
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 31 (1956-1957)

Artikel: Sur les groupes de Lie compacts non connexes.

Autor: Siebenthal, Jean de

DOI: https://doi.org/10.5169/seals-515697

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-515697
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur les groupes de Lie compacts non connexes

par Jean de Siebenthal, Lausanne

Introduction

La théorie classique1) des groupes de Lie compacts (ou clos) s&apos;attachant

essentiellement aux groupes connexes, je vais essayer de présenter ici une
étude systématique des groupes de Lie clos non connexes

G GQ + G1 + G2 + où Go, Gl9 G2f...
sont les composantes connexes de G, la première Go étant la composante neutre2).

Construction de tous ces groupes. On sait que Go est un sous-groupe invariant
de G et que le quotient G/Go est un groupe fini H ; ainsi G est une extension
du groupe clos connexe Go par un groupe fini H.

Un élément x de G détermine un automorphisme intérieur de G qui,
restreint à Go, est un automorphisme &lt;p x de Go ; x-&gt; &lt;p x est un homomorphisme
appliquant G dans le groupe A(G0) des automorphismes de G09 et induisant
un homomorphisme x de H dans le groupe A(G0)/I(G0) où I(G0) est formé
des automorphismes intérieurs de Go.

Or une circonstance remarquable se présente ici : A (Go) est le produit
I(G0)-U de I(G0) et d&apos;un sous-groupe fini U, avec /(6?0)^ U e. Cela

permet de considérer le caractère x de l&apos;extension comme un homomorphisme
de H dans U, de construire le produit semi-direct (Go xH)r, et d&apos;en déduire
toutes les extensions de Go par H de caractère %3). Les extensions les plus
intéressantes sont celles pour lesquelles x es^ un isomorphisme de H sur U
(extensions naturelles) ; le produit semi-direct devient Yextension principale,
ainsi nommée parce que U est le centralisateur dans A (Go) d&apos;un sous-groupe
principal de /(6?0)4).

Le chapitre I développe cette théorie; j&apos;y donne la structure de U pour
Go semi-simple, et toutes les extensions naturelles pour Go simple.

Sous-groupe abélien T^h)(G-^) associé à une composante connexe G. x étant
un élément de Gl9 je construis le normalisateur connexe6) Nx de a;, un
toroide T% maximum dans Nxi puis le sous-groupe T{h)(G^ engendré par a;

*) [2], chap. III; aussi [3], [4], [7] et [10].
*) composante connexe de Félément neutre e.
3) d&apos;après [6], n° 1.

4) [9], chap. IV; si O0 est abélien, I(O0) e, A{00) U.
*) Le normalisateur connexe de x est la composante neutre du normalisateur de x.
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et par Tj en posant T[h) xT\. Par définition, Î7(A)(6?1) est le sous-groupe
abélien associé à la composante connexe Gx, et on a la propriété fondamentale
suivante :

T{h)(Gx) contient un représentant au moins de tovJte classe d&apos;éléments de Gx

conjugués relativement à Go ; de plus, les Tih) (Gx) sont conjugués relativement
à Go. Le chapitre II est consacré à cette théorie ; certaines propositions n&apos;y

sont pas nouvelles6).

Diagramme associé à une composante connexe. Le représentation linéaire
adjointe de restreinte à T^iGJ, est un groupe abélien orthogonal dont
la réduction canonique fait apparaître m caractères Xi » • • • &gt; Xm de Tih) (Gx) ; les

noyaux de ces caractères sont les sous-groupes singuliers U1,..., Um de

T{h)(Gx) dans G. Il existe un groupe fini ^{Gx) de transformations de Tih)

en lui-même conservant Tth) et l&apos;ensemble des Ui, chacune de ces opérations
étant la restriction à T(h) d&apos;un automorphisme intérieur de G associé à un
élément de Go.

Cela permet de construire le diagramme D (Gt) : si Bx désigne le recouvrement

euclidien de l&apos;espace de Riemann T[h), alors, aux U^T[h) correspondent

dans Rx des (h — l)-plans singuliers répartis en m familles. Les symétries

par rapport à ces plans engendrent un groupe spatial discontinu r(Gt)
correspondant à ^(Gx) ; de plus, ces mêmes plans singuliers partagent l&apos;espace

i?* en domaines sur lesquels jT^) opère transitivement ; l&apos;un d&apos;eux, P(Gl9)
est un polyèdre fondamental, en ce sens qu&apos;ils contient un représentant au moins
de toute classe d&apos;éléments de Gx conjugués relativement à Go. Il y a un tel
représentant et un seul si Go est semi-simple simplement connexe.

Le chapitre III développe cette théorie, le cas où GQ est simple étant traité
complètement. On pourra remarquer le théorème du § 3, n° 4, qui donne D (G^
d&apos;une façon très simple à partir de P(G0) et de la permutation associée à Gx.

La notion de sous-groupe principal y4) n&apos;apparaît pas dans la construction
de D((?i), et n&apos;intervient que pour faire certains rapprochements.

La connaissance des polyèdres P(6r,) permet de dominer maintenant
l&apos;ensemble des classes d&apos;éléments conjugués dans un groupe de Lie compact et la
structure des normalisateurs d&apos;éléments de G. En application, j&apos;ai montré
comment on obtient les automorphismes involutifs des groupes simples
compacts, par simple lecture des P(Gi)7).

6) En ce qui concerne les points fixes d&apos;automorphismes, voir des résultats plus généraux
dans: A. Bobel-G. D. MOSTOW, Ann. Math. 61, p. 389-405 (1955).

7) Dans [5], F. Gantmacheb a traité complètement le cas des groupes d&apos;automorphismes des

algèbres de Lie semi-simples complexes, groupes en général non connexes. Ma méthode est
indépendante de la sienne; l&apos;objet de mon chapitre III n&apos;est pas étudié dans [5].
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Je désire exprimer ma reconnaissance à Mr. Armand Borel, dont certaines

remarques ont permis d&apos;améliorer plusieurs points de ce travail.

CHAPITRE I

Construction des groupes de Lie clos non connexes

§ 1. Extensions algébriques

1. Définitions. Le groupe E est une extension du groupe Q si Q est un sous-

groupe invariant de E.
Le groupe E est une extension du groupe Q par le groupe H s&apos;il existe un

homomorphisme n de E sur H, de noyau Q. L&apos;extension est désignée par
(E, n). Deux extensions (E, n), {Ef9 n&apos;) de Q par H sont dites équivalentes
s&apos;il existe un isomorphisme oc de E&apos; sur E avec oc(q) q pour tout qeQ.

L&apos;extension E de Q est dite centrale si le centralisateur de Q dans E
rencontre chaque classe de E suivant Q. L&apos;extension est dite complète si tout
automorphisme de Q provient de la restriction à Q d&apos;un automorphisme
intérieur de E. L&apos;extension est dite naturelle si elle est complète et si le centralisateur

de Q dans E est dans Q, Enfin, l&apos;extension est dite semi-directe s&apos;il

existe dans E un sous-groupe F tel que V&lt;^Q e, et rencontrant chaque
classe de E suivant Q.

J&apos;introduis encore les notations suivantes (classiques) : A(Q) est le groupe
des automorphismes de Q, I(Q) est le groupe des automorphismes intérieurs
de Q ; O(Q) est le groupe A (Q)jI(Q) des automorphismes extérieurs de Q.

2. Caractère d&apos;une extension. Soit acE ; l&apos;automorphisme #-&gt; axa&apos;1 de E
est un automorphisme intérieur de E dont la restriction à Q est un automorphisme

r (a) de Q. L&apos;application a -&gt;• r(a) est une représentation r de E sur un
sous-groupe A&apos; de A (Q) qui contient / (Q) ; elle applique chaque classe de E
suivant Q sur une classe de A suivant / ; elle détermine ainsi une représentation
X de H sur un sous-groupe 0&apos; de O(Q). Cette représentation % est justement
le caractère de l&apos;extension E de Q par H.

Le caractère % est trivial si l&apos;extension est centrale ; si l&apos;extension est
complète, x applique H sur 0 (Q (épimorphisme) ; enfin x est un isomorphisme de

H sur O (Q si l&apos;extension est naturelle.

3. Produit semi-direct. Soient Q un groupe abstrait, A(Q) son groupe
d&apos;automorphismes, et F un groupe admettant une représentation x dans A (Q).
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Par définition, le produit semi-direct 8 (QxV)x est le groupe obtenu en
munissant l&apos;ensemble produit QxV de la loi de composition (q, v)(qf, v1)

(qq&apos;v,vvf)y où qfv #(v)*g&apos;. On vérifie que cette loi est associative, admet
un élément neutre (e, e), chaque élément (q, v) ayant un inverse [(î&quot;1)*&quot;1, v1].
De plus, q-&gt; (q,e) plonge Q isomorphiquement dans S sur un sous-groupe
invariant de 8, et v-&gt; (e,v) prouve que 8 est une extension semi-directe
de Q par V. Maintenant, (e, v) détermine un automorphisme intérieur de S

qui applique (q, e) sur (qv, e), ce qui montre que % peut être considéré

comme le caractère de l&apos;extension 8.

4. Extensions de même caractère8). Soit (P, n) une extension de Q par H de
caractère % ; à chaque classe de P suivant Q correspond un automorphisme
du centre C de Q, d&apos;où un homomorphisme Xq de i? dans le groupe A (C) des

automorphismes de C.

Définition. Soient (P, tt) ?me extension de Q par H, et (F, cp) une extension
du centre C de Q par H ; (F, cp) est dite compatible avec (P, n) si les homo-

morphismes de H dans A (C) associés coïncident.

Je dis qu&apos;il existe au moins une extension de C par H compatible avec (P, n).
En effet, si heH avec n{p) h, l&apos;application c-&gt; pcp~x est un
automorphisme de C, indépendant du choix de p dans la classe h ; en désignant cet
automorphisme par Xo(h)&gt; on vo^ cLue Xo es^ une représentation de H dans
A (G)y et l&apos;on peut construire le produit semi-direct (GxH)Xo Fo, qui est

compatible avec P.
Considérons l&apos;ensemble (g Ext. (Q, H, %) des extensions de Q par H de

caractère #, puis l&apos;ensemble (Eo Ext. (C, H, Xo) des extensions de (7 par
H compatibles avec Pc G. L&apos;élément (F, (p)e(èo engendre une transformation
de (S appliquant (P, n) sur (P1, %) défini comme suit : on forme le produit
direct FxP, puis le sous-groupe D constitué par les (/, p) tels que (pf=np ;

si Co est le sous-groupe invariant de D formé des (c, c&quot;1) où C€&lt;7, alors D/Co
est un élément de G désigné par (Px, TrJ. On pose

Alors (j?! &lt;px) ® (jF2 q&gt;2) est défini, et Go est revêtu d&apos;une structure de

groupe abélien opérant effectivement et transitivement sur (£. Fo est l&apos;élément

neutre de (£0. La construction de G. Hochschild est valable dans les cas qui
nous intéressent, Q et H étant compacts.

8) D&apos;après [6], n° 1.



Sur les groupes de Lie compacts non connexes 45

5. Sur certains groupes abstraits. Soit Q un groupe ayant la propriété
suivante : Le groupe A(Q) est une extension semi-directe de I{Q). Autrement dit,
A(Q) contient un sous-groupe U qui rencontre chaque classe suivant I(Q)
en un élément et en un seul. Il existe un isomorphisme canonique ô de

0(Q) sur U, qui applique bIeO(Q) sur l&apos;élément Ursbl dans A{Q).
Lorsque Q a la propriété indiquée, on peut indiquer un procédé qui, dans

les cas en vue, permet en principe de construire toutes les extensions de Q.
En effet, soit (P,n) une extension quelconque de Q par H de caractère % ; %

applique H sur Ol(Q) c O(Q), et ô% applique H sur U&apos; c U. Le produit semi-
direct S (Qx H)8x est une extension de Q par H de caractère %. Comme
(Êo opère transitivement sur (£, il existe (F9&lt;p)€(£Q tel que (P9n) (F,(p)®S.
Ainsi, connaissant les extensions de C par H compatibles avec S, on en tire
toutes les extensions (P, n) e Ext (Q,H,%).

Remarquons que S contient (CxH)x=F0 ; alors F&lt;g&gt;8 contient F®F0=F.
En résumé, on obtiendra toutes les extensions de Q en prenant dans U un

sous-groupe arbitraire U\ puis en construisant un groupe quelconque H
admettant une représentation % sur 17&apos;. Le produit S=(QxH)% engendre alors
avec les extensions F du centre de Q par H compatibles avec S toutes les
extensions de Q par H de caractère %. En faisant varier Uf dans U, H et F,
on pourra construire toutes les extensions de Q.

Lorsque le caractère % est trivial, on dira que les extensions obtenues sont
aussi triviales : ce sont les extensions centrales, avec parmi elles les produits
directs. En un sens facile à comprendre, les extensions les plus ,,riches&quot; sont
les extensions complètes, dans l&apos;ensemble desquelles les extensions naturelles
me paraissent être les plus intéressantes.

Nous nous restreindrons précisément aux extensions naturelles de Q,
déduites du produit semi-direct S (Qx F)x, où % est un isomorphisme de F sur
U, et des extensions du centre C de Q par F compatibles avec S. Dans les cas

en vue, Q est un groupe de Lie semi-simple clos connexe, F est un groupe
fini, et A (Q est un produit semi-direct du type désiré, comme nous allons
justement le voir.

§ 2. Automorphismes de groupes elos connexes.

1. Notations. Je désigne par Go un groupe de Lie clos connexe de centre Z09

par Go le recouvrement simplement connexe de (?0, par Zo le centre de G09

par Go le groupe adjoint GofZo. De plus, Rl0 sera le diagramme9) de la famille,
avec des applications canoniques f,f9fdeRl0 sur les toroïdes Tl0, Tl0, T\ maxi-
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mums respectivement dans les groupes Go, Go, Go. Si A désigne l&apos;homo-

morphisme canonique (?0-&gt; Go, on a / A/. Je pose

respectivement réseau minimum, réseau unité, et réseau central, avec

Le diagramme Rl0 possède une origine 0 et un polyèdre fondamental P09

défini par une suite fondamentale &lt;plf.. .,&lt;pt accompagnée de paramètres
angulaires dominants eo, cof,...

Les égalités &lt;pt &lt;p2 • &lt;px définissent une diagonale t de l&apos;angle

polyèdre ^{^î ^ 0&gt; • • • &lt;Pi ^ 0} î * représente dans JîJ un sous-groupe simple
de rang un appelé sous-groupe principal de Go (dit associé à Po)10).

