abbildungssatz ist jede solche
Flâche konform âquivalent mit einem Kreisring 1 ^ | a) | ^ R der komplexen
Ebene. Ber âuBere Radius R kann endlich oder unendlich sein. Ist R endlich -
geht also die zum Punkt P gehôrige Randkomponente der Flâche in einen end-
lichen Kreis ûber - so heiBt die Flâche vom hyperbolischen Typus. Unendliches
R ist gleichbedeutend mit parabolischem Flâchentypus. Wegen des Zusammen-
hangs dièses Problems mit der allgemeineren Frage der Polygondarstellung
einer RiEMANNschen Flâche vergleiche man zum Beispiel den Abschnitt ûber
geschlossene RiEMANNsche Flâchen von [5].

Jede Aussage ûber den Typus einer in der oben beschriebenen Weise defi-
nierten RiEMANNschen Flâche bezieht sich einerseits auf die geometrische Form
des zugrunde gelegten Gebietes und andererseits auf die Eigenschaften der
analytischen Beziehung zwischen zweien der Randkurven. P. J. Myrbeeg [2]
hat fur gewisse RiEMANNsche Flâchen, die durch das Fundamentalpolygon
einer fuchsoiden Gruppe definiert sind, eine fur den parabolischen Typus hin-
reichende Bedingung gegeben. Ein fur den parabolischen Typus hinreichendes
Kriterium gibt auch R. Nevanlinna [3]. Dièses Kriterium ist aufein beliebiges
von drei JoEDANkurven berandetes Gebiet anwendbar. Ebenso auf ein beliebiges

Gebiet anwendbar sind die beiden Kriterien von L. I. Volkovyskij [6]1) :

eines hinreichend fur Parabolitât, das andere hinreichend fur Hyperbolitàt.

*) Herr Professor A. Pfltjgeb hat mich auf dièse Arbeit aufmerksam gemacht und mir freund-
licherweise eine deutsche Ûbersetzung zur Verfûgung gestellt.
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Die an sich verschiedenen Methoden der beiden letztgenannten Verfasser haben
das Gemeinsame, dafi die Schàrfe der zur Herleitung des Kriteriums verwende-
ten Ungleichungen wesentlich von der effektiven Wahl einer quasikonformen
Hilfsabbildung abhàngt.

In der vorliegenden Arbeit betrachten wir nur ein ganz spezielles Gebiet, den
Parallelstreifen 0 &lt; #&lt;oo, 0 &lt; y &lt; 1, wobei der Randpunkt z =oo dem
Punkt P entspreche. Die eineindeutige analytische Beziehung zwischen den
beiden Halbgeraden y 0 und y 1 (0 &lt; #&lt;oo) werde vermittelt dureh
eine positive réelle Funktion / /(#), derart, daB die Punkte P* x auf
y 0 und P* x + f(x) + i auf y 1 identifiziert werden (vgl. Fig. 2).
Das Parabolitâtskriterium von Nevanlinna, mittels einer besonders einfachen
quasikonformen Abbildung auf dièses spezielle Gebiet angewandt, sagt aus,
daB die Divergenz des Intégrais

oc

/ dx
1 + /(»)•

den parabolischen Typus garantiert. Eine nâhere Betrachtung zeigt, daB sich
dièses Résultat durch Variation der Hilfsabbildungen nicht wesentlich ver-
bessern lâBt. Die Vermutung, daB es sich bei der Divergenz des obigen Intégrais
um eine fur die Parabolitât nicht nur hinreichende, sondern auch notwendige
Bedingung handle, liegt deshalb nahe. Mit anderen Worten : Es stellt sich die

Frage, ob die Konvergenz dièses Intégrais eine hinreichende Bedingung fur die

Hyperbolitàt darstelle. In so allgemeiner Form darf dièse Frage wahrschein-
lich nicht bejaht werden. Hingegen wird die vorliegende Arbeit nachweisen,
daB dies unter gewissen zusâtzlichen Voraussetzungen ûber f(x) wohl der Fall
ist. Bei der Herleitung des Kriteriums beniitzen wir nicht eine quasikonforme
Abbildung, sondern direkt die Eigenschaften einer eineindeutigen konformen
Abbildung der durch f(x) bestimmten Flâche auf den konform âquivalenten
Kreisring.

Volkovyskij hat sein Hyperbolitâtskriterium selbst auch auf den Parallel-
streifen 0&lt;#&lt;oo, 0&lt;^&lt;l angewandt. Fur einen Vergleich seines Résultats

mit dem unsrigen verweisen wir auf den SchluB.

