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Zur konformen Abbildung auf Normalgebiete

von Heinz Renggli, Luzera

Einleitung

Die vorliegende Arbeit kann in zwei Teile gegliedert werden. Im ersten Teil,
der die ersten sechs Abschnitte umfaBt, werden die sogenannten konformen
Normalgebiete erklârt und diskutiert. Dabei war es unser Ziel, auch die
klassischen minimalen Schlitzbereiche, nâmlich die Parallelschlitzbereiche
sowie die Radial- und Kreisbogenschlitzbereiche der Ebene in die Darstellung
einzubeziehen. In den letzten dreiAbschnitten, dem zweiten Teil, leiten wir das
Résultat her, daB umgekehrt fur gewisse gegebene Gebiete konforme Abbil-
dungen auf Normalgebiete existieren.

Die Définition der Normalgebiete wird mit Hilfe des Begriffs der Extremal-
lânge geprâgt. Deswegen geben wir vorgângig in den beiden ersten
Abschnitten einen AbriB der Théorie der Extremallângen. In Abschnitt 3 behan-
deln wir dann einige Beispiele von Extremallângen, wâhrend der vierte
Abschnitt die Erklàrung sowie die wichtigsten Eigenschaften der sogenannten
Normalgebiete enthâlt.

In Abschnitt 5 zeigen wir ebenfalls mit Hilfe der Extremallângen, daB die
Normalgebiete sozusagen konform starr in die ûbergeordneten Gebiete ein-
gebettet sind. Dies ist die Ûbertragung des klassischen Résultâtes, wonach die
konformen Abbildungen auf die entsprechenden Schlitzbereiche bei geeigneter
Normierung eindeutig bestimmt sind. Damit soll rûckwârts die gegebene De-
finition der Normalgebiete gerechtfertigt werden. Zur Vervollstândigung be-
handeln wir in Abschnitt 6 die Parallelschlitzgebiete und zeigen, daB unsere
Définition mit der klassischen Erklârung âquivalent ist.

AlsVorbereitung zut Diskussion der konformenAbbildung aufNormalgebiete
werden in Abschnitt 7 diejenigen Spezialfalle behandelt, bei denen relativ zum
ubergeordneten Gebiet nur einzelne Berandungen auftreten. Werden nun dièse

in sogenannte normale Schlitze resp. in sogenannte normale Einschnitte ver-
wandelt, so sind die betreffenden Bildgebiete Normalgebiete. Im achten
Abschnitt lôsen wir fur gewisse Gebietsklassen ein Extremalproblem, das beziig-
lich der Extremallângen formuliert wird, und beweisen schlieBlich im letzten,
neunten Abschnitt, daB damit fur unsere Spezialfalle zugleich die Frage der
konformen Abbildung auf Normalgebiete erledigt ist.

Wir bemerken noch, daB jedem Abschnitt eine kurze Zusammenfassung vor-
angestellt ist. Dort findet man auch nâhere Hinweise mit den wichtigsten Lite-
raturangaben und den notwendigen historischen Bemerkungen.
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§1. Der Begrifl der Extremallânge

Wir geben zuerst die Définition der Extremallànge nach L. Ahlfors und A.
Beubung [1], Nachher stellen wir kurz den Zusammenhang mit dem Dnti-
CHLBTschen Prinzip her.

1. In der komplexen z x + iy)-Ebene E sei eine Kurvenschar {y} ge-
geben. Unter einer Kurve y e {y} verstehen wir das stetige Bild zy{t) eines
Parameterintervalls 0 &lt;t &lt; 1 oder im Falle geschlosâener Kurven das stetige
Bild von 0 ^ t ^ 1 mit zy(0) zy(l). F bezeichne den Trâger von {y},
das heifit die Menge derjenigen Punkte, welche die y aus {y} ûberdecken.

In E werden Funktionen q(z) &gt; 0 betrachtet; sie definieren durch
da g(z) I dz \ eine konforme Metrik. Wenïi nun q (z) im LiTBESGtrEschen Sinne

quadratisch integrierbar ist, so ist F (g) JJ Qz(z)dxdy die bezûglich q (z) ge-
s

messene Mâche. Andernfalls werde F(q) =cxd gesetzt.
Besteht y c {y} aus abzâhlbar vielen rektifizierbarenTeilkurven yi9y Uyo

so ist ihre durch q{z) bestimmte Lange durch

i=i yi

erklârt. ^ bedeutet dabei die bezûglich yt gemessene euklidische Bogenlânge,
wâhrend die Integrationen im LEBESGFEschen Sinne liber at. auszufûhren sind,
Besteht keine solche Zerlegung in rektifizierbare Teilkurven oder sind die In*
tegrale nicht definiert, so werde lQ{y) ==oo gesetzt.

Es sei

m
die sogenannte Minimallânge der Schar {y} fur gegebenes q(z). Eine konforme
Metrik q(z) ist zulâssig und gehôrt zur zulâssigen KJasse {g(z)}t wenn L(g)
und F(q) nicht gleichzeitig 0 oder oo sind.

Définition 1. Die Grôfie X(y) sup^^J.JP-1^), 0 &lt; X(y) &lt;oo heipt
ExlremaUÂnge der Kurvenschar {y}. {Q}

Es sei Fc A und A von positivem LEBESGFEschem MaB. Eine in A kon*
formé Metrik q(z) ist zulâssig, falls die Minimallânge L(g) und die bezûglich
A gemessene Mâche F (g) nicht gleichzeitig 0 oder oo sind. Àus Définition 1

ergibt sich unmittelbar, daB die in E oder A berechneten Extremallângen
ûbereinstimmen, die Extremallânge also nur von der Kurvenschar {y} ab-

hângig ist. Insbesondere folgt noch, daB X(y) entweder 0 oder oo ist, falls F
eine LEBESGUEsche Nullmenge darstellt.
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Bermrkung : Ohne ausdruckliche Erwâhnung werden wir im folgenden von
der Beschrankung auf A keinen Gebrauch machen.

2. Offc ist es giinstig, die Klasse {q(z)} zu normieren. Ist A(y)&lt;oo, also
F (g) &gt; 0, so kann fur endliche F(q) zur Berechnung der Extremallânge wegen
der Homogenitât von L2(q) und F(q) in q(z) fur die Flâche F(q) c, c&gt;0

gesetzt werden. Aus Définition 1 ergibt sich

Zusatz 1&apos;. Ist filr die zugelassene Klasse {g(z)} die Floche F(q) c,c&gt;0
und supl/2(ç)&lt;oo, 3o heiflt die Grôfîe X(y) c

«?}

ExtremaUdnge von {y}.

Ist dagegen A(y)&gt;0, das heiBt i(g)&gt;0 fur gewisse q(z)9 so darf man
sich zur Bestimmung der Extremallânge auf die g(z) beschrânken, fur die

L{q) ^ 1 gilt. Mit Hilfe von Définition 1 folgt damit

Zusatz V. Ist fUr die zwgdassene Klasse {g(z)} die Minimaïïànge L(q) &gt; 1

und m£F(o)&lt;oo9 so heifit die Grôfte X{y) [inf F(q)]-1, À(y)&gt;0 Extre-
{&lt;?} {q)

mallànge von {y}.

3. Es 8oll noeh kurz gezeigt werden, wie der Begriff der Extremallânge mit
dem DiBiCHLETschen Prinzip verknûpft ist. Wir beschrânken uns bei der
folgenden Darlegung auf ein einfaches Beispiel, bemerken aber, daB die aufbre-
tenden Zusammenhânge viel allgemeinere Gûltigkeit besitzen.

Es sei der Trâger FR der Schar {yR} das Rechteck

0&lt;y&lt;b)

wâhrend jedes yR e {yR} die Punktmenge

^0= {(x&gt;y) \0&lt;x&lt;a9y 0} mit EX=* {(x,y) \0&lt;z&lt;a,y 6}

verbinde, das heiBt es gelte ]im.^zy (t) 0 und lim %zr (t)=b. Beschrân-

ken wir die konforme Klasse {q(z)} gemâB § 1.1 auf jR und ist q(z) quadra-
b

tisch integrierbar, so existiert nach dem Satz von Fubini J Q%(x9y)dy fast
0

iiberall in 0 &lt; x &lt; a * Also ist infolge der ScHWABZschen Ungleichung fost ùberall

L*(q) ll
0 0

da jede Kurve x const., 0&lt;x&lt;a zu {yR} gehôrt. Integriert man nun
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ûber x, so ergibt sioh aL%{q) &lt; bF(q). GemâB Définition 1 ist also
X(yR) arl-b und das Gleichheitszeichen steht nur dann, wenn fast iiber-
all in jR fur die Metrik q(z) const. gilt.

Es sei die Klasse 0 {/(#, y)} gegeben. Dabei sei f(x, y) in R stetig
differenzierbar und / 0 auf Eo, / 1 auf Ex. Es ist

das DraiCHLETintegral von f(x, y). Gesucht sei nun die Funktion /(a?, y) € 0&gt;

fur die D(f) einen môglichst kleinen Wert besitzt. Einen derartigen Ansatz
macht man beim DntiCHLETschen Prinzip. Es gilt in unserm Falle D(f)^D(u),
wobei u(x9y) b&quot;1^ ist. In den physikalischen Anwendungen ist u(x, y)
das Potential Und D{u) die Kapazitat. Ferner wird der Zusammenhang mit
der Extremallânge hergestellt, indem man q(z) | grad/(a:, y) | wâhlt.

§ 2. Einige Eigenschaften der Extremallânge

In diesem Abschnitt sind einige Eigenschaften der Extremallânge zusam-
mengestellt. Der Satz von der konformen Invarianz (Satz 2) wurde der Arbeit
von L. Ahlfobs und A. Betjkling [1] entnommen. Die beiden Zerlegungs-
sâtze (Sâtze 3 und 4) sind Verallgemeinerungen von Sâtzen derselben Ver-
fasser. Satz 5 fuBt auf einer von K.Stbbbel [15] entdeekten Ungleichung. Die
hier gegebene Verschârfung stammt von J« Hersch [8].

1. In vielen Fâllen gibt es in der zugelassenen Klasse {q(z)} mindestens
eine Metrik, fur die in Définition 1 das Gleichheitszeichen steht.

Définition 2* P(z) heifit Extremalmetrik, wenn

Fur Extremalmetriken gilt ein gewisser Eindeutigkeitssatz. Vorgângig soll
aber in zwei Beispielen die Ausnahmestellung von A (y) 0 und X(y)=oo
dargelegt werden.

a) Jede Kurve y einer Schar {y} sei zu einem Punkt degeneriert. Dann ïst
L(q) =±= 0 furjedes q(z) c {q(z)}. Es ist also A(y) O undjedes q(z) € {q{z)}
ist Extremalmetrik.

b) Die Schar {y} bestehe aus allenKurven y, die eineabgeschlossenePunkt-
menge in {z \ j z 1&gt;r&gt;0,0&lt;r&lt;l} mit 2 0 verbinden. Setzt man
Q(z) =- - [l^l-logl*!]&quot;1 in {z | \z\&lt;r} und q(z) 0 in {z\\z\^r}%
so erhâlt man L(q) =oo und F(q) — 2n (logr)-1, also X(y) =cx&gt;. Auch
jede andere Metrik, die in {z | | z \&lt;r} mit dieser ùbereinstimmt, ist
Extremalmetrik.
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Dagegen gilt die folgende Eindeutigkeitsaussage :

Satz 1. Fur 0&lt;X(y)&lt;oo ist die Extremalmetrik, faits sie existiert, bis auf
einen konstanten Faktor fast libérait eindeutig bestimmt [14].

Beweis. Nach §1.2 diirfen wir uns auf den Fall normierter Extremalmetriken
beschrânken. Es seien also P{ (z) (i 1, 2) zwei Extremalmetriken mit
F(Pt) 1. Fur P0(z) H-PiW + P*(*)] ist

und aus der ScHWARzschen Ungleichung folgt

E

&lt;3ema8 Définition 1 ist aber F(P0) &gt; L*(P0)*X~l(y) &gt; 1. Also mtiB in

jj P1(z)&apos;P2(z)dxdy ^ 1 das Gleichheitszeichen stehen und demnach fast
E
ùberall Px(z) P2(z) sein.

2. Bildet zr (z) ein die Schar {y} enthaltendes Gebiet À konform in eine

komplexe z&apos;-Ebene ab, so wird durch q(z) \ dz \ g&apos;(z&apos;) | dz1 \ jede konforme
Metrik von A auf das Bild A&apos; konform iibertragen und umgekehrt. Fur solche
einander zugeordnete Metriken kann die Abbildung als Isometrie aufgefafit
werden. Somit folgt

Satz 2. Die Extremallânge ist eine konforme Invariante, das heipt wird ein
{y} enthaltendes Gebiet A konform auf ein Gebiet A1 abgebildet und ist {yr} die
entsprechende Bildschar, so gilt X(y) A (y&apos;).

3. Es seien abzâhlbar viele Kurvenscharen {y4} gegeben, die zueinander
disjunkte Punktmengen rt- ùberdecken. Femer seien die Trâger F4 im Lebes-
GUEschen Sinne meBbar. Wir betrachten zunâchst den Fall, da8 jede Kurve
7i € {?i} (*&quot; 1, 2... eine Kurve y der Schar {y} enthâlt. Es existiere also

zu jeder Kurve yit dargestellt durch zYi(t), 0&lt;t&lt;l eine Kurve y und ein
Teilintervall (0 &lt; t&apos;&lt;t&lt;t&quot; (&lt; 1) derart, da8 y das durch zY{(t) vermit-
telte Bild von tr &lt;t&lt;t&quot; ist. Dies nennen wir eine Zerlegung erster Art von {y}.

00

Satz 3. Fur eine Zerlegung erster AH gilt E

Beweis. Der Fall X{y) 0 ist trivial. Fur A(y)&gt;0 existieren im Sinne

von Zusatz 1&quot; zulàssige q(z), fur die L(q) &gt; 1 ist. Beschrânkt man q(z) auf
Fi9 das heifit setzt q^z) q(z) in F4 und qt(z) 0 in E — rif so folgt
mit Hilfe von Zusatz 1&quot; sofort Satz 3.

Wendet man Satz 1 auf Satz 3 an, so ergibt sich unmittelbar mit Hilfe von
Zusatz 1&quot;
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Satz 3&apos;. Es sei 0&lt;Â(y)&lt;oo und P(z) Extremalmetrik fur {y} mit der
Normierung L{P) 1. Dann steht in Satz 3 dos Gleichheitszeichen nur daim,
wenn fur die {y^} mit A(y^)&lt;oo da$ auf Fd beschrânkte P(z) Extremalmetrik
filr {yé} und §j P*(z)dzdy 0 ist.

Satz a enthâlt als Spezialfall

Satz 3&quot;. Ist {yT}c{y}, das heifit yT€{y} fur jedes yTe{yT}, so

{yT} eine Teilschar von {y} und es gilt X(yT)

4. Es seien wie bei § 2.3 Scharen {yj mit meBbaren disjunkten Tràgern F{
gegeben. Es enthalte nun jede Kurve y c {y} fur jedes i 1,2... eine
Kurve yit das heifit zu jedem Index i und zu jeder Kurve y, dargestellt
durch zy(t), 0&lt;&lt;&lt;l existiere also eine Kurve yi und ein Teilintervall
(0 &lt;) t&apos;l&lt;t&lt;ti (&lt; 1) derart, daB y€ das durch zy{t) vermittelte Bild von
^&lt;£&lt;^ ist. Dies nennen wir eine Zerlegung zweiter Art von {y}.

00

Satz 4. Filr eine Zerlegung zweiter Art gilt Z X(yt) &lt; X(y).

Beweis. Der&apos;Fall, daB aile X(y{) verschwinden, ist trivial. Ist eines de*
X{yi) =oo, so auch a fortiori X(y) =oo. Es seien also aile X(yt) endlioh.
Wir wâhlen m Scharen {yk} aus, fur die X(yk)&gt;0 ist. GemâB § 1.2 gibt es

zu den {yk} zulâssige gk(z) mit Fk(qk) X(yk), die auBerhalb Fk ver-
m

schwinden. Setzt man q(z) ZQk(z)t so ist g(z) zulâssig bezûgUch {y}. Au,s
m *-l m

Zusatz 1&apos; folgt zunâchst S X(yk) ^ supL(q) dann E X(yk) ^ X(y) bei festem
*-i «?} *=i

m und dur&lt;)h Grenztibergang m -&gt;oo die Behauptung von Satz 4.

5. Die Schar {yw} bezeichne die Vereinigungsmenge zweier beliebiger
Soharen {yx} und {ya}, das heiBt jedes Elément von {y^} gehôre entweder
zu {yt} oderzu {yz}.

Satz 6. Fur die Vereinigungsmenge {y^} zweier Scharen {y^ und {yt}
gilt WyJ}-1 &lt; [Hyi)]-1 +

Beweis. Verschwindet eine d^ GrôBen X(y{) (i 1, 2), so ist der Satz
trivial. Anderafalls gibt es nach § 1.2 zulâssige Metriken q{{z) mit L{(Qi) &gt; 1

beziiglich der einzelnen Scharen {%}. Setzt man

q{z) max {Qt(z), q%(z)} bezûglich {yw}

so gilt L(g) &gt; 1 und F(q) &lt; jFi(gi) + ^«(^2)* Daraus ergibt sich in Ver-
bindung mit Zusatz 1* das gewiinschte Résultat.
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Bemerkung. Sind insbesondere Ft und F2 disjunkt und mefibar, so steht
gemâB Satz 3 in Satz 5 das Gleichheitszeichen.

6. Es sei {y} eine bestimmte Kurvenschar. Dann gilt fur die Extremallânge
jeder beliebigen Teilschar {yT} c {y} nach Satz 3&quot; die Ungleichung X(yT) ^k(y).
Man fragt oft nach denjenigen Teilscharen, fur die in dieser Ungleichung das
Gleichheitszeichen steht.

Définition 3. Die Kurvenschar {y} heifit durch {yT} ersetzbar
9 wenn {yr}c {y}

und X{yT) A (y) ist.

Beispiel. Es sei {y} die Vereinigungsmenge zweier Scharen {yT} und {yx}
mit X(y±) =oo. Dann ist {y} durch {yT} ersetzbar. Einerseits ist nàmlich
X(yT) ^ A (y) nach Satz 3&quot;, anderseits aber A (y) ^ A(yT) gemâB Satz 5.

Der Begriff ersetzbar soll im folgenden noch verallgemeinert werden. Vor-
bereitend definieren wir die Durchschnittsschar {y^} zweier Scharen {yr} und
{yil)* Darunter verstehen wir die Menge der Kurven, die sowohl zu {yz} wie
auch zu {yij) gehôren. Dabei setzen wir ausdrûcklich voraus, daB {y^} nicht
mit. {yj} oder {ytI} identisch ist, da man sonst nur ein Teilscharenverhâlt-
nis im Sinne von Satz 3&quot; hâtte.

Définition 4. Die Kurvenscharen {yj} und {yn} hei/ien vertauschbar, wenn
X(yj) A(y/7) A(y^) ist und beide Inklusionen {y^}c {yT} und {y^}c {yn}
echt sind.

§3. Einige Beispiele fur Extremallângen

In Ergânzung zu § 1.3 werden sogenannte Normalgebiete im Rechteck defi-
niert, und es wird der Zusammenhang mit der auf P. Kobbe [9] zuruck-
gehenden Erklârung der betrefEenden minimalen Schlitzbereiche hergestellt.
Schon H. Grotzsch [4, 5] hat ûbrigens die minimalen Schlitzbereiche mit sei*

ner Streifenmethode eingefûhrt. Im nàchsten Abschnitt soll der Begriff des

Normalgebietes verallgemeinert werden. Vorbereitend dazu behandeln wir zum
SchluB eine gewisse Klasse von speziellen Gebieten.

1. Die Schar {yR}, die im Rechteck R {(x, y) \ 0&lt;x&lt;a, 0&lt;y&lt;b} die
beiden Lângsseiten miteinander verbindet, hat gemâB § 1.3 als Extremallânge
X(yR) a~x&apos;b. Dieser Wert, der Modul des Rechtecks, ist nach Satz 2 eine
konforme Invariante, Ferner ist die gewôhnliche euklidische Metrik Extremal-
metrik.

Identifiziert man in geeigneter Weise die Seiten von J? und bildet nachher
R konform auf einen Exeisring ab, so lassen sich die Resultate auf Kreisringe
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ûbertragen. In Verbindung mit Satz 2 ergibt sioh X(fi)—{2n)&quot;~1 • log (rf * • ra)
fur {ju,} als Schar der Kurven, die

{z \ lz\=rt} mit {z | |2 | r8,r1&lt;r2}

verbinden, sowie [A^)]&quot;1 (2^)~1-log (rf1*^), wenn {i&gt;} aus den {z 11 z 1=^}
und {2; | | z | r2} trennenden Kurven besteht. Ferner ist der Modul
(2 n)-1 - log (r^1 • r2) eines Ringgebietes eine konforme Invariante und q(z) \z \-x
Extremalmetrik.

2. Es sei im Innern des Rechtecks R eine abgeschlossene Punktmenge A ge-
geben. Wir betrachten folgende Klasse X {h(x,y)} von Funktionen:
h(x9 y) € X sei stetig differenzierbar in R — A9 auf Eo sei A 0, auf
i?! dagegen A 1. D1 (h) bezeichne das ûber R — A erstreckte Dirichlbt-
integral von h(xyy). Ist 0 {f(x,y)} die in § 1.3 erklârte Funktionen-
klasse und Z&gt;(/) das ûber R erstreckte DiBiCHLETintegral, so gilt ersichtlicher-
weise inf D&apos;(h) &lt; inf D(f)

{h) {/&gt;

a) P. Koebe definierte die bezûglich R minimalen Schlitzbereiche dutch
die Forderung, da8 in dieser Ungleichung das Gleichheitszeichen stehen soll.
Er zeigte, daB dann A das FlâchenmaB Null hat und sàmtliche Komponenten
von A Schlitze (bzw. Punkte) sind, die in R vertikal liegen, Ferner sind zwei
minimale Schlitzbereiche dann und nur dann konform âquivalent, wenn sie
bei einer Bewegung des ganzen Rechtecks ineinander ûbergehen.

b) Es sei {yA} die Teilschar der in R dofinierten Schar {)&gt;#}, deren Trâger
FA gerade das Teilgebiet R — A ist. GemâB Définition 3 in § 2.6 sind
solche Teilscharen ausgezeichnet, die {yR} ersetzen kônnen. R — A heiBe

nun Normalgebiet bezûglich R, wenn {yR} durch {yA} ersetzbar ist. Da nun
jede Metrik q(z) | grad h(x, y) | h(x,y) eX fur {yA} zulâssig ist und
hiefûr L(q) ^ 1 gilt, so ergibt sich bei normalem R — A die Ungleichung
inf D&apos; (h)^-1^)^*.-1 (yR)=infD(f). In Verbindung mit inf JD&apos;(A)&lt;inf.D(/)

m if)
#

W {/&gt;

folgt daraus, daB jedes in unserm Sinn normale Gebiet ein minimaler Schlitz-
bereich ist. DaB auch die Umkehrung richtig ist und die fur minimale
Schlitzbereiche zitierten Eigenschaften gelten, werden wir spater darlegen.

Anmerkung : Die in § 3.1 erwâhnte Ûbertragung auf Kreisringe liefert minimale

Radial- bzw. Kreisbogenschlitzbereiche bezûglich eines Kreisrings [5].

3. Es sollen nun die in § 3.1 erklarten Beispiele verallgemeinert werden.
Gegeben sei in der z-Ebene ein Gebiet 0, das von endlich vielen analytischen
Kurven G4 berandet werde. Auf jedem der C{ seien endlich viele offene und
disjunkte Teilbogen Cj derart ausgewâhlt und in zwei Klassen Eo und Ex ein-
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geteilt, daB die Komponenten der Punktmenge 2?* U Ct — U C\ abgeschlos-
sene Intervalle sind, die ihrerseits immer Intervalle verschiedener Klasse mit-
einander verbinden.

Die Kurvenschar {y} verbinde in G die Bogen von Eo mit denen von Ex,
das heiBt zu jedem vorgegebenen s &gt; 0 existiere ein &lt;5 &gt; 0 derart, daB der
euklidisch gemessene Abstand d[EOizy(t)]&lt;e fur jedes t mit t&lt;ô resp.
d[Elf zy(t)]&lt;e furjedestfmit 1— t&lt;ô.

Wie im Beispiel von § 1.3 existiert eine in G harmonische Funktion
u(x, y) f fur die 0 &lt; u &lt; 1 in G gilt, mit u — 0 auf den Bogen von EQ,

u 1 auf denen von Ex und — 0 fur die Normalableitung lângs E*. Die

Existenz von u(x, y) ergibt sich am einfachsten mit Hilfe der sogenannten
ScHOTTKYschen Verdoppelung von G bezûglich E*, das heiBt man legt ein
zweites Exemplar von G uber G und verheftet beide Exemplare lângs der
innern Punkte von E* derart zu einer RiEMANNschen Flâche 6?*, daB G*
bei Spiegelung an 25* in sich ûbergeht. Ordnet man ûbereinanderliegenden
Randpunkten von G* gleiche Werte von u zu, so ist auf G* ein Randwert-
problem erster Art zu lôsen.

Theorem 1. Es sei D(u) das filr G berechnete DiRicnh^rintegral von

u(x,y) und A (y) die Extremallânge der Eo und Ex innerhalb G verbindenden
Schar {y}. Dann gilt A&quot;1 (y) D(u) und P(z) | grad u(xyy) | ist Extre-
malmetrik von {y}.

Beweis. Wir betrachten in G das Feld der Linien dv 0 der konjugiert-
harmonischen Funktion von u{x, y). Im AnschluB an die physikalischen In-
terpretationen in § 1.3 werden wir dièse Linien FluBlinien nennen. Mit Aus-
nahme von endlich vielen, die sich in den Punkten mit grad u 0 verzweigen,

ist jede FluBlinie G eine Kurve der Schar {y} und kann durch ze(u),
0&lt;u &lt; 1 dargestellt werden. Da sich auch bei harmonischer Fortsetzung ûber
EQ und Ex hinaus die Linien u 0 resp. u 1 auf Eo bzw. Ex nirgends
verzweigen, verzweigen sich ebenso die Linien v const. nicht. Von jedem
Punkt von Eo und Ex geht also infolge | grad u \ &gt; 0 genau eine FluBlinie aus.

Nun ist fur jede auf G beschrânkte zulâssige Metrik q(z) und fur jede sich
nicht verzweigende FluBlinie

dzc du
du

bezûglich der Schar {y}. Nach der ScHWABZschen Ungleichung erhâlt man

• du.
daraus t j 2

du
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Dabei ist die Minimallânge fur gegebenes q(z) konstant, wàhrend die rechte
Seite der Ungleichung als eine auf Eo resp. E1 definierte Funktion betrachtet
werden kann. Wir multiplizieren dièse Ungleichung mit dv und integrieren -
nach Numerierung der zu Ex gehôrenden Bogen - uber dièse Bogen der Reihe
nach deraft, daB die sich verzweigenden FluBlinien weggelassen werden und
das Gebiet G links liegt. Dann folgt

2

L*{Q) f dv L*(q) • D(u) &lt; f dv
È È

zc
du

du

Da aber durch jeden Punkt von G mit | grad u \ &gt; 0 nur eine FluBlinie geht,
erhâlt man daraus mit Hilfe von dudv \gradu \2-dxdy die Beziehung
L*(q).D(u) &lt; JJ q*(x, y)dxdy F(q).

G

Infolge u(x,y) =?â 0 ist einmal D(u) &gt;0. Anderseits gilt in der euklidischen
Metrik L(q)&gt;0 und F(g)&lt;oo, so daB D(u) endlich sein muB. Fur P(z) er-
gibt sich schlieBlich D(u) F(P), L(P) 1 und somit Theorem 1.

Anmerkung : Die Voraussetzung, daB die Bogen von Eo und Ex auf den Gt
alternieren, wurde im Beweis nicht benutzt, wird aber spàter verwendet
werden. Dagegen ist es wesentlich, daB E* keine isolierten Punkte enthâlt. In
diesem Fall gUt nâmlich X (y) 0. Zum Beweise betrachten wir einen zu E*
gehôrenden, isolierten Punkt p. Dann ist A (y) nach Satz 3* und Satz 4

kleiner als die Extremallânge derjenigen Kurvenschar, die in einem genugend
kleinen Kreis um p das Zentrum p von der Peripherie trennt. Dièse ver-
schwindet aber gemàB §3.1 und somit folgt X(y) 0.

4. Mit Hilfe der in § 3.3 erklârten Scharen {y}, 0&lt;X(y)&lt;oo werden wir
im nâchsten Abschnitt die sogenannten Normalgebiete einfiihren. Statt einer
Schar {y} kônnen wir uns auch ein Gebiet G mit ausgezeichneten Berandun-

gen Eo und Et vorgeben. Mit © {(G ; Eo, E^)} bezeichnen wir die Gesamt-

menge der Gebiete G samt ihren Randmengen EQ und Ex.

§4. Normalgebiete

Zuerst geben wir den Begriff der Normalitât. Dieser stellt eine Weiterent-
wicklung der auf P. Koebe [9, 10] zurûckgehenden Erklârung der minimalen
Schlitzbereiche dar. Nachher beweisen wir einige Eigenschaften der Normalgebiete,

wie zum Beispiel das Analogon zum Satz von P. Koebe uber das

MaB der Berandung. Zum SchluB werden die Normalgebiete an Hand der Ex-
tremallângen erklârt, die den bei P. Koebe mit Hilfe der Strômungspotentiale
erklârten minimalen Schlitzbereichen entsprechen. Die Âquivalenz der beiden
Definitionen beweisen wir dagegen erst spâter.
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1. Es sei ein Elément (G\ Eo, Et) der in § 3.4 erklàrten Menge © gege-
ben. {y} sei gemàfi § 3.3 die in (G ; EOf Ex) definierte Kurvensehar. Von den
Teilscharen {yT}cz {y} sind diejenigen ausgezeichnet, die naeh Définition 3 in
§ 2.6 die gegebene Schar {y} ersetzen kônnen. In Verallgemeinerung der in
§3.2 fur das Rechteck skizzierten Définition treffen wir folgende Erklârung

Définition 6. Eine Teilschar {yT} von {y} heifit normal bezilglich {y} und
wird mit {yN} bezeichnet, wenn {y} durch {yT} ersetzbarist. Ist ilberdiesder Trâger
FT ein Gebiet GTczG, so heijit GT Normalgebiet bezilglich (G\EQ,EX) und
wird dann einfach mit GN bezeichnet.

Durch die beiden folgenden Zusatzvoraussetzungen zu Définition 5 soll ver-
mieden werden, da6 dasselbe GN gleichzeitig bezùglich verschiedener Elemente
(G ; Eo, Ex) normal sein kann.

Définition 5\ Ein Gebiet GN hei/it nur dann Normalgebiet, wenn einerseits je
zwei Bandkomponenten Ct von G durch eine in GN verlaufende JoRDANkurve

L voneinander getrennt werden kônnen, und anderseits jeder Teilbogen von E*
von jeder Komponente von G — GN (bezilglich der Ebene) getrennt liegt.

2. In den folgenden Theoremen 2 und 3 werden zwei wichtige Eigenschaften
der Normalgebiete hergeleitet.

Theorem 2. Die in § 3.3 erklàrte Extremalmetrik

P(z) | grad u(x, y) \ von {y}

ist zugleich Extremalmetrik fur {yN}* Die Menge G — GN hat das Flâchenmafl
NulL

Beweis. Die fur P(z) bereehneten GrôBen F(P) und L(P) beziehen sîch
auf {y}, FN(P) und LN(P) dagegen auf {yN} resp. GN. Nun ist LN{P)^L{P) l
und

X-Hy) F(P) ^ Fj,(P) &gt; L%(P).X

Infolge der Voraussetzung der Normalitât ist also P(z) Extremalmetrik fur
{yir}&apos; Weiter gilt F(P) — FN(P) JJ PHxdy 0. Da grad u nur in endlich

o-oN
vielen Punkten verschwindet, ergibt sich daraus die zweite Behauptung von
Theorem 2, q. e. d.

Anmerkung. Theorem 2 folgt auch direkt aus Définition 5 unter Heranziehung
von Theorem 1 und Satz 3&apos;.

Theorem 3. Es sei q ein Punkt aus GN und V eine in der Extremalmetrik
gemessene beliebige e-Umgebung von q (bezilglich GN). Dann existiert ein durch V
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gehendes yN aus {yN} von der Lange

1p(Yn) J \gradu(x,y) \ \dz
Yn

Beweis. Die Gegenannahme besagt, daB fur jede derartige Kurve lP(yN)^ 1 +s
ist. Es sei F&apos; die in der Extremalmetrik gemessene fi/2-TJmgebung von q.
Wir setzen qo(z) P(z) in ON *— F&apos; und qq(z) 0 in F&apos;. Dann bleibt ersicht-
licherweise lQo(yN) ^ 1 bestehen, wàhrend F(qq)&lt;F(P) in Widerspruch zu
Zusatz 1&quot; und Theorem 2 ist.

3. Eine bemerkenswerte Folgerung aus Theorem 3 ist

Theorem 3&apos;. Es sei G eine beliebige, sich nicht verzweigende FlufIMnie in G.
Dann gibt es zu jeder in der Extremalmetrik gemessenen ê-Umgebung W von G

eine Kurve aus {yN}, die ganz in W verlâuft.

Beweis. Die zu u(x,y) konjugiert-harmonische Funktion v(x,y) werde
auf C durch v =* 0 normiert und an Hand dieser Normierung fortgesetzt.
Da grad u auf der abgeschlossenen Kurve G nirgends verschwindet und in
G stetig ist, bilden fur genugend kleinesê die Punkte {(x, y) \0&lt;u(x,y)&lt;l,
— ê&lt;v(x, y)&lt;&amp;} eine in der P(z)-Metrik gemessene î?-Umgebung W von
C 9 in der | grad u | &gt; 0 gilt. Wir betrachten die in W definierte Funktion
Q(z) u(x, y) + iv(x, y). Dièse bildet W konform auf das Rechteck
W {(u, v) | 0&lt;u&lt;l, — #&lt;v&lt;#} der (u, v)-Ebene ab. Der Extremalmetrik

P(z) in W entspricht dabei nach § 2.2 die gewôhnliehe euklidische
Metrik von W. Ferner gibt es nach Définition 5&apos; Punkte q auf C, die in GN

liegen.
Wir berufen uns nun auf Theorem 3 und gehen indirekt vor. Es sei q ein

Punkt von GN auf C und yN eine Kurve, die die in Theorem 3 erwâhnte, zu q

gehôrende Umgebung F durehquert. Dann gâbe es zu jedem solchen yN einen
Punkt q&apos; auf yN, der auBerhalb W liegt. Wir wâhlen e f/2(l + &amp;) &lt; &lt;&amp;

und q0 sei ein Punkt auf yN, der in F liegt. Bei konformer Ûbertragung auf
W erhâlt man lP(yN) &gt;d(EOi q0) + d(q0, q1) + d(q&apos;, Et) fur eine Kurve,
die bei wachsendem t die Umgebung F vor q&apos; passiert. d(E0, q0) bezeichnet
den betrefifenden in W gemessenen euklidischen Abstand. Wird F nach q&apos;

durehquert, so ândert sich der Beweis nur unwesentlich. Nun gilt offensichtHch

d(E0, q0) + d(q0, q&apos;) + d(q&apos;f EJ &gt; fl + (ê — e)2]i, woraus sich in Widerspruch
zu Theorem 3 die Ungleichung lP(yN) ^ 1 + e ergibt, q. e. d.

4. Es sei gemâfi Définition 5 und 5; ein Normalgebiet GN gegeben und a sei

eine Komponente von A G — GN. Aus Theorem 3&apos; folgt unmittelbar,
daB jedes a auf einer (eventuell sich verzweigenden) FluBlinie C liegen muB.
Besteht a aus einem einzelnen Punkt, so gehôrt es zum Randdiskontinuum
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AD von A. Andernfalls ist a Elément des Randkontinuums AK von A. Dann
liegen entweder aile Hâufungspunkte von a in G und a heiBt ein normaler
Sehlitz, oder es gibt Hâufungspunkte von a, die zum Rande von G gehôren, und
a ist ein normaler Einschnitt. Nach Définition 5&apos; gehen von E* keine Ein-
schnitte aus. Aile Punkte von El9 deren zugehôrige FluBlinien Elemente a
enthalten, bilden die sogenannte Projektionsmenge PA von A. Die analog de-
finierten Projektionsmengen von AD resp. AK bezeiehnen wir mit PAD bzw.
PAK.

m(C) sei das lineare, in der Extremalmetrik P(z) berechnete MaB der auf
einer beliebigen FluBlinie C gelegenen Punkte von A. m (G) kann als eine auf
Ex defînierte Funktion aufgefaBt werden. Integriert man m (C) - nach Multipli-
kation mit dv wie beim Beweis von Theorem 1 in § 3.3 - uber die Bogen von
Ex und benutzt den in Theorem 2 angegebenen Satz uber das MaB der Be-
randung, so ergibt sieh mit Hilfe des Satzes von Ftjbini, daB m(C) fast ûberall
auf Ex verschwinden muB. Insbesondere folgt daraus, daB PAK eine lineare
Nullmenge ist. Dagegen braueht dies fur PAD - wie wir noch nâher erlâutern
werden - durchaus nicht der Fall zu sein.

Wir gehen umgekehrt von einer Teilschar {yT}c:{y} aus. