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Sur les groupes de Lie compacts non connexes

par JEAN DE SIEBENTHAL, Lausanne

Introduetion

La théorie classique!) des groupes de LIE compacts (ou clos) s’attachant
essentiellement aux groupes comnexes, je vais essayer de présenter ici une
étude systématique des groupes de LIE clos non connexes

G=GO+G1+G2+OQ¢ 01\1 GO’GI,GB""
sont les composantes connexes de @, la premiére G, étant 1a composante neutre?).

Construction de tous ces groupes. On sait que G est un sous-groupe invariant
de G et que le quotient G/G, est un groupe fini H ; ainsi G est une extension
du groupe clos connexe G, par un groupe fini H.

Un élément x de G détermine un automorphisme intérieur de G qui, re-
streint a (,, est un automorphisme gz de Gy ; x— @2 est un homomorphisme
appliquant G dans le groupe A4 (G,) des automorphismes de G,, et induisant
un homomorphisme y de H dans le groupe A4 (G,)/I(G,) ou I(G,) est formé
des automorphismes intérieurs de G,.

Or une circonstance remarquable se présente ici: A(G,) est le produit
I1(Gy)-U de I(G,) et d’un sous-groupe fini U, avec I(G,)~ U =e. Cela
permet de considérer le caractére y de I’extension comme un homomorphisme
de H dans U, de construire le produit semi-direct (Gyx H),, et d’en déduire
toutes les extensions de G, par H de caractére y3). Les extensions les plus
intéressantes sont celles pour lesquelles y est un isomorphisme de H sur U
(extensions naturelles) ; le produit semi-direct devient 1'extension principale,
ainsi nommée parce que U est le centralisateur dans 4 (G@,) d’un sous-groupe
principal de I(G,)*%).

Le chapitre I développe cette théorie; j’y donne la structure de U pour
G, semi-simple, et toutes les extensions naturelles pour G, simple.

Sous-groupe abélien T™(G,) associé a& une composante connexe G. x étant
un élément de @,, je construis le normalisateur connexe®) N, de z, un
toroide 7! maximum dans N,, puis le sous-groupe 7" (@,) engendré par z

1) [2], chap. III; aussi [3], [4], [7] et [10].

?) composante connexe de 1’élément neutre e.

3) d’aprés [6], no 1.

%) [9], chap. IV; si G, est abélien, I(G,) =e, A(G,) = U.

%) Le normalisateur connexe de z est la composante neutre du normalisateur de .
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et par T* en posant T® = z7?. Par définition, 7™ (G,) est le sous-groupe
abélien associé & la composante connexe @, et on a la propriété fondamentale
suivante :

T™(Q,) contient un représentant au moins de toute classe d’éléments de G,
conjugués relativement a Qg ; de plus, les T™ (Q,) sont conjugués relativement
d G,. Le chapitre II est consacré & cette théorie; certaines propositions n'y
sont pas nouvelles ¢).

Diagramme associé a une composante connexe. Le représentation linéaire
adjointe de @G, restreinte & 7'®»)(G,), est un groupe abélien orthogonal dont
la réduction canonique fait apparaitre m caractéres x,,..., x,, de 7™ (@G,); les
noyaux de ces caractéres sont les sous-groupes singuliers U,,..., U, de
T™(@,) dans G. 1l existe un groupe fini @(G,) de transformations de 7™
en lui-méme conservant 7" et ’ensemble des U,, chacune de ces opérations
étant la restriction & 7™ d’un automorphisme intérieur de G' associé & un
élément de G,.

Cela permet de construire le diagramme D(G,): si R} désigne le recouvre-
ment euclidien de I’espace de Rieman~y T, alors, aux U;~ T correspon-
dent dans R? des (h — 1)-plans singuliers répartis en m familles. Les symé-
tries par rapport & ces plans engendrent un groupe spatial discontinu I'(G,)
correspondant & @(@G,) ; de plus, ces mémes plans singuliers partagent 1’espace
B! en domaines sur lesquels I'(G,) opére transitivement ; I'un d’eux, P(G,,)
est un polyédre fondamental, en ce sens qu’ils contient un représentant au moins
de toute classe d’éléments de G, conjugués relativement a G,. Il y a un tel repré-
sentant et un seul si G, est semi-simple simplement connexe.

Le chapitre III développe cette théorie, le cas ou G, est simple étant traité
complétement. On pourra remarquer le théoréme du § 3, n° 4, qui donne D (G,)
d’une fagon trés simple & partir de P(G,) et de la permutation associée & @,.
La notion de sous-groupe principal y4) n’apparait pas dans la construction
de D(@#,), et n’intervient que pour faire certains rapprochements.

La connaissance des polyédres P((;) permet de dominer maintenant 1’en-
semble des classes d’éléments conjugués dans un groupe de LIE compact et la
structure des normalisateurs d’éléments de G'. En application, j’ai montré
comment on obtient les automorphismes involutifs des groupes simples
compacts, par simple lecture des P(G,)7).

%) En ce qui concerne les points fixes d’automorphismes, voir des résultats plus généraux
dans: A. BOREL-G. D. MosTOW, Ann. Math. 61, p. 389-405 (1955).

7) Dans [5], F. GANTMACHER a traité complétement le cas des groupes d’automorphismes des
algébres de LIE semi-simples complexes, groupes en général non connexes. Ma méthode est indé-
pendante de la sienne; ’objet de mon chapitre III n’est pas étudié dans [5].
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Je désire exprimer ma reconnaissance & Mr. ARMAND BOREL, dont certaines
remarques ont permis d’améliorer plusieurs points de ce travail.

CHAPITRE I

Construction des groupes de LiE ¢los non connexes

§ 1. Extensions algébriques

1. Définitions. Le groupe E est une extension du groupe @ si @ est un sous-
groupe invariant de £.

Le groupe E est une extension du groupe @ par le groupe H §’il existe un
homomorphisme = de £ sur H, de noyau . L’extension est désignée par
(E, ). Deux extensions (X, n), (E',n') de @ par H sont dites équivalentes
8’il existe un isomorphisme a de K’ sur £ avec «(g) = q pour tout qe@.

L’extension E de Q est dite centrale si le centralisateur de ¢ dans £ ren-
contre chaque classe de E suivant . L’extension est dite compléte si tout
automorphisme de @ provient de la restriction & ¢ d’un automorphisme in-
térieur de K. L’extension est dite naturelle si elle est compléte et si le centrali-
sateur de Q@ dans F est dans @. Enfin, I’extension est dite semi-directe s’il
existe dans £ un sous-groupe V tel que V~@ = e, et rencontrant chaque
classe de K suivant .

J’introduis encore les notations suivantes (classiques): A (@) est le groupe
des automorphismes de @, 1(Q) est le groupe des automorphismes intérieurs
de @; O(Q) est le groupe A4 (Q)/I(Q) des automorphismes extérieurs de @.

2. Caractére d’une extension. Soit ael ; 'automorphisme z — axa-! de E
est un automorphisme intérieur de £ dont la restriction & ¢ est un automor-
phisme 7 (a) de Q. L’application a — r(a) est une représentation r de £ sur un
sous-groupe 4’ de 4 (@) qui contient I (@) ; elle applique chaque classe de £ sui-
vant ¢ sur une classe de A suivant [ ; elle détermine ainsi une représentation
x de H sur un sous-groupe O’ de O(Q). Cette représentation y est justement
le caractére de I'extension K de @ par H.

Le caractére y est trivial si ’extension est centrale ; si ’extension est com-
pléte, x applique H sur O (@) (épimorphisme) ; enfin y est un isomorphisme de
H sur O (@) si I’extension est naturelle.

3. Produit semi-direct. Soient ¢ un groupe abstrait, 4(¢) son groupe
d’automorphismes, et V un groupe admettant une représentation y dans 4 (@).
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Par définition, le produit semi-direct S = (@ X V), est le groupe obtenu en
munissant 1’ensemble produit @ X V' de la loi de composition (¢, v)(¢’, v') =
(gq'?, vv'), ou ¢'* = x(v)'¢q'. On vérifie que cette loi est associative, admet
un élément neutre (e, ¢), chaque élément (g, v) ayant un inverse [(g~1)? ", v—1].
De plus, ¢— (q,e) plonge ¢ isomorphiquement dans S sur un sous-groupe
invariant de S, et v— (e, v) prouve que § est une extension semi-directe
de @ par V. Maintenant, (e, v) détermine un automorphisme intérieur de S
qui applique (g,e) sur (g% e), ce qui montre que y peut étre considéré
comme le caractére de ’extension S.

4. Extensions de méme caractére®). Soit (P, ) une extension de ) par H de
caractére y; & chaque classe de P suivant ¢ correspond un automorphisme
du centre C' de @, d’ou un homomorphisme y, de H dans le groupe 4 (C) des
automorphismes de C.

Définition. Soient (P, n) une extension de Q par H, et (F, ) une extension
du centre C de Q par H; (F, ¢) est dite compatible avec (P, n) si les homo-
morphismes de H dans A (C) associés coincident.

Je dis qu’il existe au moins une extension de C par H compatible avec (P, 7).
En effet, si he H avec =n(p) =h, l'application ¢— pcp~! est un auto-
morphisme de C, indépendant du choix de p dans la classe % ; en désignant cet
automorphisme par y,(k), on voit que x, est une représentation de H dans
A (C), et I'on peut construire le produit semi-direct (CXH), = F,, qui est
compatible avec P.

Considérons 1’ensemble € = Ext. (§, H, y) des extensions de ¢ par H de
caractére y, puis ’ensemble &, = Ext. (C, H, y,) des extensions de C par
H compatibles avec PeE. L’élément (F, ¢)eE, engendre une transformation
de € appliquant (P, n) sur (P,,n,) défini comme suit: on forme le produit
direct F X P, puis le sous-groupe D constitué par les (f, p) tels que ¢f==np;
si O, est le sous-groupe invariant de D formé des (¢, c!) ou ceC, alors D/C,
est un élément de € désigné par (P,, =;). On pose

(P, m) = (F, 9) (P, 7) .

Alors (I, ¢,) ® (Fy, ¢,) est défini, et €, est revétu d’une structure de
groupe abélien opérant effectivement et transitivement sur €. F, est 1’élément
neutre de ,. La construction de G. HocHSCHILD est valable dans les cas qui
nous intéressent, @ et H étant compacts.

8) D’aprés [6], n° 1.
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5. Sur certains groupes abstraits. Soit @ un groupe ayant la propriété sui-
vante : Le groupe A(Q) est une extension semi-directe de I(Q)). Autrement dit,
A (€)) contient un sous-groupe U qui rencontre chaque classe suivant I(Q)
en un élément et en un seul. Il existe un isomorphisme canonique & de
O(@) sur U, qui applique b1¢0(Q) sur I'élément U~bl dans A(Q).

Lorsque @ a la propriété indiquée, on peut indiquer un procédé qui, dans
les cas en vue, permet en principe de construire toutes les extensions de Q.

En effet, soit (P,7) une extension quelconque de ¢ par H de caractére y; y
applique H sur O'(Q) c O(Q), et 6y applique H sur U’ ¢ U. Le produit semi-
direct S = (@ X H),, est une extension de ¢ par H de caractére y. Comme
€, opére transitivement sur €, il existe (F,¢)eE, tel que (P,n) = (F,p)R®S.
Ainsi, connaissant les extensions de C' par H compatibles avec §, on en tire
toutes les extensions (P,=)eExt(Q,H,y).

Remarquons que S contient (C X H),=F,; alors F ® S contient F @ Fy=F.

En résumé, on obtiendra toutes les extensions de ¢ en prenant dans U un
sous-groupe arbitraire U’, puis en construisant un groupe quelconque H ad-
mettant une représentation y sur U'. Le produit §= (¢ X H), engendre alors
avec les extensions F du centre de ¢ par H compatibles avec S toutes les
extensions de ¢ par H de caractére y. En faisant varier U’ dans U, H et F,
on pourra construire toutes les extensions de ).

Lorsque le caractére y est trivial, on dira que les extensions obtenues sont
aussi triviales : ce sont les extensions centrales, avec parmi elles les produits
directs. En un sens facile &4 comprendre, les extensions les plus ,,riches* sont
les extensions complétes, dans ’ensemble desquelles les extensions naturelles
me paraissent étre les plus intéressantes.

Nous nous restreindrons précisément aux extensions naturelles de @, dé-
duites du produit semi-direct S= (@ X F),, ou y est un isomorphisme de F sur
U, et des extensions du centre C de @ par F compatibles avec S. Dans les cas
en vue, ¢ est un groupe de Lig semi-simple clos connexe, F est un groupe
fini, et 4 (Q) est un produit semi-direct du type désiré, comme nous allons
justement le voir.

§ 2. Automorphismes de groupes clos connexes.

1. Notations. Je désigne par G, un groupe de Lix clos connexe de centre Z,,
par C:Y' le recouvrement simplement connexe de G,, par Z~ le centre de C—J-o,
par G' le groupe adjoint GO/Z De plus, R} sera le dlagramme %) de la famille,
avec des applications canoniques f, f, f de B! sur les toroides 7%, T, T! maxi-

%) [10].
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mums respectivement dans les groupes éo, Gy, Go. Si A désigne I’homo-
morphisme canonique G,— G, on a f= Af. Je pose

S=fe), &=fe), &=1F"@

respectivement réseau minimum, réseau unité, et réseau central, avec
5, C ;¢ 5,

Le diagramme R, posséde une origine O et un polyédre fondamental P,,
défini par une suite fondamentale ¢, ..., ¢, accompagnée de paramétres an-
gulaires dominants o, o’,...

Les égalités ¢, = ¢, =...= ¢, définissent une diagonale ¢ de I'angle
polyédre Po{p, =>0,...,9, > 0}; t représente dans R} un sous-groupe simple
de rang un appelé sous-groupe principal de G, (dit associé & P,)19).

2. Awutomorphismes de groupes de LIE clos connexes quelconques. On sait 11)
que le groupe A (é) des automorphismes d’un groupe de LieE simplement
connexe G est isomorphe au groupe des automorphismes de 1’algébre de Lik
R de @. Si @ est localement isomorphe & G, A (@) coincide avec le sous-groupe
des éléments de 4 (5) qui conservent le noyau de ’homomorphisme canonique

G- G. On peut ainsi se ramener a A(d) ou a A (R).

Si le groupe @ = @, est clos et connexe, il posséde un groupe d’auto-
morphismes 4 (G@,) dont la composante neutre A4, est le groupe I(G,) des
automorphismes intérieurs de (,, avec un homomorphisme canonique
¢:Gy—> Qy/Z, = A, ou Z, est le centre de GG,. Si G, est abélien, 4,=e¢e, et
A (G,) est discret. Si G, n’est pas abélien, prenons dans G, un sous-groupe
principal . Les éléments de A4(G,) qui conservent chaque élément de y
forment un sous-groupe U. Soit aed (G,); il existe aeG, tel que (pa)a soit
Pidentité dans y*), ce qui signifie que chaque composante connexe de
A (Q,) contient un élément de U. De plus, si aeUnA4,, il existe ae@G, tel
que o = @a, et a est dans le centralisateur de y c’est-a-dire dans Z;. On a
a=gpa=c¢e, et Und,=c.

Théoréme. Le groupe A(G,) des automorphismes d’un groupe de LIE clos
connexe posséde un sous-groupe U ayant un élément et un seul dans chaque com-
posante connexe ; st Gy n’est pas abélien, chaque élément de U conserve chaque
élément d’un sous-groupe principal fize de G .

10) [9], chap. IV.
11) voir par exemple [4], chap. IV, § XV,
*) of. [9], Théoréme 4, p. 253-254.
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Autrement dit, A(G,) est le produit semi-direct de sa composante neuire par
un groupe discret U *).

3. Awutomorphismes des groupes de LIE clos semi-simples connexes. Il suffit
d’étudier le groupe A(Z}’o) = Ay + 4, +--- ou éo est semi-simple clos
simplement connexe. Prenons & nouveau un sous-groupe principal y de 630
associé & un angle polyédre P, et soit U le centralisateur de » dans A ((50) ;
il posséde un élément %, et un seul dans chaque composante connexe A, de
A(Gy). _

En partant de 'algebre R de G, plongée dans l’algébre de Lie complexe
R associée, mise sous la forme canonique de H. WEYL, on peut montrer!?)
qu’a toute isométrie S du diagramme conservant 1’origine correspond un
élément seA(R) prolongeant §; supposons en particulier que S conserve
Po; 8i sed,, alors set u; ont le méme effet sur P,. U est un groupe d’iso-
métries du diagramme conservant B, et la correspondance u,— § est un
homomorphisme de U sur le groupe fini U, des isométries du diagramme qui
conservent B,. D’autre part, si u; est I'identité sur P,, u, conserve chaque
élément de 17’,’, et de ¢, donc aussi chaque élément de éo, d’ott w,=e. Uet
U, sont isomorphes.

Théoréme. Soient (50 un groupe de LIE semi-simple clos simplement connexe,
Bo un angle polyédre fondamental de G, et y un sous-groupe principal de G,

associé a Po. Il existe un groupe U d’automorphismes de G, conservant P, et
chaque élément de vy, canoniquement isomorphe aw groupe des isométries du
diagramme qui laissent B, invariant.

On a un isomorphisme d’inclusion y: U — 4 (éo). Quel est 'effet des opé-
rations de U sur le centre Z,? Si 3 désigne l'intersection §,~ P,, on peut voir

que ;est biunivoque sur 313), et I'effet des opérations de U sur Z~0 est décrit
par leur effet sur 3.

Si G, est localement isomorphe & Za,, A (G,) est un sous-groupe de A(éo)
qui contient visiblement A,, car tout aed, conserve chaque élément du

centre Z,. Ici, 4(G,) est le produit semi-direct de sa composante neutre par
un sous-groupe du groupe U de I’angle polyédre.

*) cf. DYNKIN E. B. Dokl. Akad. Nauk. SSSR NS (76), 629-632 (1951) d’aprés Math. Rev.
12, 8 (1951), p. 585.

13) [5], chap. ITI.

13) voir chap. ITI, § 4, n° 1.
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§ 3. Extensions principales des groupes semi-simples clos

Soient (30 un groupe de LiE clos semi-simple simplement connexe et U le
groupe d’automorphismes associé & un sous-groupe principal y, avec l'iso-

morphisme d’inclusion y: U-— 4 (éo). Formons le produit semi-direct
S = (box U),, qui contient &0 et un sous-groupe U, ~ U formé des (e, u),
situé dans le centralisateur Z, de (y,e) par conftruction; U, a un élément
et un seul dans chaque composante connexe de S. Ceite extension S est une
extension naturelle particuliére de Zﬂ,, dite extension principale.

(Remarquons que Z, est le produit semi-direct (Zox U), dont on peut
prouver qu’il est isomorphe au groupe K des isométries du diagramme qui

conservent un ployédre fondamental P, de G,.)

Notion d’extension principale. Si G, = Z}o/ V, ou V est un sous-groupe du
centre Zo = Z, soit U, le plus grand sous-groupe de U dont toutes les opé-
rations conservent V; alors § = (G,XU,), est par définition I'extension
principale de G,.

Toutes les autres extensions naturelles de G s’obtiennent en composant S avec
une extension F quelconque de Z, par U,, compatible avec 8. On voit que l'ex-
tension F' de Z, caractérise 1’extension naturelle considérée ; on peut méme
préciser :

Proposition. Soient S = (Gyx U), Vextension principale de Gy, F une exten-
sion du centre Z, de Gy compatible avec S, et S, Uextension naturelle composée
F Q8. Alors 8, contient un sous-groupe isomorphe a F , centralisateur d’un sous-
groupe y principal dans la composante neutre.

(F,p) et (S, n) sont des extensions de Z, et G, par U compatibles ; S, est
obtenu & partir du produit direct F xS dans lequel on isole le sous-groupe D
formé des (f, s) tels que ff = ms. D posséde une composante neutre (e, G,)
qui contient un sous-groupe principal (e, y) dont tout élément est échangeable
avec chaque (f,u)eD ol u décrit le centralisateur Z, = (Z,xU),. Lors-
qu’on prend comme unité le sous-groupe des (c,c™!) avec ceZ,, alors (e, )
reste principal dans la composante neutre ; de plus, le sous-groupe des (f, )
indiqués devient F', isomorphe & F'14), et est contenu dans le centralisateur de
(e, y); comme F, contient (e, Z,) et a des éléments dans chaque composante
connexe de §,, il coincide avec ce centralisateur, et la proposition est établie.

On peut dire que S; contient une extension de Z, qui caractérise S, comme
extension de G,.

14) of. § 1, n° 5.
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§ 4. Extensions naturelles des groupes simples clos

1. Plan. Les extensions naturelles des groupes de L1k clos connexes simples
sont faciles & construire, car les centres Z, ont toujours une structure
remarquablement simple. Nous allons passer en revue les divers groupes
simples, en examinant pour chacun d’eux successivement: la suite fonda-

mentale, le paramétre dominant, le centre Z représenté par 3, la structure
de Z d’aprés E. CARTAN [3], 'effet de U sur Zo, les sous-groupes de Z in-
variants par chaque opération de U ainsi que les autres s’il en existe, puis les
extensions de Z, compatibles avec ’extension principale S (extensions que ’on
trouve notamment dans le livre de H. ZASSENHAUS ), d’ot1 I’énumération de
toutes les extensions naturelles désirées.

2. Groupes A,. Je désigne par A ; le groupe simplement connexe de la famille.
La suite fondamentale est décrite par la figure de SCHLAFLI :

O—O— +++ —O—0 @ == gy o @y .
¢ P pi-1 @1 1 #i

w étant le paramétre angulaire dominant.

Les sommets du polyédre fondamental P, sont, en coordonnées ¢, :
0(,...,0), A4;1,0,...,0), A4;(0,1,0,...,0)..., A;(0,...,0,1). Ils
appartiennent tous & 3 et le centre Z de A, est Z, ., cychque d’ordre l+1;

un générateur a de Z est représenté par A4,, avec a = f( ), at= f(Az)

Le groupe U est formé de deux éléments e, u ; le second détermine sur la sulte
fondamentale la permutation ¢, — ¢,,, ;; on voit que % applique a sur son
inverse a~! et tous les sous-groupes V de Z sont stables pour «.

En écrivant G, = A,/V, on obtient tous les groupes G, localement iso-
morphes & 4;, qui admettent tous une extension principale

S = [(4,/V)x U],

possédant deux composantes connexes. D’autres extensions naturelles de

Gy == A ;/V se présentent si et seulement si ’ordre du centre Z, de G, est un
nombre pair 2p. Il y a dans un tel cas une seconde extension naturelle, com-
posée de ’extension principale S et de ’extension F de Z, décrite par

a,u, a**=e, ut=a®, wuaul=al.

15) cf. [11]. Notamment le théoréme 20 (HOLDER), p. 95, 111, 114.

4 Commentarii Mathematici Helvetici
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Groupes D,. Je désigne par D~, le groupe simplement connexe de la famille.
La suite fondamentale est décrite par la figure de SCHLAFLI

71 O
JO—0—:—0—0 =01+ s+ 205+ gt + 2001+ 1 -
20" P Pu pl-1 @I

w étant le paramétre dominant. Les sommets du polyedre fondamental P,
qui appartiennent au réseau central 4, forment 3 et représentent le centre
Z de D, ; ce sont

0, 4,(1,0,0,...,0), 4;(0,1,0,...,0), 4;(0,0,...,0,1) .

! tmpair. Dans ce cas, Z est cyclique d’ordre 4 engendré par a = 7(A{), avec
f(4;) = a® = a1, f(4]) =a® Ona U = (e,u) avec uaul=al, et Z a le
sous-groupe non trivial (e, a®) stable pour . Les groupes localement iso-

morphes & 5, sont les suivants: D,, D,/(e,a?), D,/Z; ils admettent une
extension principale & deux composantes connexes, respectivement

§=DxV), , 8=[Dfe.a)}xUl,, 8= DyzxU), .

Le groupe 13, admet encore une seconde extension naturelle, composée de 8
et de I'extension suivante de Z

a,v, at=e, ul=a®, wuaul=al,

Le groupe ﬁ,/(e,az) admet aussi une seconde extension naturelle, composée
de § et de I’extension de son centre (e,c) qui est décrite par

c,u, ¢ =e, wul=c, wucul=c.

l pair. Le centre Z est le produit direct Z;xZ, = (e,a,b,ad) avec
f(4)) = a, f(A;) =Db, f(4]) =ab. Les groupes G, localement isomorphes
& D, sont les suivants :

5, , 5,/(e,ab) de centre (e,c) , 13,/Z ,
5,/(e,a) isomorphe & I),/(e,b) .

Les trois prem1ers admettent ' une extension prmmpa.le 4 deux composantes

connexes : (D xXU),, 8 [D,/(e ab)xUl,, (D,/ZxU),, tandis que le
dernier n’a pas d’extension naturelle non triviale.
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Le groupe I),/(e,ab) admet encore une seconde extension naturelle, com-
posée de S et de I’extension

1) c,u, ¢ct=e, ul=c, ucul=c

du centre (e,c).

Groupes D,. La suite fondamentale est définie par la figure de SCHLAFLI

>O"—O ® =@+ @3+ 295 + @4 .
P2 O Ps P

w étant le paramétre angulaire dominant. Les sommets du polyédre fon-
damental P, qui appartiennent au réseau central sont comme précédemment
0, 4], 4,, 4,. 1ls représentent Z, qui est du type Z,XZ, = (e,a,b,c), avec

at=bt=ct=ce, j( ) =a, f(Az)-_b f(A)--c Ici, le groupe U = &,
est formé de six éléments qui permutent 4;, 4;, A;, amsn que a,b,c.

Le groupe 134 admet l’extension principale S = (D4>< U),, & six com-
posantes connexes; comme Z,XZ, n’admet pas d’extension par S; com-

patible avec S distinete du produit semi-direct®), il n’y a pas d’autre ex-
tension naturelle de D,.
Comme tou]ours le groupe adjoint D4/Z n’a qu'une seule extension

naturelle: A4 (D4) principale. Le groupe D.,/(e a) de centre (e,c) a une ex-
tension principale & deux composantes connexes, et une seconde extension
naturelle provenant de 1).

Groupes Eq. La suite fondamentale est définie par

1 P2 Ps P Ps
O—O#—?——O———O w=e@; + 20, +3¢; + 20, + @5 + 2¢5 .

O @,

w étant le paramétre angulaire dominant. Les sommets du polyédre fonda-
mental P, situés dans le réseau central sont O, 47(1,0,0,...,0),

A}(0,0,...,0,1,0). Ils représentent le centre Z de JZ’6 cyclique d’ordre 3,

avec Z = (e a,at), f(A ) = a, f( s) = a?. Le groupe U est formé de deux
éléments e,u, le second appliquant ¢,, ., @3, @4, @5, ps respectivement sur

Ps> Pas P3s P2s P1s> Ps-

16) of. [11], p. 111.
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Les deux groupes de la famille sont E., et E'G/Z , qui ne possédent chacun
qu’une seule extension naturelle: leur extension principale, formée de deux
composantes connexes.

Groupes B, C,, E,, E;, F,, G4. Ici, on a toujours U = e, et aucune ex-
tension naturelle non triviale.

CHAPITRE II

Sous-groupe abélien associé & une composante connexe

§ 1. Propriétés élémentaires

1. Définitions. Soient G un groupe de LIE clos, 2 un élément quelconque

de G, T, la composante neutre du sous-groupe abélien fermé T engendré par
z, et N, le normalisateur connexe de . On a 7', C N ; de plus, chaque élé-
ment ¢ de N, étant échangeable avec x est aussi échangeable avec chaque

élément de T et en particulier avec chaque élément de 7', ; cela prouve que
T, est dans le centre de N,. Soit 7% un toroide maximum de N ; il contient
nécessairement 7',. Cela étant, j’appelle 7™ le sous-groupe fermé engendré
par T2 et par z, et je pose TV = 2T%.

2. Produit direct. 11 existe un entier positif ¢’ tel que 27'¢T',, d’ou 22 ¢T? ;
je désigne par ¢ le plus petit de tous les entiers ¢’ positifs qui ont cette pro-
priété. Ona 22 = a7, etil existe beT? tel que b2 =a-1. L’élément r=xb
est d’ordre fini ¢ vu que (2b)? = 2202 =aa ' =¢; de plus, si p <q est
un entier positif tel que t?eT?, alors z?b?eT?, puis 2?e7¢, dot p=gq.
Cela prouve que le sous-groupe cyclique ¥V engendré par 7 est d’ordre ¢
et coupe 7% en e seulement. Le produit V-7? est un produit direct
VXTF = T'®™, Comme 7™ contient T% et &, on a T™ cT'® ; comme 7T'®
contient 72 et 7, on a 7'M cT® d'ou T'W = TW, Le sous-groupe 7™
est le produit direct de sa composante neutre par un groupe cyclique fini.

3. Génération par un élément. Soit ¢ un générateur de 77 ; I'élément v=ct
engendre un sous-groupe abélien fermé 7' de 7'™), contenant les suites

v, 20 ., YR et gatl g2abl | gkgtl
ou c9,c%2,...,ck ved, ve2? . ..,vcke ...

d’ou T = T™, et v engendre 7'®,
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Théordme. A tout élément x d’un groupe de Lik clos on peut assocter un sous-
groupe abélien T™ engendré par x et par un toroide maximum T? du normali-
sateur connexe de x. T™ est le produit direct de sa composante neutre T par
un sous-groupe cyclique fini V, et la composante connexe T™ de x dans T™
contient un générateur de T,

Si z est dans la composante neutre G, de G, alors il existe un toroide maxi-
mum 7! de G, contenant x, et T? = T®™ = T* §8i @, est une composante
connexe de G distincte de G, alors 7''® n’est pas connexe, et k est en général
inférieur au rang ! de G,. Nous verrons que I’entier 2 ne dépend que de G,,
et non de la situation de x dans G, ; de plus, tout ye@, posséde un conjugué
dans T relativement & @,. Ces faits sont établis dans les paragraphes 2 et 3
du présent chapitre.

Je désigne désormais le sous-groupe I'™ associé & I'élément = de G, par
la notation 7®(@,).

§ 2. Sous-groupe 7'»)(@R,) discret

1. Normalisateur discret. Si le normalisateur de x dans le groupe clos G est
discret, alors 7" se réduit & 1’élément neutre ¢ de G, et T™(G,) est un groupe
cyclique fini. Le théoréme qui domine la question dans ce cas est le suivant:

Théoréme. Soit G un groupe de Lik clos; 8'il existe dans @ un dément z &
normalisateur discret, alors la composante neutre G, de G est un groupe commu-
tatif, et la composante connexe de x est formée tout entiére d’éléments conjugués
de x. ,

On voit que T = 2 est & lui seul un domaine fondamental d’éléments
de G, (conjugués relativement & G,).

Preuve. a) x posséde un voistnage formé d’éléments conjugués de z. Dire que
le normalisateur N de z est discret revient & dire qu’il existe un voisinage U
de e tel que N~ U =e. Il existe alors un voisinage V' de e tel que V'-*V'CU;
de plus, il existe dans V' un voisinage compact V de e, pour lequel on a encore
V-1vcU.

Soit maintenant ¥V, ’ensemble des aza~! pour a décrivant V ; 'application
f:a— axa! est une application continue de V sur V,. Je dis que f est bi-
univoque : a,beV avec a#b entraine f(a) #f(b); en effet, si aza—'=>bybd?,
ona (b~la)x = z(b~'a), avec b~'aelU en vertude V-'¥cU. Le normali-
sateur N contient dans U un élément b—'a distinct de e, contrairement a
Ihypothése faite sur U.

En résumé, f est une application continue biunivoque de ¥V compact sur
V., qui est séparé. Ainsi, f est un homéomorphisme de V sur V_,, avec
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f(e) = x; comme G est un groupe de Lir, le théoréme d’invariance du
domaine est valable, et ¥V, est un voisinage (compact) de x. En résumé, il
existe un voisinage V, de x tel que & tout yeV, correspond un aeV avec
y=azxal; tout yeV, est un conjugué de = (relativement & V).

b) La composante connexe de x est formée d’éléments conjuguées de . On prend
ici VC@,, @, étant la composante connexe de z. L’application f : a— aza?
(ae@,) est une application continue de I’espace compact et connexe G, dans
I’espace connexe et séparé G, ; ainsi f(Gy) =D est un sous-ensemble compact
et connexe de G,, fermé dans G,.

Soit y quelconque dans D ; il existe ae@, tel que axa—! =y. D’autre part,
soit pa I'automorphisme intérieur z — aza=! (z¢Q@); pa applique z=bxb1eD
(beGy) sur (pa)z =abzbla? = f(ab)eD. Donc ¢a, qui est un homéo-
morphisme de G, sur elle-méme, conserve D ; c¢’est un homéomorphisme de
D sur lui-méme. Maintenant f(V), qui est un voisinage de 2 dans D est appli-
qué par @a sur un voisinage de y dans . L’ensemble D étant un voisinage
de chacun de ses points est un ensemble ouvert dans @, .

En résumé, D = f(GF,) est un ensemble ouvert et fermé situé dans @,, d’otr
D = (,. Finalement, & tout yeG, correspond un aeG,, avec azal=y,
ce qui établit I’affirmation.

c) La composante neutre est -commutative. Soit G, la composante connexe
de z; si la composante neutre G, n’est pas commutative, il existe dans G, un
toroide maximum 7' et un angle polyédre fondamental Pc 7. L’auto-
morphisme ¢z applique 7' sur 7" et P sur P’ contenu dans 7" ; il existe alors
ae@, tel que (pa)T' =T, (pa)P' = P, et p(ax) conserve 7' ainsi que P.
Mais alors chaque point de la diagonale principale de P est invariant par
¢(az), ce qui signifie que le normalisateur de axeG; n’est pas discret, ce
qui est absurde. G, est nécessairement commutative.’

Le théoréme est établi.

2. Automorphismes a sous-groupe de points fixes discret. Le théoréme envisagé
entraine immédiatement la

Proposition. Soit G un groupe de Liz semi-stmple clos connexe ; 8’il existe
un automorphisme o de G ayant un sous-groupe de points fizes discret, alors G se
rédust a U élément neutre.

Soient A4 (@) le groupe des automorphismes de G, et 4, la composante neutre
de A(G); Vapplication - ¢x de zeG sur Pautomorphisme intérieur de
G déterminé par z est un isomorphisme local de G dans 4, en méme temps
qu'un homomorphisme de @ sur 4,. La relation ¢(x%) = a(pz)a~?, valable



Sur les groupes de LIe compacts non connexes b5

pour tout zeG, aed(GF), prouve que I'automorphisme « dans @, et I’auto-
morphisme intérieur de A4 (G) déterminé par « sont identifiés par I’isomor-
phisme local ¢ dans un voisinage de 1’élément neutre. a n’ayant par hypo-
thése pas de point fixe autre que e dans ce voisinage, il en est de méme dans
Ay, ce qui signifie que le normalisateur de « dans A4 (@) est discret; de la
résulte, en vertu du théoréme, que A4, est commutative, et de plus semi-
simple ; il vient 4, =¢, G =e¢, c.q.f. d.

§ 3. Sous-groupe 7»(@,) non discret

1. Dans un groupe de Lie clos a composante neutre commutative. Soient G un
groupe de LIE clos & composante neutre commutative G, = T¢, et G, = TP
une composante connexe quelconque. S’il existe dans 7" un élément z & nor-
malisateur discret, nous avons le cas analysé aux § 2. Si 7" ne contient pas
d’élément de cette sorte, je choisis un ze7"? arbitraire, puis je forme le sous-
groupe abélien 7™ (@,) associé ; ici, le normalisateur connexe N, de z coin-
cide avec le toroide 7% vu que G, est commutative. Nous savons que
T = 2T} contient au moins un élément z’ d’ordre fini ¢ (§ 1). Nous allons
voir que tout ye7T{” posséde un conjugué dans 7" relativement & 7';.

Soit en effet T'» le sous-groupe de G engendré par T} et par = ; on voit que
T? est un sous-groupe invariant de 7Y, composante neutre du centre de 79,
et que 7" est un systéme abélien torooial contenu dans 7¢". Etudions le
groupe TD/T* des classes de 7'» suivant T}, et, dans ce groupe, le sous-
groupe U des classes échangeables avec T". Si z¢T| appartient & la com-
posante neutre U, de U, 'automorphisme intérieur ¢z conserve 7" par
définition de U. Appliquons & z'¢T{® tous les ¢z, avec ze¢U,. Nous ob-
tenons dans T¢" une sous-variété connexe W ; comme z’ est d’ordre fini ¢, il
en est de méme de tous les éléments de W, qui sont de plus deux & deux
échangeables ; ces éléments engendrent dans 7Y un sous-groupe abélien T
dont tous les éléments sont d’ordre fini < q; ’adhérence T de T est un sous-
groupe abélien fermé, dont tous les éléments sont d’ordre fini < ¢. La compo-

sante neutre de I se réduit ainsi nécessairement & e, dot W = xz'; en
résumé, si gz (zeU,) conserve T®, alors @z conserve z', et z est dans le
normalisateur connexe de z', d’ott U, = T%. Ainsi:

le normalisateur de 7" dans 7»/T? est discret.

D’aprés le résultat du no 1, § 2, les éléments y 72 de TV/T? on yeT{" sont
des conjugués de 7'{" relativement & 7'/T%; ou encore : tout élément de 7"
posséde un conjugué dans 7. On peut énoncer :
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Proposition 1. Soient G un groupe de Lie clos & composante neutre com-
mutative, x un élément de Q, T le normalisateur connexe de x, et TM=zT?;
alors tout élément de la composante connexe de x dans G posséde un conjugué
dans T'® relativement a T'..

Cet énoncé est valable dans les cas extrémes :

1) h=0, T® = z: le normalisateur de x est discret,

2) h=1, T® =T{ et le groupe T est abélien.

Il ne reste plus qu’a traiter le cas ou la composante neutre G, de G n’est
pas commutative, ce qui me parait devoir étre précédé du no.

2. Sur les poinis fixes des automorphismes des groupes clos.

Proposition 2. Sotent G un groupe de Lir clos connexe non abélien, et o un
automorphisme de G; alors

1) la composante neutre U du sous-groupe des points fixes de o est réguliére
dans G,

2) il existe un toroide maximum T de G et un angle polyédre fondamental
Pc@ invariants par «o.

Preuve. G n’étant pas abélien, il résulte de la proposition du § 2, n° 2, que
U est distincte de e. Soit alors ¢ un toroide maximum de U; je désigne
par Z le centralisateur connexe!’) de ¢ dans G/, en remarquant que ¢ est
dans le centre de Z. On a ¢t = U~Z, car si y est dans cette intersection,
y est un élément de U échangeable avec chaque élément de ¢, d’oit yet. Soit
maintenant 8 le facteur semi-simple connexe de Z ; le sous-groupe U coupe Z
suivant ¢, qui est dans le centre continu de Z ; done, l’intersection U~ S est
discréte. D’autre part, 'automorphisme «, qui conserve ¢, conserve le centra-
lisateur Z de ¢ ; la restriction de o & Z est un automorphisme de Z qui conserve
S. Finalement, la restriction de « & S est un automorphisme de S a sous-groupe
de points fixes discret. D’aprés la proposition du § 2, on a 8§ =e, ce qui
prouve que Z est abélien ; un élément générateur de ¢ ne peut ainsi appar-
tenir qu’a un seul toroide maximum de @ : c’est un élément régulier de @, et
la premiére partie de la proposition est établie.

Prenons un élément yeG, voisin de e, régulier dans G, invariant par « ; le
toroide maximum 7' et ’angle polyédre fondamental PC7T uniques qui con-
tiennent y sont tous deux invariants par «.

Corollaire. Soient G un groupe de Lik clos non abélien, et x un élément quel-
conque de G; alors le normalisateur connexe de x est régulier dans la compo-

17) Composante neutre du centralisateur de ¢.
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sante neutre G, de G ; de plus, il existe dans G, un toroide maximum et un angle
polyédre fondamental invariants par Uautomorphisme intérieur .

Cette proposition était bien connue dans le cas ou G est connexe. Il est judi-
cieux d’étendre encore & des G non connexes la définition des éléments
réguliers :

Définition. Un élément x d’un groupe de Lik clos est régulier ou singulier suz-
vant que son normalisateur connexe est abélien ou non.

3. Dans un groupe de L1k clos a composante neutre non commutative. Soient
G un groupe de LIE clos & composante neutre G, non commutative, G/, une
composante connexe quelconque de G, z un élément arbitraire de @,, 7% un
toroide maximum du normalisateur connexe N,, et 7" = zT%; je dis que
tout yeQ, posséde un conjugué dans T™ relativement a G,,.

En effet, T étant régulier, il existe un toroide maximum 77 de G, et un
seul contenant 7% ; posons T" = zT'. Soit P un angle polyédre fonda-
mental de 7'; contenant un élément régulier de 72. On a

a) (p2)Tq=T; (px)P =P .

Je dis que tout ye@, posséde un conjugué dans TV relativement & G,. 11
existe un toroide maximum 7"!de G, et un angle polyédre fondamental P’ de
T'! invariants par @y; on sait qu’'on peut trouver un élément ae@G, tel
que (pa)T''=T,, (pa)P'=P; je pose (pa)y= z'eG,. pa étant un
automorphisme, ’élément z’ jouit par rapport & 7%, P, des mémes propriétés
.que y par rapport & 7%, P’. Autrement dit :

b) (p2)Tg=7T,  (p2')P=P .

Les relations a) et b) prouvent d’abord que x et ' appartiennent au nor-
malisateur de 7'; ensuite, comme xzz'-'e¢G@, avec [p(zz'-1)]T:=T,,
[p(xz'-1)]P = P, ona zz'1eT. et z'«T{". En résumé, y posséde un con-
jugué (pa)y dans T,

Pour achever la démonstration, il suffit de prouver que tout z' T posséde
un conjugué dans T\ . Or T? et x engendrent dans le normalisateur N (7T7}) de
T! dans @ un sous-groupe 7'» 3 composante neutre 7', commutative, con-
tenant 7" ainsi que =, N, = T?, et T = «T*. En vertu de la propo-
gition 1, 'élément z’' de T posséde effectivement un conjugué dans T, et
la premiére affirmation est établie.

Le principal résultat de ce chapitre est exprimé dans le

. Théoréme. Soient G un groupe de Lir clos, G, la composante neutre de G, x
un élément de G, T? un toroide maximum du normalisateur connexe de z, et



58 JEAN DE SIEBENTHAL

T = 2Ty ; alors tout élément de la composante connexe de x posséde un con-
jugué dans TV relativement d G,. ‘

11 est visible que 7" est un toroide maximum pour tous les normalisateurs
connexes d’éléments de 7" ; cela prouve que tous les normalisateurs d’élé-
ments de G, = G, ont le méme rang 2. D’oli le

Théordme. Toute composante connexe G, d’un groupe de Lik clos G contient
un systéme abélien toroidal TM coupé par toutes les classes d’éléments de G, con-
jugués relativement a la composante neutre de G . Les normalisateurs des éléments
de @, ont tous le méme rang, égal & la dimension du tore T®. Le sous-groupe
T®(Q,) est engendré par TP, 18)

Corollaire. Les sous-groupes abéliens T (Q,) associés & une composanie
connexe G, fize sont conjugués relativement a G, .
Cela permet de parler du sous-groupe 7'®(@,).

CHAPITRE III

Diagramme associé 4 une composante connexe

§ 1. Caractéres relatifs & 7' (@,)

1. Définition de ces caractéres. Soient G = G, + G, + --- un groupe de LiE
clos de composante neutre G,, et 7™ (G,) le sous-groupe abélien associé & la
composante connexe G,. Répétons que 7T = T®)(Q,) est le produit direct
de sa composante neutre 7'* et d’un groupe cyclique fini de type Z, engendré
par zeT{"; on peut trouver un élément ceT?, régulier, voisin de e, géné-
rateur de 7%, tel que ¢? soit aussi voisin de e qu'on le désire. Alors. » = z¢
est un générateur de 7™ et 2 = ¢4, '

Le groupe des automorphismes intérieurs de G posséde une représentation
linéaire adjointe ¥y — D(y) dans ’espace R(G,) tangent & G, en e. G étant
compact, il existe méme un repére de R(G,) dans lequel les transformations
linéaires D (y) sont représentées par des matrices orthogonales encore désignées
par D(y). En particulier, D(») est orthogonale. Il existe alors un nouveau
repére de R(G,) dans lequel D(») regoit la forme canonique quasi-diagonale

D(V) == (Ehn, —Ehnl’ 'Dl’ ee ey D,-, .D,-+1, ooy .D,-') .
E,. désigne la A" X " matrice unité; D,, ..., D, sont des 2 X 2 matrices ortho-

18) 7™ correspond & 1’ensemble des ,,chief elements* de F. GANTMACHER [5], § 8, lorsque G,
est semi-simple clos. T N
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gonales de déterminant 4 1, les » premieres étant d’ordre fini, et les autres
d’ordre infini.

Considérons D (»?) = D (c?) ; on peut choisir ¢ en sorte que D (c?) soit aussi
voisine de E,», ;9 qu’on le désire. Alors

.D('Vq) = (Ehll+hlll+2r ’ Dz+1, s 00y Dgl) .

Le sous-espace de R(G,) associé & K., 4, est exactement tangent au nor-
malisateur de c,, désigné par N (c?). Or, c? est régulier et N (c?) = T est
I'unique toroide maximum de G, qui contient 7'2. On a donc A"-+A" +2r=1,
d’ol, avec de nouvelles notations

A(”) = {Eh’Il—h’Al("’)» sy Am(”)} .

E, et I,_, indiquent I'effet de 4 (v) dans R(T"?) ; les m autres matrices indiquent
les rotations produites par 4(») dans m plans & deux dimensions A4,,..., 4,,.
Finalement, en considérant 7" engendré par », on a

Ay) = {Ey, I, (y), 4, (), ..., A0 (y)}  yeT® . (1)

I, ,(y) est constante dans chaque composante connexe de 7'® ; A,(y) définit
un caractére y,(y) de T'™ sur le groupe T; = T* des rotations de 4, autour
de 'origine, avec le caractére inverse y;™

Proposition 1 et définition. La représentation linéaire adjointe de T™ (Q,) dans
R(G,) fait apparaitre m caractéres %y,...,x. de T®(Q,); ce sont les carac-
téres de G relatifs a T™(@,).

2. Sous-groupes singuliers. Le caractére y, est un homomorphisme de 7'®
sur Tt = T}; si U, désigne le noyau de y,, ensemble des yeT'™ tels que
1Y) =e, alors TW|U, est homéomorphe & 7™, qui est connexe. Cela signifie
que U, posséde un élément au moins dans chaque composante connexe de
T™ notamment dans T,

Définition. Le noyau de ’homomorphisme y, est un sous-groupe U, de T® (Q,),
dit sous-groupe singulier, qui posséde des éléments dans chaque composante con-
nexe de T'™ ,

C’est de plus un sous-groupe de dimension A—1 ; dans 7", les composantes
connexes des U, forment un ensemble fini de sous-variétés & » — 1 dimen-
sions. 11 existe des éléments de 7' non situés sur ces sous-variétés ; si z dé-
signe I'un d’eux, on a 4,(z) 7% E, pour tout j, et le normalisateur connexe N,
coincide avec 7. On voit que les éléments réguliers de T forment des domaines
d h dimensions. Les éléments situés sur un U,; au moins sont singuliers, car
leur normalisateur a une dimension supérieure & A, avec un rang égal & 5.
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Proposition 2. Les sous-groupes singuliers U, et U, différent si § # 1.

Considérons en effet le centralisateur connexe N;de U,. On a T*cC N,CN,
ot 2eU,~TM; cela prouve que N, est de rang k. De plus, N, est tangent &
A4, et la dimension dim N, est supérieure & % ; ajoutons que la composante
neutre Uy, de U, est dans le centre connexe de N,. Alors H = N,/U,; est
un groupe clos de rang A — (h — 1) =1 de dimension supérieure & 1;
c’est un sous-groupe simple de rang un de dimension trois. Cela entraine
dimN, = h + 2, et N, est exactement tangent & R(T})+ A;. De 1a résulte
U,#U, s8i 1 5#7.

Le cas U, = U, n’est pas exclu et sera analysé ultérieurement. Le fac-
teur semi-simple de N, est de dimension 3 et de rang 1; c’est le sous-groupe
g, simple de rang 1 associé & A,, & U, ou & g, ; il est tangent & A, en 0.

3. Groupe fini @ (G,). Construisons des automorphismes intérieurs de G qui
conservent chaque composante connexe de 7'®. Prenons z quelconque dans
T™ et construisons le normalisateur N,(7%) de T? dans le normalisateur
connexe N, ; d’aprés cette définition, 7 est la composante neutre de N, (772).
Si a est dans ce groupe, ’automorphisme ¢a, qui conserve 7', conserve en-
core z, c’est-d-dire 7" et chaque composante connexe de 7'™(G,). En ré-
sumé, au normalisateur N, correspond un groupe fini N,(7%)/Tt d’auto-
morphismes de 7'® conservant 7'{".

On peut se restreindre au centralisateur connexe N, du sous-groupe sin-
gulier U, ; il existe dans le sous-groupe g, associé & U, un élément d, tel que
P’automorphisme ¢ (d,) conserve T'¢ et 7'™, en induisant dans ce dernier une
transformation involutive non identique S, conservant chaque élément de U,.
Les d,T* engendrent un sous-groupe F' du normalisateur de 7" et F'/T% est
un groupe fini @(G,) de transformations de 7™ en lui-méme, conservant
chaque composante connexe.

Proposition 3 et définition. Il existe un groupe fint @(G,) de transformations
de T™W(Q,) en lui-méme, engendré par les involutions par rapport aux sous-
groupes singuliers U,,..., U,. Ces involutions sont les restrictions & T™ (G,)
d’automorphismes tniérieurs de G .

4. Caractéres de G relatifs ¢ T. 1l existe dans G, un toroide maximum 7% et
un seul contenant 7 ; lorsque v décrit 7';, les automorphismes intérieurs ¢ v
forment un groupe abélien dont la représentation linéaire adjointe dans R (G,)
est un groupe orthogonal ; chaque matrice de ce groupe conserve m 2-plans
fixes 7;,...,7, et chaque point de R) = R(T;). ¢t induit dans n; une
rotation 0,(t)eT? et les 0f'(v) sont les caractéres®) de @ relatifs a 7.

1) [10], § 2, n° 3.



Sur les groupes de LiE compacts non connexes 61

L’automorphisme gz (x générateur de Z, dans 7'™) conserve T (et chaque
point de T75); il permute donc en particulier les caractéres 6F'; ainsi, 'en-
semble des ;' se décompose en cycles relatifs & . D’ailleurs, les 65! se ré-
partissent en suites de caractéres égaux sur 7'%. Je désire prouver que ces
deux partitions sont identiques.

Lemme. S: U'automorphisme intérieur ¢ x du groupe de Liz semi-simple clos
H détermine sur les parameétres angulaires fondamentaux ¢,,..., @, une per-
mutation @, — @, , alors le toroide mazimum T} du normalisateur connexe
de x est défini par le systéme obtenu en égalant les @, dans chaque cycle.

Le rang du normalisateur connexe est égal au nombre des cycles.

En effet, soit o la transformation linéaire du diagramme R’ induite par ¢z ;
le sous-espace R} des points fixes de ¢ dans R. est appliqué canoniquement
sur T? dans 7', et posséde aussi la dimension A ; il détermine 7'*. Soit L un
point R!.; ’hypothése oL = L, j;inte a la relation

?.(y) = (o@,)(0y) oh yeR,

entraine ¢, (L) = ¢;,(L). Sidonc la permutation ¢,— ¢; est décomposée
en cycles, et si 0L = L, alors les ¢,(L) sont des nombres égaux dans chaque
cycle. Réciproquement, si ¢,(L) = ¢, (L), on a ¢, (L) = ¢; (¢L) pour
les I indices, d’ou L = oL.

S’il y a s cycles de longueurs respectives a,, a,, ..., a,, le systéme qui définit
T* posséde (@, — 1) +---+ (a, — 1) équations linéaires indépendantes ; la
dimension du sous-espace des solutions est

L= Lo — 1)+ + @ — D] = Za, — [Fa, —s] =+,

d’ou s =h.

Revenons au groupe @, et soient 0,,...,0, les caractéres de G qui sont
égaux & 0, sur T?; l'automorphisme ¢z permute 6,,...,0,, car px con-
serve chaque point de 7" ; soit s le nombre des cycles de cette permutation.
Passons aux paramétres angulaires de G, relatifs & 7' ; & 6! correspondent
respectivement + u;, et d 0,,..., 0, correspondent y,, ..., u,. Comme 7% est
régulier, 4, — pu, n’est jamais un paramétre angulaire (¢ #j;¢,5j =1,...,n),
et uy,...,u, estune suite fondamentale d’un sous-groupe @ de rang [ de G,
contenant 7', et T%. Le normalisateur connexe N’ de z dans @ contient 7' et
est de rang &. Remarquons que 7' contient un sous-groupe U de dimension
h — 1 défini par p,(y)=---=p,(y)=0 avec y eR}; d’aprés cette définition,
U est dans le centre de .

Soit maintenant @’ le facteur semi-simple de @ ; son toroide maximum 7'; est

défini dans R} par les vecteurs du diagramme s ;,,. @z conserve @',
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Te, ainsi que ’angle polyédre fondamental u, > 0,..., u, > 0 dans R". Le
toroide maximum du normalisateur connexe de x dans @' est défini par
I’égalité des u,; dans chaque cycle relatif & pz, et la dimension de ce toroide est
égale & s. Le sous-groupe U et ce toroide engendrent dans @ un sous-groupe
abélien connexe de N’, de dimension au moins égale & (A — 1) + 8, et au
plus égale & b, d’ott s = 1.

Proposition 4. Tout automorphisme intérieur px d’un groupe de L1 clos G
conserve un toroide maximum T* de la composante neutre de G, ainst que dans
T chaque point d’un toroide Ty maximum dans le normalisateur connexe de x.
Les caractéres de G relatifs a T'! se répartissent en suites de caractéres égaux sur
T?; @z permute circulairement les caractéres de chaque suite.

5. Caractéres associés. Revenons & zeT" générateur de Z, dans T™ et soit
6,..., 0, un cycle de la permutation des ' induite par g 2. Le sous-espace
II =1II, 4---+ II, est invariant par ¢z ; soit « la transformation linéaire
orthogonale induite par g2 dans I7I. Revenons maintenant aux caractéres
xf* relatifs & 7™ ; en vertu de la proposition 2, on a sur un générateur » de

m
T®: x, #x; 8i © #J, et tout sous-espace de R*™ = X ]I, stable pour ¢»
est somme directe de 2-plans du type 4, (cf. n° 1). 1
~ Or 17, stable pour @z (ze7T}) est aussi stable pour gz, et est donc stable
pour tous les ¢t (teT™ et en particulier pour ¢w; ainsi, IT est somme
directe de » plans A,, désignés par A4,,..., 4, avec les caractéres associés
Xise5 Xn»

Je dis que « fait tourner A,,..., A, d’angles en progression arithmétique
de raison 2n/n. En effet, « est dans I7 une transformation linéaire ortho-
gonale d’ordre ¢’ diviseur de ¢ ; de plus, n est un diviseur de ¢’, avec ¢’ = np.
Il existe dans 7 un élément z tel que @z fasse tourner A,,..., 4, d’un
méme angle —2x/¢’; alors =m,,...,7n, tournent de ce méme angle. Si g’
désigne la transformation linéaire induite par ¢z dans IT, on a af’ =g «= 8.
Soit e, un vecteur quelconque de I7; ; on peut voir que f"e, = e,; en effet,

p* = B'"am, ol o™ est une rotation de m, d’ordre p, et f'* une rotation de I7,

d’angle i n= — L) , ce qui donne f*e, =e,. En résumé, § permute

ql
circulairement e,, fle, .. .,pﬁ"—lel . Or, les valeurs propres d’une telle matrice
sont 1,¢,é%,...,e"1 avec ¢ = exp (2nt/n); cela prouve que g fait tourner
Ay, ..., A, d’angles respectifs 0, 2z/n,..., 2x(n — 1)/n (avec une numéro-
tation convenable). Finalement, si 7 = tx (teT?), @, = ¢,p, fait tourner
A,,...,4, d’angles en progression arithmétique de raison 2x/n.
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Proposition 5. Soitent TW(Q,) =T? + T +... e THG,) deux sous-

groupes abéliens associés respectivement a la composante connexe G, et a la com-
posante neutre G, du groupe clos G, avec TrcT!, TMC@G,.
A towt caractére 0, de Q relatif a T est associée la suite 0,,..., 0, des carac-
téres de méme espéce égaux o 0, sur T ; les caractéres de G relatifs & T™(@G,)
égaux & 0, sur T} forment une suite %y,...,%.. St yeT™, alors Uauto-
morphisme @y permute circulairement 0,,...,0,, tandis que x,(y), ..., %.(¥)
forment une progression géoméirique de raison exp (2mi/n) .

§ 2. Diagramme D (G,)

1. Données. Soient G un groupe de LIk clos, G, la composante neutre de G,
G, une composante connexe quelconque, puis G, + G, +--- le groupe
engendré dans @ par G,, T"™W(@,) le sous-groupe abélien associé & G,, avec
T (@) = Tt 4+ T¢ + ... produit direct T¢ X Z,, Th C G,, TM C G,, 1é1é-
ment zeT{" étant un générateur de Z, cyclique d’ordre g¢.

Soient encore 7', l'unique toroide maximum de @, qui contient 7', puis
R! le diagramme de G, pourvu de ses paramétres angulaires; soit f: B} — T}
Papplication usuelle de recouvrement (cf. I, § 2, n® 1), f~1(e) étant le réseau

unité §,; on a de plus une origine O située dans le réseau central _6-1 .

Si ¢ est un élément de 7 voisin de e et régulier, il existe un polyédre fon-
damentsl P(G,) de Rl contenant un représentant de ¢ voisin de O. Je désigne
par R le h-plan appliqué sur 7' par f et qui contient O.

2. Définition de R™ (G,). Formons la somme directe R* de R} et du groupe
Z des entiers rationnels. Je pose J = (0, 1), R! = (R}, 1), R!=(R}, k).
L’application f, déja définie sur R?, va étre étendue & BR™™. Je pose

f: R® — T avec [(t,k)=f(t)a*, teRl.

Ona
f(4 + B) = f(A)f(B), [(R}) =2*Tg, f(B))=1T{, f[(R})=T;.
I1 nous sera utile ci-dessous de posséder une décomposition de I’application
f restreinte & R*, que je désigne par f|R}. Prenons B fixe quelconque dans
R!, b = f(B), et soient f,: R* > R} définie par f,(4 4 B) = A, puis
fa: T? - TV définie par f,(x) = bz. Alors
fIR = faffy -

Cela permet déja de considérer f|R! comme une application de recouvre-
ment, R étant un recouvrement simplement connexe de 7%,
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Nous pouvons aussi introduire une métrique sur R” : en effet, le groupe ¢los
@ est un espace de RIEMANN dont la métrique induit sur 72, 7™ une métrique
localement euclidienne ; de plus, R, et R? sont des espaces euclidiens appli-
qués isométriquement par f sur 7'} et T2. Alors f;' définit une métrique
euclidienne sur R? par la formule dist (B 4+ 4, B + A’) = dist (4, 4’), cette
métrique ne dépendant pas de B. D’autre part, la translation f, est une iso-
métrie. On voit que f|R} = f,ff, applique R? isométriquement sur 7",

3. Réseau unité dans R™(@,). Soient A, BeR!, avec f(4) = f(B); on &
HA)f(B)It=e, f(A)f(—B)=¢, f(A—B)=c et f(C)=¢ si C=A—B,
ce qui prouve que C est dans le réseau unité 5, et dans R!. En résumé,
f(4) = f(B) si et seulement si A — B est dans la trace sur R} du réseau unité
d, ; autrement dit, les translations de recouvrement dans R} sont définies par le
réseau-trace 8y, = 0;~ R}.

Maintenant, les points de R™®(@,) qui sont appliqués sur e par f forment
un réseau unité §, engendré par d, et par qJ <R} .

4. Caractéres et paramétres angulaires. Diagramme. Soit

0:0,,c0050,; 2150055 An (1)

une ligne de caractéres associés, les n premiers étant relatifs & 7, et les n
derniers & T™, Soient u,,...,u, les paramétres angulaires relatifs & 77 qui
correspondent respectivement & 6,,..., 0,. Je fais correspondre au caractére
%; une forme linéaire &, définie sur R*(G,) & l'aide des formules

&;(t, k) = o(t) + ke;(J)
avec x = f(J), exp[2nie,(J)] = x,(%), o(t) = u;(t), teR:. Ona
exp &(t,k) = x,[f(t)=*] .

Les x;(x) forment une progression géométrique de raison exp[2z:/n] com-
prenant n termes, permutée circulairement si on multiplie ces derniers par
exp[2nir/n] (r entier arbitraire). De 14 résulte qu’on peut écrire

n—1
- .

1
& =¢, ezr—s—l——;{,"', &, =€+

¢ pouvant étre remplacé par ¢ -4 r/n, avec une numérotation convenable.

En particulier, on peut supposer, si c’est nécessaire: 0 < ¢ <% . Ala ligne 1)

correspondent dans la ligne 2) lés formes

n—1
n

1
0 M1y * s Hns 9+8k,9+(6+7)k,-~,9+(8+ )k (2)
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Les formes & ainsi introduites sont par définition les paramétres angulaires de G
relatifs a T™(G,).

Nous sommes en mesure maintenant de définir le diagramme D(@®,) de sup-
port R™(G,). Au sous-groupe singulier U; noyau de y, correspond par f-!
dans R™ une famille de (h — 1)-plans paralléles distribuée dans chaque R%.
Pour caractériser cette famille, il suffit de se restreindre & R?, ce que nous
ferons désormais. Lorsque j varie de 1 & n, nous obtenons dans R? n familles
de (h—1)-plans singuliers tous paralléles deux & deux, définies par &, =0
(mod 1). Dans R?, ces familles coincident et sont définies par ¢ = 0 (mod 1).

Toutes les familles ainsi obtenues dans R} constituent le diagramme D(G,)
associé d la composante connexe G, de G.

5. Isométries dans le diagramme. Considérons & nouveau l'involution S,
associée au sous-groupe singulier U, dans 7™, qui conserve chaque élément
de U; (voir § 1, n° 3) ; étudions le relévement de S, par /! dans R}. Exami-
nons d’abord le centralisateur N, de U, dans G, ; T% est un toroide maximum
de N,, et nous avons dans R} le diagramme de N, relatif & 7% ; o est le
caractére de N, relatif & 77, et les relations ¢ = 0 (mod 1) définissent dans
R} la famille de plans singuliers associés. On sait, par la théorie classique,
que le relévement dans R} de Uinvolution 8,;|T?% relative & N, contient la symétrie
par rapport d tout plan singulier o = ¢ endier, et en particulier la symétrie par
rapport @ o = 0.

Cela étant, relevons S;|7T%®; il lui correspond dans R} une classe?®) F(S,)
de transformations dont §’affirme qu’elle contient la symétrie par rapport a tout
plan singulier &, = 0 (mod 1). En effet soit V,, un tel plan, BeV,,,
b = f(B)eU,, et remplagons f|R! par f,ff, (voir n°2). Alors f, transforme
la symétrie par rapport & V,, en la symétrie par rapport & o = 0 dans R}; f
transforme cette symétrie en S,|7? comme nous venons de le voir; enfin,
fs transforme 8;|7¢ en S,;|T™, en vertu de S8,;b = b. En résumé, f trans-
forme la symétrie par rapport & V,, dans R} en S,|7T(", et I'affirmation est
établie.

Il est clair que la symétrie par rapport & tout plan singulier du diagramme
D(G,) conserve ce diagramme, puisque les involutions S, sont les restrictions
a T™W(@,) d’automorphismes intérieurs de G'. Nous obtenons ainsi un dia-
gramme D(G,) dans R?, au sens de E. STIEFEL, avec un groupe kaléidosco-
pique I'(G,) engendré par toutes les symétries décrites. Rassemblons les résul-
tats :

Théordme. Soient G un groupe de L1k clos et G, une composante connexe quel-
conque de Q. Le groupe abélien

) [8], début § 4.

5 Commentarii Mathematici Helvetici
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T™(G,) = TexZ, = TewT®v
est U'image par Uapplication isoméirique f d’un recouvrement euclidien
R®W(@) =R+ Z=RIvRlv... (f(RY=TM)

avec I(A + B) = f(A){(B). Le noyau de f est un réseaw unité engendré par
la trace sur R! du réseau unité de R, ainsi que par le point unité (0,q) = qJ .
- Aux sous-groupes singuliers de T™(Q,) correspondent dans R" des familles
de (h — 1)-plans singuliers, paralléles et équidistants dans chaque famille, cons-
tituant le diagramme D(Q,). La symétrie par rapport & tout plan singulier du
diagramme conserve ce dernier, et ces opérations engendrent un groupe spatial I'(G,).

6. Réduction au cas semi-simple. Reprenons le groupe G =Gy + G, +--- ;
on sait que @, est localement le produit direct 7'* X G ot 7' est la composante
neutre du centre de @,, et G le facteur semi-simple ; prenons z quelconque
dans @,, le toroide 7 maximum dans le normalisateur connexe N,, puis
T (@) = {Th,2} = T*x Z,, ou Z, est engendré par zeT? = 2T2C@G,. 1
existe un toroide maximum 7' unique contenant 7'z, et on a

T!=T?xT. (produit direct local) 77 CGg ,
T = T? xT¥ (produit direct local) 7' c7T?; T cT{ .

. G5 et z engendrent un sous-groupe @&’ de @, de composante neutre G, puis-
que z est d’ordre fini et est échangeable avec G;. Avec G, = z@,, on peut
prendre T (Q}) = T¥ X Z,. ,

Maintenant, les caractéres y; s ’annulent sur T*, qui est dans le centre de
G,; alors les paramétres angulaires associés &, sont constants sur chaque
(b — 1)-plan paralléle & R*' (qui correspond & 7T'?'). Cette particularité nous
raméne au cas o G, = G est semi-simple, avec h = k', I = I', ce que nous
supposerons désormais. '

7. Tableaw canoniquement associé a G, (avec G, semi-simple). Considérons
la suite fondamentale qui définit P, = P(G,) (voir I, § 2, n° 1), et la permu-
tation des éléments de cette suite qui est induite par I’automorphisme in-
térieur associé & zeT"™. En faisant usage du § 1, n% 4, on peut présenter les
cycles de cette permutation par lignes

(!1, (Xg,.. .y anl

ﬁl’ ﬂm‘"! ﬂn, | (l)

oooooooooooo
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les paramétres de la ¢-8me ligne se réduisant sur R} & une forme linéaire p;.
Je dirai que les valeurs sur AeR) des formes (1) sont les coordonnées cano-
niques de 4 ; de plus, g,,..., g, définissent un systéme de coordonnées sur
R}. Remarquons que n,,n,,...,n, divisent Pordre r de ¢, dans G/G,, car
si zeT™M, 2" est dans T} et 'automorphisme associé est 1'identité sur la suite
fondamentale. On peut présenter maintenant le tableau des lignes de para-
métres associés | |

' 1 n, — 1

B4R 0‘1:"':0‘741:91+61k:91+(81+—)k’"'391+(81+ - )k’
L IR ) m nl

01: 71:"‘:?’n;.19h+8hks9h+ 8)»"";{‘ ky -, 0+ &+ % k,
. ) .

Remplagons le point unité J par I =J + (— &,..., — &,0). Les for-

mules de changement de coordonnées sont g; = g, + &k, d'ou le tableau
sous forme canonique (en supprimant les astérisques)

k
Q1 &gy = ¢ * s By, ¢ 91’91‘}“,’;’:,"" 0, +

k
On+Y1s " s ¥Vmy ¢ Qh’9h+”ﬁ;’ “ccy ot

Il ne dépend que de la suite fondamentale de G/, et de la permutation in-
duite sur cette suite par un élément de @,. Je dirai que I est un point origine
dans R*. D’aprés ce que nous avons vu (§ 2, n° 4), le point I+(—:—;3- sy %)

1 h
(r; entiers arbitraires) peut aussi étre considéré comme origine, le tableau
restant canonique.

§ 3. Construction de diagrammes

Je considére toujours le groupe de Lik clos G =G, + G, +--- la com-
posante neutre G, étant semi-simple ; 1nterv1ennent ausm le recouvrement sim-

plement connexe Go de @,, le centre Z = Z, de Go, le sous-groupe V de Z

tel que G, = Go/ V, cette unité V étant stable pour ’automorphisme in-
térieur associé & un élément de G,. Dans le diagramme R de G, relatif & T',
I'unité est un réseau (unité) §, dont la trace sur R} est aussi la trace du résean
unité 4, de R™(@,). Ces réseaux seront étudiés et construits an § 4 ; ici, nous
n’étudions que les diagrammes considérés comme ensembles de plans singuliers.

- 1. Structure d’un cycle. Soient zeT", @z I'automorphisme intérieur associé,
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et o l'effet de pz dans R|; considérons une ligne quelconque de paramétres
associés
O iseeesfhns Exseees ns

on sait que o permute circulairement les formes u,,..., u, (§1, n°4); alors
les vecteurs associés ;l, cony _/:,, ont tous la méme longueur, et la figure de

ScHLAFLI $(u,) associée est du type

# Ha B .
e O 'e) o) O 'e) vs 5 0O O o .
B, B, By

Elle est formée de ¢ blocs B,,..., B, ayant évidemment tous un méme
nombre p de points, & cause de la transitivité de {o} sur le cycle considéré.
Les bloes B,,..., B, eux-mémes sont permutés circulairement et transitive-
ment. On peut avoir p = 1, ce que j'écris po=1. Si p>1, il existe un
entier 8 tel que o°u, = u,y; alors o® conserve B, sans se réduire a I’identité
sur B,, ce qui entraine o®u, = u, et p = 2; je poseici p, = 2.

Proposition. 8¢ o : py, ..., py; &1,. .., &, est une ligne de paramétres angu-
laires associés, alors le graphe de ScuLAFLI associé & uy, ..., u, est de Uun des

types

O @) A O pq=1
01 Hs bn
O o Oo—-0 «os O—0 Pe=2 (n=2q).

M Pt He  Hg+2 Hq  H2q

2. Diagramme D(N) (diagramme réduction). Nous avons trouvé dans le
support R? du diagramme D(G,) un point I dit origine paraissant jouir de
propriétés particuliéres; étudions le normalisateur connexe N de I'élément
x = f(I). C’est d’abord un sous-groupe de rang k de G, ayant un toroide
maximum 7'* ; en examinant le tableau canonique (§ 2, n°® 7), on voit que les
paramétres g,, ..., g, relatifs & 7™ (G,) s’annulent sur I, ce qui signifie que
N est tangent notamment aux plans Ag,..., 4q, (§1, n°1, 5), et les formes
015--+, 0p Sont des paramétres angulaires de N ; comme I'angle polyédre
0,>0,...,0,>0 dans R} est intérieur & P(G,), les formes o,,..., g, cons-
tituent nécessairement une suite fondamentale de N. Les parametres an-
gulaires +¢0;,..., +0p,..., 0, de N sont des combinaisons linéaires &
coefficients entiers de p,,..., g,, etles (h—1)-plans ¢,=0 (mod 1) forment
dans R} le diagramme D(N) de N. Notons que N posséde un groupe fini
@ (N) engendré par les symétries par rapport aux plans ¢, = 0,..., ¢, = 0.
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. Je dis maintenant que N est un sous-groupe (H), de G,.2') En effet, le cen-
tralisateur C'(N) de N est dans 7'} puisque N est régulier; si ceC (N), I'auto-
morphisme ¢(c) conserve chaque plan 17 ,..., Han, ainsi qu'un vecteur de
A, et les projections de ce vecteur sur les Ha’, c’est-a-dire chaque vecteur
de 11, ,..., II(,,”1 ; il résulte de cela que «,(c),..., x, (c) sont entiers, ainsi
que By(c), ..., Vn;(c), ebc est dans le centre de G,. Cela signifie que N est un
sous-groupe (H) de G ; comme N a méme diagonale principale ¢ : o, =...= g,
que G4, c’est bien un sous-groupe (H), de G,.

On peut ajouter que N contient un sous-groupe principal y de G, relatif &
la diagonale ¢ ; d’ailleurs ?2), on a 31 = 2a, Z‘ avec Za; =1 et de plus
a, = ay=...=a, vuleffet de o, d’ou

> 1 ->
= 2. .
01 n, xg

Le normalisateur connexe de f(I'), ou I' =1 + (%—, ceey %, 0) (r; en-
1 h

tiers) jouit des mémes propriétés que le normalisateur de f(I), en étant tangent
/!

notamment & & 2-plans du type 4, + —2—'— .
i

Proposition. Sost

nl - 1
™

n, — 1
Ny,

91:0‘1""’0‘n1:91""’91+ k

R I A Y IS k
le tableau canoniquement assocté @ la composante connexe G, du groupe de Lik
clos Q. Le normalisateur connexe N de z=f(I) ou I est l'origine (0,0,...,0,1)
de R est un sous-groupe (H), ayant une suite fondamentale o, ..., g,. Le dia-
gramme D(N) de N est entiérement déterminé par les vecteurs

1 71> 1 %"h>
:-———2 . _———E
€1 n 1 Xgs s O 3 Vi

3. Diagramme intersection D, . Les (I — 1)-plans singuliers de R} coupent
R} suivant des familles de (& — 1)-plans singuliers recouvrant dans 7% les
sous-groupes singuliers U, restreints &4 7. On a vu que la symétrie par
rapport & chacun de ces (b — 1)-plans est projetée sur une involution 8,|7"
(voir § 2, n® 5). De 1o résulte que lintersection D, = D(G,)~R? est un

1) [9], chap. III.
22) [9], p. 227.
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diagramme, dit diagramme intersection par définition. Par quels vecteurs est-
il défini?

Si le paramétre angulaire 4, de G, ne se réduit pas sur R? 3 I'un des para-
métres +9,de N (1 <h), ona®)sur R*: u, =mp, ol pest 'undes +p,
(¢ < h), soit g, par exemple en faisant usage de @(N) et en changeant éven-
tuellement les notations. Alors, si p, = p, =1, on a u, = Zm,a;, d'ou
m =1, et u, est I'un des o, ce qui est contraire & I’hypothése. Si p, = 2,
il vient m = 2, 4, = o, + o,,, par exemple (voir n°1). Dans ce cas, la
famille des (h—1)-plans singuliers paralléles &4 ¢,=0 est définie par p,0,=0

(mod 1). Les vecteurs qui définissent le diagramme sont P:Zv veny phg,,.

Proposition. L’intersection D, = D(G,)~ R} est un diagramme de support
R}, déterminé par les vecteurs

e >
P101s+++s PrOn (p; = 1 ou 2).

Remarque. Si p, = p, =...= p, = 1, alors les diagrammes D(N) et D
coincident.

4. Formation du diagramme D (G,). Considérons g,, avec p, = p; = 2, et la
ligne associée
2g — 1
2q
alors «y + gy, Qg + Ogpgs e .-y &g + ap, SOMb égaux & 29, sur R, et il n’y
a pas d’autre paramétre angulaire qui se réduise & 29, sur R} (voir no 1).
Cela donne une ligne de paramétres associés

k
91:0‘1:"'»“2«391’914“%:""91““ k  (n,=2q)

—1
201 1 @y F Kgiys c s KgF 0y 1 20 + 1k, ---,291+<v1+ g 7 )k

Quelle est la valeur de », ? Remarquons que I'on peut supposer 0 <» <1/q
(§ 2, n° 4). On ne peut avoir », = 0; dans un tel cas, N serait tangent &
Age,> et 0,, 29, seraient des parametres angulaires de N, ce qui est impos-
sible. Ainsi, 0<»,<1/q, etle plan 29, + », = 0 de R? est entre g, =0 et
0, = — 1/2¢q, c’est-d-dire entre deux plans consécutifs de la famille des
0, + 7/2¢ = 0 (mod 1). Comme la symétrie par rapport & 2p, + », =0
conserve D (@,), le plan en question est au milieu, et est défini par o,=—1/4g¢,
d’ou », = 1/24.

) [9], p. 239.
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" Proposition. Si p, = 2, on a lés deux lignes associées

k 29 — 1
01:0‘1:"',0‘2«:91,914—”27!‘,"',914— q2q k,
k 3k ' 929 — 1
,201:“1+0‘q+1’ e ,(xq+“2q:291+"2—é‘,201+—§-q—’ LRI 291_'_. q2q k.

En appliquant @(N) & @,,..., 04, P101>--+> Dn0s, ON obtient toutes les
traces sur B} des paramétres angulaires de G, c’est-a-dire aussi toutes les traces
des paramétres angulaires de &,, d’ou le tableau complet associé. Par quels
vecteurs peut-on déterminer le diagramme D (Q,)?

Dans R?, nous avons les familles g, 4+ p/n; = 0 (mod 1) avec p=0,1,...,
n; — 1 en supposant p;, = 1; on définit d’un seul coup tous les plans singu-
liers paralléles & g, = 0 dans R" en posant 7,9, = 0 (mod 1). Maintenant,
si p;=2, onaura les deux familles g, +p/2¢;=0 et 29, + p/2¢; =0 (mod 1),
que ’on définit simultanément en posant p;n; ¢, =0 (mod 1), avec n,=2g¢;.
En résumé, on a dans tous les cas la formule unique p;n;p; = 0 (mod 1),

et le diagramme D (@,) sera défini par les vecteurs plnlgl, ceny p,,n,,z,,, ou

pIZZ,-, - p,,).',';,- (voir proposition n® 2).
Théoréme. Le diagramme D(G,) associé a la suite fondamentale

Cxl,...,anl;ﬂl,...,ﬂn’;..-;yl,...,ynh

et d la permutation automorphique qui induit une permulation circulaire swr
chaque suite partielle, ce diagramme est défini par les vecteurs

> B > -> nh >
Q; =p 2 oa;= plnlel""’Q;a = th: Vi = DPaMp0p
1

Le coeffictent p; est égal d 1 si les vecteurs correspondants sont perpendiculaires
deux a deux, stnon p;, = 2. ‘

Polyédre fondamental P(G,). Ce qui précéde permet d’introduire dans R* un
systéme de coordonnées cartésiennes g;,..., 0, d’origine I, avec g;(4)=
— Z: . I—jfl . Les inégalités o] > 0,..., g4 > 0 définissent un angle polyédre
fondamental du diagramme D(G,) qui contient un polyédre fondamental
ayant un sommet en I ; nous avons ainsi par définition le polyédre fonda-
mental P(G,), défini par des inégalités

00=0,...,0, 200 <1,...,0, <1,

ol les w} sont les formes dominantes correspondantes.
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Tout yeG, posséde dans P(F,) au moins un représentant Y, f(Y) étant
un conjugué de y relativement & G,. Le domaine fondamental D (G,) d’élé-
ments de @, conjugués relativement & G, est dans P(@F,); son étude sera
abordée au § 5.

6. Structure du normalisateur d’un élément de T*. Nous avons déja étudié
le normalisateur N de z = f(I) ou I est origine dans R? ; quelle est en géné-
ral la structure du normalisateur N, d’un élément y quelconque de G,? 1l
suffit de prendre yeT™, et Y eR*, avec y = f(Y).

D’abord N,, qui posséde un toroide maximum 7%, est un sous-groupe de
rang k, de diagramme situé dans le recouvrement E! de 7T%. Cela étant,
par Y passent un certain nombre de plans singuliers du diagramme D(@,),
formant un ensemble &,. Chaque plan de K, appartient & une famille

mo + kP —o , ou c est un entier variable (p constant, m = 1 ou 2); alors
e n

mp est un paramétre angulaire de N, défini sur R?, avec N, tangent au
2-plan 4,,4,4e»- Réciproquement, tout paramétre angulaire de NV, est obtenu

de cette maniére. Les (h — 1)-plans mg = 0 correspondant dans E} aux
—

plans de &, forment un ensemble &, déduit de &, par la translation YO, et
les vecteurs mz sont les vecteurs du diagramme de N, dans R}.
Remarquons qu’un angle polyédre fondamental %, de N, dans K], est déja

représenté par U, dans K,, & I'aide de la translation 0 appliquée & A, ; A,
n’est traversé par aucun (A — 1)-plan singulier issu de Y (sinon 9, ne serait
pas fondamental dans K&,).

Supposons maintenant Y ¢ P (@,), ce qui est toujours possible ; je désigne par

0, >+ > 0g, (nulles sur Y) 1

Wp, 5 e s O (égales & 1 sur Y)
toutes les formes o}, w; entiéres sur Y. Elles définissent un angle polyédre U,

circonscrit & P(G,) ; I'application mp + k —P- — mg detout & I’heure fait cor-
respondre aux formes (1) des formes

04y 5+ ++5 04

(2)
w, 1% W, k

définies dans E?, constituant une suite fondamentale de N,.

La structure de N, est prathuement déterminée en deux temps :
> > > ‘ ,
B) Qgyr+ees Qg — Wpysee- wzk donnent I’angle U, par simple lecture de

la figure de SCHLAFLI de P( 1)



Sur les groupes de L1e compacts non connexes 73

> >
b) -Q)dl’ ooy Zd‘, — @, ..., — @, constituent la figure fondamentale de

N, . En particulier, si Y est un sommet de P (@,) et si N est simple, on a un pro-
cédé analogue & celui décrit dans [1].

§ 4. Construction du réseau unité

1. Eléments du centre dans le toroide caractéristigue T?. Reprenons les
notations dé]a introduites (Chap. I, § 2, n° 1, et I1I, § 3 1ntroduct10n) avec

encore f-! —-f Y(V) =96, et Zb ——f )~ P(G,).
Je dis que f est biunivoque sur Z‘? ; en effet, si A,BeZ" avec f(A)=[(B),

alors 4B est un vecteur de o, ; aréte de P(@,), ce qui est impossible si 4 # B.

Maintenant, si ye7{", 'automorphisme @y est représenté par une trans-
formation linéaire ¢ dans R); o conserve P(G,) et permute circulairement
les éléments de chaque suite partielle dans o, ..., ap ;- 5¥1500c, VY- L@
point A de coordonnées canoniques

Byyenny Oy Gy s @y y By yeney By
b b b,,,b b
1 9 o 0 oy n . n 1) 1 ’ e o0y n __1
4 = ' est appliqué sur 04 =A4'= : '
Ol ) .y Cnh cﬂh 9 Cl ’ ’ Cnh_l

et ona (1) (py)f = fo. i )
Je désigne par V, le sous-groupe des éléments de Z = Z, centre de Gy qus sont
conservés par ¢y . On a
Vi=flZ9~ER}] ; (2)

en effet, si ae Vl, il existe AeZ'Y, avec 7(11) =a; 04 = B entraine
fB = f~oA (py)f A) = (py)a =a = f (A), d’'ou A4 = B puisque 7 est
biunivoque sur Z?, et 6 A=A, ce quiimplique ARy, AeZP~R}. Inverse-
ment, si Ae ZP~R}, ona f~(A) ei{,‘n Zc V,. On peut écrire immédiatement

V,=Z~T! . (3)

Cherchons enfin I'intersection du centre Z, de G et du toroide caractéristique
T}, Cela revient & chercher les ze Z tels que AzeT?. Il existe uel® avec
Au = Az, d’ou A(u'z) =e, u'zeV, ueZ, ueZn i’,‘, ueV, (formule 3),
et zeVV,. Réciproquement, si zeVV,, on a AzeTh. 1l vient Zy~T} =

AVV, = AV,
Zof\ T(’; - A-VI . (4)
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Proposition. Les éléments du centre Z, de G, qui sont dans le toroide carac-
téristique TP s’obtiennent em projetant canoniquement les éléments centraux
du polyédre fondamental P(G,) qui sont stables pour l'isométrie associée a G,.

Remarque. Les éléments de Z, qui sont stables pour ¢y forment un sous-
groupe V, qui contient 4V, et qui peut en différer.

2. Construction de T™(G,). D’aprés le chapitre I, § 3, le groupe de LiE
clos G non connexe contient une extension 3 du centre Z, de G,, cette ex-
tension caractérisant G en tant qu’extension de G, ; de plus, 3 est le centrali-
sateur d’un sous-groupe principal de G,. Je me restreins dans G' au sous-
groupe (, qui est engendré par la composante connexe étudiée @,, et j’appelle
7 l'ordre de G, dans G/G,; je pose 3,=3~G,=2Z,+Z,+---, aveec Z,CGq,.

Prenons x quelconque dans Z,, cet élément définissant 77® (@,). On a 2"¢ Z,
et méme z"eV,. Deux cas sont possibles

1.| 2eAV, | ; alors 27eTh, et T™(@,) posséde exactement » composantes

connexes ; il existe dans ce cas un sous-groupe Z, de 7™ (@,), tel que
T®(G,) = T?x Z, (produit direct). Alors ®, est un produit semi-direct
(GoX Z,). L’élément x est un générateur de Z, si 2" = e.

2.| 27¢AV,|; il existe ici un entier p>1 minimum tel que z?*e7T?. 1l
existe un sous-groupe Z,, de 7™ (@,) avec T™(Q,) = T?x Z,,, p des com-
posantes connexes de ce groupe étant dans G,.

Remarquons ceci: Lorsque G, =@, ona AV,=V, =V, Cf’(’,’, et G,
est un produit semi-direct. De méme, si G, = éo/Z, ona Z,=e¢e, a"=ce,
et on a aussi un produit semi-direct.

Théoréme. Toute extension cyclique finie d’un groupe de L1k clos connexe sem-
simple, simplement connexe ou de centre réduit a e, est un produit semi-direct.

3. Réseau-trace. Notons 4,, = 6,~ R} le réseau-trace minimum, et
don = 6,~ B} le réseau-trace. Je dis qu’on a

[oon= VAV,

En effet, si Aed,,, ona certamement fAeV puisque f6 = V; AeR} en-
traine o4 = A, fAeVl, d’ott féo,,C VAV,. Maintenant, si aeV~V,,

il existe 4 e Z», avec ]‘A =a; ona Aed,, et AcR? en vertude (pz)a=a
comme au n° 1; ainsi, 4ed,,, et fapplique don sur ¥V~ ¥V,. On peut écrire

Gon = 7_1(V"‘ V1)’*R(’>‘
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ce qui montre que J,, est engendré par F‘l (e)~ R} = 5% et par les sommets
de P(G,) qui représentent VA~ V,.

Il ne reste plus qu’a construire f-1(e)~ R} = 6,~R}; on sait que &, est

~

engendré par les extrémités des [ vecteurs 2;/22, . 2_';,-/.;%. Si
> > > >
v=2a; 20,02+ .-+ Z’c,.Zy,./_;ﬁ (a;,...,c; entiers)
> > . .
est dans Ry, on a ov=v, dott @, =...=a, ;...;¢ =...=¢,, et réci-
proquement. Les k vecteurs 22&2/;3, cey 22—;,./—;% forment donc une base de

50,,. Un calcul facile prouve de plus que 22;,-/2:% = 2p1_;1/(p1_z)1)2, ... €n
sorte que finalement on a la base suivante pour 4, :

5 >, > A
2p101/(P101)% + « 5 2P 00/ (Pr01)? -

4. Construction du réseau unité de R (@,). Ce réseau unité a été défini au §2.
Comme nous connaissons dy,,, il ne reste plus qu’a trouver O, dans R}=(R}, q)
avec f(0,) =e (q est le nombre des composantes connexes de T'® (@,).

La droite 00, perce R? en un point J avec ¢qJ = 0,; prenons xzeZ, (cf.
n° 2), et IeR! tel que f(I) = z. Comme z est dans le centralisateur d’un
sous-groupe y principal de G,, alors le normalisateur N, de x est un sous-
groupe (H), de G,, de toroide maximum 7. Une suite fondamentale de N,
s’obtient par restriction 4 R} des paramétres angulaires d’une suite fonda-
mentale de G, ; on peut prendre g,,..., g,. Il existe alors 2 paramétres an-
gulaires o, + ri/n; (¢ = 1,...,h) entiers sur I, et ce point est une origine
dans R? (cf. § 2, n°4, 7). On a 2?=veT?. L’élément v est dans le centre Z,
de G, et dans 7% ; il peut étre représenté dans Z'¥ par WeR?. On a ainsi

gleR) | gl — Wed, .

Posons J = I = W/q. Cette formule permet dans tous les cas de situer J
dans P (@,), en faisant éventuellement usage d’un automorphisme intérieur de
@ conservant 7™ (G,) et T,

Théordme. Le réseau unité 6, de R™(G,) est engendré par les extrémités des h
vecteurs 2 pi—zi/(p,-—z),-)z, par les sommets de P(G,) situés dans VA~ V,, et par le
point qJ, o J =1 — W/q, W étant un représentant de x* dans P(G,), avec
x = f(I), I étant origine dans R}.
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§ 6. Domaine fondamental D (G,) d’éléments conjugués

1. Réduction du probléme. Pour trouver dans le polyédre fondamental P (G,)
un domaine fondamental D(G,) d’éléments conjuguées relativement a G,
il faut chercher parmi les isométries du diagramme D (G,) celles qui sont in-
duites par des automorphismes intérieurs pz avec z¢G,, (pz) T®=T® ; autre-
ment dit, il faut chercher le normalisateur N (T") de 7{» dans G,.

Soit donc ze@,, avec (p2z)T¥™ = T¥ ; on a certainement (pz)Th = T? et
(p2)T% = T%; Vopération @z induite dans R applique le polyédre fonda-
mental P(N)sur P'(N) et il existe be N avec (;Z)P’ = P; alors Wcon-
serve P(N) ainsi que P(@,), avec bze G, ce qui entraine bzeT). A laide de
@ (N), on peut done se ramener & la recherche des a <T" tels que (pa) T»=T®,
qui constituent N (T{)~ T}.

Considérons un tel élément a, et soit zeT¢; on a par hypothése
azxa~l=bzx, avec beT}, dou azalxz'=0b; or zar'=a' est in-
dépendant de I’élément x choisi dans T{?, en sorte que I’on peut écrire

aa~1 =beT? |. (1)

Réciproquement, si un ae7} vérifie cette relation, alors (pa)T® = T .
Remarquons que (pa) multiplie chaque élément de 7™ par b fixe (translation

dans 7).

2. Recherche des aeT} tels que aa’~' = beT?. Introduisons dans R} le sous-
espace R~ totalement orthogonal & R» issu de O. Il est constitué par I'en-
semble des points (coordonnées canoniques)

X =1 ¢ecereonnnss avee 2z, =0,...,22,=0.
ZI,zz,ooo’ znh

On peut remarquer que pour tout AeR., ona 4 — A'eR*" (cf. no 1),
Soit maintenant a7} vérifiant (1); prenons AeR) avec f(A) =a; ona
A — A’ = L*eR"*, et

FL¥) = f4 — A) = f(A)f(—A)) = aa'~* = beTh .

On a f(L*)eT} et le sous-espace L* 4 R} contient un élément L du réseau
unité §;. Réciproquement, soit Led, puis L* sa projection orthogonale sur
R*; formons le systétme 4 — A’ = L*; les m, premiéres équations sont

\

* * * *
a—a, =y, a—a=14,...,a, —a, =1, ou 2l=0.



Sur les groupes de L1k compacts non connexes 77

Elles admettent la solution
alzlr’a'2=lr+l;’a3=lr+l;‘+l:,---,anlzl:‘_l""‘—'—l:l=0 .

Les h — 1 autres lignes du systéme fournissent des résultats analogues.
Cela prouve que le systtme 4 — A’ = L* est toujours résoluble. 4 désignant
une solution, on peut écrire

A—A' =L+ (L*—L) ou L*— LeR}
puis:

fA4—A)=fI)fIL*—L) et aa'-t=fL*— L)eT.

Proposition 1. On obtient tous les aeT} tels que aa'~'eT? en prenant les
AeR. tels que A — A' = L*, on L* désigne la projection sur R** d’un élé-
ment L quelconque du réseaw unité 9,.

La formule b= — f(L — L*) montre de plus qu'on obtient les b de
aal~l = beT? en formant les éléments du type L — L*; or un tel élément
n’est pas autre chose que la projection de L sur R}.

Proposition 2. Les éléments b susceptibles de figurer dans aa’-! = beT™
sont les images par f des projections sur R} des points du réseaw umité é,.

Considérons maintenant un systéme de générateursduréseau 6,: L,, L,, ...
et soit L =1,L, + l,L, +--- un élément quelconque de ce réseau (I, entiers).
On a L*=ZXI,L}; soit A, une solution de 4 —A'=L* et posons A =21, 4;.
Ona A—A'=X1,A,—(Zl,A) =ZL,A,— S|, A, =21,(A,—A)) =21, L} =L*

Proposition 3. On obtient un systéme de générateurs du sous-groupe des aeT}
tels que aa'~1eT? en résolvant les systémes A — A' = L* ow L* est la pro-
jection sur RV d’un élément L qui décrit un systéme de générateurs du réseau
unité d,.

Remarquons que si A est une solution de 4 — 4’ = L*, tout 4 + ¢ ou
fe R? est aussi une solution.

3. Constructions. Un systéme de générateurs du réseau unité 8, est donné

par les extrémités des ! vecteurs 2;,- /(_;?, s wag 2;,- /_;i et par les sommets de
P(@,) qui appartiennent au réseau unité d,.

‘ " T > > 1 -~
Projetons ces générateurs sur R} ; la projection de , sur R} est p,=—Xx;.
0 k 0 1= a0y
1

>
En effet, Z,, Lz = Z,-; pour tout zeR! entraine 2;, T = nlc—;,c .z :
-> 1 ~» > > > > >
—:;((xk - Za) =0, (6, —p0,) =0 et g, — x,eR}. Cela étant, la pro-

1 > >
jection de 2-;,‘/22 sur R} est 2p,/a?; un calcul facile montre encore que cette
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projection s’écrit 23{/_5{2 avec ziznlpl—g)l (cf. §3,n°4);or 2;2/32%’ =1,...,h)
est un systéme de générateurs du réseau minimum.de D(@&,).

Proposition 4. La projection sur R} du réseau minimum de G, correspond
aux translations du réseau minimum du diagramme D (G,).

Ces translations ne sont pas en général des translations de recouvrement ;
on les obtient & ’aide de prcduits de symétries par rapport & des (A — 1)-
plans singuliers paralléles du diagramme D (@,).

Les sommets de P(@,) qui sont dans le réseau unité fournissent par pro-
jection d’autres translations. Supposons par exemple que le sommet P, opposé
a la face o, = 0 dans P(G,) soit dans §,. Les coordonnées canoniques de
P, sont

1,0,...,0 1 —1/n,, — 10y, ..., — 1[0y

0,0,...,0 0 , 0 R
AT aon pr=1 " 0

0,0,...,0 0 , 0 yeees 0

(ny — 1)/ny, (ny — 2)/0g,...,1/ny, 0 1/ny, 1ny, ..., 1/n,

0 , 0 yee0,0 ,0 o ,0 ,...,0
A ............................. B ............

kO ,0 3 90 ’O 0 ’0 b ’0

ou B(1/n,,0,0,...,0) en coordonnées p,. Alors — OB est une translation
du diagramme D(@,) conservant ce diagramme, et induite par l’auto-
morphisme intérieur pa avec a = f(4)eT:. On aurait des résultats ana-
logues avec d’autres sommets de P(G,) appartenant a d,.

Si Gy = é:, est simplement connexe, de telles translations n’existent pas
et il n’y a que les translations du réseau minimum de D(@,). Cela entraine
le théoréme :

Théordme. Le polyédre fondamental P(G,) est un domaine fondamental d’élé-

ments de G, conjugués relativement a G, st cette composante neutre est simple-
ment connezxe. ‘
- Ce théoréme était bien connu dans le cas G, = ao. Dans le cas général, con-
naissant encore les translations O—E, on pourra trouver dans P(¢,) un
domaine fondamental D(G,) d’éléments de @, conjugués relativement & @,
éventuellement plus petit que P (@,). :

Pratiquement, on considére dans D(G,) le repére Z{, o —g),’\ d’origine I ;
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L ’ 7 N >, >
le réseau minimum est formé des extrémités des vecteurs 2p}/p;> et de leurs
combinaisons linéaires & coefficients entiers. Cela étant, les autres trans-

lations OB sont déterminées par les composantes covariantes b, de OB dans le

systéme (g¢’). On forme alors la matrice (g;;) = (zg-—g;.), puis I'inverse (g%);
alors b* = ¢*'b;, ce qui permet de comparer directement les translations OB &
celles du réseau minimum. Dans les exemples traités ci-dessous (§ 6), j’ai

utilisé cette méthode sans présenter le détail des calculs.

4. Recherche des a T} invariants par px, o xeT™. Ici, on cherche les élé-
ments ac7’ avec aa’-!=¢, ou a=a'; la théorie ci-dessus s’applique
avec b=-e. L — L* est dans le réseau unité, ainsi que L*. Ainsi, on
obtient tous les aeT? tels que a =a’ en prenant les AeR! tels que
A — A' = L*, le point L et sa projection sur R? étant dans le réseau unité.

Remarquons que les nombres a, —a, , 0, —a,,...,a, —a, _, sont entiers
puisque L* est dans §,. Or, on peut faire varier 4 dans 4 4 R} sans changer
L*, ce qui permet de supposer @pyybpys -+, €y, entiers; alors a,,a,,...,a, 4
successivement sont aussi entiers, ainsi que les b,,...,c;. Cela signifie que
A + R} contient un point du réseau central, et la classe a7 rencontre le

centre Z, de @,.

Proposition 5. 8¢ zeT®™, le normalisateur de x dans T est engendré par
T? et par les éléments du centre de G, échangeables avec x.

§ 6. Efude des groupes simples

' 1. Réduction au cas simple. Dans le § 2, n° 6, nous avons opéré une réduction
au cas semi-simple ; ici, je me propose de traiter 4 nouveau cette question,
en -effectuant une réduction plus compléte ; le cas ot la composante neutre est
simple subit de plus un examen détaillé.

Je considére un groupe de L1k clos G = G + G, +--- extension cyclique
finie de sa composante neutre G,, G; étant une composante connexe géné-
ratrice ; on peut écrire V

1) Gy =T?X®g; X -+ X B, (produit local direct) ot 7' est la composante
neutre du centre de G,, I'automorphisme intérieur g2 induit par zeG, per-
mutant circulairement les facteurs simples G, . . ., G dans G,, (1=1,...,1).
Comme je ’ai souvent fait ci-dessus, je construis dans le normalisateur con-
nexe N_ un toroide maximum 72, lui-méme situé dans un toroide maximum
T de G,. On peut écrire

T!=T? xT x...xT" (T maximum dans G,,) (2)
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Tr =T xTh x ... xTH (3)

T™ est la projection de T* sur 7", tous les produits indiqués étant localement
directs. 7™ (G,) est alors engendré par 7' et par z ; il existe dans T®=2T"% un
élément z qui engendre un sous-groupe fini Z, d’ordre ¢, avec T®(GQ,)=T"x Z,
(produit direct). D’aprés (1) et (2), les caractéres de G relatifs & 7' se par-
tagent en ¢ familles; ceux de la ¢-éme sont égaux & l'identité sur 7'? et sur
tous les 7% sauf sur 7" ; leur restriction & 7% est I’identité sur tous les fac-
teurs de (3) sauf sur 7*¢. De méme, les caractéres de G relatifs & 7™ (@,) se
partagent en t familles naturellement correspondantes, ceux de la i-éme
étant aussi égaux & l'identité sur tous les facteurs de (3) sauf sur 7',

En vertu de (2) et (3), les supports R} et R} subissent respectivement les
décompositions suivantes

R, =R?* + R" ...+ R (4)
R'—Rv L BM ... RM  (RMCRY) (5)

et on a, pour les paramétres angulaires relatifs & T! et & T™(@,) des conclu-
sions analogues aux précédentes. L’automorphisme ¢z conserve un angle
polyédre fondamental P (G,) défini par une suite {«;,,} engendrant un tableau

Qi1 | %i11s » = o5 Fiang,

Qing | Fing1se » =5 Xingnip,

formé de ¢ tableaux partiels ; la suite 0,;,.-., 01,5+, 0, ©st fondamentale
pour le normalisateur principal N, et se partage en { suites partielles g, . . ., g,

mutuellement orthogonales, avec Z,-kCR"" ; les formes p,, s’annulent sur
tous les termes de (5) sauf sur R*, et les g,, -+ 7/n,, sont dans R? constantes
sur les plans paralléles & la somme (5) dans laquelle on supprime R,

Je dis que la figure de SCHLAFLI i}(zﬂ, ‘e .,Z,.M) est connexe ; en effet, si
cela n’était pas, la suite a,;; (¢ fixé) se décomposerait en deux suites au moins
mutuellement orthogonales (voir [9], p. 239) et ®,, n’aurait pas ses facteurs
simples permutés transitivement par ¢z. Le normalisateur N~ ®, est
simple. Dans ce sens, la restriction du probléme a ®,,; est une réduction au cas
simple.

Le diagramme D(@,) défini par les vecteurs z: » st la somme directe de
R* et de t diagrammes simples; le polyédre fondamental P(G,) lui-méme
est somme directe de simplexes et de R?'. N’intervient ici que le diagramme
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comme ensemble de plan singuliers et non pourvu de translations de recouvre-
ment.

En résumé, on peut se ramener au cas ou les facteurs simples de G, sont per-
mutés circulairement par px. Nous allons examiner en détail le cas des cycles
3 un seul élément. Il s’agira d’un groupe simple G, pourvu d’une extension
cyclique finie Gy + G, 4 - -- extraite d’'une extension naturelle.

2. Extensions naturelles de A,,_,. Comme au chapitre I § 4, nous avons la
suite fondamentale ¢, et la permutation ¢ unique admise par cette suite (¢ non
triviale), respectivement

|$i|=1 Gi<¢1’(p2 yo.
P> Pr—1s -

oy P15 P
s P2 (pl

0—O0—+—0—0

) l=2h—1>1,
@1 P Pi-1 @l

ce qui engendre le tableau suivant

: o p Vecteurs du Polyédre
Flgure; a;’ssoclee Vecteursr(iirtllc?zrlmls,hsateur F(N) disgramme Wl rarmal
prReP D(&y) P(G,)
1
AR T 4 > L > o> o
910 CID% o =3m +o) |35 IT 0, =20, |V2 IZ\O/O »
> e > 1 > > -
‘chl) ?991—-1 0 =3@: + Piy) Vs 2? 0, =20, V2 I
i ; |
| > > > l | A10
PaQ O Pw1| 1 =HEhork Pann) 35 k-—lT o= 2001 | V2 H
o > > T, kO
o =9 1 =
@n h h t hO| @r =0 1 type B,
Py =py=-- =p=1 [P w’ =p!+ 29%—[— e
b + 204
=2(01 120,
+ e 420
+ox)

On a indiqué en regard des vecteurs les longueurs respectives. Voici main-
tenant les sommets du polyédre P (G,) avec la structure des normalisateurs

associés (coordonnées g, ..., g, k)

Origine I (0,0,0,...,0,0,1) N({I)=N type C,
A, (,0,0,...,0,0,1) N type C,
A, (0,%4,0,...,0,0,1) N®,) type C,_s XD,

6 Commentarii Mathematici Helvetici
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A, (0,0,%,...,0,0,1) N type C,_; XD,

ooooooooooooooooo

A,_,0,0,0,...,%4,0,1) NU,_,) type C,xD,_,
A, (0,0,0,...,0,3%,1) N, type D,

Au divers groupes simples du type A,, , localement isomorphes corres-
pondent des extensions naturelles dont je vais indiquer le réseau unité 4,
associé, avec le domaine fondamental D (@,) d’éléments de G, conjugués rela-
tivement & G,. N

Tout d’abord, la famille A4,, , provient du groupe 4,, , simplement con-
nexe, de centre Z,, = (e,a,a?%...) avec a = ]T(A{), A7 =(1,0,0,...,0)
en coordonnées ¢;; on a ¢A] = (0,0,...,0,1), f~(aA{) = q~1. Si Punité V
de 22,,_1 est engendrée par a®, on a 4,, , = ff,h_l/ V, px(V) = V; le centre
de 4,,_, est d’ordre p. Nous obtenons le tableau suivant

Unité Générateurs du Réseau Point s
Grou; - réseau unité oy i unité Extension (Gy)
Pel y— (aP) (systéme g) trace a7 1
Ay s e 2?& 4—& , 2_5,z 21 | principale P&,
29, | semi-directe | P(&,)
non
principale
Ay | p pair 29, et A, | 40;, 20, | 2I | principale | P(G,)
2hk/p im- | (0,0,...,1,...,0)
pair @p;=08175%p 29, | semi-directe | P(@G,)
pp=1 non
principale

Agpy | p impair | 29 et 4} 40;, 20, | 2I |principale | 3P(&,)

2h/p pair | (0,0,...,1,...,0) |(0,0,...,0,1) I et
@;=08i1%£p con-
p,=1 jugés
Ay, | p pair 2;,; et A} 4'3,- , 2-6,, 21 | principale P(@,)
2h/p pair | (0,0,...,1,...,0) |(0,0,...,0,1)
p;i=08it#£p 41 | non P(@G,)
p,=1 semi-directe
ad- |[p=1 27;‘ et A 4—5,-, 2}3 21 | principale 1P(®,)
joint (0,0,...,1,...,0) {(0,0,...,0,1) Iet,
p;=08i15%p con-

@p=1 jugés
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3. Extensions naturelles de 4,,. Nous avons de méme la suite fondamentale,
la permutation o et le tableau associé, respectivement

P15P2 s sPn s Prii> s Pan—1s Pon
O—O0—++*—0—0 ol
P P Pi—-1 @I Pons Por—1s+ > Prnt15Pn s+ P2 Pq
. . . Vecteurs du Polyédre
Flgure;' aassoclée Vecteursrtii;:c?oax'-lnl)shsateur g (N) disreamus fondamental
prineip D(@) P (&)
— o' o
> > & 1 > > — ”
70 op |er =Hp +9) |35| 1oled =20, |V2 10
. e > > 1 l > 3 — '
‘Pz(l) ?‘Pl—l 02 =¥@: +@i1) Va 2? ¢t =20, |V2 2?
| | e > > 1 | >, > Ve (B
‘Ph—lT O@ntz| Cn-1=3(Pr—1F Prt2) Vs h-10| @h1 =204 | V2| b —1
> > > l > > ”
#O—O@u1| 0n =3Pn +onr)| 2 hO| 0 =40, 2 hO C,
plz..- =ph—1=]’;ph:2 Bh w’:ze{—'- 295
-+ + 201+ 0h
=4(0,+ 05
+ e+ 0p)

Les sommets du polyédre fondamental et les normalisateurs associés sont

(coordonnées g,, ..., o, k)
I (0,0,...,0,0,1)
A, 4,0,...,0,0,1)
A, (0,%,...,0,0,1)
A, ,(0,0,...,},0,1)
A, (0,0,...,0,%,1)

type B,
type C, X B,_,
type Cy X B,_,

type C,_, X B,
type C,

Je prends ici les mémes notations qu’au passage correspondant du n° 2; il

convient de noter que le centre de f‘fzh est Z,;,, d’ordre impair.
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Groupe Unité Vv Gér:f:tgt;aurs Rf::::' Eg::; Extension D@
A, =% e 2};,- 4_@ 21 | principale P(G,)
A, (aP) 2?;,- et A 4_@ 21 | principale P(@,)
ad- > -> &

joint Zigpya 2¢; et 4] 40, 2] | principale | P(&,)

4. Extensions naturelles de D, ,. La suite fondamentale, la permutation o
et le tableau associé sont ici respectivement

?C’)l ‘(752_'“‘1”‘3/0(])" 0'1<(p1’ P2y« Pp—15 Py ’ (ph-i—l)
\o Ph+1 P1s Pos o v Pro1s Pry1 5 Pr
ateveiss | Vectours du normalisateur | | gorenrs O fondomental
Ao principal N D(G) P(G)
> > >, > ,
P10 01 = ¢ 1| o |e1 =0, 1 | 0=—0 —o
. . e, |
‘Pz? Q2 =@ 1 (I) 02 = Q. 1 (l)
i > -3 | >, -> |
Pr-10 Op—1 = P 1 ‘O Oh1 = Qp—y 1 O
O O |» > > 1 ll > -> — “
Pn Pur1]| 00 = 3(Pn + Pay1) 7: O Oh =20, V2| o C,
: 2| B, o' =20{+4 20}
+ -+ +2042+ 04
=2(0,+ 02
~+ oo+ 0p)

Les sommets du polyédre fondamental et les normalisateurs associés sont

I (0,0,0,...,0,0,1)
A (3,0,0,...,0,0,1)
A, (0,3%,0,...,0,0,1)
,_,(0,0,0,...,%,0,1)
QIh (O’ O: 03 " Oa %‘7 1)

N type B,
N ) type B, X B,_,
N,) type ByX B,_,
N®,,) type B, ;X B,
N (,) type B,
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La famille D, , provient du groupe ﬁ,, +1 sSimplement connexe dont le centre
est Z, = (e,a,a%a®) si h 4 1 est impair, et Z,xZ, = (e,a,b,ad) si b 41
est pair. L’élément @ correspond & A} : 9, =0 si j % h, g, = 1. Les sous-
groupes non triviaux invariants par o sont V = (e,a?) ou V = (e,ab). On
obtient le tableau :

Groupe Unité V Génj;a; ;eurs Rf::g:- Eg:z:’ Extension D(G,)
D, N o - | 21 |principale P(@G,)
41 e 2¢; 20, 40, - .
impair 291, | semi-directe | P(G,)
. 7 43 21 | principale P(G)
‘Dh+1/ ] 2.> . 14 9 79 gh
(e,acz) (e,a) (pzaAl (1’0,...’0) 41. nOIl. . P(G)
semi-directe I
adjoint |(e,a,a2,a%)| 29;, 4} a %i ’ 9’6) 2] | principale con.”
S jugués
Dy
h _|.+1 e 2?;,- 23,- , 4'5,, 21 | principale P(G))
pair
N o 4 3 21 | principale P&,
Dy 4/ >4 Qi> 20y
(e’ ab) (e:a/b) 2()D3;Al (1’0,.“,0) 4] non P(G)
semi-directe 1
adjoint | (e, a, b, ab) 2;;-, Aj, Ay (1 %i , 9’6) 21 | principale cc’)n-h
’ jugués

5. Extensions naturelles de D,. La suite fondamentale, la permutation
non encore étudiée, et le tableau associé sont

P2
@)

@1 /O @,
n/
\O Ps

o= l<‘P1
P1

P2
P3

@3 %)
Ps P
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Figure ’ Vecteurs du Polysdre
associée Vecteursrg;:;(:inlx\?hsateur T V) diagramme fondamental
do prinet® D(&y) P (@)
> > >, > O w = 3!
"’7?\ e1=¢1 1 m e1=20, 1| ! e ﬁglgé
SO0 g Gt =] o | w=s. |va| 17, =3
P2 P3 Pu 2= 3\PeT P31 Pg Vé— G2 Q2=90¢ __wl OGg + 292)

Les sommets du polyédre fondamental et les normalisateurs associés sont

I 0,0,1) N type G,
QII (3,0, 1) NH,) type 4,
A, 0,%,1) N(U,) type 4, x A4,

La famille D, est issue du groupe simplement connexe I), de centre
Z = ZZXZ2 = (eaa’ab,c) )

les éléments a, b, ¢ étant respectivement déterminés par les points suivants

(coordonnées canoniques)
010 001

(100

Z n’a aucun sous-groupe non trivial invariant par o. Il vient le tableau

Groupe Unité Génggag, furs Rf::::' 1;;1:; Extension D (&)
D, e 2?& 231, 63, 21 | principale | P({,)
groupe Z 2-92 et 2-‘g>1 , 632 21 | principale | P(@,)
adjoint
0 0
100/\010

6. Extensions naturelles de Ey. La suite fondamentale et la permutation o

sont
21
Pe )
Ps

O

P2 Ps @y Ps
O O O O @
1
c=] (
Ps

P2
Ps

Ps
Ps

Pa
P2

Ps
21
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I1 vient le tableau

. . Vecteurs du Vecteurs du Polyedre
& 1gur§é %ssoclée normalisateur F(N)| diagramme fondamental
principal N D(&y) P(G)
O —
> > | > > > __1__ >, o> — |
P10 T‘Ps 01=3®1+ s V3 T ei=20, | V2| O
>  jE g 1 >, o> ]
O O 0:=Ygpot @) | —| O | 04=20,|V2| O
P2 \O< P4 2 2\P2 ¢4) Vé— “ 2 2 “
?s | 0= 1| o |e=6s |1 0
O > > ’ > > | wl=29{+39é+495
> 0s=@, 1|0 fei=@, | 1O tT2¢
Pe F, F, =2(01+ 3051 20,
+04)

Sommets du polyedre fondamental P (G,) et normalisateurs associés

I (0,0,0,0,1) N type F,
A, (},0,0,0,1) N, type A, X B,
A, (0,3,0,0,1) N (U,) type A, x4,
A, (0,0,%,0,1) N(U,) type A;x A4,
A, (0,0,0,3,1) N, type C,

La famille E; est issue du groupe simplement connexe E’: de centre
4 =Z,= (e,a,a?) qui n’a aucun sous-groupe non trivial. L’élément a est

représenté par A i@, = 1,9, =...=g@s =0 . On a le tableau:
Point
Groupe Unité V Géx:ié: a.atleurs RE,S:::' unité Extension D)
qJ
> >
N 49,,4 o

B e 27;,- _g; 32 21 | principale | P(@,)
2 @3, 2 0 4
43, 40

fg;’;liflz Z, 29, et Al SV 5% | 21 | principale | P(@,)
203,20,

7. Automorphismes involutifs. La recherche des automorphismes involutifs
des groupes de LI semi-simples compacts connexes G, est facilitée par I'intro-
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duction des polyedres P(G,); il suffit de se placer dans le groupe A4 (G,) des
automorphismes de @,, avec A(G,)) = Ay + 4, +---; les éléments des

polyédres P(A,) qui sont d’ordre 2 dans le réseau central 5-, donnent les auto-
morphismes cherchés ; si 7 % 0, la composante connexe A4; doit étre d’ordre 2
dans A4 (G,)/A,.

J’applique cette méthode au cas ou G, est simple, en considérant d’abord
le polyédre P(4,). Il est défini par la suite fondamentale ¢,,..., ¢, et par le
paramétre angulaire dominant w = m,¢@, +-- -+ m,;p,; c’est un simplexe,
dont les sommets sont

0(0,0,0,...,0) Al(—1—~,0,0, . .,O), ...,A,(0,0,0, ,-l—)
my m,

Si m; =1, A, est dans le réseau central. Un élément X d’ordre 2 a des
coordonnées ¢,(X) de la forme k,;/2 ou les k; sont entiers ; de plus, XeP(A4,)
entraine k, >0 et m,p,(X) <1. Si m;>2, on a nécessairement k, = 0;
m; = 2 exige k; = 0 oul;enfin, m;=1 donne k,=0,1, ou2.8i m;=1.
k,=2, ona X 5-5,, ce qui n’apporte rien. Reste le cas m, =1, k, =1,
ce qui fournit X = }4, ou bien X =4(4, + 4,) avec m; =m; = 1, solu-
tion qui se raméne & X = }4, (m, = 1) puisque A;, A,¢4,. Nous obte-
nons les solutions

i m=2, X=(0,0,...,0,%,
si m,=1, X=1(0,0,...,0,

et il n’y en a pas d’autre. Notons que ce résultat est indiqué dans [1].
Soit maintenant A4, une composante connexe d’ordre 2 de 4(G,), et cher-

chons les points X(o!,..., 0,,1) de P(4,) d’ordre 2 dans 6,. On a 2Xe4,
et aussi 2/€d,, d’'ou 2(X — I)ed,; réciproquement, si 2(X — I)ed,, on
a 2Xed,. Tout revient & chercher les XeP(A4,) tels que 2X — 27 soit

dans le réseau-trace ElnR(’,‘ formé des points & coordonnées g, entiéres. Ache-
vons le calcul en exprimant le paramétre dominant o’ de D(A4,) & 'aide des
formes g, ; il vient o' = pnp = sp (cf. § 3, n°4) ol g est un parameétre angu-

laire du normalisateur principal N ; on ne peut avoir s = 1, sinon g est domi-
h

nant pour N et pour D(A4,), ce qui ne peut étre. On écrit o’ = s 2'd,p, ol
1

les d; sont des entiers > 0. Une solution est X = I; autre possibilité : I'un
des d; est égal & 1, avec alors s = 2, ce qui donne un sommet de P (4,). On
obtient de la sorte tous les X cherchés. Un coup d’ceil sur [1] p. 219 et sur les
n°2 & 6 de ce paragraphe donne ces automorphismes, bien connus d’ailleurs.
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