IL Ein Hyperbolitâtskriterium

2. Wir gehen aus vom Streifen Ss : 0 &lt; x&lt;oo, 0 &lt; y &lt; 1 in der kom-
plexen 2-Ebene. Mittels der reellen Funktion / f(x) ordnen wir die Punkte
P* x auf y 0 und die Punkte P* x + /(#) + i auf y 1 ein-
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ander zu. Die Funktion f(x) sei so gewâhlt, da6 die Zuordnung P* &lt;-*» P* eine

eineindeutige und stûckweise analytische Abbildung von y 0 auf y 1

darstellt. Die durch Identifikation aller P* und P* gegebene zweifach zu-
sammenhângende RiEMANNsche Flâche werde durch die Funktion

(O Ù)(z)

eineindeutig und konform auf den Kreisring 1 &lt; | co | &lt; R abgebildet ; etwa
so, daB die beiden (identifizierten) Punkte z 0 und z i in co 1 ûber-
gehen. Das Bild der identifizierten Strahlen y 0 und ^ 1 (0 &lt; x&lt;oo)
bei dieser Abbildung ist eine stûckweise analytische Kurve, die durch £ £(#)
in Parameterform dargestellt sei. Denkt man sich die co-Ebene lângs der Kurve
Ç(x) aufgeschnitten und dièse im Sinne wachsender x durchlaufen, so ist der
linke Schnittrand Bild von y 0, der rechte Bild von y 1.

| o&gt;| q (1 ^ q&lt;R &lt;oo) sei ein fester Kreis ; wir betrachten seine gemein-
samen Punkte mit der Kurve £(#)• Entweder sind dies isolierte Punkte:
wenn | C(ic0) | q und | Ç(x) \ ^ q in | x — xo\ &lt;s ; oder es sind gemeinsame
Bogenstûcke : wenn | Ç(x)\ q fur ein geschlossenes Intervall xx &lt; x &lt; x2.
Wegen der Analytizitàt ist sowohl die Anzahl der isolierten gemeinsamen
Punkte, als auch die Anzahl der gemeinsamen Bogenstûcke, fur jedes q endlich.
Von den isolierten Punkten interessieren uns im folgenden nur die Schnitt-
punkte, das heiBt diejenigen, fur welche \Ç(x)\&lt;q in x0 ~ e&lt;x&lt;x0, und
|t(#)|&gt;£ în xQ&lt;x&lt;x0 + e, oder umgekehrt. Entsprechend interessieren
uns von den gemeinsamen Bogen nur diejenigen, wo, wenn f (xx) und £(x2) die

Randpunkte sind, entweder | f (x) | &lt; q in x± — e &lt; x &lt; x± und | £ (x) | &gt; q in
x2&lt;x&lt;x2 -{- e, oder umgekehrt.

Wir durchlaufen die Kurve f (#) im Sinne wachsender #-Werte und numerie-
ren die Schnittpunkte mit \co\ q und, bei den oben charakterisierten
gemeinsamen Bogen, einen der beiden Randpunkte fortlaufend mit Ci &gt;

C2
&gt; • • • » Cn •

(Welcher der Randpunkte dafûr gewâhlt wird, ist zunàchst unwichtig.) Fur
jeden Kreis \co\ g (l&lt;@&lt;i?) sind auf dièse Weise n n(o) Punkte
t&gt;i Ct(^) ausgezeichnet. Der Einfachheit halber nennen wir im folgenden
aile dièse Punkte ,,Schnittpunkte&quot;. Ihre Anzahl n(g) ist eine ganzzahlige
Treppenfunktion, die fur q -&gt; R unbeschrânkt wachsen kann.

Satz. Der Kreisring 1 &lt;|co| &lt; R hat einen endlichen âufleren Radius R,
wenn die folgenden drei Bedingungen erfûttt sind:

(1) f(x)ist eine monoton wachsende Funktion von x.
00

/dx————— konvergiert.
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(3) Die Anzahl n(g) der Schnittpunkte ist gleichmapig beschrdnkt in

1 &lt; q &lt;# :n(g) ^N
3. Die folgenden Bemerkungen sollen den Beweis des Satzes vorbereiten.

Ausgehend vom Kreis \co\ q und seinen Schnittpunkten Çt Çt(g)

(i 1, 2,..., u(q)) betrachten wir die durch dièse Punkte bestimmte Auf-
teilung der Kreisperipherie in n Bogenstucke {£,, ffc}. £t und Çk seien auf dem
Kreis aufeinanderfolgende Punkte ; die Gesamtheit aller Bogen {Çt, Çk} bildet
also wiederum den ganzen Kreis. Wir interessieren uns fur ihre Urbilder in
Sz. Die Urbildpunkte von Cx, £2,..., £n seien auf y 0 die von links nach
rechts aufeinanderfolgenden Punkte Px, P2,

y 1

Pn. Ihre aquivalenten
Punkte auf y 1 bezeichnen wir mit P1, P2,..., Pn. Falls der Bogen
{£»&gt; C&amp;} ^ein m^ £(x) gemeinsames Bogenstuck enthalt, so verbindet seine

Urbildkurve entweder zwei Punkte desselben Strahls miteinander, oder sie

verbindet zwei Punkte auf verschiedenen Strahlen, je nachdem ob {£t, Çk}

zwischen zwei Punkten desselben Ufers oder zwischen den Punkten verschie-
dener Ufer von £(a?) liegt. Ist hingegen {Ç(xi), £(^2)} e^n beliebiges gemeinsames

Bogenstuck von Ç(x) mit | co| g (| C(a?)| q in xx ^ x ^ x2)9 so
unterscheiden wir die Falle

a) Das linke Ufer von Ç(x) ist innen: Hier gilt nur die Strecke xxx2 als

Urbild von {£(#1), Ç(x2)}. Ist einer der Randpunkte von {C(Xi), C2)} als

Schnittpunkt zu zahlen, dann der, bei dem das rechte Ufer auBen liegt.

b) Das rechte Ufer von Ç(x) ist innen : Hier gilt nur die aquivalente Strecke

von x1 x2 auf y 1 als Urbild von (C(#i), Ç(x2)} ; und ist einer der
Randpunkte als Schnittpunkt zu zahlen, dann der, bei dem das linke Ufer auBen ist.

Man uberlegt sich, daBJ»tJ» dieser Ùbereinkunft von
jedem Punkt Pt und von
jedem Punkt P1 genau eine
Urbildkurve ausgeht. Die
Gesamtlange aller dieser
Kurven sei L L(q). Ist
A A(q) die Urbildflache
des Kreisrings 1 ^ r ^ q
so grenzt jede der Kurven
PhPt und PkPl und PmPnn % m

an A. AuBerdem wird A berandet von der Strecke x 0 (0 &lt; y &lt; 1) und
den beiden Halbgeraden y 0 und y 1 (0 &lt; x&lt;oo). Vgl. auch Figur 3.

Fig 1



Eva Mabia Wibth

4. Wir wollen eine Beziehung herleiten zwischen L L(q) und A A (q).
Um die ïtechnung zu erleichtern, fuhren wir als HilfsgrôBe

w u + iv (log (o)I2tz

ein, wobei die Vieldeutigkeit des Logarithmus unberûcksichtigt bleiben kann,
da nur das Differential dw du + idv vorkommt, und dièses eindeutig ist.

Unsere Behauptung heiBt : Fur jedes g(l &lt; Q&lt;R) gilt die Ungleichung

dA
du &apos; (I)

wobei u (log q)j2n.
Den Beweis von (I) fuhren wir mittels einer von Ahlfors [1], Grotzsch und

anderen oft angewandten Méthode. L setze sich zusammen aus den n Kurven
n

der Lange l{ : L S lt ; l{ und A lassen sieh darstellen als

*-/i dw
dv y A /Pi 0

dz
dw

dudv

dz
Hier ist -=— eindeutig bestimmt durch die in Nummer 2 definierte Funktion

o) =s co(z) bzw. ihre Umkehrfunktion z z((o) z(e2nw). fa bezeichnet die
logarithmische Lange des Bildbogens von l%. Durch Anwendung der Schwarz-
schen Ungleichung auf l\ :

ergibt sich zunâchst
Pi

dv

dz
J dv

dA
-=—du

Berûcksichtigt man nun noch, da8 Zfit 1 ist, so folgt aus

die Behauptung.
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III. Beweis ffir N 1

5. Wir kommen zum Beweis des in Nr. 2 ausgesprochenen Satzes. Die Funk-
tion f(x) erfûlle also die Voraussetzungen (1) und (2), wâhrend (3) vorl&amp;ufig

durch die Forderung N 1 verschârft ist. N 1 bedeutet n(g) 1

(1 &lt;e&lt;JS). Zunâchst habe q einen festen aber beliebigen Wert.
Wegen n(o) 1 hat der Kreis |co| q aïs Urbild in 8a eine von einem

Punkt P* auf y 0 nach seinem àquivalenten Punkt P* auf y 1 fûhrende
Kurve. Dièse enthàlt auBer den

&apos; »* beiden Randpunkten P^ und P*
keine Punkte auf y 0 oder

y 1. Zwischen ihrer Lange
L L(q) und der links von ihr
liegenden Flàche A A (q) be-
steht die in Nr. 4 hergeleitete Un-
gleichung (I). Wir setzen P* x

-i. Ist dann s s{q) die

I

O

P*

P* Fig. 2

(wobei x x(q)), so daB P* x
,,Schwankung&quot; der Kurve P*P* nach rechts, das heiBt die Differenz der
Abszisse ihres am weitesten rechts liegenden Punktes und x, so gelten offen-
bar die Ungleichungen

A &lt; x + s (II)
1 + f2 &lt; 1 + «2 &lt; i2 • (III)

(Vgl. hierzu auch [1].)
Im folgenden betrachten wir die von q abhângigen GrôBen x, s und A als

Funktionen von u (log q)/2ti : x x(u), 8 s(u), A A (u). Defini-
tionsbereich aller dieser Funktionen ist das Intervall

0 ^u&lt;U (logi?)/2^

Wir teilen es in zwei Teilmengen M1 und M2 ein :

u gehôre zur Menge Ml9 wenn x(u) &lt; s(u)

u gehôre zur Menge Jf2, wenn x(u) &gt; s(u)

und behaupten : Das Uneare Ma/i von Mt und dos lineare Ma/Î von M% ist end-
Hch. Mit dieser Behauptung ist unser Satz fîir N 1 bewieeen. Denn U ist
die Summe der MaBzahlen von M1 und M2, und bei endlichem 17 ist auch das

zugehôrige R e2nU endlich.

6. Das Map von M1. Aus den Ungleichungen (III) und (I) folgt
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und durch Intégration u

$s(r)2dT&lt;A(u)
T 0

Fur u*Mx folgt aus (II) A(u) &lt; x(u) + s(u)&lt;2-8(u), so daB

§s(r)2dr&lt;2&apos;8(u)
o

Mit der neuen Bezeichnung u

V(u) =$8(t)Ut
gilt also &lt;p {u) &lt; 2 \-t~- o(ier

^ {ueMx) (1)

Die Ungleichung (1) integrieren wir, und zwar ûber eine Teilmenge M1 von

Mlf die den Nullpunkt nicht enthâlt. Es sei deshalb Mx definiert durch

Mx Mx — M1r^I0J wo Io ein Intervall 0 &lt; u &lt; u0 (wo&gt;0) ist. Unter
Berûcksichtigung der Monotonitât von cp (u) gilt dann

Hieraus folgt
4

+»,
&lt;p(u0)

und zwar auch ohne die beim Beweis nirgends verwendeten Voraussetzungen
(l)und(2) ausNr. 2.

dA
7. Dos Mafi von M%. Aus den Ungleichungen (III) und (I) folgt 1 + /2 &lt; -=—

oder

Wir werden das lineare MaB von M2 durch Intégration der Ungleichung (2)
ûber M2 berechnen und abschâtzen, mûssen jedoch an dieser Stelle zunâchst
eine Bemerkung ûber dièse Menge bzw. ihre Komplementârmenge Mx ein-
schieben. M1 wurde definiert als die Menge derjenigen u, fur welche x (u) &lt; s (u).
Da dièse beiden Funktionen stetig sind, ist Mx eine offene Menge und als solche
die Vereinigung von abzâhlbar vielen offenen Intervallen : Mx U /,-.

Die Aufteilung von Mx in Intervalle It benutzen wir wie folgt zur Définition
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einer Funktion A A(u) in 0 &lt; u&lt; U. Es sei

Â(u) A(u) fur ueM2

Gehort u zur Menge Jfx, so liegt es in einem Intervall It. Ber linke Randpunkt
von It sei der Punkt u% ; wir definieren

I(u) A{ut) fur utl1
Mit dieser Festsetzung, behaupten wir, gilt die Ungleiehung

A(u) ^2x(u) (II&apos;)

Fur ue3ï2 gilt wegen (II) A(u) ^ x(u) + s(u) ^2x(u), woraus sofort die

Behauptung folgt. Nun sei U€ltc:M±. Da das Intervall It offen ist, gehort
sein linker Randpunkt iit zu M2, so da6

A(ut) &lt; 2x(ut) ^2x(u) (u€lt)

letzteres wegen der Monotonitât der Funktion x(u). Daraus folgt die Behauptung.

Wir kommen zuruck auf die Ungleiehung (2), die ûber M2 integriert

^F (2&apos;»

ergibt. Da auf Grund der Définition von A (u) fur ueM1 dA (u) 0, ist

lf dA _ f dl „
J 1 + /2 ~J 1 + /2

&apos; l ;

0

und in dieser Form erhâlt man durch partielle Intégration

u u u
Xjl I &quot;T&quot; 7 I ¦*•

I \ A (i &apos; ——

0 0 0

Aus d ¦¦ dx ist ersichtlich, daB wegen der
l 1 + /2 j dx \ 1 + f(x)2 J

Monotonitât von f(x) dièses Differential positiv ist. Wir konnen deshalb mit-
tels (II&apos;) beide Summanden weiter nach oben abschâtzen :

u _

o o

7 Commentarii Mathematici Helvetici
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Integriert man das Intégral rechts noch einmal partiell :

dxPxi\T+w\-
o ooso heben sich die beiden ausintegrierten Terme gegenseitig auf, und man erhàlt

XJ _ oo

dx

0 0

Daraus folgt wegen (2&apos;) und (2&quot;)

dx

3f2 0

das MaB von M2 ist endlich.

+ /(*)2 ¦

IV. Beweis fur beliebiges endliehes N

8. Soweit dies môglich ist, wird dieser Beweis demjenigen fur den Spezial-
fall JV^ 1 analog gefuhrt. Es ist deshalb unser Ziel, die Ungleichungen (II)
und (III) aus Nr. 5 sinngemâfi zu verallgemeinern.

q habe also wieder einen festen, aber beliebigen Wert (1 &lt; q&lt;B). Auf dem
Kreis \co\ g sind die n u(q) Schnittpunkte Ç{ d(Q) ausgezeichnet.
Sie teilen die Kreisperipherie in n Bogen {d, Çk} auf, deren Urbilder in Sz

wir betrachten (vgl. Nr. 3). Zwischen der Gesamtlange L L(q) dieser Kur-
ven und der Urbildflâche A A(q) des Kreisinnern besteht die in Nr. 4 her-
geleitete Ungleichung (I). Mindestens eine der Kurven verbindet einen Punkt
Pt auf y 0 mit einem Punkt Pk auf y 1 ; wir nennen sie einen ,,Quer-
schnitt&quot; PiPk. Nurfûr n(q) 1 ist i h und zugleich dieser Querschnitt
die einzige Urbildkurve ; fur n(q) ^ 3, also insbesondere dann, wenn mehrere
Querschnitte vorhanden sind, ist fur jeden derselben i ^k. PrPs sei im
folgenden stets der am weitesten links liegende Querschnitt, und der zu Ps

âquivalente Punkt heiBe x: P8 x. Als Schwankung a des Querschnitts
PrP8 nach rechts bezeichnen wir die Differenz der Abszisse seines am weitesten
rechts liegenden Punktes und x. Rechts von PrPs liegt entweder kein
Querschnitt mehr oder dann eine gerade Anzahl solcher. Wir fassen sie von links
nach rechts in Gruppen von je zweien, die fortlaufend numeriert seien, zu-
sammen. Fur die i-te aus den Querschnitten PaPP und PyP8 (oc&lt;y) be-
stehende Grappe sei die GrôBe a4 definiert als die Differenz des Maximums der
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Abszisse x auf PyP* und des Minimums von x auf PaP&amp;. Es gilt dann die
Ungleichung p q

A &lt;# + a

wenn mit at, a2,..., aq diejenigen Strecken bezeichnet werden, ûber (bzw.
unter) welchen noch nicht berûcksichtigte Teile der Flâche A liegen. Setzen wir
noch

q

so heiBt die obige Ungleichung
l=*l ï=l

P.ST Fig 3

9. Eine Verallgemeinerung der Ungleichung (III) aus Nr. 5 bedeutet, daB 8
und / f(x) mit L zu vergleichen sind. 8 werde zu diesem Zweck in seine

ursprunglichen Summanden zerlegt. Fur die Summe der at geht direkt aus
deren Définition die Gûltigkeit der Ungleichung

Zot&lt;L (1*)

hervor. Eine entsprechende Abschâtzung der Summe aller a% zu finden, ist das
Ziel der folgenden Ausfûhrungen. Wir betrachten die beiden zusammengehôri-
gen Querschnitte PaPP und PyP8 und definieren eine Kurve, deren Lange
L% grôBer ist als ôt : Falls &lt;x&gt;/3 beim linken Querschnitt PaPP, soseidiesdie
Kurve p Ps¦M. yJ. } fur welche offenbar

(1$ Lange des Querschnitts PVP^.) Ist hingegen &lt;x&lt;(î, so sei M% die
Abszisse des am weitesten links liegenden Punktes von P^P^, und die Kurve
definiert als MJPy, PyP8. Fur ihre Lange Lt MJ&gt;$ + P^Py + l\ gilt
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Setzt man deshalb
jedenfalls

P, P, fur fur &lt;*&lt;/? hingegen Pt Pp, so gilt

Eine weitere zu den Querschnitten der i-ten Gruppe gehorige Grofie Lt défi-
nieren wir folgendermaBen : Zwischen den beiden senkrechten Geraden in Pt
und Py verlauft im allgemeinen eine Anzahl von Kurven PyP^ oder Teile von
solehen, und ebenso liegen zwischen den beiden senkrechten Geraden in P1
und Py eine Anzahl von Kurven PvPix, oder Teilstucke solcher. Die Gesamt-
lange aller dieser Kurven bzw. Kurvenstucke, vermehrt um Z£ + ly, sei Lt.
Aus dieser Définition folgt, daB Ltr&gt;LK 0 fur i =£ Je.

Fig 4

10. Wir behaupten, daB fur die beiden am weitesten rechts liegenden Quer-
schnitte, die wir wieder mit P^P^ und PyP* bezeichnen, gilt

LP^LP. (1)

Zum Beweis zunachst folgende Bemerkungen Fur eine Strecke P/utP/i+1 auf

PPPy, die nicht an A grenzt, ist leicht einzusehen, daB es eine zugehôrige
Randkurve Pii*&apos;J von A mit // &lt;//, /u + 1 &lt;/*/; geben mu8. Grenzt

rechts von Ps (à &lt; v), so muB es eine Kurve
geben, denn die Flache A wird ausschlieB-

PVPV+1 an A, und liegt PVPV^
PplPv&quot; mit v&apos; &lt; v, v + 1 &lt; v

lich von Bildkurven begrenzt, und PyP* ist nach Voraussetzung der auBerste

Querschnitt rechts. Liegt PvPv+1 hingegen zwischen den beiden Querschnitten
(v + 1 ^ à), so gibt es entweder eine Kurve PV,PV,, oder eine Kurve Pv&apos;Pv&quot;

mit v&apos; ^Lv, v + 1 &lt; v&quot;. Die Gegenannahme fuhrt sofort auf einen Wider-

spruch. Das bedeutet : Zu jeder beliebigen Strecke PVPV+1 auf PPPy gibt es

entweder eine Kurve PV,PV,, oder eine Kurve PvtPv&quot; (v&apos; &lt; v, v + 1 &lt; v&quot;)

Pi* ps pvn

Fig 5



Ûber die Bestimmung des Typus einer RiBMANNschen Flâche 101

Liegt liber der Strecke P^P^+i eine Kurve P^P^,, (// &lt;/*, ju + 1 ^f
und bezeichnet l^ die Lange eines zwischen den senkrechten Geraden in
und P^+1 verlaufenden Teiles dieser Kurve, so ist offenbar

Ist andererseits PvPv+* eine Strecke, unter welcher eine Kurve Pv&apos; Pv&quot;

(v! &lt; v, v + 1 &lt; v&quot;) verlâuft, und bezeichnet Zv die Lange eines von den
senkrechten Geraden in P&quot; und Pï/+1 aus ihr herausgeschnittenen Kurven-
stuckes, so gilt auch hier

; die âquivalenten PunkteZum
sind
gilt

Beweis
dann

setzen wir
Pv xv +

Pv —

f(Xv)

P

+ i

v*v+l *

und P
und

v+1 ~
pv+1

&lt;r 4- i(r \ fr 4- Ht W &lt; lv

Wegen der Monotonitât von f(x) (vgl. Nr. 2, Voraussetzung (1)) folgt hieraus

Daraus, daB, wie oben erlâutert, jede der Strecken PVPV+1 auf PPPy durch
ein /„ oder ein lv majoriert wird und daB je zwei dieser zu Lv gehorenden
Kurven hôohstens einen Punkt gemeinsam haben, folgt unsere Behauptung,
nàmlich

__ y_x
PVPV+1

11. Will man die Ùberlegungen aus Nr. 10 auf eine beliebige Strecke PiPy
(1 &lt; i&lt;p) iibertragen, so zeigt sich (vgl. Fig. 4) : Ist P^P^ eine Strecke

auf PiPy, die nicht an A grenzt, oder PVPV+1 eine an A grenzende Strecke

mit v + 1 &lt; ô, so lâBt sich ailes wôrtlich ûbertragen. Grenzt PVPV+1 an A
und liegt P*PV+* rechts von Ps {ô&lt;v), so braucht weder ûber PVPV+1 noch

unter PVPV+1 eine Bildkurve zu liegen, aber P*pv+i liegt in diesem Fall
zwischen den zwei Querschnitten einer Gruppe mit dem Index k ^ i -f- 1.

Ein Teil der Kurve Lk liegt deshalb unter PVPV+X. Wird der Teil von Lk9 der

zwischen den senkrechten Geraden in P{ und Py verlâuft, mit Lkii) bezeichnet,

so gilt demnach : Ist PVPV+1 eine beliebige Strecke auf PiPy, so gibt es ent-
weder uber PVPV+1 eine Kurve Pv&gt;Pvn oder unter p*pv+i eine Kurve
pvpvt&apos; (v&apos; &lt;^v, v + 1 &lt; v&quot;) oder eine Kurve LkU) (k^i + 1). Daraus
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folgt die Ungleichung

Li &lt; Li + Li+Ui) + Li+2{i) H h Lp(i) y

deren Beweis demjenigen von (1) in Nr. 10 genau analog verlâuft.
Die obige Ungleichung, nacheinander auf i p — 1, i p — 2,...,

i 1 angewandt und mit
__

L* &lt; A, (1)

kombiniert, ergibt schlieBlieh die gesuchte Abschâtzung der ùbrigen Lt :

Ans (2&apos;) j y

folgt wegen

L^^L^ + L, (2)

Ans (3&apos;) =¦ T y a-F

folgt auf Grund von j&amp;j,_1(3)_2) ^ Lp_x und (2&apos;) zunàchst

^2,-2 ^ Lj&gt;-2 + &amp;P-1 + A&gt;&lt;1&gt;-1&gt; + ^Î»(P~2)

und hieraus wegen L9i9mml) + Lpi!P^2) ^Lp ^ LP

LP_2^LP_2 + Lp_t + Lp (3)

Aus (4&apos;) LP_s &lt; Lp_3 + Lp_2ip_z) + Lp_lip_z) + Lpip_z) folgt auf Grund von
Lp_2 und (3&apos;) zunàchst

Weiter ist Lp_ïip^2) + Lp_1{p_z) &lt; Lp_x, so da8 wegen (2&apos;)

Lp^ &lt; L^g + 1/^2 + Lp_x + Lp{p_1} + LP(P-2) +
Aus ip(p-i) + £3,(3,-2) + £3,(3,-3) ^LP^LP folgt schlieBlich

V3 &lt; i^ + Va + Vi + L» • (4)

Durch dièses rekursive Verfahren erhâlt man p Unglçichungen, deren letzte

lx &lt; Lx + L2 +... + i^ + Lp (p)

lautet. Wir schlieBen aus ihnen, daû fur jedes i 1, 2,..., 2?

— p —

L{^L das heifit
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Aus Nr. 9 ist ersichtlich, da8 daraus

(2*)
folgt. is=1

12. Es fehlt nun nur noch der Vergleich von a mit L. Wir behaupten, dafi

(III*)
gilt, woraus

a&lt;L (3*)

folgt. Ist beim ersten Querschnitt PrPs r &lt; s&gt; so ist (III*) évident. Fur den

Fall r&gt;s definieren wir als Lange der Kurve P8PriPrP8

Es ist dann
_

und durch Weiterfûhren des rekursiven Verfahrens in Nr. 11 um einen Schritt
erhàlt man

__

wobei Lo definiert ist als Gesamtlânge der Kurven PyP^ oder Teile solcher,
die zwischen den senkrechten Geraden in P8 und Pr liegen, zusammen mit den
Kurven (stûcken) PvPtA zwischen den Geraden in P8 und Pr, vermehrt um l&apos;r.

(III*) folgt so auch fur r&gt;s.

Durch Addition der Ungleichungen (1*), (2*), (3*) erhâlt man

p
«.

q

n 3
Da p ^ — — ist? und dies p + 2 ^ n fur n &gt; 1 bedeutet, kônnen wir
daraus

S*&lt;n*L* (III*)
schlieBen.

13. Auf Grund von (II*), (III*) und (III*) lassen sich die Abschnitte Nr. 6

und Nr. 7 auf den allgemeinen Fall ubertragen.
x9 S und A seien wiederum als Funktionen von u mit x(u), 8(u), A(u)

bezeichnet. Definitionsbereich dieser Funktionen ist das Intervall 0 ^ u &lt; U
(logiî)/2^, in dem x(u) und S(u) aber nun nicht mehr stetig zu sein

brauchen. In jedem Intervall ux ^ u ^ u2 &lt; U) gibt es jedoch nur endlich
viele Unstetigkeitspunkte beider Funktionen, in 0 &lt;! u &lt; U also hôchstens
abzâhlbar viele. Definieren wir M als die Menge, die entsteht, wenn aus
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0 &lt; u&lt; U eben dièse Unstetigkeitspunkte entfernt werden, so sind x(u) und
8(u) in M stetig. M werde wie folgt in zwei Teilmengen Mx und M2 eingeteilt :

u gehôre zur Menge Mlt wenn x(u) &lt; 8(u)

u gehôre zur Menge M2, wenn x(u) ^ S(u)

Wir behaupten : Dus lineare Mafi von M1 und das lineare Ma(5 von M2 ist end-

lich. Hieraus folgt, dafi die Summe der beiden Mafie, das lineare Ma6 von M,
endlieh ist. Da M das Mafi U (log R)j2n hat, haben wir mit der obigen
Behauptung den Satz in Nr. 2 bewiesen.

Das Map von Mx. Aus (III*) und (I) folgt

8(u)*&lt;n{u)*L{u)* &lt; n(n)*- =-.(tu

Auf Grund der Voraussetzung (3) in Nr. 2 sehlieBen wir daraus auf

um durch Intégration u

zu erhalten. Auf genau dieselbe Weise wie in Nr. 6 aus der entsprechenden
Ungleichung fur N 1 folgt hieraus

/4JV
dA

Das Map von M2. Aus (III*) und (I) folgt 1 + f &lt; -j-~ oder

du

du
dA

Der Fortgang des Beweises kann aus Nr. 7 ûbertragen werden. Die Funktion
A A(u) wird zwar auf dièse Weise zunàehst nur fur ueM definiert, wàh-
rend bei der partiellen Intégration aueh hier ûber das ganze Intervall 0 &lt; u &lt; U
integriert werden muB. Da M das Ma8 U hat, kann jedoch die Définition
irgendwie erweitert werden. Man erhâlt so auch hier :
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V. Vergleich mit dem Ergebnis von L. L Volkovyskij

14. Bei der Anwendung seiner beiden Kriterien auf den Fall des Parallel-
streifens 0 &lt; #&lt;oo, 0 &lt; ?/ &lt; 1 kommt Volkovyskij fur das Hyperbolitâts-
kriterium zu folgendem Ergebnis : Die dureh Identification der Punkte P*= x
und P*== x + f(x) + i definierte RiEMANNsche Flâche ist vom hyperboli-
schen Typus, wenn die Bedingungen

(a) f&apos;{x) ist eine monoton fallende Funktion mit dem Grenzwert 0 fur x -&gt;oo,

00 1
(b) die Summe 2 -r-—r- konvergiert

v=0 t\Xv)
erfiillt sind. Dabei ist xQi xly x2,... eine Folge, die ausgehend von einem
beliebigen Wert x0 &gt; 0 berechnet wird mittels der Rekursionsformel

xv+l Xv l\Xv) &apos;

Zur Frage, wieweit sieh dieser Satz mit dem unsrigen decke, bemerken wir
zunàchst folgendes : Die Summe

00

dx°° i rS —-—- und das Intégral /

konvergieren gleichzeitig, vorausgesetzt, daB 0 ^ f(x) ^ m(&lt;oo).

Beweis. 1. Aus œ

dx
&lt;OO

denn es ist w xv+1
C Jrr oo r /Jyr °° X * X °°

2. Aus
dx

&lt;OO folgt i7 -J- r- &lt;CX)

denn es ist

7&apos;dx

oJ f(x)2

und wegen

1 + /&apos;(|) &lt; 1 + m
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dx
;&quot;

dx
TW m v=0

Damit ist gezeigt, da8 unter der Voraussetzung 0 ^ /&apos; (x) &lt; m (b) gleich-
bedeutend ist mit unserer Voraussetzung (2) in Nr. 2. Um die beiden Sâtze

gegeneinander abwâgen zu kônnen, muBte jedoeh zudem ein Vergleich der
ubrigen Voraussetzungen, nâmlich der Bedingung (a) einerseits und (1) und (3)
andererseits, môglich sein. Fx sei die Klasse der Funktionen /(#), die der
Bedingung (a) genugen, und F2 die Klasse der den Bedingungen (1) und (3) ge-
niigenden Funktionen. Das einzige, was wir tiber Ft und F2 sagen kônnen, ist
dies : F2 kann nicht in Ft enthalten sein, denn die Funktion

f(x) ex (c&gt; 1 und konstant)

gehôrt offensichtlich nieht zu Fl9 wohl aber gehôrt sie zu F2. Das letztere ent-
nehmen wir den Ausfuhrungen von Nevanlinna in [3], wo die eineindeutige
konforme Abbildung der durch f(x) ex bestimmten Flâche auf den Kreis-
ring 1 ^ | o&gt; | ^ R explizit angegeben ist als

co{z) R\z-\ —— J wobei R

Man uberzeugt sich durch die entsprechende Rechnung leicht davon, dafi bei
dieser Abbildung die Strahlen y 0 und y 1 (0&lt;a;&lt;oo) in eine Spirale
ûbergehen, die jeden Kreis | eu | ^ nur einmal schneidet, so daB

n(e) 1 N

Daraus Iâ8t sich jedoeh nur der SchluB ziehen, da6 unser Satz nicht eine

Folge des Kriteriums von Volkovyskij sein kann.

Zum SchluB benûtzen wir noch das Parabolitâtskriterium von Nevanlinna,
um den folgenden Satz zu formulieren :

Unter den Voraussetzungen

(1) f(x) ist eine monoton wachsende Funktion von x
(3) Die Anzahl n(g) der Schnittpunkte ist gleichmâfïig beschrànkt in 1 ^ q &lt; R

ist die durch f(x) definierte Floche vom hyperbolischen oder vom parabolischen
Typus, je nachdem, ob das Intégral

dx
JT--

konvergiert oder divergiert.
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oo

00 1 f dx
Da die gleichzeitige Konvergenz der Summe S j-—- und des Intégrais /

N2

insbesondere unter der Voraussetzung (a) besteht, konnen auf Grund des

Kriteriums von Volkovyskij im obigen Satz die Voraussetzungen (1) und (3)
auch durch

(a) fr(%) ist eine mouton gegen 0 fattende Fnnktion

ersetzt werden.
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