2. Automorphismes de groupes de Lie clos connexes quelconques. On saitn)
que le groupe A (G) des automorphismes d&apos;un groupe de Lie simplement

connexe G est isomorphe au groupe des automorphismes de l&apos;algèbre de Lie
jB de G. Si G est localement isomorphe à G, A (G) coïncide avec le sous-groupe
des éléments de A (G) qui conservent le noyau de l&apos;homomorphisme canonique
(?-&gt;(?. On peut ainsi se ramener à A (G) ou à A (B).

Si le groupe G Go est clos et connexe, il possède un groupe
d&apos;automorphismes A(G0) dont la composante neutre AQ est le groupe I(G0) des

automorphismes intérieurs de Go, avec un homomorphisme canonique
&lt;p : Go-+ Go/Zo Ao où Zo est le centre de Go. Si Go est abélien, Ao e, et
A (Go) est discret. Si Go n&apos;est pas abélien, prenons dans Go un sous-groupe
principal y. Les éléments de A(G0) qui conservent chaque élément de y
forment un sous-groupe U. Soit oteA(GQ) ; il existe aeG0 tel que (&lt;pa)oc soit
l&apos;identité dans y*), ce qui signifie que chaque composante connexe de

A(GQ) contient un élément de U. De plus, si olsU^Aq, il existe aeG0 tel
que a &lt;pa, et a est dans le centralisateur de y c&apos;est-à-dire dans Zo. On a

a (pa e, et £7^^0 c.

Théorème. £e groupe A(G0) des automorphismes d&apos;un groupe de Lie clos

connexe possède un sous-groupe U ayant un élément et un seul dans chaque
composante connexe ; si Go n&apos;est pas abélien, chaque élément de U conserve chaque
élément d&apos;un sous-groupe principal fixe de Go.

M) [9], chap. IV.
11 voir par exemple [4], chap. IV, § XV.

cf. [9], Théorème 4, p. 253-254.
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Autrement dit, A (Go) est le produit semi-direct de sa composante neutre par
un groupe discret U *).

3. Automorphismes des groupes de Lie clos semi-simples connexes. Il suffit
d&apos;étudier le groupe A(G0) Ao -f Ax +• • • où Go est semi-simple clos

simplement connexe. Prenons à nouveau un sous-groupe principal y de Go

associé à un angle polyèdre ^}0 et soit U le centralisateur de y dans A (GQ) ;

il possède un élément u{ et un seul dans chaque composante connexe A{ de

A(G0).

En partant de l&apos;algèbre R de Go plongée dans l&apos;algèbre de Lie complexe
91 associée, mise sous la forme canonique de H. Weyl, on peut montrer12)
qu&apos;à toute isométrie S du diagramme conservant l&apos;origine correspond un
élément scA(R) prolongeant S; supposons en particulier que S conserve
^Po ; si seAi, alors s et ut ont le même effet sur S$o. U est un groupe d&apos;iso-

métries du diagramme conservant S$o et la correspondance ut -&gt; 8 est un
homomorphisme de U sur le groupe fini U1 des isométries du diagramme qui
conservent ^}0. D&apos;autre part, si ut est l&apos;identité sur ^}0, ui conserve chaque
élément de T\ et de y, donc aussi chaque élément de Go, d&apos;où ut c. U et
Ux sont isomorphes.

Théorème. Soient Go un groupe de Lie semi-simple clos simplement connexe,

^}0 un angle polyèdre fondamental de GQ, et y un sous-groupe principal de Go

associé à ^}0. Il existe un groupe U d&apos;automorphismes de Go conservant ^30 et

chaque élément de y, canoniquement isomorphe au groupe des isométries du
diagramme qui laissent ^}0 invariant.

On a un isomorphisme d&apos;inclusion % : U -&gt; A (Go). Quel est l&apos;effet des

opérations de U sur le centre Zo? Si 3 désigne l&apos;intersection ô^Pq, on peut voir

que / est biunivoque sur313)&gt; et l&apos;effet des opérations de U sur Zo est décrit
par leur effet sur 3 •

Si Go est localement isomorphe à Go, A(G0) est un sous-groupe de A(G0)
qui contient visiblement Ao, car tout occAq conserve chaque élément du

centre Zo. Ici, A(GQ) est le produit semi-direct de sa composante neutre par
un sous-groupe du groupe U de l&apos;angle polyèdre.

•) cf. Dynkin E. B. Dokl. Akad. Nauk. SSSR NS (76), 629-632 (1951) d&apos;après Math. Rev.
12, 8 (1951), p. 585.

ia) [5], chap. III.
18) voir chap. III, § 4, n° 1.
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§ 3. Extensions principales des groupes semi-simples clos

Soient Go un groupe de Lie clos semi-simple simplement connexe et U le

groupe d&apos;automorphismes associé à un sous-groupe principal y, avec l&apos;iso-

morphisme d&apos;inclusion %: U -&gt; A(G0). Formons le produit semi-direct
S (O0x U)%&gt; qui contient GQ et un sous-groupe UXC^LU formé des (e, u),
situé dans le centralisateur Zy de (y, e) par construction ; U1 a un élément

et un seul dans chaque composante connexe de 8. Cette extension S est une
extension naturelle particulière de Go, dite extension principale.

(Remarquons que Zy est le produit semi-direct (Zo x U)x dont on peut
prouver qu&apos;il est isomorphe au groupe K des isométries du diagramme qui
conservent un ployèdre fondamental Po de Go.)

Notion d&apos;extension principale. Si Go GQ/V, où F est un sous-groupe du
centre ZQ Z, soit Uv le plus grand sous-groupe de U dont toutes les
opérations conservent V ; alors 8 (Go X Uv)x est par définition l&apos;extension

principale de Go.
Toutes les autres extensions naturelles de Go s&apos;obtiennent en composant S avec

une extension F quelconque de Zo par Uv, compatible avec S. On voit que
l&apos;extension F de Zo caractérise l&apos;extension naturelle considérée ; on peut même
préciser :

Proposition. Soient S (GoX U)x Veodension principale deG0, F une extension

du centre Zo de Go compatible avec 8, et St Vextension naturelle composée

F 08. Alors 8t contient un sous-groupe isomorphe à F, centralisateur d&apos;un sous-

groupe y principal dans la composante neutre.
{F, P) et (/S, ri) sont des extensions de Zo et GQ par U compatibles ; St est

obtenu à partir du produit direct FxS dans lequel on isole le sous-groupe D
formé des (/, s) tels que /?/ ns. D possède une composante neutre (e, Go)

qui contient un sous-groupe principal (e, y) dont tout élément est échangeable
avec chaque {f,u)*D où u décrit le centralisateur Zy (Zox U)x.
Lorsqu&apos;on prend comme unité le sous-groupe des {c9c~x) avec ccZ0, alors (e,y)
reste principal dans la composante neutre ; de plus, le sous-groupe des (/, u)
indiqués devient Ft isomorphe à Fu), et est contenu dans le centralisateur de

(e,y); comme F± contient (e,Z0) et a des éléments dans chaque composante
connexe de 8l9 il coïncide avec ce centralisateur, et la proposition est établie.

On peut dire que 8X contient une extension de ZQ qui caractérise 8X comme
extension de Go.

14) cf. § 1, n» 5.
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§ 4. Extensions naturelles des groupes simples clos

1. Plan. Les extensions naturelles des groupes de Lie clos connexes simples
sont faciles à construire, car les centres Zo ont toujours une structure
remarquablement simple. Nous allons passer en revue les divers groupes
simples, en examinant pour chacun d&apos;eux successivement : la suite
fondamentale, le paramètre dominant, le centre Zo représenté par 3 &gt;

la structure
de Zo d&apos;après E. Cartan [3], l&apos;effet de U sur ZOf les sous-groupes de Zo
invariants par chaque opération de U ainsi que les autres s&apos;il en existe, puis les
extensions de ZQ compatibles avec l&apos;extension principale 8 (extensions que Ton
trouve notamment dans le livre de H. Zassenhatjs15), d&apos;où Ténumération de

toutes les extensions naturelles désirées.

2. Groupes A,. Je désigne par A t le groupe simplement connexe de la famille.
La suite fondamentale est décrite par la figure de Schlafli :

o—o o—o œ +...+
&lt;fl (Pi (pl-1 (pi

co étant le paramètre angulaire dominant.
Les sommets du polyèdre fondamental Po sont, en coordonnées q&gt;{ :

O(o,..., o), 4(i,o,...,o)f ^(o,i,(y,...,o)..., ^(o,...,o, i). ils
appartiennent tous à 3, et le centre Z de A% est Zl+1 cyclique d&apos;ordre l -f 1 ;

un générateur a de Z est représenté par A&apos;Xf avec a f(A[), a2 f(Af2),...
Le groupe U est formé de deux éléments e, u ; le second détermine sur la suite
fondamentale la permutation q&gt;4 -&gt; ç&gt;,+i_, ; on voit que u applique a sur son
inverse a~x et tous les sous-groupes V de Z sont stables pour u.

En écrivant Go AJV, on obtient tous les groupes Go localement

isomorphes ài{, qui admettent tous une extension principale

S=[(ÀtIV)xU]x

possédant deux composantes connexes. D&apos;autres extensions naturelles de

(?0 AJV se présentent si et seulement si l&apos;ordre du centre Zo de Go est un
nombre pair 2p. Il y a dans un tel cas une seconde extension naturelle,
composée de l&apos;extension principale S et de l&apos;extension F de Zo décrite par

a, u a2p e uz ap uaw1 a&quot;&quot;1

15) cf. [11]. Notamment le théorème 20 (HÔLDER), p. 95, 111, 114.

4 Commentai!! Mathematici Helvetici
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Qrowpea D,. Je désigne par Dt le groupe simplement connexe de la famille.
La suite fondamentale est décrite par la figure de Schlàfli

o—O o) &lt;px + (pz + 2g?3 -f 2ç?4 H h 29?j_1 + ç&gt;,

o&gt; étant le paramètre dominant. Les sommets du polyèdre fondamental Po

qui appartiennent au réseau central &lt;5, forment 3 e^ représentent le centre
Z de jD, ; ce sont

0, 4(1,0,0,...,0), 4(0, 1,0,..., 0), 4(0,0,..., 0, 1)

l impair. Dans ce cas, Z est cyclique d&apos;ordre 4 engendré par a /(4)&gt; avec

/(4) a8 a&quot;1* 7(4) a2- On a # (e&gt;u) avec «a»&quot;^»&quot;1, et Z a le

sous-groupe non trivial (e,a2) stable pour w. Les groupes localement
isomorphes à Dl sont les suivants: Dlf l)j/(e,a2), DJZ; ils admettent une
extension principale à deux composantes connexes, respectivement

S - (5,x 17), S [{A/(e,a«)}x 17], S (DJZxU)x

Le groupe ^, admet encore une seconde extension naturelle, composée de S
et de l&apos;extension suivante de Z

e &gt;
u2 a2 watr&quot;1 a&quot;1

Le groupe jDj/(e,a2) admet aussi une seconde extension naturelle, composée
de S et de l&apos;extension de son centre (e,c) qui est décrite par

c,% c2 e u* c wcw1 c *

l pair. Le centre Z est le produit direct Z2xZ2 (e,a,6,a6) avec

/(4) a&gt; /(^a) ^ ^&gt; /(4) ^ a^* I^8 grouP©s Go localement isomorphes
à Dl sont les suivants :

Dt DJ(efab) de centre (e9c) DJZ
î&gt;,/(e,a) isomorphe à J9j/(c,6)

Les trois premiers admettent une extension principale à deux composantes

connexes : (î&gt;t x U)x, S [DJ(e,ab) X Ï7],, (5,/Z X U)%, tandis que le
dernier n&apos;a pas d&apos;extension naturelle non triviale.
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Le groupe Z)j/(e,a&amp;) admet encore une seconde extension naturelle,
composée de S et de l&apos;extension

c,u c2 e u% c ucvr1 c

du centre (e,c).

Groupes D4. La suite fondamentale est définie par la figure de Schlâfli

\q—q (0 __ ^ _|_ çj2 _|_ 2ç?3 -{- ç?4 è

9?2 O ^8 ^*

ft&gt; étant le paramètre angulaire dominant. Les sommets du polyèdre
fondamental Po qui appartiennent au réseau central sont comme précédemment
O, A[, A2, A\. Ils représentent Z, qui est du type Z2xZ2 (e,a,6,c), avec
a2 62 c2 e, /Ui) a, J(A2) 6, /l^i) c. Ici, le groupe U S3
est formé de six éléments qui permutent A[, A2, AfA, ainsi que o,6,c.

Le groupe D4 admet l&apos;extension principale 8 (54 X U)x, à six
composantes connexes ; comme Z2 x Z2 n&apos;admet pas d&apos;extension par S3

compatible avec 8 distincte du produit semi-direct18), il n&apos;y a pas d&apos;autre

extension naturelle de Z&gt;4.

Comme toujours, le groupe adjoint DJZ n&apos;a qu&apos;une seule extension

naturelle: A(D^) principale. Le groupe DJ(e,a) de centre (e,c) a une
extension principale à deux composantes connexes, et une seconde extension
naturelle provenant de 1).

Groupes 2?6. La suite fondamentale est définie par

0) q)x -j- 2ç?2 + 3ç?3 + 2ç?4 + Ç?5 + 2%

œ étant le paramètre angulaire dominant. Les sommets du polyèdre
fondamental Po situés dans le réseau central sont O, A[ 1, 0, 0,..., 0),
A&apos;5(Q, 0,..., 0, 1, 0). Ils représentent le centre Z de i?6 cyclique d&apos;ordre 3,

avec Z (e,a,a2), f(A[) a, f(A&amp;) a2. Le groupe U est formé de deux
éléments e,u, le second appliquant &lt;pl9 q&gt;2&gt; &lt;pB9 &lt;pA, ç?6, ç?6 respectivement sur
95» 9^4» ^3» ^J &lt;Pl&gt; 9^6-

19)ct [11], p. 111.
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Les deux groupes de la famille sont i?6 et EJZ, qui ne possèdent chacun
qu&apos;une seule extension naturelle : leur extension principale, formée de deux
composantes connexes.

Groupes Bl9 Ct, E7, Es, JP4, (?2. Ici, on a toujours U e, et aucune
extension naturelle non triviale.

CHAPITRE II

Sous-groupe abélien associé à une composante connexe

§ 1. Propriétés élémentaires

1. Définitions. Soient G un groupe de Lie clos, x un élément quelconque
de G, Tx la composante neutre du sous-groupe abélien fermé T engendré par
x, et Nx le normalisateur connexe de x. On a Tx &lt;^NX ; de plus, chaque
élément a de Nx étant échangeable avec x est aussi échangeable avec chaque
élément de T et en particulier avec chaque élément de Tx ; cela prouve que
Tx est dans le centre de Nx. Soit Tj un toroïde maximum de Nx ; il contient
nécessairement Tx. Cela étant, j&apos;appelle T(h) le sous-groupe fermé engendré

par T* et par x, et je pose T[h) xT*.

