Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 31 (1956-1957)

Artikel: Sur les groupes de Lie compacts non connexes.

Autor: Siebenthal, Jean de

DOI: https://doi.org/10.5169/seals-515697

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 29.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur les groupes de Lie compacts non connexes

par Jean de Siebenthal, Lausanne

Introduction

La théorie classique 1) des groupes de LIE compacts (ou clos) s'attachant essentiellement aux groupes connexes, je vais essayer de présenter ici une étude systématique des groupes de LIE clos non connexes

$$G = G_0 + G_1 + G_2 + \dots$$
 où G_0, G_1, G_2, \dots

sont les composantes connexes de G, la première G_0 étant la composante neutre²).

Construction de tous ces groupes. On sait que G_0 est un sous-groupe invariant de G et que le quotient G/G_0 est un groupe fini H; ainsi G est une extension du groupe clos connexe G_0 par un groupe fini H.

Un élément x de G détermine un automorphisme intérieur de G qui, restreint à G_0 , est un automorphisme φx de G_0 ; $x \to \varphi x$ est un homomorphisme appliquant G dans le groupe $A(G_0)$ des automorphismes de G_0 , et induisant un homomorphisme χ de H dans le groupe $A(G_0)/I(G_0)$ où $I(G_0)$ est formé des automorphismes intérieurs de G_0 .

Or une circonstance remarquable se présente ici: $A(G_0)$ est le produit $I(G_0) \cdot U$ de $I(G_0)$ et d'un sous-groupe fini U, avec $I(G_0) \cap U = e$. Cela permet de considérer le caractère χ de l'extension comme un homomorphisme de H dans U, de construire le produit semi-direct $(G_0 \times H)_{\gamma}$, et d'en déduire toutes les extensions de G_0 par H de caractère χ^3). Les extensions les plus intéressantes sont celles pour lesquelles χ est un isomorphisme de H sur U (extensions naturelles); le produit semi-direct devient l'extension principale, ainsi nommée parce que U est le centralisateur dans $A(G_0)$ d'un sous-groupe principal de $I(G_0)^4$).

Le chapitre I développe cette théorie; j'y donne la structure de U pour G_0 semi-simple, et toutes les extensions naturelles pour G_0 simple.

Sous-groupe abélien $T^{(h)}(G_1)$ associé à une composante connexe G. x étant un élément de G_1 , je construis le normalisateur connexe 5) N_x de x, un toroide T_0^h maximum dans N_x , puis le sous-groupe $T^{(h)}(G_1)$ engendré par x

^{1) [2],} chap. III; aussi [3], [4], [7] et [10].

 $^{^{2}}$) composante connexe de l'élément neutre e.

³⁾ d'après [6], nº 1.

^{4) [9],} chap. IV; si G_0 est abélien, $I(G_0) = e$, $A(G_0) = U$.

 $^{^{5}}$) Le normalisateur connexe de x est la composante neutre du normalisateur de x.

et par T_0^h en posant $T_1^{(h)} = xT_0^h$. Par définition, $T^{(h)}(G_1)$ est le sous-groupe abélien associé à la composante connexe G_1 , et on a la propriété fondamentale suivante :

 $T^{(h)}(G_1)$ contient un représentant au moins de toute classe d'éléments de G_1 conjugués relativement à G_0 ; de plus, les $T^{(h)}(G_1)$ sont conjugués relativement à G_0 . Le chapitre II est consacré à cette théorie; certaines propositions n'y sont pas nouvelles 6).

Diagramme associé à une composante connexe. Le représentation linéaire adjointe de G, restreinte à $T^{(h)}(G_1)$, est un groupe abélien orthogonal dont la réduction canonique fait apparaître m caractères χ_1, \ldots, χ_m de $T^{(h)}(G_1)$; les noyaux de ces caractères sont les sous-groupes singuliers U_1, \ldots, U_m de $T^{(h)}(G_1)$ dans G. Il existe un groupe fini $\Phi(G_1)$ de transformations de $T^{(h)}$ en lui-même conservant $T_1^{(h)}$ et l'ensemble des U_j , chacune de ces opérations étant la restriction à $T^{(h)}$ d'un automorphisme intérieur de G associé à un élément de G_0 .

Cela permet de construire le diagramme $D(G_1)$: si R_1^h désigne le recouvrement euclidien de l'espace de RIEMANN $T_1^{(h)}$, alors, aux $U_j \cap T_1^{(h)}$ correspondent dans R_1^h des (h-1)-plans singuliers répartis en m familles. Les symétries par rapport à ces plans engendrent un groupe spatial discontinu $\Gamma(G_1)$ correspondant à $\Phi(G_1)$; de plus, ces mêmes plans singuliers partagent l'espace R_1^h en domaines sur lesquels $\Gamma(G_1)$ opère transitivement; l'un d'eux, $P(G_1)$ est un polyèdre fondamental, en ce sens qu'ils contient un représentant au moins de toute classe d'éléments de G_1 conjugués relativement à G_0 . Il y a un tel représentant et un seul si G_0 est semi-simple simplement connexe.

Le chapitre III développe cette théorie, le cas où G_0 est simple étant traité complètement. On pourra remarquer le théorème du § 3, n° 4, qui donne $D(G_1)$ d'une façon très simple à partir de $P(G_0)$ et de la permutation associée à G_1 . La notion de sous-groupe principal γ^4) n'apparaît pas dans la construction de $D(G_1)$, et n'intervient que pour faire certains rapprochements.

La connaissance des polyèdres $P(G_i)$ permet de dominer maintenant l'ensemble des classes d'éléments conjugués dans un groupe de Lie compact et la structure des normalisateurs d'éléments de G. En application, j'ai montré comment on obtient les automorphismes involutifs des groupes simples compacts, par simple lecture des $P(G_i)$?).

⁶⁾ En ce qui concerne les points fixes d'automorphismes, voir des résultats plus généraux dans: A. Borel-G. D. Mostow, Ann. Math. 61, p. 389-405 (1955).

⁷⁾ Dans [5], F. GANTMACHER a traité complètement le cas des groupes d'automorphismes des algèbres de LIE semi-simples complexes, groupes en général non connexes. Ma méthode est indépendante de la sienne; l'objet de mon chapitre III n'est pas étudié dans [5].

Je désire exprimer ma reconnaissance à Mr. Armand Borel, dont certaines remarques ont permis d'améliorer plusieurs points de ce travail.

CHAPITRE I

Construction des groupes de Lie clos non connexes

§ 1. Extensions algébriques

1. Définitions. Le groupe E est une extension du groupe Q si Q est un sous-groupe invariant de E.

Le groupe E est une extension du groupe Q par le groupe H s'il existe un homomorphisme π de E sur H, de noyau Q. L'extension est désignée par (E, π) . Deux extensions (E, π) , (E', π') de Q par H sont dites équivalentes s'il existe un isomorphisme α de E' sur E avec $\alpha(q) = q$ pour tout $q \in Q$.

L'extension E de Q est dite centrale si le centralisateur de Q dans E rencontre chaque classe de E suivant Q. L'extension est dite complète si tout automorphisme de Q provient de la restriction à Q d'un automorphisme intérieur de E. L'extension est dite naturelle si elle est complète et si le centralisateur de Q dans E est dans Q. Enfin, l'extension est dite semi-directe s'il existe dans E un sous-groupe V tel que $V \cap Q = e$, et rencontrant chaque classe de E suivant Q.

J'introduis encore les notations suivantes (classiques): A(Q) est le groupe des automorphismes de Q, I(Q) est le groupe des automorphismes intérieurs de Q; O(Q) est le groupe A(Q)/I(Q) des automorphismes extérieurs de Q.

2. Caractère d'une extension. Soit $a \in E$; l'automorphisme $x \to a \, x \, a^{-1}$ de E est un automorphisme intérieur de E dont la restriction à Q est un automorphisme r(a) de Q. L'application $a \to r(a)$ est une représentation r de E sur un sous-groupe A' de A(Q) qui contient I(Q); elle applique chaque classe de E suivant Q sur une classe de E suivant E0; elle détermine ainsi une représentation E1 de E2 de E3 de E4 sur un sous-groupe E4 de E5. Cette représentation E6 de E7 de E7 de E8 de E9 par E9.

Le caractère χ est trivial si l'extension est centrale ; si l'extension est complète, χ applique H sur O(Q) (épimorphisme) ; enfin χ est un isomorphisme de H sur O(Q) si l'extension est naturelle.

3. Produit semi-direct. Soient Q un groupe abstrait, A(Q) son groupe d'automorphismes, et V un groupe admettant une représentation χ dans A(Q).

Par définition, le produit semi-direct $S = (Q \times V)_{\chi}$ est le groupe obtenu en munissant l'ensemble produit $Q \times V$ de la loi de composition (q, v)(q', v') = (qq'v, vv'), où $q'^v = \chi(v) \cdot q'$. On vérifie que cette loi est associative, admet un élément neutre (e, e), chaque élément (q, v) ayant un inverse $[(q^{-1})^{v^{-1}}, v^{-1}]$. De plus, $q \to (q, e)$ plonge Q isomorphiquement dans S sur un sous-groupe invariant de S, et $v \to (e, v)$ prouve que S est une extension semi-directe de Q par V. Maintenant, (e, v) détermine un automorphisme intérieur de S qui applique (q, e) sur (q^v, e) , ce qui montre que χ peut être considéré comme le caractère de l'extension S.

4. Extensions de même caractère 8). Soit (P, π) une extension de Q par H de caractère χ ; à chaque classe de P suivant Q correspond un automorphisme du centre C de Q, d'où un homomorphisme χ_0 de H dans le groupe A(C) des automorphismes de C.

Définition. Soient (P, π) une extension de Q par H, et (F, φ) une extension du centre C de Q par H; (F, φ) est dite compatible avec (P, π) si les homomorphismes de H dans A(C) associés coïncident.

Je dis qu'il existe au moins une extension de C par H compatible avec (P, π) . En effet, si $h \in H$ avec $\pi(p) = h$, l'application $c \to pc p^{-1}$ est un automorphisme de C, indépendant du choix de p dans la classe h; en désignant cet automorphisme par $\chi_0(h)$, on voit que χ_0 est une représentation de H dans A(C), et l'on peut construire le produit semi-direct $(C \times H)_{\chi_0} = F_0$, qui est compatible avec P.

Considérons l'ensemble $\mathfrak{E} = \operatorname{Ext.}(Q, H, \chi)$ des extensions de Q par H de caractère χ , puis l'ensemble $\mathfrak{E}_0 = \operatorname{Ext.}(C, H, \chi_0)$ des extensions de C par H compatibles avec $P \in \mathfrak{E}$. L'élément $(F, \varphi) \in \mathfrak{E}_0$ engendre une transformation de \mathfrak{E} appliquant (P, π) sur (P_1, π_1) défini comme suit : on forme le produit direct $F \times P$, puis le sous-groupe D constitué par les (f, p) tels que $\varphi f = \pi p$; si C_0 est le sous-groupe invariant de D formé des (c, c^{-1}) où $c \in C$, alors D/C_0 est un élément de \mathfrak{E} désigné par (P_1, π_1) . On pose

$$(P_1,\pi_1)=(F,\varphi)\otimes (P,\pi)$$
 .

Alors $(F_1, \varphi_1) \otimes (F_2, \varphi_2)$ est défini, et \mathfrak{E}_0 est revêtu d'une structure de groupe abélien opérant effectivement et transitivement sur \mathfrak{E} . F_0 est l'élément neutre de \mathfrak{E}_0 . La construction de G. Hochschild est valable dans les cas qui nous intéressent, Q et H étant compacts.

⁸⁾ D'après [6], nº 1.

5. Sur certains groupes abstraits. Soit Q un groupe ayant la propriété suivante : Le groupe A(Q) est une extension semi-directe de I(Q). Autrement dit, A(Q) contient un sous-groupe U qui rencontre chaque classe suivant I(Q) en un élément et en un seul. Il existe un isomorphisme canonique δ de O(Q) sur U, qui applique $bI \in O(Q)$ sur l'élément $U \cap bI$ dans A(Q).

Lorsque Q a la propriété indiquée, on peut indiquer un procédé qui, dans les cas en vue, permet en principe de construire toutes les extensions de Q.

En effet, soit (P,π) une extension quelconque de Q par H de caractère χ ; χ applique H sur $O'(Q) \in O(Q)$, et $\delta \chi$ applique H sur $U' \in U$. Le produit semidirect $S = (Q \times H)_{\delta \chi}$ est une extension de Q par H de caractère χ . Comme \mathfrak{C}_0 opère transitivement sur \mathfrak{C} , il existe $(F,\varphi) \in \mathfrak{C}_0$ tel que $(P,\pi) = (F,\varphi) \otimes S$. Ainsi, connaissant les extensions de C par H compatibles avec S, on en tire toutes les extensions $(P,\pi) \in \operatorname{Ext}(Q,H,\chi)$.

Remarquons que S contient $(C \times H)_{\chi} = F_0$; alors $F \otimes S$ contient $F \otimes F_0 = F$. En résumé, on obtiendra toutes les extensions de Q en prenant dans U un sous-groupe arbitraire U', puis en construisant un groupe quelconque H admettant une représentation χ sur U'. Le produit $S = (Q \times H)_{\chi}$ engendre alors avec les extensions F du centre de Q par H compatibles avec S toutes les extensions de Q par H de caractère χ . En faisant varier U' dans U, H et F, on pourra construire toutes les extensions de Q.

Lorsque le caractère χ est trivial, on dira que les extensions obtenues sont aussi triviales: ce sont les extensions centrales, avec parmi elles les produits directs. En un sens facile à comprendre, les extensions les plus "riches" sont les extensions complètes, dans l'ensemble desquelles les extensions naturelles me paraissent être les plus intéressantes.

Nous nous restreindrons précisément aux extensions naturelles de Q, déduites du produit semi-direct $S = (Q \times F)_{\chi}$, où χ est un isomorphisme de F sur U, et des extensions du centre C de Q par F compatibles avec S. Dans les cas en vue, Q est un groupe de Lie semi-simple clos connexe, F est un groupe fini, et A(Q) est un produit semi-direct du type désiré, comme nous allons justement le voir.

§ 2. Automorphismes de groupes clos connexes.

^{9) [10].}

mums respectivement dans les groupes \tilde{G}_0 , G_0 , \bar{G}_0 . Si λ désigne l'homomorphisme canonique $\tilde{G}_0 \to G_0$, on a $f = \lambda \tilde{f}$. Je pose

$$\widetilde{\delta}_l = \widetilde{f}^{-1}(e)$$
 , $\delta_l = f^{-1}(e)$, $\overline{\delta}_l = \overline{f}^{-1}(e)$

respectivement réseau minimum, réseau unité, et réseau central, avec $\widetilde{\delta}_i \in \delta_i \in \overline{\delta}_i$.

Le diagramme R_0^l possède une origine O et un polyèdre fondamental P_0 , défini par une suite fondamentale $\varphi_1, \ldots, \varphi_l$ accompagnée de paramètres angulaires dominants ω, ω', \ldots

Les égalités $\varphi_1 = \varphi_2 = \ldots = \varphi_l$ définissent une diagonale t de l'angle polyèdre $\mathfrak{P}_0\{\varphi_1\geqslant 0,\ldots,\varphi_l\geqslant 0\}$; t représente dans R_0^l un sous-groupe simple de rang un appelé sous-groupe principal de G_0 (dit associé à P_0) 10).

2. Automorphismes de groupes de LIE clos connexes quelconques. On sait ¹¹) que le groupe $A(\tilde{G})$ des automorphismes d'un groupe de LIE simplement connexe \tilde{G} est isomorphe au groupe des automorphismes de l'algèbre de LIE R de \tilde{G} . Si G est localement isomorphe à \tilde{G} , A(G) coïncide avec le sous-groupe des éléments de $A(\tilde{G})$ qui conservent le noyau de l'homomorphisme canonique $\tilde{G} \to G$. On peut ainsi se ramener à $A(\tilde{G})$ ou à A(R).

Si le groupe $G = G_0$ est clos et connexe, il possède un groupe d'automorphismes $A(G_0)$ dont la composante neutre A_0 est le groupe $I(G_0)$ des automorphismes intérieurs de G_0 , avec un homomorphisme canonique $\varphi: G_0 \to G_0/Z_0 = A_0$ où Z_0 est le centre de G_0 . Si G_0 est abélien, $A_0 = e$, et $A(G_0)$ est discret. Si G_0 n'est pas abélien, prenons dans G_0 un sous-groupe principal γ . Les éléments de $A(G_0)$ qui conservent chaque élément de γ forment un sous-groupe U. Soit $\alpha \in A(G_0)$; il existe $\alpha \in G_0$ tel que $(\varphi a)\alpha$ soit l'identité dans γ^*), ce qui signifie que chaque composante connexe de $A(G_0)$ contient un élément de U. De plus, si $\alpha \in U \cap A_0$, il existe $\alpha \in G_0$ tel que $\alpha = \varphi a$, et $\alpha \in G_0$ tel centralisateur de $\alpha \in G_0$ contient un élément de $\alpha \in G_0$ tel que $\alpha \in G_0$ et $\alpha \in G_0$ et

Théorème. Le groupe $A(G_0)$ des automorphismes d'un groupe de LIE clos connexe possède un sous-groupe U ayant un élément et un seul dans chaque composante connexe; si G_0 n'est pas abélien, chaque élément de U conserve chaque élément d'un sous-groupe principal fixe de G_0 .

^{10) [9],} chap. IV.

¹¹⁾ voir par exemple [4], chap. IV, § XV.

^{*)} cf. [9], Théorème 4, p. 253-254.

Autrement dit, $A(G_0)$ est le produit semi-direct de sa composante neutre par un groupe discret U^*).

3. Automorphismes des groupes de LIE clos semi-simples connexes. Il suffit d'étudier le groupe $A(\tilde{G}_0) = A_0 + A_1 + \cdots$ où \tilde{G}_0 est semi-simple clos simplement connexe. Prenons à nouveau un sous-groupe principal γ de \tilde{G}_0 associé à un angle polyèdre \mathfrak{P}_0 et soit U le centralisateur de γ dans $A(\tilde{G}_0)$; il possède un élément u_i et un seul dans chaque composante connexe A_i de $A(\tilde{G}_0)$.

En partant de l'algèbre R de G_0 plongée dans l'algèbre de Lie complexe $\mathfrak R$ associée, mise sous la forme canonique de H. Weyl, on peut montrer I^2) qu'à toute isométrie S du diagramme conservant l'origine correspond un élément $s \in A(R)$ prolongeant S; supposons en particulier que S conserve $\mathfrak P_0$; si $s \in A_i$, alors s et u_i ont le même effet sur $\mathfrak P_0$. U est un groupe d'isométries du diagramme conservant $\mathfrak P_0$ et la correspondance $u_i \to S$ est un homomorphisme de U sur le groupe fini U_1 des isométries du diagramme qui conservent $\mathfrak P_0$. D'autre part, si u_i est l'identité sur $\mathfrak P_0$, u_i conserve chaque élément de $\widetilde T_0^l$ et de γ , donc aussi chaque élément de $\widetilde G_0$, d'où $u_i = e$. U et U_1 sont isomorphes.

Théorème. Soient \widetilde{G}_0 un groupe de LIE semi-simple clos simplement connexe, \mathfrak{P}_0 un angle polyèdre fondamental de \widetilde{G}_0 , et γ un sous-groupe principal de \widetilde{G}_0 associé à \mathfrak{P}_0 . Il existe un groupe U d'automorphismes de \widetilde{G}_0 conservant \mathfrak{P}_0 et chaque élément de γ , canoniquement isomorphe au groupe des isométries du diagramme qui laissent \mathfrak{P}_0 invariant.

On a un isomorphisme d'inclusion $\chi: U \to A(\tilde{G}_0)$. Quel est l'effet des opérations de U sur le centre \tilde{Z}_0 ? Si 3 désigne l'intersection $\overline{\delta}_{l} \cap P_0$, on peut voir que \tilde{f} est biunivoque sur \mathfrak{Z}^{13}), et l'effet des opérations de U sur \tilde{Z}_0 est décrit par leur effet sur \mathfrak{Z} .

Si G_0 est localement isomorphe à \widetilde{G}_0 , $A(G_0)$ est un sous-groupe de $A(\widetilde{G}_0)$ qui contient visiblement A_0 , car tout $\alpha \in A_0$ conserve chaque élément du centre \widetilde{Z}_0 . Ici, $A(G_0)$ est le produit semi-direct de sa composante neutre par un sous-groupe du groupe U de l'angle polyèdre.

^{*)} cf. DYNKIN E. B. Dokl. Akad. Nauk. SSSR NS (76), 629-632 (1951) d'après Math. Rev. 12, 8 (1951), p. 585.

^{12) [5],} chap. III.

¹³⁾ voir chap. III, § 4, nº 1.

§ 3. Extensions principales des groupes semi-simples clos

Soient \tilde{G}_0 un groupe de Lie clos semi-simple simplement connexe et U le groupe d'automorphismes associé à un sous-groupe principal γ , avec l'isomorphisme d'inclusion $\chi \colon U \to A(\tilde{G}_0)$. Formons le produit semi-direct $\tilde{S} = (\tilde{G}_0 \times U)_{\chi}$, qui contient \tilde{G}_0 et un sous-groupe $U_1 \simeq U$ formé des (e, u), situé dans le centralisateur Z_{γ} de (γ, e) par construction; U_1 a un élément et un seul dans chaque composante connexe de \tilde{S} . Cette extension \tilde{S} est une extension naturelle particulière de \tilde{G}_0 , dite extension principale.

(Remarquons que Z_{γ} est le produit semi-direct $(\widetilde{Z}_0 \times U)_{\chi}$ dont on peut prouver qu'il est isomorphe au groupe K des isométries du diagramme qui conservent un ployèdre fondamental P_0 de \widetilde{G}_0 .)

Notion d'extension principale. Si $G_0 = \tilde{G}_0/V$, où V est un sous-groupe du centre $\tilde{Z}_0 = Z$, soit U_v le plus grand sous-groupe de U dont toutes les opérations conservent V; alors $S = (G_0 \times U_v)_\chi$ est par définition l'extension principale de G_0 .

Toutes les autres extensions naturelles de G_0 s'obtiennent en composant S avec une extension F quelconque de Z_0 par U_v , compatible avec S. On voit que l'extension F de Z_0 caractérise l'extension naturelle considérée; on peut même préciser:

Proposition. Soient $S = (G_0 \times U)_{\chi}$ l'extension principale de G_0 , F une extension du centre Z_0 de G_0 compatible avec S, et S_1 l'extension naturelle composée $F \otimes S$. Alors S_1 contient un sous-groupe isomorphe à F, centralisateur d'un sous-groupe γ principal dans la composante neutre.

 (F,β) et (S,π) sont des extensions de Z_0 et G_0 par U compatibles; S_1 est obtenu à partir du produit direct $F \times S$ dans lequel on isole le sous-groupe D formé des (f,s) tels que $\beta f = \pi s$. D possède une composante neutre (e,G_0) qui contient un sous-groupe principal (e,γ) dont tout élément est échangeable avec chaque $(f,u) \in D$ où u décrit le centralisateur $Z_{\gamma} = (Z_0 \times U)_{\chi}$. Lorsqu'on prend comme unité le sous-groupe des (c,c^{-1}) avec $c \in Z_0$, alors (e,γ) reste principal dans la composante neutre; de plus, le sous-groupe des (f,u) indiqués devient F_1 isomorphe à F^{14}), et est contenu dans le centralisateur de (e,γ) ; comme F_1 contient (e,Z_0) et a des éléments dans chaque composante connexe de S_1 , il coïncide avec ce centralisateur, et la proposition est établie.

On peut dire que S_1 contient une extension de Z_0 qui caractérise S_1 comme extension de G_0 .

¹⁴⁾ cf. § 1, nº 5.

§ 4. Extensions naturelles des groupes simples clos

- 1. Plan. Les extensions naturelles des groupes de LIE clos connexes simples sont faciles à construire, car les centres Z_0 ont toujours une structure remarquablement simple. Nous allons passer en revue les divers groupes simples, en examinant pour chacun d'eux successivement : la suite fondamentale, le paramètre dominant, le centre \tilde{Z}_0 représenté par 3, la structure de \tilde{Z}_0 d'après E. Cartan [3], l'effet de U sur \tilde{Z}_0 , les sous-groupes de \tilde{Z}_0 invariants par chaque opération de U ainsi que les autres s'il en existe, puis les extensions de Z_0 compatibles avec l'extension principale S (extensions que l'on trouve notamment dans le livre de H. Zassenhaus 15), d'où l'énumération de toutes les extensions naturelles désirées.
- 2. Groupes A_i . Je désigne par \tilde{A}_i le groupe simplement connexe de la famille. La suite fondamentale est décrite par la figure de SCHLÄFLI:

$$0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow 0$$

$$\varphi_1 \qquad \varphi_2 \qquad \varphi_{l-1} \qquad \varphi_l \qquad \omega = \varphi_1 + \cdots + \varphi_l .$$

 ω étant le paramètre angulaire dominant.

Les sommets du polyèdre fondamental P_0 sont, en coordonnées φ_i : $O(0,\ldots,0), \ A'_1(1,0,\ldots,0), \ A'_2(0,1,0,\ldots,0)\ldots, \ A'_l(0,\ldots,0,1)$. Ils appartiennent tous à \mathfrak{Z} , et le centre Z de \widetilde{A}_i est Z_{l+1} cyclique d'ordre l+1; un générateur a de Z est représenté par A'_1 , avec $a=\widetilde{f}(A'_1), \ a^2=\widetilde{f}(A'_2),\ldots$ Le groupe U est formé de deux éléments e,u; le second détermine sur la suite fondamentale la permutation $\varphi_i \to \varphi_{l+1-i}$; on voit que u applique a sur son inverse a^{-1} et tous les sous-groupes V de Z sont stables pour u.

En écrivant $G_0 = \tilde{A}_l/V$, on obtient tous les groupes G_0 localement isomorphes à \tilde{A}_l , qui admettent tous une extension principale

$$S = [(\tilde{A}_{i}/V) \times U]_{\chi}$$

possédant deux composantes connexes. D'autres extensions naturelles de $G_0 = \tilde{A}_l/V$ se présentent si et seulement si l'ordre du centre Z_0 de G_0 est un nombre pair 2p. Il y a dans un tel cas une seconde extension naturelle, composée de l'extension principale S et de l'extension F de Z_0 décrite par

$$a, u, a^{2p} = e, u^2 = a^p, uau^{-1} = a^{-1}.$$

¹⁵⁾ cf. [11]. Notamment le théorème 20 (HÖLDER), p. 95, 111, 114.

⁴ Commentarii Mathematici Helvetici

Groupes D_i . Je désigne par \widetilde{D}_i le groupe simplement connexe de la famille. La suite fondamentale est décrite par la figure de Schläfli

 ω étant le paramètre dominant. Les sommets du polyèdre fondamental P_0 qui appartiennent au réseau central $\overline{\delta_i}$ forment 3 et représentent le centre Z de $\widetilde{D_i}$; ce sont

$$O, A'_1(1,0,0,\ldots,0), A'_2(0,1,0,\ldots,0), A'_l(0,0,\ldots,0,1)$$
.

 $l\ impair$. Dans ce cas, Z est cyclique d'ordre 4 engendré par $a=\widetilde{f}(A_1')$, avec $\widetilde{f}(A_2')=a^3=a^{-1}$, $\widetilde{f}(A_l')=a^2$. On a U=(e,u) avec $uau^{-1}=a^{-1}$, et Z a le sous-groupe non trivial (e,a^2) stable pour u. Les groupes localement isomorphes à \widetilde{D}_l sont les suivants: \widetilde{D}_l , $\widetilde{D}_l/(e,a^2)$, \widetilde{D}_l/Z ; ils admettent une extension principale à deux composantes connexes, respectivement

$$\widetilde{S} = (\widetilde{D}_{\it l} imes U)_\chi$$
 , $S = [\{\widetilde{D}_{\it l}/(e,a^2)\} imes U]_\chi$, $\bar{S} = (\widetilde{D}_{\it l}/Z imes U)_\chi$.

Le groupe \tilde{D}_l admet encore une seconde extension naturelle, composée de \tilde{S} et de l'extension suivante de Z

$$a, u, a^4 = e, u^2 = a^2, uau^{-1} = a^{-1}.$$

Le groupe $\tilde{D}_l/(e,a^2)$ admet aussi une seconde extension naturelle, composée de S et de l'extension de son centre (e,c) qui est décrite par

$$c, u, c^2 = e, u^2 = c, ucu^{-1} = c.$$

l pair. Le centre Z est le produit direct $Z_2 \times Z_2 = (e,a,b,ab)$ avec $\tilde{f}(A_1') = a$, $\tilde{f}(A_2') = b$, $\tilde{f}(A_l') = ab$. Les groupes G_0 localement isomorphes à \tilde{D}_l sont les suivants :

$$ilde{D}_l$$
 , $ilde{D}_l/(e,ab)$ de centre (e,c) , $ilde{D}_l/Z$, $ilde{D}_l/(e,a)$ isomorphe à $ilde{D}_l/(e,b)$.

Les trois premiers admettent une extension principale à deux composantes connexes: $(\tilde{D}_l \times U)_\chi$, $S = [\tilde{D}_l/(e,ab) \times U]_\chi$, $(\tilde{D}_l/Z \times U)_\chi$, tandis que le dernier n'a pas d'extension naturelle non triviale.

Le groupe $\tilde{D}_l/(e,ab)$ admet encore une seconde extension naturelle, composée de S et de l'extension

1)
$$c, u, c^2 = e, u^2 = c, ucu^{-1} = c$$

du centre (e,c).

Groupes D_4 . La suite fondamentale est définie par la figure de SCHLÄFLI

 ω étant le paramètre angulaire dominant. Les sommets du polyèdre fondamental P_0 qui appartiennent au réseau central sont comme précédemment O, A_1' , A_2' , A_4' . Ils représentent Z, qui est du type $Z_2 \times Z_2 = (e,a,b,c)$, avec $a^2 = b^2 = c^2 = e$, $\tilde{f}(A_1') = a$, $\tilde{f}(A_2') = b$, $\tilde{f}(A_4') = c$. Ici, le groupe $U = \mathfrak{S}_3$ est formé de six éléments qui permutent A_1' , A_2' , A_4' , ainsi que a,b,c.

Le groupe \widetilde{D}_4 admet l'extension principale $\widetilde{S} = (\widetilde{D}_4 \times U)_{\chi}$, à six composantes connexes; comme $Z_2 \times Z_2$ n'admet pas d'extension par \mathfrak{S}_3 compatible avec \widetilde{S} distincte du produit semi-direct 16), il n'y a pas d'autre extension naturelle de \widetilde{D}_4 .

Comme toujours, le groupe adjoint \widetilde{D}_4/Z n'a qu'une seule extension naturelle : $A(\widetilde{D}_4)$ principale. Le groupe $\widetilde{D}_4/(e,a)$ de centre (e,c) a une extension principale à deux composantes connexes, et une seconde extension naturelle provenant de 1).

Groupes E₆. La suite fondamentale est définie par

$$\omega = \varphi_1 + 2\varphi_2 + 3\varphi_3 + 2\varphi_4 + \varphi_5 + 2\varphi_6 \ .$$

 ω étant le paramètre angulaire dominant. Les sommets du polyèdre fondamental P_0 situés dans le réseau central sont $O, A_1'(1, 0, 0, \ldots, 0)$, $A_5'(0, 0, \ldots, 0, 1, 0)$. Ils représentent le centre Z de \widetilde{E}_6 cyclique d'ordre 3, avec $Z = (e, a, a^2)$, $\widetilde{f}(A_1') = a$, $\widetilde{f}(A_5') = a^2$. Le groupe U est formé de deux éléments e, u, le second appliquant $\varphi_1, \varphi_2, \varphi_3, \varphi_4, \varphi_5, \varphi_6$ respectivement sur $\varphi_5, \varphi_4, \varphi_3, \varphi_2, \varphi_1, \varphi_6$.

¹⁶⁾ cf. [11], p. 111.

Les deux groupes de la famille sont \widetilde{E}_6 et \widetilde{E}_6/Z , qui ne possèdent chacun qu'une seule extension naturelle : leur extension principale, formée de deux composantes connexes.

Groupes B_1 , C_1 , E_7 , E_8 , F_4 , G_2 . Ici, on a toujours U=e, et aucune extension naturelle non triviale.

CHAPITRE II

Sous-groupe abélien associé à une composante connexe

§ 1. Propriétés élémentaires

- 1. Définitions. Soient G un groupe de Lie clos, x un élément quelconque de G, T_x la composante neutre du sous-groupe abélien fermé \overline{T} engendré par x, et N_x le normalisateur connexe de x. On a $T_x \subseteq N_x$; de plus, chaque élément a de N_x étant échangeable avec x est aussi échangeable avec chaque élément de \overline{T} et en particulier avec chaque élément de T_x ; cela prouve que T_x est dans le centre de N_x . Soit T_0^h un toroïde maximum de N_x ; il contient nécessairement T_x . Cela étant, j'appelle $T^{(h)}$ le sous-groupe fermé engendré par T_0^h et par x, et je pose $T_1^{(h)} = xT_0^h$.
- 2. Produit direct. Il existe un entier positif q' tel que $x^{q'} \in T_x$, d'où $x^{q'} \in T_0^h$; je désigne par q le plus petit de tous les entiers q' positifs qui ont cette propriété. On a $x^q = a \in T_0^h$, et il existe $b \in T_0^h$ tel que $b^q = a^{-1}$. L'élément $\tau = xb$ est d'ordre fini q vu que $(xb)^q = x^qb^q = aa^{-1} = e$; de plus, si $p \leqslant q$ est un entier positif tel que $\tau^p \in T_0^h$, alors $x^pb^p \in T_0^h$, puis $x^p \in T_0^h$, d'où p = q. Cela prouve que le sous-groupe cyclique V engendré par τ est d'ordre q et coupe T_0^h en e seulement. Le produit $V \cdot T_0^h$ est un produit direct $V \times T_0^h = T'^{(h)}$. Comme $T'^{(h)}$ contient T_0^h et x, on a $T'^{(h)} \subset T'^{(h)}$; comme $T'^{(h)}$ contient T_0^h et τ , on a $T'^{(h)} \subset T'^{(h)}$, d'où $T'^{(h)} = T'^{(h)}$. Le sous-groupe $T^{(h)}$ est le produit direct de sa composante neutre par un groupe cyclique fini.
- 3. Génération par un élément. Soit c un générateur de T_0^h ; l'élément $v=c\tau$ engendre un sous-groupe abélien fermé T de $T^{(h)}$, contenant les suites

$$v^q, v^{2q}, \ldots, v^{kq}$$
 et $v^{q+1}, v^{2q+1}, \ldots, v^{kq+1}, \ldots$ ou $c^q, c^{2q}, \ldots, c^{kq}$ $v^{q}, v^{q}, v^{q}, \ldots, v^{q}, \ldots$

d'où $T = T^{(h)}$, et ν engendre $T^{(h)}$.

Théorème. A tout élément x d'un groupe de Lie clos on peut associer un sous-groupe abélien $T^{(h)}$ engendré par x et par un toroïde maximum T^h_0 du normalisateur connexe de x. $T^{(h)}$ est le produit direct de sa composante neutre T^h_0 par un sous-groupe cyclique fini V, et la composante connexe $T^{(h)}_1$ de x dans $T^{(h)}$ contient un générateur de $T^{(h)}_1$.

Si x est dans la composante neutre G_0 de G, alors il existe un toroïde maximum T^l de G_0 contenant x, et $T_0^h = T^{(h)} = T^l$. Si G_1 est une composante connexe de G distincte de G_0 , alors $T^{(h)}$ n'est pas connexe, et h est en général inférieur au rang l de G_0 . Nous verrons que l'entier h ne dépend que de G_1 , et non de la situation de x dans G_1 ; de plus, tout $y \in G_1$ possède un conjugué dans $T_1^{(h)}$ relativement à G_0 . Ces faits sont établis dans les paragraphes 2 et 3 du présent chapitre.

Je désigne désormais le sous-groupe $T^{(h)}$ associé à l'élément x de G_1 par la notation $T^{(h)}(G_1)$.

§ 2. Sous-groupe $T^{(h)}(G_1)$ discret

1. Normalisateur discret. Si le normalisateur de x dans le groupe clos G est discret, alors T_0^h se réduit à l'élément neutre e de G, et $T^{(h)}(G_1)$ est un groupe cyclique fini. Le théorème qui domine la question dans ce cas est le suivant :

Théorème. Soit G un groupe de L_{IE} clos; s'il existe dans G un élément x à normalisateur discret, alors la composante neutre G_0 de G est un groupe commutatif, et la composante connexe de x est formée tout entière d'éléments conjugués de x.

On voit que $T_1^{(h)} = x$ est à lui seul un domaine fondamental d'éléments de G_1 (conjugués relativement à G_0).

Preuve. a) x possède un voisinage formé d'éléments conjugués de x. Dire que le normalisateur N de x est discret revient à dire qu'il existe un voisinage U de e tel que $N \cap U = e$. Il existe alors un voisinage V' de e tel que $V'^{-1}V' \subseteq U$; de plus, il existe dans V' un voisinage compact V de e, pour lequel on a encore $V^{-1}V \subseteq U$.

Soit maintenant V_x l'ensemble des axa^{-1} pour a décrivant V; l'application $f: a \to axa^{-1}$ est une application continue de V sur V_x . Je dis que f est biunivoque: $a,b \in V$ avec $a \neq b$ entraı̂ne $f(a) \neq f(b)$; en effet, si $axa^{-1} = byb^{-1}$, on a $(b^{-1}a)x = x(b^{-1}a)$, avec $b^{-1}a \in U$ en vertu de $V^{-1}V \subset U$. Le normalisateur N contient dans U un élément $b^{-1}a$ distinct de e, contrairement à l'hypothèse faite sur U.

En résumé, f est une application continue biunivoque de V compact sur V_x , qui est séparé. Ainsi, f est un homéomorphisme de V sur V_x , avec

- f(e)=x; comme G est un groupe de Lie, le théorème d'invariance du domaine est valable, et V_x est un voisinage (compact) de x. En résumé, il existe un voisinage V_x de x tel que à tout $y \in V_x$ correspond un $a \in V$ avec $y = a x a^{-1}$; tout $y \in V_x$ est un conjugué de x (relativement à V).
- b) La composante connexe de x est formée d'éléments conjuguées de x. On prend ici $V \subseteq G_0$, G_1 étant la composante connexe de x. L'application $f: a \to a x a^{-1}$ $(a \in G_0)$ est une application continue de l'espace compact et connexe G_0 dans l'espace connexe et séparé G_1 ; ainsi $f(G_0) = \mathfrak{D}$ est un sous-ensemble compact et connexe de G_1 , fermé dans G_1 .

Soit y quelconque dans \mathfrak{D} ; il existe $a \in G_0$ tel que $axa^{-1} = y$. D'autre part, soit φa l'automorphisme intérieur $z \to aza^{-1}$ $(z \in G)$; φa applique $z = bxb^{-1} \in \mathfrak{D}$ $(b \in G_0)$ sur $(\varphi a)z = abxb^{-1}a^{-1} = f(ab) \in \mathfrak{D}$. Donc φa , qui est un homéomorphisme de G_1 sur elle-même, conserve \mathfrak{D} ; c'est un homéomorphisme de \mathfrak{D} sur lui-même. Maintenant f(V), qui est un voisinage de x dans \mathfrak{D} est appliqué par φa sur un voisinage de y dans \mathfrak{D} . L'ensemble \mathfrak{D} étant un voisinage de chacun de ses points est un ensemble ouvert dans G_1 .

En résumé, $\mathfrak{D} = f(G_0)$ est un ensemble ouvert et fermé situé dans G_1 , d'où $\mathfrak{D} = G_1$. Finalement, à tout $y \in G_1$ correspond un $a \in G_0$, avec $a \times a^{-1} = y$, ce qui établit l'affirmation.

c) La composante neutre est commutative. Soit G_1 la composante connexe de x; si la composante neutre G_0 n'est pas commutative, il existe dans G_0 un toroïde maximum T et un angle polyèdre fondamental $P \subset T$. L'automorphisme φx applique T sur T' et P sur P' contenu dans T'; il existe alors $a \in G_0$ tel que $(\varphi a)T' = T$, $(\varphi a)P' = P$, et $\varphi(ax)$ conserve T ainsi que P. Mais alors chaque point de la diagonale principale de P est invariant par $\varphi(ax)$, ce qui signifie que le normalisateur de $ax \in G_1$ n'est pas discret, ce qui est absurde. G_0 est nécessairement commutative.

Le théorème est établi.

2. Automorphismes à sous-groupe de points fixes discret. Le théorème envisagé entraîne immédiatement la

Proposition. Soit G un groupe de L_{IE} semi-simple clos connexe; s'il existe un automorphisme α de G ayant un sous-groupe de points fixes discret, alors G se réduit à l'élément neutre.

Soient A(G) le groupe des automorphismes de G, et A_0 la composante neutre de A(G); l'application $x \to \varphi x$ de $x \in G$ sur l'automorphisme intérieur de G déterminé par x est un isomorphisme local de G dans A_0 en même temps qu'un homomorphisme de G sur A_0 . La relation $\varphi(\alpha x) = \alpha(\varphi x)\alpha^{-1}$, valable

pour tout $x \in G$, $\alpha \in A(G)$, prouve que l'automorphisme α dans G, et l'automorphisme intérieur de A(G) déterminé par α sont identifiés par l'isomorphisme local φ dans un voisinage de l'élément neutre. α n'ayant par hypothèse pas de point fixe autre que e dans ce voisinage, il en est de même dans A_0 , ce qui signifie que le normalisateur de α dans A(G) est discret; de là résulte, en vertu du théorème, que A_0 est commutative, et de plus semisimple; il vient $A_0 = e$, G = e, c. q. f. d.

§ 3. Sous-groupe $T^{(h)}(G_1)$ non discret

1. Dans un groupe de Lie clos à composante neutre commutative. Soient G un groupe de Lie clos à composante neutre commutative $G_0 = T_0^l$, et $G_1 = T_1^{(l)}$ une composante connexe quelconque. S'il existe dans $T_1^{(l)}$ un élément x à normalisateur discret, nous avons le cas analysé aux § 2. Si $T_1^{(l)}$ ne contient pas d'élément de cette sorte, je choisis un $x \in T_1^{(l)}$ arbitraire, puis je forme le sousgroupe abélien $T^{(h)}(G_1)$ associé; ici, le normalisateur connexe N_x de x coïncide avec le toroïde T_0^h vu que G_0 est commutative. Nous savons que $T_1^{(h)} = x T_0^h$ contient au moins un élément x' d'ordre fini q (§ 1). Nous allons voir que tout $y \in T_1^{(l)}$ possède un conjugué dans $T_1^{(h)}$ relativement à $T_0^{(l)}$.

Soit en effet $T^{(l)}$ le sous-groupe de G engendré par T_0^l et par x; on voit que T_0^h est un sous-groupe invariant de $T^{(l)}$, composante neutre du centre de $T^{(l)}$, et que $T_1^{(h)}$ est un système abélien torooïal contenu dans $T_1^{(l)}$. Etudions le groupe $T^{(l)}/T_0^h$ des classes de $T^{(l)}$ suivant T_0^h , et, dans ce groupe, le sous-groupe U des classes échangeables avec $T_1^{(h)}$. Si $z \in T_0^l$ appartient à la composante neutre U_0 de U, l'automorphisme intérieur φz conserve $T_1^{(h)}$ par définition de U. Appliquons à $x' \in T_1^{(h)}$ tous les φz , avec $z \in U_0$. Nous obtenons dans $T_1^{(h)}$ une sous-variété connexe W; comme x' est d'ordre fini q, il en est de même de tous les éléments de W, qui sont de plus deux à deux échangeables; ces éléments engendrent dans $T^{(l)}$ un sous-groupe abélien $\mathfrak T$ dont tous les éléments sont d'ordre fini q; l'adhérence $\overline{\mathfrak T}$ de $\mathfrak T$ est un sous-groupe abélien fermé, dont tous les éléments sont d'ordre fini q. La composante neutre de $\overline{\mathfrak T}$ se réduit ainsi nécessairement à q, d'où q is q in résumé, si q z ($q \in T_0$) conserve $q \in T_1$, alors $q \in T_0$. Ainsi :

le normalisateur de $T_1^{(h)}$ dans $T_1^{(l)}/T_0^h$ est discret.

D'après le résultat du n° 1, § 2, les éléments yT_0^h de $T^{(l)}/T_0^h$ où $y \in T_1^{(l)}$ sont des conjugués de $T_1^{(h)}$ relativement à T_0^l/T_0^h ; ou encore : tout élément de $T_1^{(l)}$ possède un conjugué dans $T_1^{(h)}$. On peut énoncer :

Proposition 1. Soient G un groupe de L_{IE} clos à composante neutre commutative, x un élément de G, T_0^h le normalisateur connexe de x, et $T_1^{(h)} = x T_0^h$; alors tout élément de la composante connexe de x dans G possède un conjugué dans $T_1^{(h)}$ relativement à T_0^l .

Cet énoncé est valable dans les cas extrêmes:

- 1) h = 0, $T_1^{(h)} = x$: le normalisateur de x est discret,
- 2) h=l , $T_1^{(h)}=T_1^{(l)}$ et le groupe T^l est abélien.

Il ne reste plus qu'à traiter le cas où la composante neutre G_0 de G n'est pas commutative, ce qui me paraît devoir être précédé du n°.

2. Sur les points fixes des automorphismes des groupes clos.

Proposition 2. Soient G un groupe de Lie clos connexe non abélien, et α un automorphisme de G; alors

- 1) la composante neutre U du sous-groupe des points fixes de α est régulière dans G,
- 2) il existe un toroïde maximum T de G et un angle polyèdre fondamental $P \subset G$ invariants par α .

Preuve. G n'étant pas abélien, il résulte de la proposition du § 2, n° 2, que U est distincte de e. Soit alors t un toroïde maximum de U; je désigne par Z le centralisateur connexe 17) de t dans G, en remarquant que t est dans le centre de Z. On a $t = U \cap Z$, car si y est dans cette intersection, y est un élément de U échangeable avec chaque élément de t, d'où $y \in t$. Soit maintenant S le facteur semi-simple connexe de Z; le sous-groupe U coupe Z suivant t, qui est dans le centre continu de Z; donc, l'intersection $U \cap S$ est discrète. D'autre part, l'automorphisme α , qui conserve t, conserve le centralisateur Z de t; la restriction de α à Z est un automorphisme de Z qui conserve S. Finalement, la restriction de α à S est un automorphisme de S à sous-groupe de points fixes discret. D'après la proposition du § 2, on a S = e, ce qui prouve que Z est abélien; un élément générateur de t ne peut ainsi appartenir qu'à un seul toroïde maximum de G: c'est un élément régulier de G, et la première partie de la proposition est établie.

Prenons un élément $y \in G$, voisin de e, régulier dans G, invariant par α ; le toroïde maximum T et l'angle polyèdre fondamental $P \subseteq T$ uniques qui contiennent y sont tous deux invariants par α .

Corollaire. Soient G un groupe de Lie clos non abélien, et x un élément quelconque de G; alors le normalisateur connexe de x est régulier dans la compo-

 $^{^{17}}$) Composante neutre du centralisateur de t.

sante neutre G_0 de G; de plus, il existe dans G_0 un toroïde maximum et un angle polyèdre fondamental invariants par l'automorphisme intérieur φx .

Cette proposition était bien connue dans le cas où G est connexe. Il est judicieux d'étendre encore à des G non connexes la définition des éléments réguliers :

Définition. Un élément x d'un groupe de Lie clos est régulier ou singulier suivant que son normalisateur connexe est abélien ou non.

3. Dans un groupe de Lie clos à composante neutre non commutative. Soient G un groupe de Lie clos à composante neutre G_0 non commutative, G_1 une composante connexe quelconque de G, x un élément arbitraire de G_1 , T_0^h un toroïde maximum du normalisateur connexe N_x , et $T_1^{(h)} = xT_0^h$; je dis que tout $y \in G_1$ possède un conjugué dans $T_1^{(h)}$ relativement à G_0 .

En effet, T_0^h étant régulier, il existe un toroïde maximum T_0^l de G_0 et un seul contenant T_0^h ; posons $T_1^{(l)} = xT_0^l$. Soit P un angle polyèdre fondamental de T_0^l contenant un élément régulier de T_0^h . On a

a)
$$(\varphi x)T_0^l = T_0^l$$
 $(\varphi x)P = P$.

Je dis que tout $y \in G_1$ possède un conjugué dans $T_1^{(l)}$ relativement à G_0 . Il existe un toroide maximum T'^l de G_0 et un angle polyèdre fondamental P' de T'^l invariants par φy ; on sait qu'on peut trouver un élément $a \in G_0$ tel que $(\varphi a)T'^l = T_0^l$, $(\varphi a)P' = P$; je pose $(\varphi a)y = x' \in G_1$. φa étant un automorphisme, l'élément x' jouit par rapport à T_0^l , P, des mêmes propriétés que y par rapport à T'^l , P'. Autrement dit:

b)
$$(\varphi x')T_0^l = T_0^l$$
 $(\varphi x')P = P$.

Les relations a) et b) prouvent d'abord que x et x' appartiennent au normalisateur de T_0^l ; ensuite, comme $xx^{l-1} \in G_0$ avec $[\varphi(xx^{l-1})]T_0^l = T_0^l$, $[\varphi(xx^{l-1})]P = P$, on a $xx^{l-1} \in T_0^l$ et $x' \in T_1^l$. En résumé, y possède un conjugué $(\varphi a)y$ dans $T_1^{(l)}$.

Pour achever la démonstration, il suffit de prouver que tout $x' \in T_1^{(l)}$ possède un conjugué dans $T_1^{(h)}$. Or T_0^l et x engendrent dans le normalisateur $N(T_0^l)$ de T_0^l dans G un sous-groupe $T^{(l)}$ à composante neutre T_0^l commutative, contenant $T_1^{(l)}$ ainsi que x, $N_x' = T_0^h$, et $T_1^{(h)} = xT_0^h$. En vertu de la proposition 1, l'élément x' de $T_1^{(l)}$ possède effectivement un conjugué dans $T_1^{(h)}$, et la première affirmation est établie.

Le principal résultat de ce chapitre est exprimé dans le

. Théorème. Soient G un groupe de Lie clos, G_0 la composante neutre de G, x un élément de G, T_0^h un toroïde maximum du normalisateur connexe de x, et

 $T_1^{(h)}=xT_0^h$; alors tout élément de la composante connexe de x possède un conjugué dans $T_1^{(h)}$ relativement à G_0 .

Il est visible que T_0^h est un toroïde maximum pour tous les normalisateurs connexes d'éléments de $T_1^{(h)}$; cela prouve que tous les normalisateurs d'éléments de $G_1 = xG_0$ ont le même rang h. D'où le

Théorème. Toute composante connexe G_1 d'un groupe de Lie clos G contient un système abélien toroïdal $T_1^{(h)}$ coupé par toutes les classes d'éléments de G_1 conjugués relativement à la composante neutre de G. Les normalisateurs des éléments de G_1 ont tous le même rang, égal à la dimension du tore $T_1^{(h)}$. Le sous-groupe $T^{(h)}(G_1)$ est engendré par $T_1^{(h)}$. 18)

Corollaire. Les sous-groupes abéliens $T^{(h)}(G_1)$ associés à une composante connexe G_1 fixe sont conjugués relativement à G_0 .

Cela permet de parler du sous-groupe $T^{(h)}(G_1)$.

CHAPITRE III

Diagramme associé à une composante connexe

§ 1. Caractères relatifs à $T^{(h)}(G_1)$

1. Définition de ces caractères. Soient $G = G_0 + G_1 + \cdots$ un groupe de Lie clos de composante neutre G_0 , et $T^{(h)}(G_1)$ le sous-groupe abélien associé à la composante connexe G_1 . Répétons que $T^{(h)} = T^{(h)}(G_1)$ est le produit direct de sa composante neutre T_0^h et d'un groupe cyclique fini de type Z_q engendré par $x \in T_1^{(h)}$; on peut trouver un élément $c \in T_0^h$, régulier, voisin de e, générateur de T_0^h , tel que c^q soit aussi voisin de e qu'on le désire. Alors v = xc est un générateur de $T^{(h)}$ et $v^q = c^q$.

Le groupe des automorphismes intérieurs de G possède une représentation linéaire adjointe $y \to D(y)$ dans l'espace $R(G_0)$ tangent à G_0 en e. G étant compact, il existe même un repère de $R(G_0)$ dans lequel les transformations linéaires D(y) sont représentées par des matrices orthogonales encore désignées par D(y). En particulier, D(v) est orthogonale. Il existe alors un nouveau repère de $R(G_0)$ dans lequel D(v) reçoit la forme canonique quasi-diagonale

$$D(v) = (E_{h''}, -E_{h'''}, D_1, \ldots, D_r, D_{r+1}, \ldots, D_{r'}) .$$

 $E_{h''}$ désigne la $h'' \times h''$ matrice unité ; $D_1, \ldots, D_{r'}$ sont des 2×2 matrices ortho-

¹⁸) $T_1^{(h)}$ correspond à l'ensemble des "chief elements" de F. GANTMACHER [5], § 8, lorsque G_{\bullet} est semi-simple clos.

gonales de déterminant +1, les r premières étant d'ordre fini, et les autres d'ordre infini.

Considérons $D(r^q) = D(c^q)$; on peut choisir c en sorte que $D(c^q)$ soit aussi voisine de $E_{h''+h'''+2r'}$ qu'on le désire. Alors

$$D(\mathbf{r}^q) = (E_{h''+h'''+2r}, D_{r+1}^q, \ldots, D_{r'}^q).$$

Le sous-espace de $R(G_0)$ associé à $E_{h''+h'''+2r}$ est exactement tangent au normalisateur de c_q , désigné par $N(c^q)$. Or, c^q est régulier et $N(c^q) = T^l$ est l'unique toroïde maximum de G_0 qui contient T_0^h . On a donc h''+h'''+2r=l, d'où, avec de nouvelles notations

$$\Delta(\nu) = \{E_h, I_{l-h}, \Delta_1(\nu), \ldots, \Delta_m(\nu)\}.$$

 E_h et I_{l-h} indiquent l'effet de $\Delta(\nu)$ dans $R(T^l)$; les m autres matrices indiquent les rotations produites par $\Delta(\nu)$ dans m plans à deux dimensions $\Lambda_1, \ldots, \Lambda_m$. Finalement, en considérant T^h engendré par ν , on a

$$\Delta(y) = \{E_h, I_{l-h}(y), \Delta_1(y), \dots, \Delta_m(y)\} \qquad y \in T^{(h)} . \tag{1}$$

 $I_{i-h}(y)$ est constante dans chaque composante connexe de $T^{(h)}$; $\Delta_j(y)$ définit un caractère $\chi_j(y)$ de $T^{(h)}$ sur le groupe $T^1_j = T^1$ des rotations de Λ_j autour de l'origine, avec le caractère inverse χ_j^{-1} .

Proposition 1 et définition. La représentation linéaire adjointe de $T^{(h)}(G_1)$ dans $R(G_0)$ fait apparaître m caractères χ_1, \ldots, χ_m de $T^{(h)}(G_1)$; ce sont les caractères de G relatifs à $T^{(h)}(G_1)$.

2. Sous-groupes singuliers. Le caractère χ_j est un homomorphisme de $T^{(h)}$ sur $T^1 = T^1_j$; si U_j désigne le noyau de χ_j , ensemble des $y \in T^{(h)}$ tels que $\chi_j(y) = e$, alors $T^{(h)}/U_j$ est homéomorphe à T^1 , qui est connexe. Cela signifie que U_j possède un élément au moins dans chaque composante connexe de $T^{(h)}$, notamment dans $T^{(h)}_1$.

Définition. Le noyau de l'homomorphisme χ_i est un sous-groupe U_i de $T^{(h)}(G_1)$, dit sous-groupe singulier, qui possède des éléments dans chaque composante connexe de $T^{(h)}$.

C'est de plus un sous-groupe de dimension h-1; dans $T_1^{(h)}$, les composantes connexes des U_j forment un ensemble fini de sous-variétés à h-1 dimensions. Il existe des éléments de $T_1^{(h)}$ non situés sur ces sous-variétés; si z désigne l'un d'eux, on a $\Delta_j(z) \neq E_2$ pour tout j, et le normalisateur connexe N_z coıncide avec T_0^h . On voit que les éléments réguliers de $T_1^{(h)}$ forment des domaines à h dimensions. Les éléments situés sur un U_j au moins sont singuliers, car leur normalisateur a une dimension supérieure à h, avec un rang égal à h.

Proposition 2. Les sous-groupes singuliers U_j et U_i diffèrent si $j \neq i$.

Considérons en effet le centralisateur connexe N_j de U_j . On a $T_0^h \subset N_j \subset N_s$ où $z \in U_j \cap T_1^{(h)}$; cela prouve que N_j est de rang h. De plus, N_j est tangent à Λ_j et la dimension $\dim N_j$ est supérieure à h; ajoutons que la composante neutre U_{0j} de U_j est dans le centre connexe de N_j . Alors $H = N_j/U_{0j}$ est un groupe clos de rang h - (h - 1) = 1 de dimension supérieure à 1; c'est un sous-groupe simple de rang un de dimension trois. Cela entraîne $\dim N_j = h + 2$, et N_j est exactement tangent à $R(T_0^h) + \Lambda_j$. De là résulte $U_i \neq U_j$ si $i \neq j$.

Le cas $U_{0i} = U_{0j}$ n'est pas exclu et sera analysé ultérieurement. Le facteur semi-simple de N_j est de dimension 3 et de rang 1; c'est le sous-groupe g_j simple de rang 1 associé à Λ_j , à U_j ou à χ_j ; il est tangent à Λ_j en 0.

3. Groupe fini $\Phi(G_1)$. Construisons des automorphismes intérieurs de G qui conservent chaque composante connexe de $T^{(h)}$. Prenons z quelconque dans $T_1^{(h)}$ et construisons le normalisateur $N_z(T_0^h)$ de T_0^h dans le normalisateur connexe N_z ; d'après cette définition, T_0^h est la composante neutre de $N_z(T_0^h)$. Si a est dans ce groupe, l'automorphisme φa , qui conserve T_0^h , conserve encore z, c'est-à-dire $T_1^{(h)}$ et chaque composante connexe de $T^{(h)}(G_1)$. En résumé, au normalisateur N_z correspond un groupe fini $N_z(T_0^h)/T_0^h$ d'automorphismes de $T^{(h)}$ conservant $T_1^{(h)}$.

On peut se restreindre au centralisateur connexe N_j du sous-groupe singulier U_j ; il existe dans le sous-groupe g_j associé à U_j un élément d_j tel que l'automorphisme $\varphi(d_j)$ conserve T_0^h et $T^{(h)}$, en induisant dans ce dernier une transformation involutive non identique S_j conservant chaque élément de U_j . Les $d_j T_0^h$ engendrent un sous-groupe F du normalisateur de $T_1^{(h)}$ et F/T_0^h est un groupe fini $\Phi(G_1)$ de transformations de $T^{(h)}$ en lui-même, conservant chaque composante connexe.

Proposition 3 et définition. Il existe un groupe fini $\Phi(G_1)$ de transformations de $T^{(h)}(G_1)$ en lui-même, engendré par les involutions par rapport aux sous-groupes singuliers U_1, \ldots, U_m . Ces involutions sont les restrictions à $T^{(h)}(G_1)$ d'automorphismes intérieurs de G.

4. Caractères de G relatifs à T_0^l . Il existe dans G_0 un toroïde maximum T_0^l et un seul contenant T_0^h ; lorsque τ décrit T_0^l , les automorphismes intérieurs $\varphi \tau$ forment un groupe abélien dont la représentation linéaire adjointe dans $R(G_0)$ est un groupe orthogonal; chaque matrice de ce groupe conserve m 2-plans fixes π_1, \ldots, π_m et chaque point de $R_0^l = R(T_0^l)$. $\varphi \tau$ induit dans π_i une rotation $\theta_i(\tau) \in T^1$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ de $\theta_i^{\pm 1}(\tau)$ relatifs à $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ sont les caractères $\theta_i^{\pm 1}(\tau)$ et les $\theta_i^{\pm 1}(\tau)$ et le

^{19) [10], § 2,} nº 3.

L'automorphisme φx (x générateur de Z_q dans $T_1^{(h)}$) conserve T_0^l (et chaque point de T_0^h); il permute donc en particulier les caractères $\theta_j^{\pm 1}$; ainsi, l'ensemble des $\theta_j^{\pm 1}$ se décompose en cycles relatifs à φx . D'ailleurs, les $\theta_j^{\pm 1}$ se répartissent en suites de caractères égaux sur T_0^h . Je désire prouver que ces deux partitions sont identiques.

Lemme. Si l'automorphisme intérieur φx du groupe de Lie semi-simple clos H détermine sur les paramètres angulaires fondamentaux $\varphi_1, \ldots, \varphi_l$ une permutation $\varphi_u \to \varphi_{iu}$, alors le toroïde maximum T_0^h du normalisateur connexe de x est défini par le système obtenu en égalant les φ_i dans chaque cycle.

Le rang du normalisateur connexe est égal au nombre des cycles.

En effet, soit σ la transformation linéaire du diagramme R_0^l induite par φx ; le sous-espace R_0^h des points fixes de σ dans R_0^l est appliqué canoniquement sur T_0^h dans T_0^l et possède aussi la dimension h; il détermine T_0^h . Soit L un point R_0^l ; l'hypothèse $\sigma L = L$, jointe à la relation

$$\varphi_u(y) = (\sigma \varphi_u)(\sigma y)$$
 où $y \in R_0^l$

entraîne $\varphi_u(L) = \varphi_{iu}(L)$. Si donc la permutation $\varphi_u \to \varphi_{iu}$ est décomposée en cycles, et si $\sigma L = L$, alors les $\varphi_j(L)$ sont des nombres égaux dans chaque cycle. Réciproquement, si $\varphi_u(L) = \varphi_{iu}(L)$, on a $\varphi_{iu}(L) = \varphi_{iu}(\sigma L)$ pour les l indices, d'où $L = \sigma L$.

S'il y a s cycles de longueurs respectives a_1, a_2, \ldots, a_s , le système qui définit T_0^h possède $(a_1 - 1) + \cdots + (a_s - 1)$ équations linéaires indépendantes; la dimension du sous-espace des solutions est

$$l - [(a_1 - 1) + \cdots + (a_s - 1)] = \sum_{j=1}^{s} a_j - [\sum_{j=1}^{s} a_j - s] = s$$
,

d'où s=h.

Revenons au groupe G, et soient $\theta_1, \ldots, \theta_n$ les caractères de G qui sont égaux à θ_1 sur T_0^h ; l'automorphisme φx permute $\theta_1, \ldots, \theta_n$, car φx conserve chaque point de T_0^h ; soit s le nombre des cycles de cette permutation. Passons aux paramètres angulaires de G_0 relatifs à T_0^l ; à $\theta_j^{\pm 1}$ correspondent respectivement $\pm \mu_j$, et à $\theta_1, \ldots, \theta_n$ correspondent μ_1, \ldots, μ_n . Comme T_0^h est régulier, $\mu_i - \mu_j$ n'est jamais un paramètre angulaire $(i \neq j; i, j = 1, \ldots, n)$, et μ_1, \ldots, μ_n est une suite fondamentale d'un sous-groupe Q de rang l de G_0 contenant T_0^l et T_0^h . Le normalisateur connexe N de X dans Q contient T_0^h et est de rang h. Remarquons que T_0^h contient un sous-groupe U de dimension h-1 défini par $\mu_1(y)=\cdots=\mu_n(y)=0$ avec $y\in R_0^h$; d'après cette définition, U est dans le centre de Q.

Soit maintenant Q' le facteur semi-simple de Q; son toroïde maximum T_0^n est défini dans R_0^l par les vecteurs du diagramme $\stackrel{\rightarrow}{\mu}_1, \ldots, \stackrel{\rightarrow}{\mu}_n$. φx conserve Q',

 T_0^h , ainsi que l'angle polyèdre fondamental $\mu_1 \geqslant 0, \ldots, \mu_n \geqslant 0$ dans R_0^n . Le toroïde maximum du normalisateur connexe de x dans Q' est défini par l'égalité des μ_i dans chaque cycle relatif à φx , et la dimension de ce toroïde est égale à s. Le sous-groupe U et ce toroïde engendrent dans Q un sous-groupe abélien connexe de N', de dimension au moins égale à (h-1)+s, et au plus égale à h, d'où s=1.

Proposition 4. Tout automorphisme intérieur φx d'un groupe de L_{IE} clos G conserve un toroïde maximum T^l de la composante neutre de G, ainsi que dans T^l chaque point d'un toroïde T^h_0 maximum dans le normalisateur connexe de x. Les caractères de G relatifs à T^l se répartissent en suites de caractères égaux sur T^h_0 ; φx permute circulairement les caractères de chaque suite.

5. Caractères associés. Revenons à $x \in T_1^{(h)}$ générateur de Z_q dans $T^{(h)}$ et soit $\theta_1, \ldots, \theta_n$ un cycle de la permutation des $\theta_j^{\pm 1}$ induite par φx . Le sous-espace $\Pi = \Pi_1 + \cdots + \Pi_n$ est invariant par φx ; soit α la transformation linéaire orthogonale induite par φx dans Π . Revenons maintenant aux caractères $\chi_j^{\pm 1}$ relatifs à $T^{(h)}$; en vertu de la proposition 2, on a sur un générateur ν de $T^{(h)}$: $\chi_i \neq \chi_j$ si $i \neq j$, et tout sous-espace de $R^{2m} = \sum_{i=1}^{m} \Pi_i$ stable pour $\varphi \nu$ est somme directe de 2-plans du type Λ_i (cf. n° 1).

Or Π , stable pour φz $(z \in T_0^l)$ est aussi stable pour φx , et est donc stable pour tous les $\varphi \tau$ $(\tau \in T^{(h)})$ et en particulier pour φv ; ainsi, Π est somme directe de n plans Λ_i , désignés par $\Lambda_1, \ldots, \Lambda_n$ avec les caractères associés χ_1, \ldots, χ_n .

Je dis que α fait tourner $\Lambda_1,\ldots,\Lambda_n$ d'angles en progression arithmétique de raison $2\pi/n$. En effet, α est dans Π une transformation linéaire orthogonale d'ordre q' diviseur de q; de plus, n est un diviseur de q', avec q'=np. Il existe dans T_0^h un élément z tel que φz fasse tourner $\Lambda_1,\ldots,\Lambda_n$ d'un même angle $-2\pi/q'$; alors π_1,\ldots,π_n tournent de ce même angle. Si β' désigne la transformation linéaire induite par φz dans Π , on a $\alpha\beta'=\beta'\alpha=\beta$. Soit e_1 un vecteur quelconque de Π_1 ; on peut voir que $\beta^n e_1=e_1$; en effet, $\beta^n=\beta'^n\alpha^n$, où α^n est une rotation de π_1 d'ordre p, et β'^n une rotation de Π_1 d'angle $-\frac{2\Pi}{q'}\cdot n=-\frac{2\Pi}{p}$, ce qui donne $\beta^n e_1=e_1$. En résumé, β permute circulairement $e_1,\beta e_1\ldots,\beta^{n-1}e_1$. Or, les valeurs propres d'une telle matrice sont $1,\varepsilon,\varepsilon^2,\ldots,\varepsilon^{n-1}$ avec $\varepsilon=\exp(2\pi i/n)$; cela prouve que β fait tourner $\Lambda_1,\ldots,\Lambda_n$ d'angles respectifs $0,2\pi/n,\ldots,2\pi(n-1)/n$ (avec une numérotation convenable). Finalement, si $\tau=tx$ $(t\in T_0^h)$, $\varphi_\tau=\varphi_t\varphi_x$ fait tourner $\Lambda_1,\ldots,\Lambda_n$ d'angles en progression arithmétique de raison $2\pi/n$.

Proposition 5. Soient $T^{(h)}(G_1) = T_0^h + T_1^{(h)} + \cdots$ et $T^l(G_0)$ deux sous-groupes abéliens associés respectivement à la composante connexe G_1 et à la composante neutre G_0 du groupe clos G, avec $T_0^h \subset T^l$, $T_1^{(h)} \subset G_1$.

A tout caractère θ_1 de G relatif à T^l est associée la suite $\theta_1, \ldots, \theta_n$ des caractères de même espèce égaux à θ_1 sur T_0^h ; les caractères de G relatifs à $T^{(h)}(G_1)$ égaux à θ_1 sur T_0^h forment une suite χ_1, \ldots, χ_n . Si $y \in T_1^{(h)}$, alors l'automorphisme φy permute circulairement $\theta_1, \ldots, \theta_n$, tandis que $\chi_1(y), \ldots, \chi_n(y)$ forment une progression géométrique de raison $\exp(2\pi i/n)$.

§ 2. Diagramme $D(G_1)$

1. Données. Soient G un groupe de Lie clos, G_0 la composante neutre de G, G_1 une composante connexe quelconque, puis $G_0 + G_1 + \cdots$ le groupe engendré dans G par G_1 , $T^{(h)}(G_1)$ le sous-groupe abélien associé à G_1 , avec $T^{(h)}(G_1) = T_0^h + T_1^{(h)} + \cdots$ produit direct $T_0^h \times Z_q$, $T_0^h \subset G_0$, $T_1^{(h)} \subset G_1$, l'élément $x \in T_1^{(h)}$ étant un générateur de Z_q cyclique d'ordre q.

Soient encore T_0^l l'unique toroïde maximum de G_0 qui contient T_0^h , puis R_0^l le diagramme de G_0 pourvu de ses paramètres angulaires; soit $f: R_0^l \to T_0^l$ l'application usuelle de recouvrement (cf. I, § 2, n° 1), $f^{-1}(e)$ étant le réseau unité δ_l ; on a de plus une origine O située dans le réseau central $\overline{\delta}_l$.

Si c est un élément de T_0^h voisin de e et régulier, il existe un polyèdre fondamental $P(G_0)$ de R_0^l contenant un représentant de c voisin de O. Je désigne par R_0^h le h-plan appliqué sur T_0^h par f et qui contient O.

2. Définition de $R^{(h)}(G_1)$. Formons la somme directe $R^{(h)}$ de R_0^h et du groupe Z des entiers rationnels. Je pose $J=(0,1),\ R_1^h=(R_0^h,1),\ R_k^h=(R_0^h,k)$. L'application f, déjà définie sur R_0^h , va être étendue à $R^{(h)}$. Je pose

$$f: R^{(h)} o T^{(h)}$$
 avec $f(t,k) = f(t)x^k$, $t \in R_0^h$.

On a

$$f(A+B)=f(A)f(B), \quad f(R_k^h)=x^kT_0^h, \quad f(R_1^h)=T_1^{(h)}, \quad f(R_q^h)=T_0^h.$$

Il nous sera utile ci-dessous de posséder une décomposition de l'application f restreinte à R_1^h , que je désigne par $f | R_1^h$. Prenons B fixe quelconque dans R_1^h , b = f(B), et soient $f_1: R_1^h \to R_0^h$ définie par $f_1(A+B) = A$, puis $f_2: T_0^h \to T_1^{(h)}$ définie par $f_2(x) = b x$. Alors

$$f|R_1^h=f_2ff_1.$$

Cela permet déjà de considérer $f|R_1^h$ comme une application de recouvrement, R_1^h étant un recouvrement simplement connexe de $T_1^{(h)}$.

Nous pouvons aussi introduire une métrique sur R_1^h : en effet, le groupe clos G est un espace de RIEMANN dont la métrique induit sur T_0^h , $T_1^{(h)}$ une métrique localement euclidienne; de plus, R_0^l et R_0^h sont des espaces euclidiens appliqués isométriquement par f sur T_0^l et T_0^h . Alors f_1^{-1} définit une métrique euclidienne sur R_1^h par la formule dist (B+A,B+A')= dist (A,A'), cette métrique ne dépendant pas de B. D'autre part, la translation f_2 est une isométrie. On voit que $f|R_1^h=f_2ff_1$ applique R_1^h isométriquement sur $T_1^{(h)}$.

3. Réseau unité dans $R^{(h)}(G_1)$. Soient A, $B \in R_1^h$, avec f(A) = f(B); on a $f(A)[f(B)]^{-1} = e$, f(A)f(-B) = e, f(A-B) = e et f(C) = e si C = A - B, ce qui prouve que C est dans le réseau unité δ_i et dans R_0^h . En résumé, f(A) = f(B) si et seulement si A - B est dans la trace sur R_0^h du réseau unité δ_i ; autrement dit, les translations de recouvrement dans R_1^h sont définies par le réseau-trace $\delta_{0h} = \delta_i \cap R_0^h$.

Maintenant, les points de $R^{(h)}(G_1)$ qui sont appliqués sur e par f forment un réseau unité δ_h engendré par δ_{0h} et par $qJ \in R_q^h$.

4. Caractères et paramètres angulaires. Diagramme. Soit

$$\varrho:\theta_1,\ldots,\theta_n;\chi_1,\ldots,\chi_n \tag{1}$$

une ligne de caractères associés, les n premiers étant relatifs à T_0^l , et les n derniers à $T^{(h)}$. Soient μ_1, \ldots, μ_n les paramètres angulaires relatifs à T_0^l qui correspondent respectivement à $\theta_1, \ldots, \theta_n$. Je fais correspondre au caractère χ_i une forme linéaire ξ_i définie sur $R^h(G_1)$ à l'aide des formules

$$\xi_{i}(t,k) = \varrho(t) + k \varepsilon_{i}(J)$$

avec x = f(J), $\exp[2\pi i \, \varepsilon_j(J)] = \chi_j(x)$, $\varrho(t) = \mu_j(t)$, $t \in R_0^h$. On a

$$\exp \, \xi_j(t,k) = \chi_j[f(t) \, x^k] \, .$$

Les $\chi_i(x)$ forment une progression géométrique de raison $\exp[2\pi i/n]$ comprenant n termes, permutée circulairement si on multiplie ces derniers par $\exp[2\pi i r/n]$ (r entier arbitraire). De là résulte qu'on peut écrire

$$\varepsilon_1 = \varepsilon, \quad \varepsilon_2 = \varepsilon + \frac{1}{n}, \cdots, \quad \varepsilon_n = \varepsilon + \frac{n-1}{n}.$$

 ε pouvant être remplacé par $\varepsilon + r/n$, avec une numérotation convenable. En particulier, on peut supposer, si c'est nécessaire : $0 \leqslant \varepsilon < \frac{1}{n}$. A la ligne 1) correspondent dans la ligne 2) les formes

$$\varrho: \mu_1, \cdots, \mu_n; \quad \varrho + \varepsilon k, \ \varrho + \left(\varepsilon + \frac{1}{n}\right) k, \cdots, \ \varrho + \left(\varepsilon + \frac{n-1}{n}\right) k.$$
 (2)

Les formes ξ ainsi introduites sont par définition les paramètres angulaires de G relatifs à $T^{(h)}(G_1)$.

Nous sommes en mesure maintenant de définir le diagramme $D(G_1)$ de support $R^{(h)}(G_1)$. Au sous-groupe singulier U_j noyau de χ_j correspond par j^{-1} dans $R^{(h)}$ une famille de (h-1)-plans parallèles distribuée dans chaque R_k^h . Pour caractériser cette famille, il suffit de se restreindre à R_1^h , ce que nous ferons désormais. Lorsque j varie de 1 à n, nous obtenons dans R_1^h n familles de (h-1)-plans singuliers tous parallèles deux à deux, définies par $\xi_j \equiv 0$ (mod 1). Dans R_0^h , ces familles coı̈ncident et sont définies par $\varrho \equiv 0$ (mod 1). Toutes les familles ainsi obtenues dans R_1^h constituent le diagramme $D(G_1)$ associé à la composante connexe G_1 de G.

5. Isométries dans le diagramme. Considérons à nouveau l'involution S_j associée au sous-groupe singulier U_j dans $T^{(h)}$, qui conserve chaque élément de U_j (voir § 1, n° 3); étudions le relèvement de S_j par f^{-1} dans R_1^h . Examinons d'abord le centralisateur N_j de U_j dans G_0 ; T_0^h est un toroïde maximum de N_j , et nous avons dans R_0^h le diagramme de N_j relatif à T_0^h ; ϱ est le caractère de N_j relatif à T_0^h , et les relations $\varrho \equiv 0 \pmod{1}$ définissent dans R_0^h la famille de plans singuliers associés. On sait, par la théorie classique, que le relèvement dans R_0^h de l'involution $S_j|T_0^h$ relative à N_j contient la symétrie par rapport à tout plan singulier $\varrho = c$ entier, et en particulier la symétrie par rapport à $\varrho = 0$.

Cela étant, relevons $S_j|T_1^{(h)}$; il lui correspond dans R_1^h une classe ²⁰) $F(S_j)$ de transformations dont j'affirme qu'elle contient la symétrie par rapport à tout plan singulier $\xi_j \equiv 0 \pmod{1}$. En effet soit V_{1h} un tel plan, $B \in V_{1h}$, $b = f(B) \in U_j$, et remplaçons $f|R_1^h$ par f_2ff_1 (voir n° 2). Alors f_1 transforme la symétrie par rapport à V_{1h} en la symétrie par rapport à $\varrho = 0$ dans R_0^h ; f transforme cette symétrie en $S_j|T_0^h$ comme nous venons de le voir; enfin, f_2 transforme $S_j|T_0^h$ en $S_j|T_1^{(h)}$, en vertu de $S_jb=b$. En résumé, f transforme la symétrie par rapport à V_{1h} dans R_1^h en $S_j|T_1^{(h)}$, et l'affirmation est établie

Il est clair que la symétrie par rapport à tout plan singulier du diagramme $D(G_1)$ conserve ce diagramme, puisque les involutions S_j sont les restrictions à $T^{(h)}(G_j)$ d'automorphismes intérieurs de G. Nous obtenons ainsi un diagramme $D(G_1)$ dans R_1^h , au sens de E. Stiefel, avec un groupe kaléidoscopique $\Gamma(G_1)$ engendré par toutes les symétries décrites. Rassemblons les résultats:

Théorème. Soient G un groupe de Lie clos et G_1 une composante connexe quelconque de G. Le groupe abélien

^{20) [8],} début § 4.

⁵ Commentarii Mathematici Helvetici

$$T^{(h)}(G_1) = T_0^h \times Z_q = T_0^h \circ T_1^{(h)} \circ \dots$$

est l'image par l'application isométrique f d'un recouvrement euclidien

$$R^{(h)}(G_1) = R_0^h + Z = R_0^h \circ R_1^h \circ \dots \qquad (f(R_1^h) = T_1^{(h)})$$

avec f(A + B) = f(A)f(B). Le noyau de f est un réseau unité engendré par la trace sur R_0^h du réseau unité de R_0^l , ainsi que par le point unité (0, q) = qJ. Aux sous-groupes singuliers de $T^{(h)}(G_1)$ correspondent dans R_1^h des familles de (h-1)-plans singuliers, parallèles et équidistants dans chaque famille, constituant le diagramme $D(G_1)$. La symétrie par rapport à tout plan singulier du diagramme conserve ce dernier, et ces opérations engendrent un groupe spatial $\Gamma(G_1)$.

6. Réduction au cas semi-simple. Reprenons le groupe $G = G_0 + G_1 + \cdots$; on sait que G_0 est localement le produit direct $T^p \times G'_0$ où T^p est la composante neutre du centre de G_0 , et G'_0 le facteur semi-simple; prenons z quelconque dans G_1 , le toroïde T^h_0 maximum dans le normalisateur connexe N_z , puis $T^{(h)}(G_1) = \{T^h_0, z\} = T^h_0 \times Z_q$, où Z_q est engendré par $x \in T^h_1 = z T^h_0 \subset G_1$. Il existe un toroïde maximum T^h_0 unique contenant T^h_0 , et on a

$$T^l_0 = T^p imes T^{l'}_0$$
 (produit direct local) $T^{l'}_0 \subset G'_0$, $T^h_0 = T^{p'} imes T^{h'}_0$ (produit direct local) $T^{p'} \subset T^p$; $T^{h'}_0 \subset T^{l'}_0$.

 G_0' et x engendrent un sous-groupe G' de G, de composante neutre G_0' puisque x est d'ordre fini et est échangeable avec G_0' . Avec $G_1' = xG_0'$, on peut prendre $T^{h'}(G_1') = T_0^{h'} \times Z_q$.

Maintenant, les caractères χ_i s'annulent sur $T^{p'}$, qui est dans le centre de G_0 ; alors les paramètres angulaires associés ξ_i sont constants sur chaque (h-1)-plan parallèle à $R^{p'}$ (qui correspond à $T^{p'}$). Cette particularité nous ramène au cas où $G_0 = G'_0$ est semi-simple, avec h = h', l = l', ce que nous supposerons désormais.

7. Tableau canoniquement associé à G_1 (avec G_0 semi-simple). Considérons la suite fondamentale qui définit $P_0 = P(G_0)$ (voir I, § 2, n° 1), et la permutation des éléments de cette suite qui est induite par l'automorphisme intérieur associé à $z \in T_1^{(h)}$. En faisant usage du § 1, n° 4, on peut présenter les cycles de cette permutation par lignes

$$\begin{array}{c}
\alpha_1, \alpha_2, \dots, \alpha_{n_1} \\
\beta_1, \beta_2, \dots, \beta_{n_2} \\
\dots \\
\gamma_1, \gamma_2, \dots, \gamma_{n_h}
\end{array}$$
(1)

les paramètres de la *i*-ème ligne se réduisant sur R_0^h à une forme linéaire ϱ_i . Je dirai que les valeurs sur $A \in R_0^l$ des formes (1) sont les coordonnées canoniques de A; de plus, $\varrho_1, \ldots, \varrho_h$ définissent un système de coordonnées sur R_0^h . Remarquons que n_1, n_2, \ldots, n_h divisent l'ordre r de G_1 dans G/G_0 , car si $z \in T_1^{(h)}$, z^r est dans T_0^l et l'automorphisme associé est l'identité sur la suite fondamentale. On peut présenter maintenant le tableau des lignes de paramètres associés

$$\begin{cases} \varrho_1 \colon \alpha_1, \cdots, \alpha_{n_1} \colon \varrho_1 + \varepsilon_1 k, \varrho_1 + \left(\varepsilon_1 + \frac{1}{n_1}\right) k, \cdots, \varrho_1 + \left(\varepsilon_1 + \frac{n_1 - 1}{n_1}\right) k, \\ \vdots \\ \varrho_1 \colon \gamma_1, \cdots, \gamma_{n_h} \colon \varrho_h + \varepsilon_h k, \varrho_h + \left(\varepsilon_h + \frac{1}{n_h}\right) k, \cdots, \varrho_h + \left(\varepsilon_h + \frac{n_h - 1}{n_h}\right) k, \end{cases}$$

Remplaçons le point unité J par $I = J + (-\varepsilon_1, \ldots, -\varepsilon_h, 0)$. Les formules de changement de coordonnées sont $\varrho_i^* = \varrho_i + \varepsilon_i k$, d'où le tableau sous forme canonique (en supprimant les astérisques)

$$\begin{cases} \varrho_1: \alpha_1, \cdots, \alpha_{n_1} : \varrho_1, \varrho_1 + \frac{k}{n_1}, \cdots, \varrho_1 + \frac{n_1-1}{n_1}k, \\ \vdots \\ \varrho_h: \gamma_1, \cdots, \gamma_{n_h} : \varrho_h, \varrho_h + \frac{k}{n_h}, \cdots, \varrho_h + \frac{n_h-1}{n_h}k. \end{cases}$$

Il ne dépend que de la suite fondamentale de G_0 et de la permutation induite sur cette suite par un élément de G_1 . Je dirai que I est un point origine dans R_1^h . D'après ce que nous avons vu (§ 2, n° 4), le point $I + \left(\frac{r_1}{n_1}, \dots, \frac{r_h}{n_h}\right)$ (r_i entiers arbitraires) peut aussi être considéré comme origine, le tableau restant canonique.

§ 3. Construction de diagrammes

Je considère toujours le groupe de LIE clos $G = G_0 + G_1 + \cdots$ la composante neutre G_0 étant semi-simple ; interviennent aussi le recouvrement simplement connexe \tilde{G}_0 de G_0 , le centre $Z = \tilde{Z}_0$ de \tilde{G}_0 , le sous-groupe V de Z tel que $G_0 = \tilde{G}_0/V$, cette unité V étant stable pour l'automorphisme intérieur associé à un élément de G_1 . Dans le diagramme R_0^l de G_0 relatif à T_0^l , l'unité est un réseau (unité) δ_l dont la trace sur R_0^h est aussi la trace du réseau unité δ_h de $R^{(h)}(G_1)$. Ces réseaux seront étudiés et construits au § 4 ; ici, nous n'étudions que les diagrammes considérés comme ensembles de plans singuliers.

1. Structure d'un cycle. Soient $z \in T_1^{(h)}$, φz l'automorphisme intérieur associé,

et σ l'effet de φz dans R_0^l ; considérons une ligne quelconque de paramètres associés

$$\varrho:\mu_1,\ldots,\mu_n;\,\xi_1,\ldots,\,\xi_n$$
;

on sait que σ permute circulairement les formes μ_1, \ldots, μ_n (§ 1, n° 4); alors les vecteurs associés $\stackrel{\rightarrow}{\mu}_1, \ldots, \stackrel{\rightarrow}{\mu}_n$ ont tous la même longueur, et la figure de Schläfli $\mathfrak{F}(\mu_i)$ associée est du type

Elle est formée de q blocs B_1, \ldots, B_q ayant évidemment tous un même nombre p de points, à cause de la transitivité de $\{\sigma\}$ sur le cycle considéré. Les blocs B_1, \ldots, B_q eux-mêmes sont permutés circulairement et transitivement. On peut avoir p=1, ce que j'écris $p_q=1$. Si p>1, il existe un entier s tel que $\sigma^s \mu_1 = \mu_2$; alors σ^s conserve B_1 sans se réduire à l'identité sur B_1 , ce qui entraîne $\sigma^s \mu_1 = \mu_p$ et p=2; je pose ici $p_q=2$.

Proposition. Si $\varrho: \mu_1, \ldots, \mu_n; \xi_1, \ldots, \xi_n$ est une ligne de paramètres angulaires associés, alors le graphe de Schläfli associé à μ_1, \ldots, μ_n est de l'un des types

2. Diagramme D(N) (diagramme réduction). Nous avons trouvé dans le support R_1^h du diagramme $D(G_1)$ un point I dit origine paraissant jouir de propriétés particulières; étudions le normalisateur connexe N de l'élément x = f(I). C'est d'abord un sous-groupe de rang h de G_0 ayant un toroïde maximum T_0^h ; en examinant le tableau canonique (§ 2, no 7), on voit que les paramètres $\varrho_1, \ldots, \varrho_h$ relatifs à $T^{(h)}(G_1)$ s'annulent sur I, ce qui signifie que N est tangent notamment aux plans $\Lambda_{\varrho_1}, \ldots, \Lambda_{\varrho_h}$ (§ 1, no 1, 5), et les formes $\varrho_1, \ldots, \varrho_h$ sont des paramètres angulaires de N; comme l'angle polyèdre $\varrho_1 > 0, \ldots, \varrho_h > 0$ dans R_0^h est intérieur à $P(G_0)$, les formes $\varrho_1, \ldots, \varrho_h$ constituent nécessairement une suite fondamentale de N. Les paramètres angulaires $\pm \varrho_1, \ldots, \pm \varrho_h, \ldots, \pm \varrho_p$ de N sont des combinaisons linéaires à coefficients entiers de $\varrho_1, \ldots, \varrho_h$, et les (h-1)-plans $\varrho_i \equiv 0 \pmod{1}$ forment dans R_0^h le diagramme D(N) de N. Notons que N possède un groupe fini $\Phi(N)$ engendré par les symétries par rapport aux plans $\varrho_1 = 0, \ldots, \varrho_h = 0$.

Je dis maintenant que N est un sous-groupe $(H)_0$ de G_0 . ²¹) En effet, le centralisateur C(N) de N est dans T_0^l puisque N est régulier; si $c \in C(N)$, l'automorphisme $\varphi(c)$ conserve chaque plan $\Pi_{\alpha_1}, \ldots, \Pi_{\alpha_{n_1}}$ ainsi qu'un vecteur de Λ_{ϱ_1} et les projections de ce vecteur sur les Π_{α_j} c'est-à-dire chaque vecteur de $\Pi_{a_1}, \ldots, \Pi_{\alpha_{n_1}}$; il résulte de cela que $\alpha_1(c), \ldots, \alpha_{n_1}(c)$ sont entiers, ainsi que $\beta_1(c), \ldots, \gamma_{n_h}(c)$, et c est dans le centre de G_0 . Cela signifie que N est un sous-groupe (H) de G_0 ; comme N a même diagonale principale $t: \varrho_1 = \ldots = \varrho_h$ que G_0 , c'est bien un sous-groupe $(H)_0$ de G_0 .

On peut ajouter que N contient un sous-groupe principal γ de G_0 relatif à la diagonale t; d'ailleurs $\stackrel{22}{}$), on a $\stackrel{\rightarrow}{\varrho_1} = \Sigma a_i \stackrel{\rightarrow}{\alpha_i}$ avec $\Sigma a_i = 1$ et de plus $a_1 = a_2 = \ldots = a_{n_1}$ vu l'effet de σ , d'où

$$\stackrel{\rightarrow}{\varrho}_1 = \frac{1}{n_1} \stackrel{\rightarrow}{\Sigma} \stackrel{\rightarrow}{\alpha}_i.$$

Le normalisateur connexe de f(I'), où $I' = I + \left(\frac{r_1}{n_1}, \dots, \frac{r_h}{n_h}, 0\right)$ $(r_i \text{ entiers})$ jouit des mêmes propriétés que le normalisateur de f(I), en étant tangent notamment à h 2-plans du type $\Lambda_{\varrho_i} + \frac{r_i'}{n_i}$.

Proposition. Soit

$$\begin{cases} \varrho_1: \alpha_1, \cdots, \alpha_{n_1}: \varrho_1, \cdots, \varrho_1 + \frac{n_1 - 1}{n_1} k \\ \varrho_h: \gamma_1, \cdots, \gamma_{n_h}: \varrho_h, \cdots, \varrho_h + \frac{n_h - 1}{n_h} k \end{cases}$$

le tableau canoniquement associé à la composante connexe G_1 du groupe de Lie clos G. Le normalisateur connexe N de x=f(I) où I est l'origine $(0,0,\ldots,0,1)$ de R_1^h est un sous-groupe $(H)_0$ ayant une suite fondamentale $\varrho_1,\ldots,\varrho_h$. Le diagramme D(N) de N est entièrement déterminé par les vecteurs

$$\stackrel{\rightarrow}{\varrho_1} = \frac{1}{n_1} \stackrel{n_1 \rightarrow}{\Sigma} \stackrel{\rightarrow}{\alpha_i}, \cdots, \stackrel{\rightarrow}{\varrho_h} = \frac{1}{n_h} \stackrel{n_h \rightarrow}{\Sigma} \stackrel{\rightarrow}{\gamma_i}$$

3. Diagramme intersection D_{\uparrow} . Les (l-1)-plans singuliers de R_0^l coupent R_0^h suivant des familles de (h-1)-plans singuliers recouvrant dans T_0^h les sous-groupes singuliers U_j restreints à T_0^h . On a vu que la symétrie par rapport à chacun de ces (h-1)-plans est projetée sur une involution $S_j \mid T_0^h$ (voir § 2, n° 5). De là résulte que l'intersection $D_{\uparrow} = D(G_0) \cap R_0^h$ est un

^{21) [9],} chap. III.

²²) [9], p. 227.

diagramme, dit diagramme intersection par définition. Par quels vecteurs estil défini?

Si le paramètre angulaire μ_1 de G_0 ne se réduit pas sur R_0^h à l'un des paramètres $\pm \varrho_i$ de N ($i \leq h$), on a ²³) sur R_0^h : $\overline{\mu}_1 = m \varrho$, où ϱ est l'un des $\pm \varrho_i$ ($i \leq h$), soit ϱ_1 par exemple en faisant usage de $\Phi(N)$ et en changeant éventuellement les notations. Alors, si $p_{\varrho_1} = p_1 = 1$, on a $\mu_1 = \sum m_i \alpha_i$, d'où m = 1, et μ_1 est l'un des α_i , ce qui est contraire à l'hypothèse. Si $p_1 = 2$, il vient m = 2, $\mu_1 = \alpha_1 + \alpha_{q+1}$ par exemple (voir n° 1). Dans ce cas, la famille des (h-1)-plans singuliers parallèles à $\varrho_1 = 0$ est définie par $p_1 \varrho_1 \equiv 0$ (mod 1). Les vecteurs qui définissent le diagramme sont $p_1 \stackrel{\rightarrow}{\varrho_1}, \ldots, p_h \stackrel{\rightarrow}{\varrho_h}$.

Proposition. L'intersection $D_{\cap} = D(G_0) \cap R_0^h$ est un diagramme de support R_0^h , déterminé par les vecteurs

$$p_1 \overset{\rightarrow}{\varrho}_1, \ldots, p_h \overset{\rightarrow}{\varrho}_h \qquad (p_i = 1 \text{ ou } 2).$$

Remarque. Si $p_1 = p_2 = \ldots = p_h = 1$, alors les diagrammes D(N) et D_{\uparrow} coïncident.

4. Formation du diagramme $D(G_1)$. Considérons ϱ_1 , avec $p_{\varrho_1}=p_1=2$, et la ligne associée

$$\varrho_1: \alpha_1, \cdots, \alpha_{2q}: \varrho_1, \varrho_1 + \frac{k}{2q}, \cdots, \varrho_1 + \frac{2q-1}{2q}k \quad (n_1 = 2q)$$

alors $\alpha_1 + \alpha_{q+1}$, $\alpha_2 + \alpha_{q+2}$, ..., $\alpha_q + \alpha_{2q}$ sont égaux à $2\varrho_1$ sur R_0^h , et il n'y a pas d'autre paramètre angulaire qui se réduise à $2\varrho_1$ sur R_0^h (voir nº 1). Cela donne une ligne de paramètres associés

$$2\varrho_1: \alpha_1 + \alpha_{q+1}, \cdots, \alpha_q + \alpha_{2q}: 2\varrho_1 + \nu_1 k, \cdots, 2\varrho_1 + \left(\nu_1 + \frac{q-1}{q}\right)k.$$

Quelle est la valeur de v_1 ? Remarquons que l'on peut supposer $0 \le v_1 < 1/q$ (§ 2, n° 4). On ne peut avoir $v_1 = 0$; dans un tel cas, N serait tangent à $\Lambda_{2\varrho_1}$, et ϱ_1 , $2\varrho_1$ seraient des paramètres angulaires de N, ce qui est impossible. Ainsi, $0 < v_1 < 1/q$, et le plan $2\varrho_1 + v_1 = 0$ de R_1^h est entre $\varrho_1 = 0$ et $\varrho_1 = -1/2q$, c'est-à-dire entre deux plans consécutifs de la famille des $\varrho_1 + p/2q \equiv 0 \pmod{1}$. Comme la symétrie par rapport à $2\varrho_1 + v_1 = 0$ conserve $D(G_1)$, le plan en question est au milieu, et est défini par $\varrho_1 = -1/4q$, d'où $v_1 = 1/2q$.

^{23) [9],} p. 239.

Proposition. Si $p_1 = 2$, on a les deux lignes associées

$$\varrho_1: \alpha_1$$
, \cdots , $\alpha_{2q}: \varrho_1$, $\varrho_1 + \frac{k}{2q}$, \cdots , $\varrho_1 + \frac{2q-1}{2q}k$,

$$2\varrho_{1}: \alpha_{1} + \alpha_{q+1}, \cdots, \alpha_{q} + \alpha_{2q}: 2\varrho_{1} + \frac{k}{2q}, 2\varrho_{1} + \frac{3k}{2q}, \cdots, 2\varrho_{1} + \frac{2q-1}{2q}k.$$

En appliquant $\Phi(N)$ à $\varrho_1, \ldots, \varrho_h, p_1 \varrho_1, \ldots, p_h \varrho_h$, on obtient toutes les traces sur R_0^h des paramètres angulaires de G_0 c'est-à-dire aussi toutes les traces des paramètres angulaires de G_1 , d'où le tableau complet associé. Par quels vecteurs peut-on déterminer le diagramme $D(G_1)$?

Dans R_1^h , nous avons les familles $\varrho_i + p/n_i \equiv 0 \pmod{1}$ avec $p=0, 1, \ldots, n_i-1$ en supposant $p_i=1$; on définit d'un seul coup tous les plans singuliers parallèles à $\varrho_i=0$ dans R_1^h en posant $n_i\varrho_i\equiv 0 \pmod{1}$. Maintenant, si $p_i=2$, on aura les deux familles $\varrho_i+p/2q_i\equiv 0$ et $2\varrho_i+p/2q_i\equiv 0 \pmod{1}$, que l'on définit simultanément en posant $p_in_i\varrho_i\equiv 0 \pmod{1}$, avec $n_i=2q_i$. En résumé, on a dans tous les cas la formule unique $p_in_i\varrho_i\equiv 0 \pmod{1}$, et le diagramme $D(G_1)$ sera défini par les vecteurs $p_1n_1\varrho_1,\ldots,p_hn_h\varrho_h$, ou $p_1\sum_{\alpha_i}$, ..., $p_h\sum_{\gamma_i}$ (voir proposition n^0 2).

Théorème. Le diagramme $D(G_1)$ associé à la suite fondamentale

$$\alpha_1, \ldots, \alpha_{n_1}; \beta_1, \ldots, \beta_{n_2}; \ldots; \gamma_1, \ldots, \gamma_{n_h}$$

et à la permutation automorphique qui induit une permutation circulaire sur chaque suite partielle, ce diagramme est défini par les vecteurs

$$\overset{\rightarrow}{\varrho_1'} = p_1 \overset{n_1 \rightarrow}{\underset{1}{\Sigma}} \overset{\rightarrow}{\alpha_i} = p_1 n_1 \overset{\rightarrow}{\varrho_1}, \ldots, \overset{\rightarrow}{\varrho_h'} = p_h \overset{n_h \rightarrow}{\underset{1}{\Sigma}} \overset{\rightarrow}{\gamma_i} = p_h n_h \overset{\rightarrow}{\varrho_h}.$$

Le coefficient p_i est égal à 1 si les vecteurs correspondants sont perpendiculaires deux à deux, sinon $p_i = 2$.

Polyèdre fondamental $P(G_1)$. Ce qui précède permet d'introduire dans R_1^h un système de coordonnées cartésiennes $\varrho_1',\ldots,\varrho_h'$ d'origine I, avec $\varrho_i'(A) = -\overrightarrow{\varrho_i'} \cdot \overrightarrow{IA}$. Les inégalités $\varrho_1' \geqslant 0,\ldots,\varrho_h' \geqslant 0$ définissent un angle polyèdre fondamental du diagramme $D(G_1)$ qui contient un polyèdre fondamental ayant un sommet en I; nous avons ainsi par définition le polyèdre fondamental $P(G_1)$, défini par des inégalités

$$\varrho_1' \geqslant 0, \ldots, \varrho_h' \geqslant 0$$
; $\omega_1' \leqslant 1, \ldots, \omega_r' \leqslant 1$,

où les ω_i' sont les formes dominantes correspondantes.

Tout $y \in G_1$ possède dans $P(G_1)$ au moins un représentant Y, f(Y) étant un conjugué de y relativement à G_0 . Le domaine fondamental $\mathfrak{D}(G_1)$ d'éléments de G_1 conjugués relativement à G_0 est dans $P(G_1)$; son étude sera abordée au § 5.

6. Structure du normalisateur d'un élément de T_1^h . Nous avons déjà étudié le normalisateur N de x = f(I) où I est origine dans R_1^h ; quelle est en général la structure du normalisateur N_y d'un élément y quelconque de G_1 ? Il suffit de prendre $y \in T_1^{(h)}$, et $Y \in R_1^h$, avec y = f(Y).

D'abord N_v , qui possède un toroïde maximum T_0^h , est un sous-groupe de rang h, de diagramme situé dans le recouvrement R_0^h de T_0^h . Cela étant, par Y passent un certain nombre de plans singuliers du diagramme $D(G_1)$, formant un ensemble \mathfrak{R}_1 . Chaque plan de \mathfrak{R}_1 appartient à une famille $m\varrho + k\frac{p}{n} = c$, où c est un entier variable (p constant, m=1 ou 2); alors $m\varrho$ est un paramètre angulaire de N_v défini sur R_0^h , avec N_v tangent au 2-plan $\Lambda_{m\varrho+k\varrho/n}$. Réciproquement, tout paramètre angulaire de N_v est obtenu de cette manière. Les (h-1)-plans $m\varrho=0$ correspondant dans R_0^h aux plans de \mathfrak{R}_1 forment un ensemble \mathfrak{R}_0 déduit de \mathfrak{R}_0 par la translation \overline{YO} , et les vecteurs $m\varrho$ sont les vecteurs du diagramme de N_v dans R_0^h .

Remarquons qu'un angle polyèdre fondamental \mathfrak{A}_0 de N_v dans \mathfrak{R}_0 est déjà représenté par \mathfrak{A}_1 dans \mathfrak{R}_1 , à l'aide de la translation \overrightarrow{OY} appliquée à \mathfrak{A}_0 ; \mathfrak{A}_1 n'est traversé par aucun (h-1)-plan singulier issu de Y (sinon \mathfrak{A}_0 ne serait pas fondamental dans \mathfrak{R}_0).

Supposons maintenant $Y \in P(G_1)$, ce qui est toujours possible; je désigne par

$$\varrho'_{d_1}, \ldots, \varrho'_{d_\ell}$$
 (nulles sur Y)
$$\omega'_{l_1}, \ldots, \omega'_{l_k}$$
 (égales à 1 sur Y)

toutes les formes ϱ_i' , ω_j' entières sur Y. Elles définissent un angle polyèdre \mathfrak{A}_1 circonscrit à $P(G_1)$; l'application $m\varrho + k\frac{p}{n} \to m\varrho$ de tout à l'heure fait correspondre aux formes (1) des formes

$$\varrho_{d_1}, \dots, \varrho_{d_k}
\bar{\omega}'_{l_1}, \dots, \bar{\omega}'_{l_k}$$
(2)

définies dans R_0^h , constituant une suite fondamentale de N_v .

La structure de N_{ν} est pratiquement déterminée en deux temps :

a) $\overrightarrow{\varrho}'_{d_1}, \ldots, \overrightarrow{\varrho}'_{d_2}, -\overrightarrow{\omega}'_{l_1}, \ldots, -\overrightarrow{\omega}'_{l_k}$ donnent l'angle \mathfrak{A}_1 par simple lecture de la figure de SCHLÄFLI de $P(G_1)$,

(4)

b) $\overrightarrow{\varrho}_{d_1}, \ldots, \overrightarrow{\varrho}_{d_8}, -\overrightarrow{\overline{\omega}}'_{l_1}, \ldots, -\overrightarrow{\overline{\omega}}'_{l_k}$ constituent la figure fondamentale de N_y . En particulier, si Y est un sommet de $P(G_1)$ et si N est simple, on a un procédé analogue à celui décrit dans [1].

§ 4. Construction du réseau unité

1. Eléments du centre dans le toroïde caractéristique T_0^h . Reprenons les notations déjà introduites (Chap. I, § 2, n° 1, et III, § 3 introduction) avec encore $f^{-1}(e) = \tilde{f}^{-1}(V) = \delta_i$ et $Z^{(l)} = \tilde{f}^{-1}(Z) \cap P(G_0)$.

Je dis que \tilde{f} est biunivoque sur $Z^{(l)}$: en effet, si A, $B \in Z^{(l)}$ avec $\tilde{f}(A) = \tilde{f}(B)$, alors AB est un vecteur de $\tilde{\delta}_l$ arête de $P(G_0)$, ce qui est impossible si $A \neq B$.

Maintenant, si $y \in T_1^{(h)}$, l'automorphisme φy est représenté par une transformation linéaire σ dans R_0^l ; σ conserve $P(G_0)$ et permute circulairement les éléments de chaque suite partielle dans $\alpha_1, \ldots, \alpha_{n_1}; \ldots; \gamma_1, \ldots, \gamma_{n_h}$. Le point A de coordonnées canoniques

$$A = \left\{ \begin{array}{l} a_1 \,, \, \ldots \,, \, a_{n_1} \\ b_1 \,, \, \ldots \,, \, b_{n_2} \\ \vdots \\ c_1 \,, \, \ldots \,, \, c_{n_h} \end{array} \right. \quad \text{est appliqué sur} \quad \sigma A = A' = \left\{ \begin{array}{l} a_{n_1} \,, \, a_1 \,, \, a_2 \,, \, \ldots \,, \, a_{n_1 - 1} \\ b_{n_2} \,, \, b_1 \,, \quad \ldots \,, \, b_{n_2 - 1} \\ \vdots \\ c_{n_h} \,, \, c_1 \,, \quad \ldots \,, \, c_{n_h - 1} \end{array} \right.$$

et on a (1) $(\varphi y)\tilde{f} = \tilde{f}\sigma$.

Je désigne par V_1 le sous-groupe des éléments de $Z=\tilde{Z}_0$ centre de \tilde{G}_0 qui sont conservés par φy . On a

$$V_1 = \tilde{f}[Z^{(l)} \cap R_0^h] ; \qquad (2)$$

en effet, si $a \in V_1$, il existe $A \in Z^{(l)}$, avec $\tilde{f}(A) = a$; $\sigma A = B$ entraîne $\tilde{f}B = \tilde{f}\sigma A = (\varphi y)\tilde{f}(A) = (\varphi y)a = a = \tilde{f}(A)$, d'où A = B puisque \tilde{f} est biunivoque sur $Z^{(l)}$, et $\sigma A = A$, ce qui implique $A \in R_0^h$, $A \in Z^{(l)} \cap R_0^h$. Inversement, si $A \in Z^{(l)} \cap R_0^h$, on a $\tilde{f}(A) \in \tilde{T}_0^h \cap Z \subset V_1$. On peut écrire immédiatement

$$V_1 = Z \cap \widetilde{T}_0^h . (3)$$

Cherchons enfin l'intersection du centre Z_0 de G_0 et du toroïde caractéristique T_0^h . Cela revient à chercher les $z \in Z$ tels que $\lambda z \in T_0^h$. Il existe $u \in \widetilde{T}_0^h$ avec $\lambda u = \lambda z$, d'où $\lambda (u^{-1}z) = e$, $u^{-1}z \in V$, $u \in Z$, $u \in Z \cap \widetilde{T}_0^h$, $u \in V_1$ (formule 3), et $z \in VV_1$. Réciproquement, si $z \in VV_1$, on a $\lambda z \in T_0^h$. Il vient $Z_0 \cap T_0^h = \lambda VV_1 = \lambda V_1$

 $Z_0 \cap T_0^h = \lambda V_1$.

Proposition. Les éléments du centre Z_0 de G_0 qui sont dans le toroïde caractéristique T_0^h s'obtiennent en projetant canoniquement les éléments centraux du polyèdre fondamental $P(G_1)$ qui sont stables pour l'isométrie associée à G_1 .

Remarque. Les éléments de Z_0 qui sont stables pour φy forment un sous-groupe V_0 qui contient λV_1 , et qui peut en différer.

2. Construction de $T^{(h)}(G_1)$. D'après le chapitre I, § 3, le groupe de LIE clos G non connexe contient une extension G du centre G0 de G0, cette extension caractérisant G en tant qu'extension de G0; de plus, G0 est le centralisateur d'un sous-groupe principal de G0. Je me restreins dans G1 au sous-groupe G1 qui est engendré par la composante connexe étudiée G1, et j'appelle G1 l'ordre de G1 dans G/G0; je pose G1 = G2 est élément définissant G4. On a G5 G5.

Prenons x quelconque dans Z_1 , cet élément définissant $T^{(h)}(G_1)$. On a $x^r \in Z_0$ et même $x^r \in V_0$. Deux cas sont possibles

- 1. $x^r \in \lambda V_1$; alors $x^r \in T_0^h$, et $T^{(h)}(G_1)$ possède exactement r composantes connexes; il existe dans ce cas un sous-groupe Z_r de $T^{(h)}(G_1)$, tel que $T^{(h)}(G_1) = T_0^h \times Z_r$ (produit direct). Alors \mathfrak{G}_1 est un produit semi-direct $(G_0 \times Z_r)$. L'élément x est un générateur de Z_r si $x^r = e$.
- 2. $x^r \notin \lambda V_1$; il existe ici un entier p > 1 minimum tel que $x^{pr} \in T_0^h$. Il existe un sous-groupe Z_{rp} de $T^{(h)}(G_1)$ avec $T^{(h)}(G_1) = T_0^h \times Z_{rp}$, p des composantes connexes de ce groupe étant dans G_0 .

Remarquons ceci: Lorsque $G_0 = \tilde{G}_0$, on a $\lambda V_1 = V_1 = V_0 \subset \tilde{T}_0^h$, et $\tilde{\mathfrak{G}}_1$ est un produit semi-direct. De même, si $G_0 = \tilde{G}_0/Z$, on a $Z_0 = e$, $x^r = e$, et on a aussi un produit semi-direct.

Théorème. Toute extension cyclique finie d'un groupe de Lie clos connexe semisimple, simplement connexe ou de centre réduit à e, est un produit semi-direct.

3. Réseau-trace. Notons $\tilde{\delta}_{0h} = \tilde{\delta}_{l} \cap R_{0}^{h}$ le réseau-trace minimum, et $\delta_{0h} = \delta_{l} \cap R_{0}^{h}$ le réseau-trace. Je dis qu'on a

$$\tilde{f}\,\delta_{0h}=V\cap V_1\ .$$

En effet, si $A \in \delta_{0h}$, on a certainement $\tilde{f}A \in V$ puisque $\tilde{f}\delta_l = V$; $A \in R_0^h$ entraîne $\sigma A = A$, $\tilde{f}A \in V_1$, d'où $\tilde{f}\delta_{0h} \subseteq V \cap V_1$. Maintenant, si $a \in V \cap V_1$, il existe $A \in Z^{(l)}$, avec $\tilde{f}A = a$; on a $A \in \delta_l$, et $A \in R_0^h$ en vertu de $(\varphi x)a = a$ comme au n° 1; ainsi, $A \in \delta_{0h}$, et \tilde{f} applique δ_{0h} sur $V \cap V_1$. On peut écrire

$$\delta_{0h} = \tilde{f}^{-1}(V \cap V_1) \cap R_0^h$$

ce qui montre que δ_{0h} est engendré par $\tilde{f}^{-1}(e) \cap R_0^h = \tilde{\delta}_{0h}$ et par les sommets de $P(G_0)$ qui représentent $V \cap V_1$.

Il ne reste plus qu'à construire $\tilde{f}^{-1}(e) \cap R_0^h = \tilde{\delta}_l \cap R_0^h$; on sait que $\tilde{\delta}_l$ est engendré par les extrémités des l vecteurs $2\overset{\rightarrow}{\alpha}_i/\overset{\rightarrow}{\alpha}_i^2,\ldots,2\overset{\rightarrow}{\gamma}_i/\overset{\rightarrow}{\gamma}_i^2$. Si

$$\overrightarrow{v} = \Sigma a_i 2 \overrightarrow{\alpha}_i / \overrightarrow{\alpha}_i^2 + \dots + \Sigma c_i 2 \overrightarrow{\gamma}_i / \overrightarrow{\gamma}_i^2 \qquad (a_i, \dots, c_i \text{ entiers})$$

est dans R_0^h , on a $\overrightarrow{\sigma v} = \overrightarrow{v}$, d'où $a_1 = \ldots = a_{n_1}; \ldots; c_1 = \ldots = c_{n_h}$ et réciproquement. Les h vecteurs $2\Sigma \overrightarrow{\alpha_i}/\overrightarrow{\alpha_i^2}, \ldots, 2\Sigma \overrightarrow{\gamma_i}/\overrightarrow{\gamma_i^2}$ forment donc une base de $\widetilde{\delta_{0h}}$. Un calcul facile prouve de plus que $2\Sigma \overrightarrow{\alpha_i}/\overrightarrow{\alpha_i^2} = 2p_1 \overrightarrow{\varrho_1}/(p_1 \overrightarrow{\varrho_1})^2, \ldots$ en sorte que finalement on a la base suivante pour $\widetilde{\delta_{0h}}$:

$$2p_1 \stackrel{\rightarrow}{\varrho_1}/(p_1 \stackrel{\rightarrow}{\varrho_1})^2, \ldots, 2p_h \stackrel{\rightarrow}{\varrho_h}/(p_h \stackrel{\rightarrow}{\varrho_h})^2$$
.

4. Construction du réseau unité de $R^{(h)}(G_1)$. Ce réseau unité a été défini au § 2. Comme nous connaissons δ_{0h} , il ne reste plus qu'à trouver O_1 dans $R_q^h = (R_0^h, q)$ avec $f(O_1) = e$ (q est le nombre des composantes connexes de $T^{(h)}(G_1)$.

La droite OO_1 perce R_1^h en un point J avec $qJ = O_1$; prenons $x \in Z_1$ (cf. $n^o 2$), et $I \in R_1^h$ tel que f(I) = x. Comme x est dans le centralisateur d'un sous-groupe γ principal de G_0 , alors le normalisateur N_x de x est un sous-groupe $(H)_0$ de G_0 , de toroïde maximum T_0^h . Une suite fondamentale de N_x s'obtient par restriction à R_0^h des paramètres angulaires d'une suite fondamentale de G_0 ; on peut prendre $\varrho_1, \ldots, \varrho_h$. Il existe alors h paramètres angulaires $\varrho_i + r_i'/n_i$ $(i = 1, \ldots, h)$ entiers sur I, et ce point est une origine dans R_1^h (cf. § 2, $n^o 4$, 7). On a $x^q = v \in T_0^h$. L'élément v est dans le centre Z_0 de G_0 et dans T_0^h ; il peut être représenté dans $Z^{(l)}$ par $W \in R_0^h$. On a ainsi

$$qI \epsilon R_q^h$$
, $qI - W \epsilon \delta_h$.

Posons J = I = W/q. Cette formule permet dans tous les cas de situer J dans $P(G_1)$, en faisant éventuellement usage d'un automorphisme intérieur de G conservant $T^{(h)}(G_1)$ et $T_1^{(h)}$.

Théorème. Le réseau unité δ_h de $R^{(h)}(G_1)$ est engendré par les extrémités des h vecteurs $2p_i \varrho_i/(p_i \varrho_i)^2$, par les sommets de $P(G_0)$ situés dans $V \cap V_1$, et par le point qJ, où J=I-W/q, W étant un représentant de x^q dans $P(G_0)$, avec x=f(I), I étant origine dans R_1^h .

§ 5. Domaine fondamental $\mathfrak{D}(G_1)$ d'éléments conjugués

1. Réduction du problème. Pour trouver dans le polyèdre fondamental $P(G_1)$ un domaine fondamental $\mathfrak{D}(G_1)$ d'éléments conjuguées relativement à G_0 , il faut chercher parmi les isométries du diagramme $D(G_1)$ celles qui sont induites par des automorphismes intérieurs φz avec $z \in G_0$, $(\varphi z) T_1^{(h)} = T_1^{(h)}$; autrement dit, il faut chercher le normalisateur $N(T_1^{(h)})$ de $T_1^{(h)}$ dans G_0 .

ment dit, il faut chercher le normalisateur $N(T_1^{(h)})$ de $T_1^{(h)}$ dans G_0 . Soit donc $z \in G_0$, avec $(\varphi z) T_1^{(h)} = T_1^{(h)}$; on a certainement $(\varphi z) T_0^h = T_0^h$ et $(\varphi z) T_0^l = T_0^l$; l'opération $\overline{\varphi z}$ induite dans R_0^h applique le polyèdre fondamental P(N) sur P'(N) et il existe $b \in N$ avec $(\overline{\varphi b}) P' = P$; alors $\overline{\varphi b z}$ conserve P(N) ainsi que $P(G_0)$, avec $bz \in G_0$, ce qui entraı̈ne $bz \in T_0^l$. A l'aide de $\Phi(N)$, on peut donc se ramener à la recherche des $a \in T_0^l$ tels que $(\varphi a) T_1^{(h)} = T_1^{(h)}$, qui constituent $N(T_1^{(h)}) \cap T_0^l$.

Considérons un tel élément a, et soit $x \in T_1^{(h)}$; on a par hypothèse $a x a^{-1} = b x$, avec $b \in T_0^h$, d'où $a x a^{-1} x^{-1} = b$; or $x a x^{-1} = a'$ est indépendant de l'élément x choisi dans $T_1^{(h)}$, en sorte que l'on peut écrire

$$\boxed{aa'^{-1} = b \epsilon T_0^h} . \tag{1}$$

Réciproquement, si un $a \in T_0^l$ vérifie cette relation, alors $(\varphi a) T_1^{(h)} = T_1^{(h)}$. Remarquons que (φa) multiplie chaque élément de $T_1^{(h)}$ par b fixe (translation dans $T_1^{(h)}$).

2. Recherche des $a \in T_0^l$ tels que $aa'^{-1} = b \in T_0^h$. Introduisons dans R_0^l le sous-espace R^{l-h} totalement orthogonal à R_0^h issu de O. Il est constitué par l'ensemble des points (coordonnées canoniques)

$$X = \left\{ egin{array}{ll} x_1, \, x_2, \, \ldots, \, x_{n_1} \ & \cdots & \cdots & \ z_1 \, , \, z_2 \, , \, \ldots, \, z_{n_h} \end{array}
ight.$$
 avec $\Sigma x_i = 0, \, \ldots, \, \Sigma z_i = 0$.

On peut remarquer que pour tout $A \in R_0^l$, on a $A - A' \in R^{l-h}$ (cf. no 1). Soit maintenant $a \in T_0^l$ vérifiant (1); prenons $A \in R_0^l$ avec f(A) = a; on a $A - A' = L^* \in R^{l-h}$, et

$$f(L^*) = f(A - A') = f(A)f(-A') = aa'^{-1} = b \in T_0^h$$
.

On a $f(L^*) \in T_0^h$ et le sous-espace $L^* + R_0^h$ contient un élément L du réseau unité δ_l . Réciproquement, soit $L \in \delta_l$ puis L^* sa projection orthogonale sur R^{l-h} ; formons le système $A - A' = L^*$; les n_1 premières équations sont

$$a_1-a_{n_1}=l_1^*$$
 , $a_2-a_1=l_2^*$, ..., $a_{n_1}-a_{n_1-1}=l_{n_1}^*$ où $\Sigma l_i^*=0$.

Elles admettent la solution

$$a_1 = l_1^*, a_2 = l_1^* + l_2^*, a_3 = l_1^* + l_2^* + l_3^*, \ldots, a_{n_1} = l_1^* + \cdots + l_{n_1}^* = 0$$
.

Les h-1 autres lignes du système fournissent des résultats analogues. Cela prouve que le système $A-A'=L^*$ est toujours résoluble. A désignant une solution, on peut écrire

$$A-A'=L+(L^*-L)$$
 où $L^*-L\epsilon R_0^h$

puis:

$$f(A-A') = f(L)f(L^*-L)$$
 et $aa'^{-1} = f(L^*-L)\epsilon T_0^h$.

Proposition 1. On obtient tous les $a \in T_0^l$ tels que $aa'^{-1} \in T_0^h$ en prenant les $A \in R_0^l$ tels que $A - A' = L^*$, où L^* désigne la projection sur R^{l-h} d'un élément L quelconque du réseau unité δ_l .

La formule $b=-f(L-L^*)$ montre de plus qu'on obtient les b de $aa^{1-1}=b\,\epsilon\,T_0^h$ en formant les éléments du type $L-L^*$; or un tel élément n'est pas autre chose que la projection de L sur R_0^h .

Proposition 2. Les éléments b susceptibles de figurer dans $aa'^{-1} = b \epsilon T_0^h$ sont les images par f des projections sur R_0^h des points du réseau unité δ_l .

Considérons maintenant un système de générateurs du réseau δ_l : L_1, L_2, \ldots et soit $L = l_1 L_1 + l_2 L_2 + \cdots$ un élément quelconque de ce réseau (l_i entiers). On a $L^* = \Sigma l_i L_i^*$; soit A_i une solution de $A - A' = L^*$ et posons $A = \Sigma l_i A_i$. On a $A - A' = \Sigma l_i A_i - (\Sigma l_i A_i)' = \Sigma l_i A_i - \Sigma l_i A_i' = \Sigma l_i (A_i - A_i') = \Sigma l_i L_i^* = L^*$.

Proposition 3. On obtient un système de générateurs du sous-groupe des $a \in T_0^l$ tels que $a a'^{-1} \in T_0^h$ en résolvant les systèmes $A - A' = L^*$ où L^* est la projection sur R^{l-h} d'un élément L qui décrit un système de générateurs du réseau unité δ_l .

Remarquons que si A est une solution de $A - A' = L^*$, tout A + t où $t \in \mathbb{R}_0^h$ est aussi une solution.

3. Constructions. Un système de générateurs du réseau unité δ_l est donné par les extrémités des l vecteurs $2\overset{\rightarrow}{\alpha_i}/\overset{\rightarrow}{\alpha_i^2},\ldots,2\overset{\rightarrow}{\gamma_i}/\overset{\rightarrow}{\gamma_i^2}$ et par les sommets de $P(G_0)$ qui appartiennent au réseau unité δ_l .

Projetons ces générateurs sur R_0^h ; la projection de $\overset{\rightarrow}{\alpha}_k$ sur R_0^h est $\overset{\rightarrow}{\varrho_1} = \frac{1}{n_1} \overset{\rightarrow}{\Sigma} \overset{\rightarrow}{\alpha}_i$. En effet, $\overset{\rightarrow}{\alpha}_k \cdot \vec{x} = \overset{\rightarrow}{\alpha}_j \cdot \vec{x}$ pour tout $\vec{x} \in R_0^h$ entraîne $\overset{\rightarrow}{\Sigma} \overset{\rightarrow}{\alpha}_j \cdot \vec{x} = n_1 \overset{\rightarrow}{\alpha}_k \cdot \vec{x}$, $\vec{x} (\overset{\rightarrow}{\alpha}_k - \frac{1}{n_1} \overset{\rightarrow}{\Sigma} \overset{\rightarrow}{\alpha}_j) = 0$, $\vec{x} (\overset{\rightarrow}{\alpha}_k - \overset{\rightarrow}{\varrho_1}) = 0$ et $\overset{\rightarrow}{\varrho_1} - \overset{\rightarrow}{\alpha}_k \in R_0^h$. Cela étant, la projection de $\overset{\rightarrow}{2} \overset{\rightarrow}{\alpha}_k / \overset{\rightarrow}{\alpha}_k^2$ sur $\overset{\rightarrow}{R_0^h}$ est $\overset{\rightarrow}{2} \overset{\rightarrow}{\varrho_1} / \overset{\rightarrow}{\alpha}_1^2$; un calcul facile montre encore que cette

projection s'écrit $2\overset{\rightarrow}{\varrho_1'}/\overset{\rightarrow}{\varrho_1'}^2$ avec $\overset{\rightarrow}{\varrho_1'}=n_1p_1\overset{\rightarrow}{\varrho_1}$ (cf. § 3, n° 4); or $2\overset{\rightarrow}{\varrho_i'}/\overset{\rightarrow}{\varrho_i'}^2(i=1,\ldots,h)$ est un système de générateurs du réseau minimum de $D(G_1)$.

Proposition 4. La projection sur R_0^h du réseau minimum de G_0 correspond aux translations du réseau minimum du diagramme $D(G_1)$.

Ces translations ne sont pas en général des translations de recouvrement; on les obtient à l'aide de produits de symétries par rapport à des (h-1)-plans singuliers parallèles du diagramme $D(G_1)$.

Les sommets de $P(G_0)$ qui sont dans le réseau unité fournissent par projection d'autres translations. Supposons par exemple que le sommet P_1 opposé à la face $\alpha_1 = 0$ dans $P(G_0)$ soit dans δ_i . Les coordonnées canoniques de P_1 sont

$$P_{1} \begin{cases} 1, 0, \dots, 0 \\ 0, 0, \dots, 0 \\ \dots & 0 \end{cases} \quad d'où \quad P_{1}^{*} = \begin{cases} 1 - 1/n_{1}, -1/n_{1}, \dots, -1/n_{1} \\ 0, 0, \dots, 0 \\ \dots & 0 \end{cases} \quad \dots \quad 0 \end{cases}$$

$$A \begin{cases} (n_{1} - 1)/n_{1}, (n_{1} - 2)/n_{1}, \dots, 1/n_{1}, 0 \\ 0, 0, \dots, 0 \end{cases} \quad B \begin{cases} 1/n_{1}, 1/n_{1}, \dots, 1/n_{1} \\ 0, 0, \dots, 0 \\ \dots & 0 \end{cases}$$

ou $B(1/n_1, 0, 0, ..., 0)$ en coordonnées ϱ_i . Alors $-\overrightarrow{OB}$ est une translation du diagramme $D(G_1)$ conservant ce diagramme, et induite par l'automorphisme intérieur φa avec $a = f(A) \epsilon T_0^l$. On aurait des résultats analogues avec d'autres sommets de $P(G_0)$ appartenant à δ_i .

Si $G_0 = \widetilde{G_0}$ est simplement connexe, de telles translations n'existent pas et il n'y a que les translations du réseau minimum de $D(G_1)$. Cela entraîne le théorème :

Théorème. Le polyèdre fondamental $P(G_1)$ est un domaine fondamental d'éléments de G_1 conjugués relativement à G_0 si cette composante neutre est simplement connexe.

Ce théorème était bien connu dans le cas $G_1 = \tilde{G}_0$. Dans le cas général, connaissant encore les translations OB, on pourra trouver dans $P(G_1)$ un domaine fondamental $\mathfrak{D}(G_1)$ d'éléments de G_1 conjugués relativement à G_0 , éventuellement plus petit que $P(G_1)$.

Pratiquement, on considère dans $D(G_1)$ le repère $\overset{\rightarrow}{\varrho_1}, \ldots, \overset{\rightarrow}{\varrho_h}$ d'origine I;

le réseau minimum est formé des extrémités des vecteurs $2\stackrel{\rightarrow}{\varrho_i'}/\stackrel{\rightarrow}{\varrho_i'}^2$ et de leurs combinaisons linéaires à coefficients entiers. Cela étant, les autres translations OB sont déterminées par les composantes covariantes b_i de OB dans le système (ϱ') . On forme alors la matrice $(g_{ij}) = (\stackrel{\rightarrow}{\varrho_i'}, \stackrel{\rightarrow}{\varrho_j'})$, puis l'inverse (g^{ij}) ; alors $b^i = g^{ij}b_j$, ce qui permet de comparer directement les translations OB à celles du réseau minimum. Dans les exemples traités ci-dessous (§ 6), j'ai utilisé cette méthode sans présenter le détail des calculs.

4. Recherche des $a \in T_0^l$ invariants par φx , où $x \in T_1^{(h)}$. Ici, on cherche les éléments $a \in T_0^l$ avec $aa'^{-1} = e$, ou a = a'; la théorie ci-dessus s'applique avec b = e. $L - L^*$ est dans le réseau unité, ainsi que L^* . Ainsi, on obtient tous les $a \in T_0^l$ tels que a = a' en prenant les $A \in R_0^l$ tels que $A - A' = L^*$, le point L et sa projection sur R_0^h étant dans le réseau unité.

Remarquons que les nombres $a_1-a_{n_1}, a_2-a_1, \ldots, a_{n_1}-a_{n_1-1}$ sont entiers puisque L^* est dans δ_i . Or, on peut faire varier A dans $A+R_0^h$ sans changer L^* , ce qui permet de supposer $a_{n_1}, b_{n_2}, \ldots, c_{n_h}$ entiers; alors $a_1, a_2, \ldots, a_{n_1-1}$ successivement sont aussi entiers, ainsi que les b_i, \ldots, c_i . Cela signifie que $A+R_0^h$ contient un point du réseau central, et la classe aT_0^h rencontre le centre Z_0 de G_0 .

Proposition 5. Si $x \in T_1^{(h)}$, le normalisateur de x dans T_0^l est engendré par T_0^h et par les éléments du centre de G_0 échangeables avec x.

§ 6. Etude des groupes simples

1. Réduction au cas simple. Dans le § 2, n° 6, nous avons opéré une réduction au cas semi-simple; ici, je me propose de traiter à nouveau cette question, en effectuant une réduction plus complète; le cas où la composante neutre est simple subit de plus un examen détaillé.

Je considère un groupe de Lie clos $G = G_0 + G_1 + \cdots$ extension cyclique finie de sa composante neutre G_0 , G_1 étant une composante connexe génératrice; on peut écrire

1) $G_0 = T^p \times \mathfrak{G}_{01} \times \cdots \times \mathfrak{G}_{0t}$ (produit local direct) où T^p est la composante neutre du centre de G_0 , l'automorphisme intérieur φx induit par $x \in G_1$ permutant circulairement les facteurs simples $\mathfrak{G}_{0i}^1, \ldots, \mathfrak{G}_{0i}^{m_i}$ dans \mathfrak{G}_{0i} ($i=1,\ldots,t$). Comme je l'ai souvent fait ci-dessus, je construis dans le normalisateur connexe N_x un toroïde maximum T_0^h , lui-même situé dans un toroïde maximum T_0^l de G_0 . On peut écrire

$$T_0^l = T^p \times T^{l_1} \times \cdots \times T^{l_t} \qquad (T^{l_t} \text{ maximum dans } \mathfrak{G}_{0i}) \tag{2}$$

$$T_0^h = T^{p'} \times T^{h_1} \times \cdots \times T^{h_t} \tag{3}$$

 T^{hi} est la projection de T^h_0 sur T^{li} , tous les produits indiqués étant localement directs. $T^{(h)}(G_1)$ est alors engendré par T^h_0 et par x; il existe dans $T^{(h)}_1 = xT^h_0$ un élément z qui engendre un sous-groupe fini Z_q d'ordre q, avec $T^{(h)}(G_1) = T^h_0 \times Z_q$ (produit direct). D'après (1) et (2), les caractères de G relatifs à T^l_0 se partagent en t familles; ceux de la i-ème sont égaux à l'identité sur T^p et sur tous les T^{li} ; leur restriction à T^h_0 est l'identité sur tous les facteurs de (3) sauf sur T^{hi} . De même, les caractères de G relatifs à $T^{(h)}(G_1)$ se partagent en f familles naturellement correspondantes, ceux de la f-ème étant aussi égaux à l'identité sur tous les facteurs de (3) sauf sur f

En vertu de (2) et (3), les supports R_0^l et R_0^h subissent respectivement les décompositions suivantes

$$R_0^l = R^p + R^{l_1} + \dots + R^{l_t} \tag{4}$$

$$R_0^h = R^{p'} + R^{h_1} + \dots + R^{h_t} \qquad (R^{h_i} \subset R^{l_i}) \tag{5}$$

et on a, pour les paramètres angulaires relatifs à T_0^l et à $T^{(h)}(G_1)$ des conclusions analogues aux précédentes. L'automorphisme φx conserve un angle polyèdre fondamental $P(G_0)$ défini par une suite $\{\alpha_{ijk}\}$ engendrant un tableau

$$\begin{array}{c|c} \varrho_{i1} & \alpha_{i11}, \ldots, \alpha_{i1n_{i1}} \\ \vdots & \vdots & \ddots \\ \varrho_{ih_i} & \alpha_{ih_i1}, \ldots, \alpha_{ih_in_{ih_i}} \end{array}$$

formé de t tableaux partiels; la suite $\varrho_{11}, \ldots, \varrho_{1h_1}, \ldots, \varrho_{th_t}$ est fondamentale pour le normalisateur principal N, et se partage en t suites partielles $\varrho_{i1}, \ldots, \varrho_{ih_t}$ mutuellement orthogonales, avec $\overset{\rightarrow}{\varrho}_{ik} \subset R^{hi}$; les formes ϱ_{ik} s'annulent sur tous les termes de (5) sauf sur R^{hi} , et les $\varrho_{ik} + r/n_{ik}$ sont dans R^h_1 constantes sur les plans parallèles à la somme (5) dans laquelle on supprime R^{hi}_0 .

Je dis que la figure de Schläfli $\mathfrak{F}(\overset{\rightarrow}{\varrho_{i1}},\ldots,\overset{\rightarrow}{\varrho_{ih_i}})$ est connexe; en effet, si cela n'était pas, la suite α_{ijk} (i fixé) se décomposerait en deux suites au moins mutuellement orthogonales (voir [9], p. 239) et \mathfrak{G}_{0i} n'aurait pas ses facteurs simples permutés transitivement par φx . Le normalisateur $N \cap \mathfrak{G}_{0i}$ est simple. Dans ce sens, la restriction du problème à \mathfrak{G}_{0i} est une réduction au cas simple.

Le diagramme $D(G_1)$ défini par les vecteurs $\overrightarrow{\varrho'_{ik}}$ est la somme directe de $R^{p'}$ et de t diagrammes simples; le polyèdre fondamental $P(G_1)$ lui-même est somme directe de simplexes et de $R^{p'}$. N'intervient ici que le diagramme

comme ensemble de plan singuliers et non pourvu de translations de recouvrement.

En résumé, on peut se ramener au cas où les facteurs simples de G_0 sont permutés circulairement par φx . Nous allons examiner en détail le cas des cycles à un seul élément. Il s'agira d'un groupe simple G_0 pourvu d'une extension cyclique finie $G_0 + G_1 + \cdots$ extraite d'une extension naturelle.

2. Extensions naturelles de A_{2h-1} . Comme au chapitre I § 4, nous avons la suite fondamentale φ_i et la permutation σ unique admise par cette suite (σ non triviale), respectivement

ce qui engendre le tableau suivant

Figure associée à σ	à σ principal N		$egin{array}{c} ext{Vecteurs du} \ ext{diagramme} \ D\left(G_1 ight) \end{array}$		$egin{array}{c} ext{Polyèdre} \ ext{fondamental} \ P(G_1) \end{array}$	
$\begin{array}{ c c c c }\hline \varphi_1 & & & & & & & & & \\ \hline \varphi_2 & & & & & & & & & \\ \hline \varphi_{k-1} & & & & & & & & \\ \hline \varphi_{h-1} & & & & & & & & \\ \hline \varphi_h & & & & & & & \\ \hline \end{array}$	$\begin{vmatrix} \overrightarrow{\varrho}_{1} & =\frac{1}{2}(\overrightarrow{\varphi}_{1} & +\overrightarrow{\varphi}_{l}) & \frac{1}{\sqrt{2}} \\ \overrightarrow{\varrho}_{2} & =\frac{1}{2}(\overrightarrow{\varphi}_{2} & +\overrightarrow{\varphi}_{l-1}) & \frac{1}{\sqrt{2}} \\ & \cdots & \\ \overrightarrow{\varrho}_{h-1} = \frac{1}{2}(\overrightarrow{\varphi}_{h-1} + \overrightarrow{\varphi}_{h+1}) & \frac{1}{\sqrt{2}} \\ \overrightarrow{\varrho}_{h} & = \overrightarrow{\varphi}_{h} & 1 \\ \hline p_{1} & = p_{2} = \cdots = p_{h} = 1 \end{vmatrix}$	$egin{array}{c} 1 & \bigcirc & \\ 2 & \bigcirc & \\ \vdots & & & \bigcirc \\ h & -1 & \bigcirc & \\ h & \bigcirc & C_h \end{array}$		$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ 1	$1 \circ \circ -\omega'$ \vdots $h-1 \circ \circ$ $type\ B_h$ $\omega' = \varrho'_1 + 2\varrho'_2 + \cdots + 2\varrho'_h$ $= 2(\varrho_1 + 2\varrho_2 + \cdots + 2\varrho_{h-1} + \varrho_h)$	

On a indiqué en regard des vecteurs les longueurs respectives. Voici maintenant les sommets du polyèdre $P(G_1)$ avec la structure des normalisateurs associés (coordonnées $\varrho_1, \ldots, \varrho_h, k$)

$$egin{array}{lll} rak A_3 & (0,0,rac{1}{4},\dots,0,0,1) & N(rak A_3) & ext{type $C_{h-3}{ imes}D_3$} \\ & \dots & \dots & \dots & \dots & \dots \\ rak A_{h-1} & (0,0,0,\dots,rac{1}{4},0,1) & N(rak A_{h-1}) & ext{type $C_1{ imes}D_{h-1}$} \\ rak A_h & (0,0,0,\dots,0,rac{1}{2},1) & N(rak A_h) & ext{type D_h} \end{array}$$

Au divers groupes simples du type A_{2h-1} localement isomorphes correspondent des extensions naturelles dont je vais indiquer le réseau unité δ_h associé, avec le domaine fondamental $\mathfrak{D}(G_1)$ d'éléments de G_1 conjugués relativement à G_0 .

Tout d'abord, la famille A_{2h-1} provient du groupe \widetilde{A}_{2h-1} simplement connexe, de centre $Z_{2h}=(e,a,a^2,\ldots)$ avec $a=\widetilde{f}(A_1'),\ A_1'=(1,0,0,\ldots,0)$ en coordonnées φ_i ; on a $\sigma A_1'=(0,0,\ldots,0,1),\ \widetilde{f}(\sigma A_1')=a^{-1}$. Si l'unité V de \widetilde{A}_{2h-1} est engendrée par a^p , on a $A_{2h-1}=\widetilde{A}_{2h-1}/V,\ \varphi x(V)=V$; le centre de A_{2h-1} est d'ordre p. Nous obtenons le tableau suivant

Groupe	$\begin{array}{c} \text{Unit\'e} \\ V = (a^p) \end{array}$	Générateurs du réseau unité δ_l (système φ)	Réseau- trace	Point unité qJ	Extension	$\mathfrak{D}(G_1)$
\widetilde{A}_{2h-1}	e	$2\overrightarrow{\phi}_{\pmb{i}}$	$\left \stackrel{ ightarrow}{4ec{arrho}_i}, \stackrel{ ightarrow}{2ec{arrho}_h} ight $	2I	principale	$P(G_1)$
				$2\mathfrak{U}_h$	semi-directe non principale	$P(G_1)$
A_{2h-1}	p pair $2h/p$ im-	$2 \overset{\Rightarrow}{\varphi}_i \text{ et } A'_p \ (0,0,,1,,0)$	$\overrightarrow{4\varrho_i}, \overrightarrow{2\varrho_h}$	2I	principale	$P(G_1)$
	pair	$ \varphi_{i} = 0 \text{ si } i \neq p $ $ \varphi_{p} = 1 $		2 U _h	semi-directe non principale	$P(G_1)$
$A_{2\lambda-1}$	p impair $2h/p$ pair	$2\stackrel{\Rightarrow}{\varphi}$ et A'_p (0,0,,1,,0) $\varphi_i=0$ si $i\neq p$ $\varphi_p=1$	(0,0,,0,1)	2I	principale	$rac{1}{2}P(G_1)$ $I ext{ et } \mathfrak{A}_h$ $ ext{con-}$ $ ext{jug\'es}$
A_{2h-1}	p pair $2h/p$ pair	$2\overset{ ightharpoonup}{\varphi_i}\ { m et}\ A'_p\ (0,0,,1,,0)$	$\begin{vmatrix} \overrightarrow{4\varrho_i}, 2\overrightarrow{\varrho_h} \\ (0,0,,0,1) \end{vmatrix}$	2I	principale	$P(G_1)$
٨	zwip pan	$ \varphi_i = 0 \text{ si } i \neq p $ $ \varphi_p = 1 $	(0,0,,0,1)	4 <i>I</i>	non semi-directe	$P(G_1)$
ad- joint	p=1	$2\overrightarrow{\varphi_i}$ et A'_p $(0,0,,1,,0)$ $\varphi_i=0$ si $i\neq p$ $\varphi_p=1$	$\overrightarrow{4_{Q_i}}, \overrightarrow{2_{Q_h}}$ $(0,0,,0,1)$	21	principale	$rac{1}{2}P(G_1)$ $I ext{ et } \mathfrak{A}_h$ $ ext{con-}$ $ ext{jugés}$

3. Extensions naturelles de A_{2h} . Nous avons de même la suite fondamentale, la permutation σ et le tableau associé, respectivement

$$\bigcirc - \bigcirc - \cdots - \bigcirc \bigcirc \qquad \qquad \sigma \downarrow \begin{pmatrix} \varphi_1 , \varphi_2 , \ldots, \varphi_h , \varphi_{h+1}, \ldots, \varphi_{2h-1}, \varphi_{2h} \\ \varphi_{2h}, \varphi_{2h-1}, \ldots, \varphi_{h+1}, \varphi_h , \ldots, \varphi_2 , \varphi_1 \end{pmatrix}$$

Figure associée à σ	Vecteurs du normalisateur principal N		$egin{array}{c} ext{Vecteurs du} \ ext{diagramme} \ D\left(G_1 ight) \end{array}$		$egin{array}{c} ext{Polyèdre} \ ext{fondamental} \ P\left(G_1 ight) \end{array}$	
$egin{pmatrix} arphi_1 & & & & & & & & & & & & & & & & & & &$	$ \begin{vmatrix} \dot{q}_1 & =\frac{1}{2}(\dot{\varphi}_1 & +\dot{\varphi}_l) \\ \dot{q}_2 & =\frac{1}{2}(\dot{\varphi}_2 & +\dot{\varphi}_{l-1}) \end{vmatrix} = \begin{vmatrix} \dot{q}_{h-1} & =\frac{1}{2}(\dot{\varphi}_{h-1} + \dot{\varphi}_{h+2}) \\ \dot{q}_h & =\frac{1}{2}(\dot{\varphi}_h & +\dot{\varphi}_{h+1}) \end{vmatrix} $ $ p_1 = \cdots = p_{h-1} = 1; p_h = 1$	$egin{array}{c c} lac{1}{\sqrt{2}} & h-1 \ \hline rac{1}{2} & h \odot \end{array}$	$ \overrightarrow{\varrho}_{1}' = 2\overrightarrow{\varrho}_{1} $ $ \overrightarrow{\varrho}_{2}' = 2\overrightarrow{\varrho}_{2} $ $ \overrightarrow{\varrho}_{h-1}' = 2\overrightarrow{\varrho}_{h-1} $ $ \overrightarrow{\varrho}_{h}' = 4\overrightarrow{\varrho}_{h} $	$oldsymbol{ u_2}$ $oldsymbol{ u_2}$ 2	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	

Les sommets du polyèdre fondamental et les normalisateurs associés sont (coordonnées $\varrho_1, \ldots, \varrho_h, k$)

Je prends ici les mêmes notations qu'au passage correspondant du n° 2 ; il convient de noter que le centre de \widetilde{A}_{2h} est Z_{2h+1} d'ordre impair.

Groupe	Unité V	Générateurs de δι	Réseau- trace	Point unité	Extension	$\mathfrak{D}(G_1)$
\widetilde{A}_{2h}	e	$2\overrightarrow{\phi}_{m{i}}$	$4\overset{ ightharpoonup}{arrho}_i$	2I	principale	$P(G_1)$
A_{2h}	(a^p)	$2\overrightarrow{\varphi}_i \text{ et } A'_p$	$\overrightarrow{4\varrho_i}$	2I	principale	$P(G_1)$
ad- joint	Z_{2h+1}	$2\overset{ ightharpoonup}{arphi}_i$ et A_1'	$4\overrightarrow{\varrho_i}$	2I	principale	$P(G_1)$

4. Extensions naturelles de D_{h+1} . La suite fondamentale, la permutation σ et le tableau associé sont ici respectivement

$$\bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \qquad \sigma \downarrow \begin{pmatrix} \varphi_1, \ \varphi_2, \ldots, \ \varphi_{h-1}, \varphi_h \ , \ \varphi_{h+1} \end{pmatrix}$$

Figure associée à σ	Vecteurs du normalisateur principal N		$egin{array}{c} ext{Vecteurs du} \ ext{diagramme} \ D\left(G_1 ight) \end{array}$	$egin{aligned} ext{Polyèdre} \ ext{fondamental} \ P\left(G_{1} ight) \end{aligned}$
$\varphi_1 \bigcirc$	$\begin{vmatrix} \overrightarrow{\varrho}_1 & = \overrightarrow{\varphi}_1 \end{vmatrix}$ 1	0	$\begin{vmatrix} \vec{\varrho}_1' & = \vec{\varrho}_1 & 1 \\ \vec{\varrho}_2' & = \vec{\varrho}_2 & 1 \end{vmatrix}$	ο===ο - ω'
$\varphi_{2} \bigcirc$	$\begin{vmatrix} \vec{q}_2 & = \vec{\varphi}_2 \end{vmatrix}$		$\overrightarrow{\varrho_2}' = \overrightarrow{\varrho_2} $ 1	0
φ_{h-1O}	$\overrightarrow{\varrho}_{h-1} = \overrightarrow{\varphi}_{h-1} \qquad \qquad 1$	-0=	$\overrightarrow{\varrho}_{h-1}' = \overrightarrow{\varrho}_{h-1} 1$: - 0
$\left \begin{array}{ccc} \circ & \circ \\ \varphi_h & \varphi_{h+1} \end{array} \right $	$\begin{vmatrix} \vec{\varphi}_h & = \frac{1}{2} (\vec{\varphi}_h + \vec{\varphi}_{h+1}) & \frac{1}{\sqrt{2}} \end{vmatrix}$	$\left \begin{array}{c} \parallel & \circ \\ B_h & \end{array}\right $	$\overrightarrow{\varrho}_h' = 2\overrightarrow{\varrho}_h V\overline{2}$	$\bigcup_{i=1}^{n} C_{n}$
		Dh		$egin{aligned} \omega' &= 2 arrho_1' + 2 arrho_2' \ &+ \cdots + 2 arrho_{h-1}' + arrho_h' \ &= 2 \left(arrho_1 + arrho_2 \ &+ \cdots + arrho_h ight) \end{aligned}$

Les sommets du polyèdre fondamental et les normalisateurs associés sont

La famille D_{h+1} provient du groupe \widetilde{D}_{h+1} simplement connexe dont le centre est $Z_4=(e,a,a^2,a^3)$ si h+1 est impair, et $Z_2\times Z_2=(e,a,b,ab)$ si h+1 est pair. L'élément a correspond à $A'_h:\varphi_j=0$ si $j\neq h, \varphi_h=1$. Les sous-groupes non triviaux invariants par σ sont $V=(e,a^2)$ ou V=(e,ab). On obtient le tableau:

Groupe	Unité V	Générateurs de $\delta_{\it l}$	Réseau- trace	Point unité	Extension	$\mathfrak{D}(G_1)$					
\widetilde{D}_{h+1}	e	$2\overset{ ightarrow}{arphi_{m i}}$	$2\overset{ ightharpoonup}{arrho}_i, 4\overset{ ightharpoonup}{arrho}_h$	2I	principale	$P(G_1)$					
h+1 impair		$2 \varphi_i$	$2v_i, \pm v_h$	$2\mathfrak{A}_1$	semi-directe	$P(G_1)$					
\tilde{D}		→	$2\overset{ ightarrow}{arrho}_i, 4\overset{ ightarrow}{arrho}_h$	2I	principale	$P(G_1)$					
$\left egin{array}{c} ilde{D}_{h+1}/\ (e,a^2) \end{array} ight $	(e, a^2)	$2\overrightarrow{\phi}_i,A_1'$	$(1,0,\ldots,0)$	4I	non semi-directe	$P(G_1)$					
adjoint	(e, a, a^2, a^3)	$2\overrightarrow{\phi}_i,A_h'$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		principale	$P(G_1)$ I , \mathfrak{A}_h f					
$egin{aligned} \widetilde{D}_{h+1} \ h+1 \ ext{pair} \end{aligned}$	e	$2\overrightarrow{arphi}_i$	$2\overrightarrow{\varrho}_{i}, 4\overrightarrow{\varrho}_{h}$	2I	principale	$P(G_1)$					
70 /			$ \begin{array}{c} \overrightarrow{2\varrho_i}, 4\overrightarrow{\varrho_h} \\ (1, 0, \dots, 0) \end{array} $	$\stackrel{\rightarrow}{\sim}$	$2\vec{0}$ $4\vec{0}$	$2\overset{\rightarrow}{0}$, $4\overset{\rightarrow}{0}$.	$\overrightarrow{20}$, $\overrightarrow{40}$.	$\overrightarrow{20}$, $\overrightarrow{40}$.	2I	principale	$P(G_1)$
$\begin{bmatrix} D_{h+1}/\\ (e, ab) \end{bmatrix}$	(e,ab)	$2 \overset{ ightarrow}{arphi}_{m{i}} , A_1'$		41	non semi-directe	$P(G_1)$					
adjoint	(e,a,b,ab)	$2 \overset{ ightarrow}{arphi}, A_{h}^{\prime}, A_{h+1}^{\prime}$	$\begin{vmatrix} 2\overrightarrow{\varrho}_i, 4\overrightarrow{\varrho}_h \\ (1, 0, \dots, 0) \end{vmatrix}$	2I	principale	$P(G_1)$ I , \mathfrak{A}_h $con-$ jugués					

5. Extensions naturelles de D_4 . La suite fondamentale, la permutation σ non encore étudiée, et le tableau associé sont

Figure associée à σ	Vecteurs du normalisateur principal N		${\mathfrak F}(N)$	$egin{array}{c} ext{Vecteurs du} \ ext{diagramme} \ D\left(G_1 ight) \end{array}$		$egin{array}{c} ext{Polyèdre} \ ext{fondamental} \ P\left(G_1 ight) \end{array}$	
φ_1 φ_1 φ_2 φ_2 φ_3 φ_4	$\begin{vmatrix} \overrightarrow{\varrho}_1 = \overrightarrow{\varphi}_1 \\ \overrightarrow{\varrho}_2 = \frac{1}{3} (\overrightarrow{\varphi}_2 + \overrightarrow{\varphi}_3 + \overrightarrow{\varphi}_4) \end{vmatrix}_{1}$	$\frac{1}{\sqrt{3}}$	$G_{f 2}$	$\overrightarrow{\varrho}_{1}' = \overrightarrow{\varrho}_{1}$ $\overrightarrow{\varrho}_{2}' = 3\overrightarrow{\varrho}_{2}$	$oxed{1}{oldsymbol{v_2}}$	$egin{array}{c c} 1 igorplus \omega' = 3 arrho_1' \ + 2 arrho_2' \ - \omega' igorplus G_2 \ + 2 arrho_2' \end{array}$	

Les sommets du polyèdre fondamental et les normalisateurs associés sont

$$\begin{array}{lll} I & & (0\,,\,0\,,\,1) & N & & \text{type } G_2 \\ \mathfrak{A}_1 & & (\frac{1}{3}\,,\,0\,,\,1) & N(\mathfrak{A}_1) & & \text{type } A_2 \\ \mathfrak{A}_2 & & (0\,,\,\frac{1}{6}\,,\,1) & N(\mathfrak{A}_2) & & \text{type } A_1 \times A_1 \end{array}$$

La famille $D_{\mathbf{4}}$ est issue du groupe simplement connexe $\widetilde{D}_{\mathbf{4}}$ de centre

$$Z = Z_2 \times Z_2 = (e, a, b, c) ,$$

les éléments a, b, c étant respectivement déterminés par les points suivants (coordonnées canoniques)

$$\begin{pmatrix} 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Z n'a aucun sous-groupe non trivial invariant par σ . Il vient le tableau

Groupe	Unité	Générateurs de δι	Réseau- trace	Point unité	Extension	$\mathfrak{D}(G_1)$
$oldsymbol{ ilde{D_4}}{ ext{groupe}}$ adjoint	e Z	$2\overset{ extstyle 2}{ec{arphi}_{i}} ext{et} \ egin{pmatrix} 0 \ 1 & 0 & 0 \end{pmatrix} egin{pmatrix} 0 \ 0 & 1 & 0 \end{pmatrix}$	$2\overrightarrow{\varrho}_{1}, 6\overrightarrow{\varrho}_{2}$ $2\overrightarrow{\varrho}_{1}, 6\overrightarrow{\varrho}_{2}$	2 I 2 I	principale principale	$P(G_1)$ $P(G_1)$

6. Extensions naturelles de E_6 . La suite fondamentale et la permutation σ sont

$$\sigma = egin{pmatrix} arphi_1 & arphi_2 & arphi_3 & arphi_4 & arphi_5 \ arphi_0 & arphi_0 & arphi_0 \ arphi_5 & arphi_4 & arphi_3 & arphi_4 & arphi_5 & arphi_6 \ arphi_5 & arphi_4 & arphi_3 & arphi_2 & arphi_1 & arphi_6 \ \end{matrix}$$

Il vient le tableau

Figure associée à σ	o normansatene		$egin{array}{c} ext{Vecteurs du} \ ext{diagramme} \ D\left(G_1 ight) \end{array}$	$egin{array}{c} ext{Polyèdre} \ ext{fondamental} \ ext{$P(G_1)$} \end{array}$
$\overrightarrow{\varphi_1} \circ \overrightarrow{\varphi_5}$ $\overrightarrow{\varphi_2} \circ \overrightarrow{\varphi_4}$ $\overrightarrow{\varphi_3} \circ \overrightarrow{\varphi_4}$ $\overrightarrow{\varphi_6}$	$\begin{vmatrix} \overrightarrow{\varrho}_1 = \frac{1}{2} (\overrightarrow{\varphi}_1 + \overrightarrow{\varphi}_5) & \frac{1}{\sqrt{2}} \\ \overrightarrow{\varrho}_2 = \frac{1}{2} (\overrightarrow{\varphi}_2 + \overrightarrow{\varphi}_4) & \frac{1}{\sqrt{2}} \\ \overrightarrow{\varrho}_3 = \overrightarrow{\varphi}_3 & 1 \\ \overrightarrow{\varrho}_4 = \overrightarrow{\varphi}_4 & 1 \end{vmatrix}$		$\begin{vmatrix} \overrightarrow{\varrho}_1' = 2\overrightarrow{\varrho}_1 \\ \overrightarrow{\varrho}_2' = 2\overrightarrow{\varrho}_2 \end{vmatrix} V_2'$ $\begin{vmatrix} \overrightarrow{\varrho}_2' = 2\overrightarrow{\varrho}_2 \\ \overrightarrow{\varrho}_3' = \overrightarrow{\varrho}_3 \end{vmatrix} 1$ $\begin{vmatrix} \overrightarrow{\varrho}_4' = \overrightarrow{\varrho}_4 \\ \end{vmatrix} 1$	

Sommets du polyèdre fondamental $P(G_1)$ et normalisateurs associés

$$\begin{array}{lll} I & (0,0,0,0,1) & N & \text{type } F_4 \\ \mathfrak{A}_1 & (\frac{1}{4},0,0,0,1) & N(\mathfrak{A}_1) & \text{type } A_1 \times B_3 \\ \mathfrak{A}_2 & (0,\frac{1}{6},0,0,1) & N(\mathfrak{A}_2) & \text{type } A_2 \times A_2 \\ \mathfrak{A}_3 & (0,0,\frac{1}{4},0,1) & N(\mathfrak{A}_3) & \text{type } A_3 \times A_1 \\ \mathfrak{A}_4 & (0,0,0,\frac{1}{2},1) & N(\mathfrak{A}_4) & \text{type } C_4 \end{array}$$

La famille E_6 est issue du groupe simplement connexe \widetilde{E}_6 de centre $Z=Z_3=(e,a,a^2)$ qui n'a aucun sous-groupe non trivial. L'élément a est représenté par $A_1':\varphi_1=1,\,\varphi_2=\ldots=\varphi_6=0$. On a le tableau :

Groupe	Unité V	Générateurs de δι	Réseau- trace	Point unité <i>qJ</i>	Extension	$\mathfrak{D}\left(G_{1}\right)$
${\widetilde E}_{6}$	e	$2 \overrightarrow{\widehat{arphi}}_i$	$\begin{vmatrix} \overrightarrow{4\varrho_1}, \overrightarrow{4\varrho_2} \\ \overrightarrow{2\varrho_3}, \overrightarrow{2\varrho_4} \end{vmatrix}$	2I	principale	$P(G_1)$
groupe adjoint	Z_3	$2\overset{ ightarrow}{arphi}_i \;\; { m et} \;\; A_1'$	$\begin{vmatrix} \overrightarrow{4\varrho_1}, \overrightarrow{4\varrho_2} \\ \overrightarrow{2\varrho_3}, \overrightarrow{2\varrho_4} \end{vmatrix}$	2I	principale	$P(G_1)$

7. Automorphismes involutifs. La recherche des automorphismes involutifs des groupes de Lie semi-simples compacts connexes G_0 est facilitée par l'intro-

duction des polyèdres $P(G_i)$; il suffit de se placer dans le groupe $A(G_0)$ des automorphismes de G_0 , avec $A(G_0) = A_0 + A_1 + \cdots$; les éléments des polyèdres $P(A_i)$ qui sont d'ordre 2 dans le réseau central $\overline{\delta}_i$ donnent les automorphismes cherchés; si $i \neq 0$, la composante connexe A_i doit être d'ordre 2 dans $A(G_0)/A_0$.

J'applique cette méthode au cas où G_0 est simple, en considérant d'abord le polyèdre $P(A_0)$. Il est défini par la suite fondamentale $\varphi_1, \ldots, \varphi_l$ et par le paramètre angulaire dominant $\omega = m_1 \varphi_1 + \cdots + m_l \varphi_l$; c'est un simplexe, dont les sommets sont

$$0(0,0,0,\ldots,0)$$
 $\Lambda_1\left(\frac{1}{m_1},0,0,\ldots,0\right),\ldots,\Lambda_l\left(0,0,0,\ldots,\frac{1}{m_l}\right).$

Si $m_i=1$, Λ_i est dans le réseau central. Un élément X d'ordre 2 a des coordonnées $\varphi_i(X)$ de la forme $k_i/2$ où les k_i sont entiers ; de plus, $X \in P(A_0)$ entraîne $k_i \geqslant 0$ et $m_i \varphi_i(X) \leqslant 1$. Si $m_i > 2$, on a nécessairement $k_i = 0$; $m_i = 2$ exige $k_i = 0$ ou 1 ; enfin, $m_i = 1$ donne $k_i = 0$, 1, ou 2. Si $m_i = 1$. $k_i = 2$, on a $X \in \overline{\delta}_l$, ce qui n'apporte rien. Reste le cas $m_i = 1$, $k_i = 1$, ce qui fournit $X = \frac{1}{2} \Lambda_i$ ou bien $X = \frac{1}{2} (\Lambda_i + \Lambda_j)$ avec $m_i = m_j = 1$, solution qui se ramène à $X = \frac{1}{2} \Lambda_k$ $(m_k = 1)$ puisque Λ_i , $\Lambda_j \in \overline{\delta}_l$. Nous obtenons les solutions

$$\begin{array}{lll} \text{si} & m_i = 2 \ , & X = (0, \, 0, \, \ldots, \, 0, \, \frac{1}{2}, \, 0, \, \ldots, \, 0) = \varLambda_i & ; \\ \text{si} & m_i = 1 \ , & X = (0, \, 0, \, \ldots, \, 0, \, \frac{1}{2}, \, 0, \, \ldots, \, 0) = \frac{1}{2} \varLambda_i \ , \end{array}$$

et il n'y en a pas d'autre. Notons que ce résultat est indiqué dans [1].

Soit maintenant A_1 une composante connexe d'ordre 2 de $A(G_0)$, et cherchons les points $X(\varrho'_1, \ldots, \varrho'_h, 1)$ de $P(A_1)$ d'ordre 2 dans $\overline{\delta}_l$. On a $2X \epsilon \overline{\delta}_l$ et aussi $2I \epsilon \overline{\delta}_l$, d'où $2(X-I)\epsilon \overline{\delta}_l$; réciproquement, si $2(X-I)\epsilon \overline{\delta}_l$, on a $2X \epsilon \overline{\delta}_l$. Tout revient à chercher les $X \epsilon P(A_1)$ tels que 2X-2I soit dans le réseau-trace $\overline{\delta}_l \cap R_0^h$ formé des points à coordonnées ϱ_i entières. Achevons le calcul en exprimant le paramètre dominant ω' de $D(A_1)$ à l'aide des formes ϱ_i ; il vient $\omega' = pn\varrho = s\varrho$ (cf. § 3, n° 4) où ϱ est un paramètre angulaire du normalisateur principal N; on ne peut avoir s=1, sinon ϱ est dominant pour N et pour $D(A_1)$, ce qui ne peut être. On écrit $\omega' = s \sum_i d_i \varrho_i$ où les d_i sont des entiers $\geqslant 0$. Une solution est X=I; autre possibilité: l'un des d_i est égal à 1, avec alors s=2, ce qui donne un sommet de $P(A_1)$. On obtient de la sorte tous les X cherchés. Un coup d'œil sur [1] p. 219 et sur les n° 2 à 6 de ce paragraphe donne ces automorphismes, bien connus d'ailleurs.

BIBLIOGRAPHIE

- [1] A. Borel et J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos. Comment. Helv., 23, 1949, 200-221.
- [2] E. CARTAN, La théorie des groupes finis et continus et l'analysis situs. Mém. Sci. Math., 42, 1930.
- [3] E. CARTAN, La géométrie des groupes simples. Ann. Mat. Pura Appl., 4, 1927, 209-256.
- [4] C. CHEVALLEY, Theory of LIE groups. Princeton University Press, Princeton 1946.
- [5] F. GANTMACHER, Canonical représentation of automorphisms of a complex semi-simple Lie group. Rec. Math. Moscou, 5 (47), 1939, 101-144.
- [6] G. Hochschild, Group extensions of Lie groups II. Ann. Math., 54, 1951, 537-551.
- [7] H. Hoff, Maximale Toroide und singuläre Elemente in geschlossenen Lieschen Gruppen. Comment. Math. Helv., 15, 1942-1943, 59-70.
- [8] H. HOPF, Zum Clifford-Kleinschen Raumproblem. Math. Ann., 95, 1926, 313-339.
- [9] J. DE SIEBENTHAL, Sur les sous-groupes fermés connexes d'un groupe de LIE clos. Comment. Math. Helv., 25, 1951, 210-256.
- [10] E. STIEFEL, Über eine Beziehung zwischen geschlossenen Lieschen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lieschen Gruppen. Comment. Math. Helv., 14, 1942, 350-380.
- [11] H. ZASSENHAUS, Lehrbuch der Gruppentheorie. BG Teubner, Leipzig und Berlin, 1937.

(Reçu le 13 septembre 1955.)