2. Produit direct. Il existe un entier positif q1 tel que aflf€Tx, d&apos;où aP&apos;eTfi ;

je désigne par q le plus petit de tous les entiers q1 positifs qui ont cette
propriété. On a a^ acjTo, et il existe bcT* tel que b* a-1. L&apos;élément r=xb
est d&apos;ordre fini q vu que (xb)q aflbq aa~x e ; de plus, si p ^ q est

un entier positif tel que rp€T%9 alors xpbv€T%, puis xp€T%, d&apos;où p q.
Cela prouve que le sous-groupe cyclique V engendré par t est d&apos;ordre q
et coupe Tq en e seulement. Le produit VT% est un produit direct
VxTl 3T&apos;&lt;*&gt;. Comme T7^ contient Tj et x, on a 5P&lt;*&gt; cT&apos;cw ; comme
contient T* et t, on a !&quot;&lt;*&gt; c r&lt;*&gt;, d&apos;où 7/(A) î7(/i). Le sous-groupe
est le produit direct de sa composante neutre par un groupe cyclique fini.

3. Génération par un élément. Soit c un générateur de Tq ; l&apos;élément r=ct
engendre un sous-groupe abélien fermé T de Tih), contenant les suites

v«, v2«,..., v** et

ou c*, c2«,..., ckQ

d&apos;où T T(A), et y engendre T{hK
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Théorème. A tout élément x d&apos;un groupe de Lie clos on peut associer un sous-

groupe abélien T(h) engendré par x et par un torôide maximum T% du normali-
sateur connexe de x. Tih) est le produit direct de sa composante neutre T% par
un sous-groupe cyclique fini V, et la composante connexe 27^) de x dans T{h)

contient un générateur de T{h).
Si x est dans la composante neutre Go de G, alors il existe un toroïde maximum

Tl de Go contenant x, et TJ T{h) Tl. Si Gx est une composante
connexe de G distincte de GQ, alors T{h) n&apos;est pas connexe, et h est en général
inférieur au rang l de GQ. Nous verrons que l&apos;entier h ne dépend que de Gl9

et non de la situation de x dans G1 ; de plus, tout y*Gx possède un conjugué
dans T[h) relativement à Go. Ces faits sont établis dans les paragraphes 2 et 3

du présent chapitre.
Je désigne désormais le sous-groupe T{h) associé à l&apos;élément x de Gx par

la notation T^{GX).

§ 2. Sous-groupe T™(GX) discret

1. Normalisateur discret. Si le normalisateur de x dans le groupe clos G est

discret, alors T% se réduit à l&apos;élément neutre e de G, et Tih) (Gt) est un groupe
cyclique fini. Le théorème qui domine la question dans ce cas est le suivant :

Théorème. Soit G un groupe de Lie clos; s&apos;il existe dans G un élément x à
normalisateur discret, alors la composante neutre Go de G est un groupe commu-
tatif, et la composante connexe de x est formée tout entière d&apos;éléments conjugués
de x.

On voit que T^ x est à lui seul un domaine fondamental d&apos;éléments

de Gx (conjugués relativement à Go).

Preuve, a) x possède un voisinage formé d&apos;éléments conjugués de x. Dire que
le normalisateur N de x est discret revient à dire qu&apos;il existe un voisinage U
de e tel que JV^ U c. Il existe alors un voisinage V de e tel que F&apos;&quot;1 V1 c U ;
de plus, il existe dans V un voisinage compact V de e, pour lequel on a encore

Soit maintenant Vx l&apos;ensemble des axa&quot;1 pour a décrivant V ; l&apos;application

/ : a-&gt; axa-1 est une application continue de F sur Vm. Je dis que / est bi-
univoque: a,bcV avec a^b entraîne f(a)=jàf(b); en effet, si aa;a~1=6y6~1,
on a (b&quot;1a)x x(b~xa), avec b^aeU en vertu de V^VczU. Le normalisateur

# contient dans U un élément b&quot;xa distinct de e, contrairement à

l&apos;hypothèse faite sur U.
En résumé, / est une application continue biunivoque de F compact sur

Vw9 qui est séparé. Ainsi, / est un homéomorphisme de F sur Vx, avec
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/(e) #; comme G est un groupe de Lie, le théorème d&apos;invariance du
domaine est valable, et Vx est un voisinage (compact) de x. En résumé, il
existe un voisinage VK de x tel que à tout yeVx correspond un a*V avec

y axar1 ; tout y*Vx est un conjugué de x (relativement à F).

b) La composante connexe de x est formée d&apos;éléments conjuguées de x. On prend
ici VczO0f Gx étant la composante connexe de x. L&apos;application f :a-&gt; axa~x
(ac(?0) est une application continue de l&apos;espace compact et connexe Go dans
l&apos;espace connexe et séparé G1 ; ainsi f(G0) D est un sous-ensemble compact
et connexe de Gx, fermé dans Gx.

Soit y quelconque dans 2) ; il existe ac(?0 tel que axa~x y. D&apos;autre part,
soit &lt;pa l&apos;automorphisme intérieur z-&gt; aza~x (zcG) ; cpa applique z=bxb~1c&apos;£)

(beG0) sur (&lt;pa)z abxb^a&apos;1 /(a6)eî). Donc &lt;pa9 qui est un homéo-
morphisme de Gx sur elle-même, conserve î) ; c&apos;est un homéomorphisme de
3) sur lui-même. Maintenant /(F), qui est un voisinage de x dans D est appliqué

par &lt;pa sur un voisinage de y dans î). L&apos;ensemble D étant un voisinage
de chacun de ses points est un ensemble ouvert dans Gx.

En résumé, D f(G0) est un ensemble ouvert et fermé situé dans Gl9 d&apos;où

35 (?!• Finalement, à tout yeGt correspond un a€G0, avec axa&quot;1 y9
ce qui établit l&apos;affirmation,

c) La composante neutre est commutative. Soit Gx la composante connexe
de x ; si la composante neutre Go n&apos;est pas commutative, il existe dans Go un
toroïde maximum T et un angle polyèdre fondamental PaT.
L&apos;automorphisme &lt;px applique T sur Tr et P sur P&apos; contenu dans T&apos; ; il existe alors
a*GQ tel que (&lt;pa)Tf T, (&lt;pa)Pf P, et &lt;p(ax) conserve T ainsi que P.
Mais alors chaque point de la diagonale principale de P est invariant par
q&gt;{ax), ce qui signifie que le normalisateur de axcGx n&apos;est pas discret, ce

qui est absurde. Go est nécessairement commutative.
Le théorème est établi.

2. Automorphismes à sous-groupe de points fixes discret. Le théorème envisagé
entraîne immédiatement la

Proposition. Soit G un groupe de Lie semi-simple clos connexe ; s&apos;il existe

un automorphisme a de G ayant un sous-groupe de points fixes discret, alors G se

réduit à Vêlement neutre.
Soient A (G) le groupe des automorphismes de G, et Ao la composante neutre

de A (G) ; l&apos;application x-&gt; &lt;px de xeG sur l&apos;automorphisme intérieur de
G déterminé par x est un isomorphisme local de G dans Ao en même temps
qu&apos;un homomorphisme de G sur Ao» La relation q&gt;(&lt;xx) a(tpx)ar&apos;1, valable
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pour tout xeG, ol€Â(G), prouve que l&apos;automorphisme a dans G, et l&apos;auto-

morphisme intérieur de A (G) déterminé par a sont identifiés par l&apos;isomor-

phisme local ç? dans un voisinage de l&apos;élément neutre, a n&apos;ayant par hypothèse

pas de point fixe autre que e dans ce voisinage, il en est de même dans
AOi ce qui signifie que le normalisateur de a dans A (G) est discret; de là
résulte, en vertu du théorème, que Ao est commutative, et de plus semi-
simple ; il vient Ao e, G e, c. q. f. d.

§ 3. Sous-groupe T^(Gt) non discret

1. Dans un groupe de Lie clos à composante neutre commutative. Soient G un
groupe de Lie clos à composante neutre commutative GQ T^, et Gt T[l)
une composante connexe quelconque. S&apos;il existe dans T[l} un élément x à
normalisateur discret, nous avons le cas analysé aux § 2. Si T[l) ne contient pas
d&apos;élément de cette sorte, je choisis un xtT^p arbitraire, puis je forme le sous-

groupe abélien T(h) (Gx) associé ; ici, le normalisateur connexe Nx de x coïncide

avec le toroïde T% vu que Go est commutative. Nous savons que
T[h) xTq contient au moins un élément xf d&apos;ordre fini q (§ 1). Nous allons
voir que tout yeT[l) possède un conjugué dans T[h) relativement à Tl0.

Soit en effet T{1) le sous-groupe de G engendré par Tl0 et par x ; on voit que
Tq est un sous-groupe invariant de T(l\ composante neutre du centre de T{1\
et que T[h) est un système abélien torooïal contenu dans T[l). Etudions le

groupe T{1)/Tq des classes de î7(/) suivant Tj, et, dans ce groupe, le sous-

groupe U des classes échangeables avec T^\ Si zeT[ appartient à la
composante neutre Uo de U, l&apos;automorphisme intérieur &lt;pz conserve T[h) par
définition de U. Appliquons à xf€T[h) tous les &lt;pz9 avec zcUq. Nous
obtenons dans T^ une sous-variété connexe W ; comme x1 est d&apos;ordre fini g, il
en est de même de tous les éléments de W, qui sont de plus deux à deux
échangeables; ces éléments engendrent dans T{1) un sous-groupe abélien %

dont tous les éléments sont d&apos;ordre fini ^ q ; l&apos;adhérence X de % est un sous-

groupe abélien fermé, dont tous les éléments sont d&apos;ordre fini ^ q. La composante

neutre de X se réduit ainsi nécessairement à c, d&apos;où W xf ; en
résumé, si &lt;pz (z€U0) conserve T^\ alors tpz conserve xf, et z est dans le
normalisateur connexe de x1, d&apos;où Ï7O T%. Ainsi :

le normalisateur de T[h) dans TW/T* est discret.

D&apos;après le résultat du n° 1, § 2, les éléments yT\ de T^\T\ où y€T[l) sont
des conjugués de T[h) relativement à TlJT% ; ou encore : tout élément de ^
possède un conjugué dans T[hK On peut énoncer :
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Proposition 1. Soient G un groupe de Lie clos à composante neutre corn-
mutative, x un élément de G, T\ le normalisateur connexe de x, et T^=xT% ;

alors tout élément de la composante connexe de x dans G possède un conjugué
dans Tfï relativement à T\.

Cet énoncé est valable dans les cas extrêmes :

1) h 0 T^ x : le normalisateur de x est discret,

2) h l T[h) T[l) et le groupe Tl est abélien.

Il ne reste plus qu&apos;à traiter le cas où la composante neutre Go de G n&apos;est

pas commutative, ce qui me paraît devoir être précédé du n°.
2. Sur les points fixes des automorphismes des groupes clos.

Proposition 2. Soient G un groupe de Lie clos connexe non abélien, et oc un
automorphisme de G; alors

1) la composante neutre U du sous-groupe des points fixes de oc est régulière
dans G,

2) U existe un toroïde maximum T de G et un angle polyèdre fondamental
Pc: G invariants par a.

Preuve. G n&apos;étant pas abélien, il résulte de la proposition du § 2, n° 2, que
U est distincte de c. Soit alors t un toroïde maximum de U ; je désigne

par Z le centralisateur connexe17) de t dans en remarquant que t est
dans le centre de Z. On a t U&lt;^Z, car si y est dans cette intersection,
y est un élément de U échangeable avec chaque élément de t, d&apos;où yet. Soit
maintenant S le facteur semi-simple connexe de Z ; le sous-groupe U coupe Z
suivant t, qui est dans le centre continu de Z; donc, Vintersection U&lt;^S est

discrète. D&apos;autre part, Fautomorphisme a, qui conserve t, conserve le
centralisateur Z de t; la restriction de oc à Z est un automorphisme de Z qui conserve
S. Finalement, la restriction de oc à S est un automorphisme de 8 à sous-groupe
de points fixes discret. D&apos;après la proposition du § 2, on a S e, ce qui
prouve que Z est abélien ; un élément générateur de t ne peut ainsi appartenir

qu&apos;à un seul toroïde maximum de G : c&apos;est un élément régulier de G, et
la première partie de la proposition est établie.

Prenons un élément ycG, voisin de c, régulier dans invariant par a ; le
toroïde maximum T et l&apos;angle polyèdre fondamental PcT uniques qui
contiennent y sont tous deux invariants par oc.

Corollaire. Soient G un groupe de Lie clos non abélien, et x un élément

quelconque de G; alors le normalisateur connexe de x est régulier dans la compo-

17) Composante neutre du centralisateur de t.
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santé, neutre Gode G; de plus, il existe dans Go un toroïde maximum et un angle
polyèdre fondamental invariants par Vautomorphisme intérieur &lt;px.

Cette proposition était bien connue dans le cas où G est connexe. Il est
judicieux d&apos;étendre encore à des G non connexes la définition des éléments

réguliers :

Définition. Un élément x d&apos;un groupe de Lie clos est régulier ou singulier
suivant que son normalisateur connexe est abélien ou non.

3. Dans un groupe de Lie clos à composante neutre non commutative. Soient
G un groupe de Lie clos à composante neutre Go non commutative, Gx une
composante connexe quelconque de 6?, a; un élément arbitraire de Glf T% un
toroïde maximum du normalisateur connexe Nx9 et T[h) xT% ; je dis que
tout y€Gt possède un conjugué dans T[h) relativement à Go.

En effet, T% étant régulier, il existe un toroïde maximum T\ de Go et un
seul contenant T% ; posons î7^ xTl0. Soit P un angle polyèdre
fondamental de Tl0 contenant un élément régulier de T%. On a

a) {&lt;px)Tl==Tl (&lt;px)P P

Je dis que tout y*Gx possède un conjugué dans T[l) relativement à Go. Il
existe un toroide maximum Tn de GQ et un angle polyèdre fondamental P1 de

Tn invariants par q&gt;y\ on sait qu&apos;on peut trouver un élément aeGQ tel
que (&lt;pa)Tfl Tlot (&lt;pa)P&apos; P; je pose (&lt;pa)y xl€G1. &lt;pa étant un
automorphisme, l&apos;élément x1 jouit par rapport à î7^, P, des mêmes propriétés
que y par rapport à Tft9 Pr. Autrement dit :

b) (&lt;pz&apos;)Tl Tl0 (&lt;px&apos;)P P

Les relations a) et b) prouvent d&apos;abord que x et x1 appartiennent au
normalisateur de Tl0; ensuite, comme xx&apos;^cGq avec [^(xx&apos;-1)]^ Tl0,

P, on a xx&apos;-1€TlQ et x&apos;eT^K En résumé, y possède un
conjugué (&lt;pa)y dans T[l\

Pour achever la démonstration, il suffit de prouver que tout x&apos; cT^ possède

un conjugué dans T[h). Or Tl0 et x engendrent dans le normalisateur N(T}&gt;) de
Tl0 dans G un sous-groupe T{1) à composante neutre T\ commutative,
contenant T[l) ainsi que x, N&apos;X T%, et T[h) xT\. En vertu de la proposition

1, l&apos;élément x1 de T[l) possède effectivement un conjugué dans T[h\ et
la première affirmation est établie.

Le principal résultat de ce chapitre est exprimé dans le

Théorème. Soient G un groupe de Lie clos9 Go la composante neuJtre de G, x
un élément de G, T$ un toroïde maximum du normalisateur connexe de x, et
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T[h) xTq ; alors tout élément de la composante connexe de x possède un
conjugué dans T^ relativement à 0Qf

II est visible que T% est un toroïde maximum pour tous les normalisateurs
connexes d&apos;éléments de T[h) ; cela prouve que tous les normalisateurs
d&apos;éléments de Gx xO0 ont le même rang h. D&apos;où le

Théorème. Toute composante connexe Gx d&apos;un groupe de Lie clos G contient
un système abélien toroïdal T[h* coupé par toutes les classes d&apos;éléments de Gx

conjugués relativement à la composante neutre de G. Les normalisateurs des éléments
de Gx ont tous le même rang, égal à la dimension du tore T[h). Le sous-groupe

est engendré par T[hK18)

Corollaire. Les sous-groupes abéliens T(h){G^) associés à une composante
connexe Gx fixe sont conjugués relativement à GQ.

Cela permet de parler du sous-groupe Tih) (Gt).

CHAPITRE III

Diagramme associé à une composante connexe

§ 1. Caractères relatifs à T^(GX)

1. Définition de ces caractères. Soient G GQ + Gx H un groupe de Lie
clos de composante neutre GOf et T^iG^) le sous-groupe abélien associé à la
composante connexe Gx. Répétons que Tih) Tih) (Gt) est le produit direct
de sa composante neutre T$ et d&apos;un groupe cyclique fini de type Zq engendré

par xeT[h) ; on peut trouver un élément ccTq, régulier, voisin de e,
générateur de Tq tel que c9 soit aussi voisin de e qu&apos;on le désire. Alors v xc
est un générateur de Tih) et ifl cq.

Le groupe des automorphismes intérieurs de G possède une représentation
linéaire adjointe y-+ D(y) dans l&apos;espace B(G0) tangent à GQ en e. G étant
compact, il existe même un repère de B(G0) dans lequel les transformations
linéaires D(y) sont représentées par des matrices orthogonales encore désignées

par D(y). En particulier, D(v) est orthogonale. Il existe alors un nouveau
repère de R(GQ) dans lequel D(v) reçoit la forme canonique quasi-diagonale

D(v) (E», -Eh»,,Dlt ...,Dr, Dr+1,..., Dr,)

Ehn désigne la h&quot; x h&quot; matrice unité ; Dlf...9 Dr, sont des 2x2 matrices ortho-

îs) rp{h) correspond à l&apos;ensemble des ,,chief éléments&quot; de F. Gantmacheb [5], § 8, lorsque Oê

est semi-simple dos»
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gonales de déterminant +1, les r premières étant d&apos;ordre fini, et les autres
d&apos;ordre infini.

Considérons D(rfl) D(cq) ; on peut choisir c en sorte que D(cq) soit aussi
voisine de Ehn+hn,+2r&gt; qu&apos;on le désire. Alors

Le sous-espace de R(O0) associé à Eh,,+h,,,+2r est exactement tangent au nor-
malisateur de cq, désigné par N(cq). Or, cq est régulier et N(cq) Tl est
l&apos;unique toroïde maximum de O0 qui contient T%. On a donc h&quot;+h&quot;/+2r=l,

d&apos;où, avec de nouvelles notations

Eh et Ilm_h indiquent l&apos;effet de A (v) dans R(Tl); les m autres matrices indiquent
les rotations produites par A (v) dans m plans à deux dimensions Ax,..., Am.
Finalement, en considérant Th engendré par v, on a

a M (yww,4(ï) 4M) y&apos;Z™ • (i)

Ii-h(y) est constante dans chaque composante connexe de î7^* ; A^y) définit
un caractère %% (y) de Tih) sur le groupe T) T1 des rotations de Ai autour
de l&apos;origine, avec le caractère inverse xf1 •

Proposition 1 et définition. La représentation linéaire adjointe de T{h) (Gt) dans

R(O0) fait apparaître m caractères Xn • • •&gt; Xm de T^iGJ ; ce sont les caractères

de G relatifs à T&lt;h&gt; {Gt).

2. Sous-groupes singuliers. Le caractère Xi es^ un homomorphisme de Tih)

sur T1 T) ; si TJi désigne le noyau de Xi&gt; ensemble des yeTih) tels que
Xj (y) e&gt; alors T^/Uj est homéomorphe à î71, qui est connexe. Cela signifie
que Uj possède un élément au moins dans chaque composante connexe de
T{h), notamment dans T[h).

Définition. Le noyau de Vhomomorphisme Xj est un sous-groupe TJt de T{h) (Gt)9

dit sous-groupe singulier, qui possède des éléments dans chaque composante
connexe de Tih).

C&apos;est de plus un sous-groupe de dimension h—1 ; dans T^\ les composantes
connexes des TJt forment un ensemble fini de sous-variétés à h — 1 dimensions.

Il existe des éléments de T[h) non situés sur ces sous-variétés ; si z

désigne l&apos;un d&apos;eux, on a As(z) ^ E2 pour tout j, et le normalisateur connexe Nz
coïncide avec T%. On voit que les éléments réguliers de T[h) forment des domaines
à h dimensions. Les éléments situés sur un TJi au moins sont singuliers, car
leur normalisateur a une dimension supérieure à h, avec un rang égal à h,
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Proposition 2. Les sous-groupes singuliers TJ
$ et U{ diffèrent si j =£

Considérons en effet le centralisateur connexe N9 de Ur On a
où zeU^T^ ; cela prouve que Nf est de rang h. De plus, N9 est tangent à

Ai et la dimension dimJV&quot;^ est supérieure à h ; ajoutons que la composante
neutre UOi de Uj est dans le centre connexe de Nj. Alors H Nj/UOj est
un groupe clos de rang h —- (h — 1) 1 de dimension supérieure à 1 ;

c&apos;est un sous-groupe simple de rang un de dimension trois. Cela entraîne
dimJVy h + 2, et Nt est exactement tangent à R(T%) + Aê. De là résulte

Ui^Ui si i^j.
Le cas UOt UOj n&apos;est pas exclu et sera analysé ultérieurement. Le

facteur semi-simple de Nf est de dimension 3 et de rang 1 ; c&apos;est le sous-groupe
gi simple de rang 1 associé à Af, à £/, ou à ;^ ; il est tangent à Ai en 0.

3. Groupe fini @(Gt). Construisons des automorphismes intérieurs de G qui
conservent chaque composante connexe de Tih). Prenons z quelconque dans
T[® et construisons le normalisateur NZ(T$) de T% dans le normalisateur
connexe Nt ; d&apos;après cette définition, T% est la composante neutre de NX(T%).
Si a est dans ce groupe, l&apos;automorphisme &lt;pa, qui conserve T$, conserve
encore z, c&apos;est-à-dire T^ et chaque composante connexe de T^iGJ. En
résumé, au normalisateur Nz correspond un groupe fini NZ(T%)/T$ d&apos;auto-

morphismes de Tih) conservant T^.
On peut se restreindre au centralisateur connexe Nt du sous-groupe

singulier TJi ; il existe dans le sous-groupe gi associé à TJi un élément dy tel que
l&apos;automorphisme &lt;p{d5) conserve T$ et Tih\ en induisant dans ce dernier une
transformation involutive non identique S} conservant chaque élément de C/i.
Les d,-T$ engendrent un sous-groupe F du normalisateur de 27^) et F/Tq est

un groupe fini ^(G^ de transformations de Tih) en lui-même, conservant
chaque composante connexe.

Proposition 3 et définition. Il existe un groupe fini ^(G^ de transformations
de T(h)(Gj) en lui-même, engendré par les involtUions par rapport aux sous-

groupes singuliers Ult..., Um. Ces involutions sont les restrictions à T(h)(G^)
d&apos;automorphismes intérieurs de G.

4. Caractères de G relatifs à Tl0. Il existe dans Go un toroïde maximum T\ et
un seul contenant T\ ; lorsque x décrit T\, les automorphismes intérieurs &lt;p r
forment un groupe abélien dont la représentation linéaire adjointe dans E(GQ)
est un groupe orthogonal ; chaque matrice de ce groupe conserve m 2-plans
fixes %,..., nm et chaque point de Bl0 R(Tl0). &lt;px induit dans ni une
rotation B$(r)€Tx et les Of^t) sont les caractères19) de G relatifs à T[.

») [10], § 2, no 3.
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L&apos;automorphisme cpx (x générateur de Zq dans T[h)) conserve TlQ (et chaque
point de Tq) ; il permute donc en particulier les caractères df1 ; ainsi,
l&apos;ensemble des Of1 se décompose en cycles relatifs à &lt;px. D&apos;ailleurs, les Of1 se

répartissent en suites de caractères égaux sur Tq. Je désire prouver que ces
deux partitions sont identiques.

Lemme. Si Vautomorphisme intérieur &lt;px du groupe de Lie semi-simple clos

H détermine sur les paramètres angulaires fondamentaux q&gt;x,..., &lt;pt une
permutation ç&gt;tt-&gt; q&gt;iu&gt; alors le toroïde maximum Tq du normalisateur connexe
de x est défini par le système obtenu en égalant les q&gt;i dans chaque cycle.

Le rang du normalisateur connexe est égal au nombre des cycles.
En effet, soit a la transformation linéaire du diagramme Rl0 induite par q&gt; x ;

le sous-espace R% des points fixes de a dans RlQ est appliqué canoniquement
sur Tq dans Tl0 et possède aussi la dimension h ; il détermine Tq Soit L un
point i?o ; l&apos;hypothèse oL L, jointe à la relation

où y€RlQ

entraîne &lt;pu(L) q&gt;iu(L). Si donc la permutation &lt;pu -&gt; &lt;piu est décomposée
en cycles, et si oL £, alors les (p}{L) sont des nombres égaux dans chaque
cycle. Réciproquement, si yu{L) &lt;piu(L)t on a (piu(L) q&gt;iu(aL) pour
les l indices, d&apos;où L oL.

S&apos;il y a s cycles de longueurs respectives ax, a2,..., a3, le système qui définit
T% possède (ax — 1) + • • • + (a, — 1) équations linéaires indépendantes ; la
dimension du sous-espace des solutions est

l - [K - 1) +• • •+ («. - 1)]

d&apos;où s h.
Revenons au groupe G, et soient Bl9..., 6n les caractères de O qui sont

égaux à 6t sur Tq ; Fautomorphisme &lt;px permute 0l9..., 6n, car tpx
conserve chaque point de Tq ; soit s le nombre des cycles de cette permutation.
Passons aux paramètres angulaires de 6?0 relatifs à Tl0 ; à Of1 correspondent
respectivement ±/ii9 et à 0l9..., 0n correspondent fi,l9..., fin. Comme Tq est
régulier, /^ — fii n&apos;est jamais un paramètre angulaire (i ^zj;i,j=: 1,..., n)9

et /*!,..., fin est une suite fondamentale d&apos;un sous-groupe Q de rang l de O0

contenant Tl0 et Tq Le normalisateur connexe N&apos; de x dans Q contient Tq et
est de rang h. Remarquons que Tq contient un sous-groupe U de dimension
h — 1 défini par ^(y) • • • fin(y) 0 avec y ciîj ; d&apos;après cette définition,
U est dans le centre de Q.

Soit maintenant Qf le facteur semi-simple deQ ; son toroïde maximum Tq est

défini dans RlQ par les vecteurs du diagramme pl9.. ,9 pn. &lt;px conserve Qf 9
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T*, ainsi que l&apos;angle polyèdre fondamental fix &gt; 0,..., fin &gt; 0 dans R%. Le
toroïde maximum du normalisateur cojmexe de x dans Qf est défini par
l&apos;égalité des /^ dans chaque cycle relatif à q?x, et la dimension de ce toroïde est
égale à s. Le sous-groupe U et ce toroïde engendrent dans Q un sous-groupe
abélien connexe de Nf, de dimension au moins égale à (h — 1) + s9 et au
plus égale à h9 d&apos;où 8 1.

Proposition 4. Tout automorphisme intérieur &lt;px d&apos;un groupe de Lie clos G

conserve un toroïde maximum Tl de la composante neutre de G9 ainsi que dans
Tl chaque point d&apos;un toroïde T% maximum dans le normalisateur connexe de x.
Les caractères de G relatifs àTl se répartissent en suites de caractères égaux sur
Tq\ &lt;px permute circulairement les caractères de chaque suite.

5. Caractères associés. Revenons à xeT[h) générateur de Zq dans T^h) et soit
0l9..., 0n un cycle de la permutation des Qf1 induite par cpx. Le sous-espace
77 II1-\ h 77n est invariant par cpx ; soit a la transformation linéaire
orthogonale induite par cpx dans 77. Revenons maintenant aux caractères

xf1 relatifs à T{h) ; en vertu de la proposition 2, on a sur un générateur v de

T{h) : Xi ¥= Xi s* * t^ h e^ ^ou^ sous-espace de R2m JS1/^ stable pour q?v

est somme directe de 2-plans du type A{ (cf. n° 1). *

Or 77, stable pour &lt;pz (z €Tl0) est aussi stable pour yx, et est donc stable

pour tous les &lt;px (x€T{h) et en particulier pour &lt;pv; ainsi, 77 est somme
directe de n plans A{, désignés par A1,..., An avec les caractères associés

Xn &apos; • •&gt; Xn&gt;

Je dis que a fait tourner Ax,..., An d&apos;angles en progression arithmétique
de raison 2njn. En effet, a est dans 77 une transformation linéaire
orthogonale d&apos;ordre qr diviseur de q ; de plus, n est un diviseur de q&apos;9 avec qf np.
Il existe dans T% un élément z tel que ç&gt;z fasse tourner Al9..., An d&apos;un

même angle —27t/q&apos; ; alors nl9..., nn tournent de ce même angle. Si /}&apos;

désigne la transformation linéaire induite par &lt;pz dans 77, on a otfl&apos; /?&apos; a /?.

Soit ex un vecteur quelconque de TIX ; on peut voir que Pne1 ex ; en effet,
{}*&gt; /S/nan, où an est une rotation de nx d&apos;ordre p, et /?&apos;n une rotation de 77!

277 277
d&apos;angle j- • n ce qui donne fine1 e1. En résumé, p permute

circulairement el9 f}ex pn~1e1. Or, les valeurs propres d&apos;une telle matrice
sont 1, e, e2,..., fiw~x avec e exp (27ti/n) ; cela prouve que /? fait tourner
Al9..., An d&apos;angles respectifs 0, 2n/n9..., 2n(n — l)/n (avec une numérotation

convenable). Finalement, si r tx (teT%)9 &lt;px q&gt;tq&gt;x fait tourner
Al9.. .9An d&apos;angles en progression arithmétique de raison 2n\n.
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Proposition 5. Soient T^iGJ Tj + T[h) H et Tl(GQ) deux sous-

groupes abéliens associés respectivement à la composante connexe Gt et à la
composante neutre Go du groupe dos G, avec Tl c Tl, T^l)c:G1.

A tout caractère d1 de G relatif à Tl est associée la suite 0l9..., 6n des caractères

de même espèce égaux à 6X sur T% ; les caractères de G relatifs à T{h) (6?x)

égaux à 0t sur Tl forment une suite fo, •-.,#„. Si ycT^, alors Vauto-

morphisme (py permute circulairement 0l9..., 0n, tandis que %i{y),..., %n{y)

forment une progression géométrique de raison exp (2nijn)

§2. Diagramme D(GX)

1. Données. Soient G un groupe de Lie clos, GQ la composante neutre de

Gx une composante connexe quelconque, puis (?0 + ^i + * • * Ie groupe
engendré dans G par G1, Tih} (Gt) le sous-groupe abélien associé à Gt, avec
Î7&lt;^)(6?1) Tl + T[h) + • •. produit direct 5TJ xZQi Tj c (?0, ff&lt;*&gt; c O19

l&apos;élément x € T[h) étant un générateur de Zq cyclique d&apos;ordre q.
Soient encore Tl0 l&apos;unique toroïde maximum de GQ qui contient T%, puis

Èl0 le diagramme de Go pourvu de ses paramètres angulaires ; soit f:Rl0-*Tl0
l&apos;application usuelle de recouvrement (cf. I, § 2, n° 1), /~&quot;1(e) étant le réseau

unité ôt ; on a de plus une origine 0 située dans le réseau central ôt.
Si c est un élément de Tl voisin de e et régulier, il existe un polyèdre

fondamental P(G0) de Rl0 contenant un représentant de c voisin de 0. Je désigne

par Ri le A-plan appliqué sur Tl par / et qui contient 0 »

2. Définition de RMfëx). Formons la somme directe Rih) de Ri et du groupe
Z des entiers rationnels. Je pose J (0, 1), R\ (Ri, 1), Rl (Rl, k).
L&apos;application /, déjà définie sur Ri, va être étendue à RihK Je pose

avec f{t,k) f(t)xk,
On a

f(Rhq) r*.
Il nous sera utile ci-dessous de posséder une décomposition de l&apos;application

/ restreinte à R\, que je désigne par /1 R\. Prenons jB fixe quelconque dans
R*9 b f(B), et soient fx : R* -&gt; Ri définie par fx{A + B) A puis
/2 : ^ -&gt; T&lt;*) définie par /2(a;) 6x. Alors

Cela permet déjà de considérer /1 -Rj comme une application de recouvrement,

2?i étant un recouvrement simplement connexe de T[h).
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Nous pouvons aussi introduire une métrique sur R* : en effet, le groupe clos

0 est un espace de Riemastn dont la métrique induit sur T%, T[h) une métrique
localement euclidienne ; de plus, Rl0 et R% sont des espaces euclidiens appliqués

isométriquement par / sur TlQ et T%. Alors fï1 définit une métrique
euclidienne sur R* par la formule dist (B + A, B + A&apos;) dist (A, A1), cette
métrique ne dépendant pas de B. D&apos;autre part, la translation /2 est une iso-
métrie. On voit que f\R* f^ffx applique JBj isométriquement sur

3. Réseau unité dans Rih)(Gt). Soient A,B€R*, avec f(A)-= f(B); on a

f(A)[f(B)rl e, f(A)f(-B) e, f(A-B) e et f(C) e si C A-B,
ce qui prouve que C est dans le réseau unité ôt et dans jBJ. En résumé,

f(A) f(B) si et seulement si A — B est dans la trace sur R% du réseau unité
ôt ; autrement dit, les translations de recouvrement dans R% sont définies par le

réseau-trace dQh &lt;5,^2?J.

Maintenant, les points de Rih) (Ox) qui sont appliqués sur e par / forment
un réseau unité ôh engendré par ôQh et par qJeR*.

4. Caractères et paramètres angulaires. Diagramme. Soit

Q : 0if-&gt;0n;xi,---,Xn

une ligne de caractères associés, les n premiers étant relatifs à Tl09 et les n
derniers à T{hK Soient fily..., fin les paramètres angulaires relatifs à T[ qui
correspondent respectivement à 0X,..., 6n. Je fais correspondre au caractère

Xi une forme linéaire £, définie sur Rh(Gt) à l&apos;aide des formules

avec x f(J), exv[2niej(J)] xAx)&gt;

exp £,(*,&amp;)

Les ^(a?) forment une progression géométrique de raison exp[2ni/n]
comprenant n termes, permutée circulairement si on multiplie ces derniers par
exp[2nir/n] (r entier arbitraire). De là résulte qu&apos;on peut écrire

e pouvant être remplacé par e + r/n, avec une numérotation convenable.

En particulier, on peut supposer, si c&apos;est nécessaire : 0 ^ e &lt; —. A la ligne 1)

correspondent dans la ligne 2) lés formes

Q&apos;Pi, •••,/*„; Q + ek,Q + [e+—\kt... ,q+\e + ——\ k. (2)j *, * e + (« + n
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Les formes g ainsi introduites sont par définition les paramètres angulaires de G

relatifs à î7^^).
Nous sommes en mesure maintenant de définir le diagramme D(GX) de

support JRW (G^). Au sous-groupe singulier TJi noyau de %i correspond par f~x
dans R{h) une famille de (h — l)-plans parallèles distribuée dans chaque R\.
Pour caractériser cette famille, il suffit de se restreindre à jR* ce que nous
ferons désormais. Lorsque j varie de 1 à n, nous obtenons dans JS* n familles
de (h— l)-plans singuliers tous parallèles deux à deux, définies par £, 0

(mod 1). Dans jBJ, ces familles coïncident et sont définies par q 0 (mod 1).
Toutes les familles ainsi obtenues dans R\ constituent le diagramme D(Gt)

associé à la composante connexe G1de G.

5. Isométries dans le diagramme. Considérons à nouveau l&apos;involution Ss

associée au sous-groupe singulier V\ dans T{h), qui conserve chaque élément
de TJj (voir § 1, n° 3) ; étudions le relèvement de 8i par /-1 dans R\. Examinons

d&apos;abord le centralisateur Nf de U^ dans Go ; T% est un toroïde maximum
de Ns, et nous avons dans JBj le diagramme de N$ relatif à TJ ; q est le
caractère de Ns relatif à T%, et les relations q 0 (mod 1) définissent dans
Rq la famille de plans singuliers associés. On sait, par la théorie classique,

que le relèvement dans R% de VinvoltUion Sj | T% relative à Nj contient la symétrie

par rapport à tout plan singulier q c entier, et en particulier la symétrie par
rapport à q 0.

Cela étant, relevons S^T^ ; il lui correspond dans 22j une classe20) F(Sf)
de transformations dont j&apos;affirme qu&apos;elle contient la symétrie par rapport à tout
plan singulier ^ 0 (mod 1). En effet soit Vlh un tel plan, BcVlhi
b f(B)€ÏJj, et remplaçons f\R\ par f2ffx (voir n° 2). Alors ft transforme
la symétrie par rapport à Vlh en la symétrie par rapport à g 0 dans R% ; /
transforme cette symétrie en Sj \ T% comme nous venons de le voir ; enfin,
/a transforme 8j\T% en S^T^, en vertu de ^6 6. En résumé, / transforme

la symétrie par rapport à Vlh dans R\ en 8$ \ T[h\ et l&apos;affirmation est
établie.

Il est clair que la symétrie par rapport à tout plan singulier du diagramme
D(Gt) conserve ce diagramme, puisque les involutions Sj sont les restrictions
à Tih)(Gj) d&apos;automorphismes intérieurs de G. Nous obtenons ainsi un
diagramme DiGi) dans R\, au sens de E. Stiefel, avec un groupe kaléidosco-

pique /&apos;(6r1) engendré par toutes les symétries décrites. Rassemblons les résultats:

Théorème. Soient G un groupe de Lie clos et Gt une composante connexe
quelconque de G. Le groupe abélien

*&gt;) [8], début § 4.

5 Commentarii Mathematici Helvetici
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T*xZq T* [

est Vimage par Vapplication isométrique f d&apos;un recouvrement eudidien

avec f(A-{-B) f(A)f(B). Le noyau de f est un réseau unité engendré par
la trace sur JKj du réseau unité de R\, ainsi que par le point unité (0, q) qJ.

Aux sous-groupes singuliers de Tih) (Gx) correspondent dans R\ des familles
de (h — \)-plans singuliers, parallèles et équidistants dans chaque famille,
constituant le diagramme D(Gt). La symétrie par rapport à tout plan singulier du
diagramme conserve ce dernier, et ces opérations engendrent un groupe spatial r(G^).

6. Réduction au cas semi-simple. Reprenons le groupe 6? Go + G1 + • • • ;

on sait que GQ est localement le produit direct Tp x G&apos;o où Tp est la composante
neutre du centre de Go, et G&apos;o le facteur semi-simple ; prenons z quelconque
dans Gl9 le toroïde Tj maximum dans le normalisateur connexe Nz9 puis
TWiQJ {T$,z} T\xZq9 où Zq est engendré par x*T\ zT\^Gx. Il
existe un toroïde maximum T\ unique contenant T\, et on a

T\ Tp x Tl0&apos; (produit direct local) T% c G&apos;o

Th Tp&lt; x Th&apos; (pro(iuit direct local) Tp&apos; c Tp ; Tj&apos; c TlQ&apos;

G;Q et x engendrent un sous-groupe G&apos; de G, de composante neutre G&apos;o puisque

x est d&apos;ordre fini et est échangeable avec G&apos;o. Avec G[ xGrQ9 on peut
prendre Th&apos;(G[) T*&apos;xZq.

Maintenant, les caractères %s s&apos;annulent sur Tp&apos;9 qui est dans le centre de
GQ; alors les paramètres angulaires associés f; sont constants sur chaque
(h — l)-plan parallèle à Rp&gt; (qui correspond à Tp&apos;). Cette particularité nous
ramène au cas où Go G&apos;o est semi-simple, avec h hf9 l V9 ce que nous
supposerons désormais.

7. Tableau canoniquement associé à Gx (avec Go semi-simple). Considérons
la suite fondamentale qui définit Po P(G0) (voir I, § 2, n° 1), et la permutation

des éléments de cette suite qui est induite par l&apos;automorphisme

intérieur associé à zeT^K En faisant usage du § 1, n° 4, on peut présenter les

cycles de cette permutation par lignes

ocl9 a2, -

fi
(i)
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les paramètres de la i-ème ligne se réduisant sur R% à une forme linéaire gt.
Je dirai que les valeurs sur AeRl0 des formes (1) sont les coordonnées
canoniques de A ; de plus, qx gh définissent un système de coordonnées sur
i?J. Remarquons que %, n2,..., nh divisent l&apos;ordre r de Gt dans G/Go, car
si zcT^\ zr est dans TlQ et l&apos;automorphisme associé est l&apos;identité sur la suite
fondamentale. On peut présenter maintenant le tableau des lignes de
paramètres associés

c
&apos;

Qi + e1k9 6i
\ %/ \

+ % ~~

^- W,
ni /

Remplaçons le point unité J par / / + (-— el9..., — gft, 0). Les
formules de changement de coordonnées sont @* q{ -f ^fe, d&apos;où le tableau
sous forme canonique (en supprimant les astérisques)

Je nx — 1

% — 1

+

II ne dépend que de la suite fondamentale de Go et de la permutation
induite sur cette suite par un élément de Gt. Je dirai que / est un point origine

dans R±. D&apos;après ce que nous avons vu (§ 2, n° 4), le point I+( — ,•••, —

(ri entiers arbitraires) peut aussi être considéré comme origine, le tableau
restant canonique.

§ 3. Construction de diagrammes

Je considère toujours le groupe de Lie clos O GQ + G1 H— • la
composante neutre 6?0 étant semi-simple ; interviennent aussi le recouvrement
simplement connexe Go de GQ, le centre Z Zo de 6?0, le sous-groupe V de Z
tel que Go Qo/V, cette unité V étant stable pour l&apos;automorphisme

intérieur associé à un élément de Qx. Dans le diagramme Rl0 de Go relatif à Tl0%

l&apos;unité est un réseau (unité) dl dont la trace sur R% est aussi la trace du réseau
unité ôh de R{h) (G^). Ces réseaux seront étudiés et construits au § 4 ; ici, nous
n&apos;étudions que les diagrammes considérés comme ensembles de plans singuliers.

1. Structure d&apos;un cyde. Soient Z€T^\ q&gt;z l&apos;automorphisme intérieur associé,
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et a l&apos;effet de q&gt;z dans R\ ; considérons une ligne quelconque de paramètres
associés

Q • /*1 y • • • &gt; fin &gt; f1 » • • • &gt;
£n »

on sait que a permute circulairement les formes pl9..., pn (§ 1, n° 4) ; alors

les vecteurs associés px,..., nn ont tous la même longueur, et la figure de

Schlâfli ftifa) associée est du type

Mi Mt Mp

Bx B% Bq

Elle est formée de q blocs B1,..., Bq ayant évidemment tous un même
nombre p de points, à cause de la transitivité de {a} sur le cycle considéré.
Les blocs Bt,..., Bq eux-mêmes sont permutés circulairement et transitivement.

On peut avoir p 1, ce que j&apos;écris pQ 1. Si p&gt;l, il existe un
entier s tel que a8^ ju2 ; alors a8 conserve Bt sans se réduire à l&apos;identité

sur jBj, ce qui entraîne a8^ fiv et p 2 ; je pose ici pQ 2.

Proposition. #i g : ^,..., pn ; ft,..., |n est une ligne de paramètres angulaires

associés, alors le graphe de Scblâfli associé à nx,..., jnn est de Vun des

types
O o • • • O pQ 1

Pi t** l*n

o o o o o o pQ 2 (n 2q)
Ml fq+l Mt Mq+2 Mq MH

2. Diagramme D(N) (diagramme réduction). Nous avons trouvé dans le

support iî* du diagramme D(GX) un point / dit origine paraissant jouir de

propriétés particulières ; étudions le normalisateur connexe N de Vêlement

x /(/). C&apos;est d&apos;abord un sous-groupe de rang h de Go ayant un toroïde
maximum T% ; en examinant le tableau canonique (§ 2, n° 7), on voit que les

paramètres q19 gh relatifs à T{h)(Ox) s&apos;annulent sur /, ce qui signifie que
N est tangent notamment aux plans AQl9..., AQh (§ 1, n° 1, 5), et les formes

Qif**Qh son^ des paramètres angulaires de N; comme l&apos;angle polyèdre
çt &gt; 0,..., gh &gt; 0 dans 22* est intérieur à P (Go), les formes qx çh
constituent nécessairement une suite fondamentale de N. Les paramètres
angulaires ±£i&gt;..., àzQh&gt; • • •» zkQp de N sont des combinaisons linéaires à

coefficients entiers de q19 gh, et les (A— l)-plans £, 0 (mod 1) forment
dans Rq le diagramme D(N) de N. Notons que N possède un groupe fini
0(N) engendré par les symétries par rapport aux plans g1 O,...,gjk O.
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Je dis maintenant que N est un sous-groupe (H)o de (?0.21) En effet, le
centralisateur C(N) de N est dans Tl0 puisque N est régulier; si C€C(N), l&apos;auto-

morphisme &lt;p{c) conserve chaque plan /7tti,..., 11^ ainsi qu&apos;un vecteur de

AQi et les projections de ce vecteur sur les /7a. c&apos;est-à-dire chaque vecteur
de i7ai,.. .,77a ; il résulte de cela que ^(c),..., ocni(c) sont entiers, ainsi

que j8x (c),..., ynh(c), et c est dans le centre de Go. Cela signifie que N est un
sous-groupe (H) de Go ; comme N a même diagonale principale t : qx Qh

que Go, c&apos;est bien un sous-groupe (H)o de Go.
On peut ajouter que N contient un sous-groupe principal y de Go relatif à

la diagonale t ; d&apos;ailleurs22), on a qx Zat oc4 avec Ea{ 1 et de plus
ax a2 ani vu l&apos;effet de a, d&apos;où

nt
I r r \Le normalisateur connexe de /(/&apos;), où V I -f- — • • • — 01 (rt- en-\ni nn

tiers) jouit des mêmes propriétés que le normalisateur de /(/), en étant tangent

notamment à h 2-plans du type AQi -\—-

Proposition. Soit

n* — 1

nh—~ 1 iQh • 7i &gt;
• • &apos;

&gt; 7nh - Qh »
&apos; * • &gt;Qh + -\ *

le tableau canoniquement associé à la composante connexe Gx du groupe de Lie
clos G. Le normalisateur connexe N de x=f(I) où I est Vorigine (0, 0,..., 0,1)
de Bx est un sous-groupe (H)o ayant une suite fondamentale q19 Qh. Le
diagramme D(N) de N est entièrement déterminé par les vecteurs

-&gt; 1

3. Diagramme intersection D^. Les (l — l)-plans singuliers de jB^ coupent
Rq suivant des familles de (h — l)-plans singuliers recouvrant dans Tj les

sous-groupes singuliers TJi restreints à T\. On a vu que la symétrie par
rapport à chacun de ces (h — l)-plans est projetée sur une involution 8j\Th0
(voir § 2, n° 5). De là résulte que l&apos;intersection D^ D(G0)&lt;~&gt;R% est un

2i) [9], chap. III.
M) W, p. 227.
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diagramme, dit diagramme intersection par définition. Par quels vecteurs est-
il défini?

Si le paramètre angulaire fa de O0 ne se réduit pas sur JSj à l&apos;un des
paramètres ±q{ de N (i ^ h), on a23) sur R% : /Zi m@, où q est l&apos;un des ±g,
(i &lt; h), soit gx par exemple en faisant usage de 0(N) et en changeant
éventuellement les notations. Alors, si pQi px 19 on a fa rw^^, d&apos;où

m 1, et ^ est l&apos;un des at, ce qui est contraire à l&apos;hypothèse. Si px 2,
il vient m 2, /^ c^ + ocq+1 par exemple (voir n° 1). Dans ce cas, la
famille des (h— l)-plans singuliers parallèles à Qt=0 est définie par p1Q1=0

(mod 1). Les vecteurs qui définissent le diagramme sont

Proposition. L&apos;intersection D^ D(G0)&lt;^R% est un diagramme de support
Bq déterminé par les vecteurs

PiQi&gt;---&gt;PhQh (Pi 1 ou 2).

Remarque. Si px p2 •= p% 1&gt; alors les diagrammes D(N) et D^
coïncident.

4. Formation du diagramme -D((?i). Considérons q19 avec pQi pt 2, et la
ligne associée

&quot;fe 2(7 1

q: &lt;x • • • a : Qq + • • • ^ H— • • • ^ H — h (nx 2q)

alors oct + &lt;xq+lf a2 + olq+2, aq + oc2q sont égaux à 2^ sur R%, et il n&apos;y

a pas d&apos;autre paramètre angulaire qui se réduise à 2ox sur R% (voir n°l).
Cela donne une ligne de paramètres associés

\k

Quelle est la valeur de ï^? Remarquons que l&apos;on peut supposer 0 ^ vx&lt; l/q
(§ 2, n° 4). On ne peut avoir vx 0 ; dans un tel cas, N serait tangent à

A2Ql, et q19 2qx seraient des paramètres angulaires de JV, ce qui est impossible.

Ainsi, 0&lt;v1&lt;llq9 et le plan 2qx + v1 0 de Jî* est entre gt 0 et
qx — 1/2g, c&apos;est-à-dire entre deux plans consécutifs de la famille des

Qi + pI%Ç[ 0 (mod 1). Comme la symétrie par rapport à 2qx + vx 0

conserve DiGj), le plan en question est au milieu, et est défini par q1= — 1/4g,
d&apos;où vx l/2g.

«) [9], p. 239.
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Proposition. 8i pt 2, on aies deux lignes associées

h 2g - 1

—, • • • Qt H — k

ocq+1 —, 2^ + —, 2&amp; +

En appliquant 0(JV) à q19 qh, p1glt..., phgh9 on obtient toutes les

traces sur R% des paramètres angulaires de O0 c&apos;est-à-dire aussi toutes les traces
des paramètres angulaires de Ox, d&apos;où le tableau complet associé. Par quels
vecteurs peut-on déterminer le diagramme D(OX)?

Dans iJj, nous avons les familles q{ + p/nt 0 (mod 1) avec p=0, 1,...,
nt — 1 en supposant p{ 1 ; on définit d&apos;un seul coup tous les plans singuliers

parallèles à ^ 0 dans R\ en posant ntçt 0 (mod 1). Maintenant,
si pi 29 on aura les deux familles &amp; + p/2(fr 0 et 2Qi + p/2qi^0 (mod 1),

que l&apos;on définit simultanément en posant p^ £» 0 (mod 1), avec ni 2qi.
En résumé, on a dans tous les cas la formule unique p^Qi 0 (mod 1),

et le diagramme D(GX) sera défini par les vecteurs PxniQn • • •&gt; PhnnQh&gt; ou

PiZotj,..., ph£yi (voir proposition n° 2).

Théorème. Le diagramme D (Gx) associé à la suite fondamentale

al&gt; • • •&gt; aWl î Pl&gt; • • *&gt; Pnt î • • • i 7l&gt; • • •&gt; Vnh

et à la permutation automorphique qui induit une permutation circulaire sur
chaque suite partielle, ce diagramme est défini par les vecteurs

-&gt;. ni-&gt; -&gt; -&gt;.

qx pxS a{ p1n1gli...,Qh
i î

Le coefficient pt est égal à 1 si les vecteurs correspondants sont perpendiculaires
deux à deux, sinon pi 2.

Polyèdre fondamental P(Gt). Ce qui précède permet d&apos;introduire dans B* un
système de coordonnées cartésiennes q[, q&apos;h d&apos;origine /, avec Qi(A)

— Qi • /A. Les inégalités g( &gt; 0,..., q&apos;h ^ 0 définissent un angle polyèdre
fondamental du diagramme D(Ot) qui contient un polyèdre fondamental
ayant un sommet en / ; nous avons ainsi par définition le polyèdre
fondamental P défini par des inégalités

où les eoj sont les formes dominantes correspondantes.
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Tout y*Gx possède dans P(GX) au moins un représentant 7, f(Y) étant
un conjugué de y relativement à Go. Le domaine fondamental T&gt;(Gt)

d&apos;éléments de Gt conjugués relativement à Go est dans P(Gt) ; son étude sera
abordée au § 5.

6. Structure du normaliaateur d&apos;un élément de T*. Nous avons déjà étudié
le normalisateur N de x /(/) où / est origine dans JBj ; quelle est en général

la structure du normalisateur Ny d&apos;un élément y quelconque de G1^ II
suffit de prendre yeT[h), et YeR*, avec y f(Y).

D&apos;abord Ny9 qui possède un toroïde maximum T%, est un sous-groupe de

rang hi de diagramme situé dans le recouvrement ifj de T%. Cela étant,
par Y passent un certain nombre de plans singuliers du diagramme -©(Gy,
formant un ensemble Rt. Chaque plan de Rx appartient à une famille

an

mq -{- k— — c où c est un entier variable (p constant, m 1 ou 2) ; alors

mq est un paramètre angulaire de Ny défini sur R%9 avec Ny tangent au
2-plan AmQ+kQin. Réciproquement, tout paramètre angulaire de Ny est obtenu
de cette manière. Les (h — 1)-plans mq 0 correspondant dans JSj aux

plans de Sit forment un ensemble Ro déduit de Ro par la translation YO, et

les vecteurs m q sont les vecteurs du diagramme de Ny dans JBj.

Remarquons qu&apos;un angle polyèdre fondamental 3I0 de Ny dans 5l0 es^ déjà

représenté par %x dans Rl9 à l&apos;aide de la translation OY appliquée à 3l0 ; 5^
n&apos;est traversé par aucun (h — l)-plan singulier issu de Y (sinon 3l0 ne serait

pas fondamental dans Ro).

Supposons maintenant Y eP (GJ, ce qui est toujours possible ; je désigne par

Qd^-^Qd, (nulles sur 7)

a)fh co&apos;lk (égales à 1 sur 7)

toutes les formes gr{, coj entières sur 7. Elles définissent un angle polyèdre 3lj

circonscrit à P(Gf1) ; l&apos;application mq + &amp;— -&gt; m&gt;q de tout à l&apos;heure fait
correspondre aux formes (1) des formes

définies dans J?J, constituant une suite fondamentale de Ny.
La structure de Nv est pratiquement déterminée en deux temps :

a) q fdi,..., qrdg, — a&gt;[x,..., — a&gt;rlh donnent l&apos;angle %x par simple lecture de
la figure de Schlaiu de P(GX),



Sur les groupes de Lie compacts non connexes 73

b) çdl, Qdg, — &lt;brtl&gt; — (b&apos;lk constituent la figure fondamentale de

Ny. En particulier, si Y est un sommet de P (Gx) et si N est simple, on a un
procédé analogue à celui décrit dans [1].

§ 4. Construction du réseau unité

1. Eléments du centre dans le toroïde caractéristique T%. Reprenons les

notations déjà introduites (Chap. I, § 2, n° 1, et III, § 3 introduction) avec

encore /^(e) J-X(V) ôt et Z^ /ll(Z)^P(G0).
Je dis que / est biunivoque sur Z{1) : en effet, si A, B c Zil) avec f(A)=f(B),

alors AB est un vecteur de ôt arête de P(G0), ce qui est impossible si A ^ B.
Maintenant, si yeT^\ l&apos;automorphisme q&gt;y est représenté par une

transformation linéaire a dans Rl0 ; a conserve P{G0) et permute circulairement
les éléments de chaque suite partielle dans oc1,..., &lt;xni ;... ; yx,..., ynh Le
point A de coordonnées canoniques

A est appliqué sur a A A&apos;

et on a (1) (cpy)f /or.

Je désigne par Vx le sous-groupe des éléments de Z Zo centre de Go qui sont
conservés par cpy. On a ^ (2)

en effet, si aeFl, il existe AeZ{l), avec f(A) a; aA B entraîne

fB foA (&lt;py)f(A) (cpy)a a f(A), d&apos;où A B puisque / est

biunivoquesurZ(/),et gA A, ce qui implique AeR^, AeZ{l)^R*. Inversement,

si A e Z{ l) rs jRj, on a / (^4 € Tj ^ Zc Vx. On peut écrire immédiatement

T7&quot; ^ fph (^\&apos; 1 ¦&quot; -1 0 * \°)

Cherchons enfin l&apos;intersection du centre Zo de GQ et du toroïde caractéristique

Tq. Cela revient à chercher les zc Z tels que AzcTj. Il existe wcTj avec

Au Àz, d&apos;où X{u~xz) e, u~xz^V&apos;, wcZ, ucZrsT^, u*Yx (formule 3),

et zcFF^ Réciproquement, si zeVVl, on a AzcTj. Il vient Z^T\

(4)
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Proposition. Les éléments du centre Zo de GQ qui sont dans le toroïde
caractéristique T% s&apos;obtiennent en projetant canoniquement les éléments centraux
du polyèdre fondamental P(GX) qui sont stables pour Visométrie associée à Gt.

Remarque. Les éléments de Zo qui sont stables pour &lt;py forment un sous-

groupe Fo qui contient X F1? et qui peut en différer.

2. Construction de T^iG-^). D&apos;après le chapitre I, § 3, le groupe de Lie
clos G non connexe contient une extension 3 du centre Zo de (?0, cette
extension caractérisant G en tant qu&apos;extension de Go ; de plus, 3 ©st le centralisateur

d&apos;un sous-groupe principal de Go. Je me restreins dans G au sous-

groupe ©! qui est engendré par la composante connexe étudiée Glf et j&apos;appelle

r l&apos;ordre de Gx dans G/Go ; je pose 31=3^G1 Z0 + Z1-\ avec ZxcGt.
Prenons x quelconque dans Zl9 cet élément définissant T{h){G^). On a xrc Zo

et même xre Fo. Deux cas sont possibles

1. xr€%Yx ; alors xr*T\, et T^h){G^ possède exactement r composantes

connexes; il existe dans ce cas un sous-groupe Zr de T{h){G^, tel que
T{h)(Gt) TqX Zr (produit direct). Alors (5X est un produit semi-direct
(6?ox Zr). L&apos;élément x est un générateur de Zr si xr e.

il existe ici un entier p&gt;l minimum tel que a^cTj. Il2.

existe un sous-groupe Zrp de T{h)(O^) avec T^iO^ Tjx Zrp, p des

composantes connexes de ce groupe étant dans Go.

Remarquons ceci: Lorsque Go GOi on a XVx Fx FocTj, et ©x

est un produit semi-direct. De même, si Go Go/Z, on a Zo e, xr e,
et on a aussi un produit semi-direct.

Théorème. Toute extension cyclique finie d&apos;un groupe de Lie clos connexe semi-

simple, simplement connexe ou de centre réduit à e, est un produit semi-direct.

3. Réseau-trace. Notons ôQh ô^Rq le réseau-trace minimum, et
ôoh ôt^ j?* le réseau-trace. Je dis qu&apos;on a

fôOh F~ ^
En effet, si A€ÔOh, on a certainement fAeV puisque fôl= F; AeR%

entraîne oA A, fAcVi, d&apos;où fàQhc:V^V1. Maintenant, si a€V^Vlt
il existe A€Z{1\ avec fA =a; ona A€Ôl9 et AeR* en vertu de (&lt;px)a a

comme au n° 1 ; ainsi, A€ÔOh&gt; et / applique ôoh sur F^ V1. On peut écrire
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ce qui montre que ôOh est engendré par /~1(e)^ JRj ôoh et par les sommets
de P(GQ) qui représentent F^ V1.

Il ne reste plus qu&apos;à construire f~1(e)^R^ &lt;5^iJj; on sait que &lt;5j est

engendré par les extrémités des l vecteurs 2&lt;%t/aJ,..., 2yx\y\. Si

v i7at2&lt;%,/«; H h Ecx2yx\y\ (at,..., ct entiers)

est dans i?J, on a ov v, d&apos;où ax ani ;... ; cx cnh et

réciproquement. Les h vecteurs 2E(xtj(x\,.. .,22yjy* forment donc une base de

ôOh. Un calcul facile prouve de plus que 2E(%%\

sorte que finalement on a la base suivante pour ôo

ôOh. Un calcul facile prouve de plus que 2E(%%\(x\ 2p1Q1/(p1Q1)2i... en

4. Construction du réseau unité de R^fôJ. Ce réseau unité a été défini au §2.
Comme nous connaissons ôOh, il ne reste plus qu&apos;à trouver O1 dans JBj (JBj, q)

avec /(#!) e (g est le nombre des composantes connexes de iP^fG^).
La droite OOX perce JîJ en un point J avec qj Ox\ prenons xeZ1 (cf.

n° 2), et /ciîj tel que /(/) x. Comme x est dans le centralisateur d&apos;un

sous-groupe y principal de Go, alors le normalisateur Nx de x est un sous-

groupe (H)o de Go, de toroïde maximum T%. Une suite fondamentale de Nx
s&apos;obtient par restriction à R% des paramètres angulaires d&apos;une suite
fondamentale de Go ; on peut prendre q19 gh. Il existe alors h paramètres
angulaires gt + r&apos;Jnt (i 1,,.., h) entiers sur /, et ce point est une origine
dans R* (cf. § 2, n° 4, 7). On a xq V€T$. L&apos;élément v est dans le centre Zo
de GQ et dans T% ; il peut être représenté dans Z(l) par W ei?J. On a ainsi

qIeRhq ql- Wedh

Posons / / W/q. Cette formule permet dans tous les cas de situer J
dans P(GX), en faisant éventuellement usage d&apos;un automorphisme intérieur de
G conservant T{h){Gx) et T[hK

Théorème. Le réseau unité ôh de R(h) (Gx) est engendré par les extrémités des h

vecteurs 2ptQtj(ptQt)2, par les sommets de P(G0) situés dans V^ F3, et par le

point qJy où J I — Wjq, W étant un représentant de x9 dans P(GQ), avec

x /(/), / étant origine dans R*.
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§ 5. Domaine fondamental D (Gt) d&apos;éléments conjugués

1. Réduction du problème. Pour trouver dans le polyèdre fondamental P{GX)
un domaine fondamental 35 (Gy d&apos;éléments conjuguées relativement à Go,

il faut chercher parmi les isométries du diagramme D(GX) celles qui sont
induites par des automorphismes intérieurs &lt;pz avec zeG0, (cpz)T^=T^ ; autrement

dit, il faut chercher le normalisateur N(T^) de T^ dans Go.
Soit donc zeG0, avec ((p z) T&lt;A) 27J*) ; on a certainement {yz)Tl T% et

(&lt;pz)Tl0 jTq ; l&apos;opération 9? z induite dans JBj applique le polyèdre
fondamental P(N) sur Pf(N) et il existe beN avec (&lt;pb)Pf P ; alors &lt;p6z

conserve P(i^) ainsi que P(G0), avec bze G09 ce qui entraîne bz*T\. A l&apos;aide de

0(N), on peut donc se ramener à la recherche des atî7^ tête que (gpajï^^ï1^,
qui constituent N (T^) r\ TlQ.

Considérons un tel élément a, et soit xeT^; on a par hypothèse
axa&apos;1 bx, avec ftejPj, d&apos;où aa;»-1^&quot;1 6 ; or xax*1 ar est
indépendant de l&apos;élément x choisi dans T^\ en sorte que l&apos;on peut écrire

(i)

Réciproquement, si un acTl0 vérifie cette relation, alors (&lt;pa)T^ T[h
Remarquons que ((p a) multiplie chaque élément de T^ par b fixe (translation
dans

2. Recherche des aeTl0 tels que aa&apos;~x beT%. Introduisons dans Rl0 le sous-

espace Rl~h totalement orthogonal à JBj issu de 0. Il est constitué par
l&apos;ensemble des points (coordonnées canoniques)

*^l &gt; *^2 &gt; • • • &gt; ^n\

avec Zx{ 0,..., i7zt- 0

On peut remarquer que pour tout ^cjRJ, on a A — AreRl~h (cf. n° 1).
Soit maintenant acTl0 vérifiant (1) ; prenons AeRl0 avec f(A) a ; on a

A -A&apos;^L+eR*-», et

/(£*) f(A - ^&apos;) f{A)i(-A&apos;) aa&apos;-i 6cT*

On a f(L*)€T% et le sous-espace L* + JBj contient un élément L du réseau
unité (5j. Réciproquement, soit £€&lt;5{ puis £* sa projection orthogonale sur
Ri-h- formons le système A — A&apos; £* ; les ^ premières équations sont

a1-aWi Z*, a2-ax i*»...,aWl - aWl-i ^ où 27? 0
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Elles admettent la solution

«i II a, £ + II a* % + % + II •. -, ani Z* +• • •+ l*ni 0

Les A — 1 autres lignes du système fournissent des résultats analogues.
Cela prouve que le système A — Ar L* est toujours résoluble. -4 désignant
une solution, on peut écrire

A -A&apos; L+ (L* - L) où i*
puis:

- A&apos;) /(£)/(£* - L) et aa&apos;&quot;1 /(£* -
Proposition 1. On obtient tous les acTl0 tels que aa&apos;~1€Î7J en prenant les

AeRlQ tels que A — A&apos; L*, où L* désigne la projection sur Rl~h d&apos;un

élément L quelconque du réseau unité dt.
La formule b= — f(L — L*) montre de plus qu&apos;on obtient les 6 de

aa1&apos;1 beT* en formant les éléments du type L — L* ; or un tel élément
n&apos;est pas autre chose que la projection de L sur 22j.

Proposition 2. Les éléments b susceptibles de figurer dans aa&apos;~l ôeT
sont les images par f des projections sur JBj des points du réseau unité ôt.

Considérons maintenant un système de générateurs du réseau &lt;5, : Lx, L2,...
et soit L 11L1 + hLz -f • • • un élément quelconque de ce réseau (lt entiers).
On a £* 27tZ/* ; soit Ai une solution de A — A1 L* et posons A £liAi.
On a A-A&apos;^ZliAi-iZl^y^EliAi-SliA^Zl^A^A^^EliL^L^.

Proposition 3. On obtient un système de générateurs du sous-groupe des aeTlQ

tels que aa&apos;-xeT\ en résolvant les systèmes A — Ar L* où L* est la
projection sur Rl~h d&apos;un élément L qui décrit un système de générateurs du réseau

unité (5j.

Remarquons que si A est une solution de A — A&apos; L*, tout A -f t où
est aussi une solution.

3. Constructions. Un système de générateurs du réseau unité dt est donné

par les extrémités des l vecteurs 2ocij(x^1..., 2yijy^ et par les sommets de

P(O0) qui appartiennent au réseau unité &lt;5j.

Projetons ces générateurs sur R$ ; la projection de &lt;xk sur I?J est Q1=—Zoci.

En effet, &lt;xk • x &lt;%f x pour tout xcR% entraîne E(xi • x nx(xk • x

x (&lt;**: E&amp;i) 0&gt; %(&lt;*k — gi) 0 et (^ — atfcciîj. Cela étant, la pro-

jection de 2#fc/&lt;x* sur JRj est 2^^^; un calcul facile montre encore que cette
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2&apos;I[projection s&apos;écrit 2q&apos;1Iq[2 avec Qf1=n1p1Q1 (cf. § 3, n° 4) ; or 2q[Iq/12(î=1, h)
est un système de générateurs du réseau minimum de

Proposition 4. La projection sur B% du réseau minimum de Go correspond

aux translations du réseau minimum du diagramme D(G1).
Ces translations ne sont pas en général des translations de recouvrement ;

on les obtient à l&apos;aide de produits de symétries par rapport à des (h — 1)-

plans singuliers parallèles du diagramme .©(Gy.
Les sommets de P(G0) qui sont dans le réseau unité fournissent par

projection d&apos;autres translations. Supposons par exemple que le sommet Px opposé
à la face &lt;xx 0 dans P(G0) soit dans ôl. Les coordonnées canoniques de

Pj sont

d&apos;où P*

1 — 1/%, — 1/tt!,..., —

0 ,0 ,...,0

0

(nt — 1)/%, {nx — 2)lnl9..., 1/%, 0

0 ,0 ,...,0 ,0

,0 ,...,o
1/»!, 1/%,..., 1/
0 ,0 ,...,0

B

0 ,...,0 ,0 0 ,0 ,...,0
ou B(l/nly 0, 0,..., 0) en coordonnées gt. Alors — OB est une translation
du diagramme D(Gt) conservant ce diagramme, et induite par l&apos;auto-

morphisme intérieur &lt;pa avec a f(A)eTQ. On aurait des résultats
analogues avec d&apos;autres sommets de P(G0) appartenant à ôt.

Si Go GQ est simplement connexe, de telles translations n&apos;existent pas
et il n&apos;y a que les translations du réseau minimum de D(GX). Cela entraîne
le théorème :

Théorème. Le polyèdre fondamental P(Gt) est un domaine fondamental
d&apos;éléments de Gx conjugués relativement à Go si cette composante neutre est simplement

connexe.

- Ce théorème était bien connu dans le cas Gt Go. Dans le cas général,
connaissant encore les translations OB, on pourra trouver dans P((?x) un
domaine fondamental D(Gt) d&apos;éléments de Gt conjugués relativement à Go,

éventuellement plus petit que P(G1).

Pratiquement, on considère dans D(GX) le repère g[,..., grh d&apos;origine / ;
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le réseau minimum est formé des extrémités des vecteurs 2Qfi/Qfi2 et de leurs
combinaisons linéaires à coefficients entiers. Cela étant, les autres
translations OB sont déterminées par les composantes covariantes b{ de OB dans le

système (q&apos;). On forme alors la matrice (g^) (Qi&apos;Qj), puis l&apos;inverse {g**) ;

alors b{ g^b^ ce qui permet de comparer directement les translations OB à
celles du réseau minimum. Dans les exemples traités ci-dessous (§ 6), j&apos;ai

utilisé cette méthode sans présenter le détail des calculs.

4. Recherche des acTlQ invariants par cpx, où xcT^K Ici, on cherche les
éléments aeTl0 avec aa&apos;-1 e, ou a a1 ; la théorie ci-dessus s&apos;applique

avec b e. L — L* est dans le réseau unité, ainsi que L*. Ainsi, on
obtient tous les aaT\ tels que a ar en prenant les AeRlQ tels que
A — A1 L*9 le point L et sa projection sur i?J étant dans le réseau unité.

Remarquons que les nombres ax — ani, a2 — ax,..., ani — ani__x sont entiers
puisque £* est dans ôt. Or, on peut faire varier A dans A -f- R% sans changer
L*, ce qui permet de supposer ani, bn%,..., cnh entiers ; alors a1, a2,..., ani^x
successivement sont aussi entiers, ainsi que les bi9...,c4. Cela signifie que
A + Rq contient un point du réseau central, et la classe aT% rencontre le
centre Zo de Go.

Propositions. Si xeT^, le normalisateur de x dans Tl0 est engendré par
q et par les éléments du centre de OQ échangeables avec x.

§ 6. Etude des groupes simples

1. Réduction au cas simple. Dans le § 2, n° 6, nous avons opéré une réduction
au cas semi-simple ; ici, je me propose de traiter à nouveau cette question,
en effectuant une réduction plus complète ; le cas où la composante neutre est

simple subit de plus un examen détaillé.
Je considère un groupe de Lie clos G O0 + Ot H— • extension cyclique

finie de sa composante neutre 6?0, G1 étant une composante connexe
génératrice ; on peut écrire

1) (?0 Tpx ©oi X • • • X ©Ot (produit local direct) où Tv est la composante
neutre du centre de Go, l&apos;automorphisme intérieur q&gt;x induit par xcGt
permutant circulairement les facteurs simples ©Jf,..., ©^ dans ©0&lt; (i= 1,..., t).
Comme je l&apos;ai souvent fait ci-dessus, je construis dans le normalisateur
connexe Nx un toroïde maximum Tj, lui-même situé dans un toroïde maximum
T1q de GQ. On peut écrire

T[ T* X Th x • • • X Tl% (Tli maximum dans ©0&lt;) (2)
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î7* T9&apos; X Thl X • • • X Tht (3)

Thi est la projection de jFJ sur Tli, tous les produits indiqués étant localement
directs. T(h)(G^) est alors engendré par T% et par x ; il existe dans T^=xT$ un
élément z qui engendre un sous-groupe fini Zq d&apos;ordre q, avec T{h)(Gx)=Tj xZq
(produit direct). D&apos;après (1) et (2), les caractères de G relatifs à T\ se

partagent en t familles ; ceux de la i-ème sont égaux à l&apos;identité sur Tp et sur
tous les Tli sauf sur Tli ; leur restriction à Tj est l&apos;identité sur tous les
facteurs de (3) sauf sur Thi. De même, les caractères de G relatifs à Tih)(Gt) se

partagent en t familles naturellement correspondantes, ceux de la i-ème
étant aussi égaux à l&apos;identité sur tous les facteurs de (3) sauf sur Thi.

En vertu de (2) et (3), les supports R[ et R* subissent respectivement les

décompositions suivantes

Rl0 R* + Rl* +...+ R*t (4)

i?J R&quot; + R*i + + Rh* (Rh* c B**) (5)

et on a, pour les paramètres angulaires relatifs à TlQ et à T^iG^ des conclusions

analogues aux précédentes. L&apos;automorphisme yx conserve un angle
polyèdre fondamental P(G0) défini par une suite {ociik} engendrant un tableau

formé de t tableaux partiels ; la suite gn,..., gihi,..., Qtht est fondamentale

pour le normalisateur principal JV, et se partage en t suites partielles Qa,..., Qihi

mutuellement orthogonales, avec QikaRhi ; les formes gik s&apos;annulent sur
tous les termes de (5) sauf sur Rhi, et les gik + T/nik sont dans i2* constantes
sur les plans parallèles à la somme (5) dans laquelle on supprime iîj*.

Je dis que la figure de Schlâitj: 3f(e&lt;i&gt; • • •&gt; Qm) es^ connexe ; en effet, si
cela n&apos;était pas, la suite aiik (i fixé) se décomposerait en deux suites au moins
mutuellement orthogonales (voir [9], p. 239) et ©Oi n&apos;aurait pas ses facteurs
simples permutés transitivement par &lt;px. Le normalisateur Nr^($Oi est

simple. Dans ce sens, la restriction du problème à ©Ot est une réduction au cas

simple.

Le diagramme DiGJ défini par les vecteurs gfik est la somme directe de
Rpf et de t diagrammes simples; le polyèdre fondamental P(Ox) lui-même
est somme directe de simplexes et de Rpl. N&apos;intervient ici que le diagramme
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comme ensemble de plan singuliers et non pourvu de translations de recouvrement.

En résumé, on peut se ramener au cas où les facteurs simples de GQ sont
permutés circulairement par cpx. Nous allons examiner en détail le cas des cycles
à un seul élément. Il s&apos;agira d&apos;un groupe simple Go pourvu d&apos;une extension
cyclique finie Go + Gx + * - • extraite d&apos;une extension naturelle.

2. Extensions naturelles de A2h_1. Comme au chapitre I § 4, nous avons la
suite fondamentale &lt;pt- et la permutation g unique admise par cette suite (or non
triviale), respectivement

o—o

ce qui engendre le tableau suivant

Figure associée
ko

&lt;P\O O(fi

1

~&quot;1

&lt;Ph-i(X p &lt;ph+i

\ /O
&lt;pn

Vecteurs du normalisateur
principal N

Qi z=i((Pi ~t~ (pi)

-&gt; -&gt; -&gt;

1

î
^2

1

1

1O

2O

h-io

ho
type

Vecteurs du
diagramme

D{OX)

Ql ^^ (?2 V2

V2

V2

1

Polyèdre
fondamental

1O O-co&apos;

\ y/
2O

II

7 II

type Bh

On a indiqué en regard des vecteurs les longueurs respectives. Voici
maintenant les sommets du polyèdre P(&lt;?1) avec la structure des normalisateurs
associés (coordonnées çlt..., Qh, k)

Origine / (0, 0, 0,..., 0, 0, 1)

(i, 0,0,..., 0,0,1)
(0,1,0,..., 0,0,1)

N(I) N type Ch

type Gh

type CwxD,
6 Commentarii Mathemstici Helvetici
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,0,|,..., 0,0,1)

-i (0, 0, 05..., J, 0, 1)

type Ch_zxDz

type
typeD,

Au divers groupes simples du type A2h_x localement isomorphes
correspondent des extensions naturelles dont je vais indiquer le réseau unité ôh

associé, avec le domaine fondamental ^(O-^ d&apos;éléments de Ox conjugués
relativement à Go.

Tout d&apos;abord, la famille A2n_x provient du groupe A2h_1 simplement
connexe, de centre Z2h (e,a,a2,...) avec a {(A^), A[ (1, 0, 0,..., 0)

en coordonnées cp{ ; on a oA[ (0, 0,..., 0, 1), /(&lt;r^4() a&quot;1. Si l&apos;unité F
de -42ft-i est engendrée par ap, on a A2h__x A2h_JV, &lt;px( F) F ; le centre
de A2h_^1 est d&apos;ordre p. Nous obtenons le tableau suivant

Groupe

A2h-i

A2k~\

-42ft-l

adjoint

Unité
V (aP)

e

p pair
2h/p
impair

p impair
2h/p pair

p pair
2h/p pair

P=i

Générateurs du
réseau unité ôi

(système (p)

2ç&gt;f et A&apos;p

(0,0,...,l,...,0)

2y et A&apos;p

(0,0,...,l,...,0)
^=0 BÎi^p

2ç?f et Jlp
(0,0,...,l,...,0)
Vi—Omi^p

2&lt;p{ et ^p
(0,0,...,l,...,0)
9J,=0 si i#j&gt;

Réseau-
trace

4^f, 2^fc

(o,o,...,o,i)

4^, %Qh

(0,0,...,0,1)

4^i, 2Îa
(0,0,...,0,1)

Point
unité
qj
21

231,

2/

2/

2/

4/

2/

Extension

principale

semi-directe
non
principale

principale

semi-directe
non
principale

principale

principale

non
semi-directe

principale

S&gt;(Gi)

P(G1)

P{&lt;*i)

P(GX)

moi)
Iet%h
con-
jugés

P(Gi)

P(OJ

iP(Gi)

con-
jugés
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3. Extensions naturelles de A2h. Nous avons de même la suite fondamentale,
la permutation a et le tableau associé, respectivement

Figure associée
ha

Vecteurs du normalisateur
principal N

Vecteurs du
diagramme

D(G1)

Polyèdre
fondamental

&lt;p2O

*-iO

VhO O(ph+1

lo

2o

A-ii h-li
ho Ch

Les sommets du polyèdre fondamental et les normalisateurs associés sont
(coordonnées Qt,..., gh, k)

I (0,0,... ,0,0,1)
«! (|,0,..., 0,0,1)
% (0,|,..., 0,0,1)

N(%)
type
type
type

(0,0,..., 0,1,1) type

Je prends ici les mêmes notations qu&apos;au passage correspondant du n° 2 ; il
convient de noter que le centre de A2h est Zih+l d&apos;ordre impair.
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Groupe

Au

A-2H

adjoint

Unité F

e

Générateurs
de ôi

2&lt;pi et Ap

2Ïpi et 4j[

Réseau-
trace

4,
4,

4,

Point
unité

2/

2/

2/

Extension

principale

principale

principale

P(G1)

P{GX)

P(G1)

L Extensions naturelles de Dh+1. La suite fondamentale, la permutation a
et le tableau associé sont ici respectivement

o
&lt;Phr-l&gt;&lt;Ph

Figure
associée

à a

Vecteurs du normalisateur
principal N

Vecteurs du
diagramme

D(OX)

Polyèdre
fondamental

Qi O

o o

j

o

o

a-i

1

1

V2

O=O —ta&apos;

O

O

o Ch

oj&apos;=2q&apos;1

Les sommets du polyèdre fondamental et les normalisateurs associés sont

/ (0,0,0,...,0,0,1) N type Bh

21, (1,0,0,...,0,0,1) N(%x) type B,xBw
3t2 (0,|,0,...,0,0,1) iV(«!Ca) type

»_! (0, 0, 0,..., i, 0, 1) #(«*_!) type 5^X 5t
ft (0,0,0,..., 0,|,l) ^(«J type Bh
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La famille Dh+1 provient du groupe Dh+1 simplement connexe dont le centre
est Z± (e,a,a2,a3) si h -f 1 est impair, et Z2xZ2 (e,a,b,ab) si h + 1

est pair. L&apos;élément a correspond à A&apos;h : cp3 0 si j ^. h,&lt;ph= l. Les sous-

groupes non triviaux invariants par a sont V — (e,a2) ou V (e,aè). On
obtient le tableau :

Groupe

Ah-i
A+ 1

impair

adjoint

h+ 1

pair

(e, ab)

adjoint

Unité F

e

(e, a*)

(e,a,a2,a3)

e

(e,a&amp;)

(e, a, 6, a6)

Générateurs
de Ôi

2(pt

2r*,A[

2yt,A[

Zy^A^Ah+i

Réseau-
trace

2Î., ÎQh

2Qt, 4ÎA

(1,0,...,0)

2î,, ÎQh

(1,0,...,0)

2Q,,±Qk
(1,0,...,0)

2^,4^
(1,0,...,0)

Point
unité

2/
2 %!

2/

4/

2/

2/

2/

4/

2/

Extension

principale

semi-directe

principale

non
semi-directe

principale

principale

principale

non
semi-directe

principale

£&gt;(#i)

P(Gi)

P(Gt)

P(G1)

conjugués

m)

P(Oi)

conjugués

5. Extensions naturelles de D4. La suite fondamentale, la permutation a

non encore étudiée, et le tableau associé sont

o 1
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Figure
associée

ko

no/h
q&gt;2 9^ 9*

Vecteurs du normalisateur
principal N

-&gt; -&gt;

Ql=&lt;Pi

1^2 1(^2+^3+^4)

1

1

s
o
G*

Vecteurs du
diagramme

D(GX)

ei Qi i

Polyèdre
fondamental

P(Qi)

1Q«)&apos; 3ei

2? =3(Pl
-o»&apos;i(?t +2eï)

Les sommets du polyèdre fondamental et les normalisateurs associés sont

/ (0, 0, 1) N type G2

% (J, 0, 1) N(%) type A2

La famille D4 est issue du groupe simplement connexe D4 de centre

les éléments a, 6, c étant respectivement déterminés par les points suivants
(coordonnées canoniques)

0

10 0.

0

0 10 0 0 1

Z n&apos;a aucun sous-groupe non trivial invariant par a. Il vient le tableau

Groupe

groupe
adjoint

Unité

e

z

Générateurs
de ôi

2q&gt;i et

[M(M\1 0 0/ \0 1 0/

Réseau-
trace

2^,66,

Point
unité

21

21

Extension

principale

principale

P(Gi)

P(Gi)

6. Extensions naturelles de E9. La suite fondamentale et la permutation o
sont

a—
/&lt;Pl

6
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II vient le tableau

Figure associée
ha

Vecteurs du
normalisateur
principal N

Vecteurs du
diagramme

Polyèdre
fondamental

£ 2= 1(9^2+ VU

O

Ç&gt;6

1

FF
i

FF

i

O

o
F,

V2

V2

1

1

co1

O

o

m&apos;=i

O

Ft + 64)

Sommets du polyèdre fondamental P (GJ et normalisateurs associés

r (0,0,0,0,1)
Ml, o.o, o.i)
Mo, *, o,o,i)
Mo, o,i, o,i)
1,(0,0,0,1,1)

N type
type
type
type
type

La famille E6 est issue du groupe simplement connexe E% de centre
Z Zz (e,a,a2) qui n&apos;a aucun sous-groupe non trivial. L&apos;élément a est
représenté par ^4( : cpx 1, ç&gt;2 • • • 9e ^ • On a le tableau :

Groupe

groupe
adjoint

Unité V

e

z3

Générateurs
de ôi

2&quot;$, et A[

Réseau-
trace

4Îi,4^2
2Qz,ÏQ*

A&quot;* A~*
4^i54^2
2Î352Î4

Point
unité

qJ

2/

2/

Extension

principale

principale

P(Ot)

7. Automorphismes mvolutifs. La recherche des automorphismes involutifs
des groupes de Lie semi-simples compacts connexes OQ est facilitée par Fintro-
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duction des polyèdres P(0t) ; il suffit de se placer dans le groupe A(G0) des

automorphismes de Go, avec A(G0) Ao + Ax -\ ; les éléments des

polyèdres P(At) qui sont d&apos;ordre 2 dans le réseau central àl donnent les
automorphismes cherchés ; si i ^ 0, la composante connexe Ax doit être d&apos;ordre 2

dans A(G0)/A0.
J&apos;applique cette méthode au cas où Go est simple, en considérant d&apos;abord

le polyèdre P(A0). Il est défini par la suite fondamentale q&gt;l9. ..9&lt;pt et par le
paramètre angulaire dominant co m1cp1 + • • • + mi&lt;Pi \ c&apos;est un simplexe,
dont les sommets sont

o(o,o,o,...,o) aJ— ,o,o, ...,oV...,^ (0,0,0,...,—
\mi I \ mij

Si mt 1, A% est dans le réseau central. Un élément X d&apos;ordre 2 a des

coordonnées &lt;pt(X) de la forme kJ2 où les kt sont entiers ; de plus, X€P(A0)
entraîne kt ^ 0 et mt çpt (X) ^ 1. Si mt &gt; 2, on a nécessairement kt 0 ;

mt 2 exige kt 0 ou 1 ; enfin, mt 1 donne kt 0, 1, ou 2. Si mt 1.

k% 2, on a Xc^^, ce qui n&apos;apporte rien. Reste le cas wt 1, fct 1,
ce qui fournit X \A% ou bien X |(ylï + A3) avec mt m} 1, solution

qui se ramène à X \Ah (mk 1) puisque At9 Aieôl. Nous obtenons

les solutions

si mt==2 X= (0,0,...,0,i,0,...,0) ylt ;

si m, 1 Z (0,0,..., 0,4,0,..., 0) £4,

et il n&apos;y en a pas d&apos;autre. Notons que ce résultat est indiqué dans [1].
Soit maintenant Ax une composante connexe d&apos;ordre 2 de A (Go), et

cherchons les points X(q&apos;19 orh, 1) de P(-4x) d&apos;ordre 2 dans àl. On a 2JT€&lt;5A

et aussi 2l€Ôl, d&apos;où 2 (X — /) €(5j ; réciproquement, si 2(X — /) €&lt;51, on

a 2Jl€(5j. Tout revient à chercher les X€P(AX) tels que 2X — 21 soit

dans le réseau-trace ô^Rq formé des points à coordonnées gt entières. Achevons

le calcul en exprimant le paramètre dominant co&apos; de D{A^ à l&apos;aide des

formes Qt ; il vient co&apos; png sq (cf. § 3, n° 4) où q est un paramètre angulaire

du normalisateur principal N ; on ne peut avoir 5 1, sinon q est domi-
h

nant pour N et pour D{Al), ce qui ne peut être. On écrit cof s Edtqt où
i

les dt sont des entiers ^ 0. Une solution est X / ; autre possibilité : l&apos;un

des dt est égal à 1, avec alors s 2, ce qui donne un sommet de P(AX). On
obtient de la sorte tous les X cherchés. Un coup d&apos;œil sur [1] p. 219 et sur les

n° 2 à 6 de ce paragraphe donne ces automorphismes, bien connus d&apos;ailleurs.
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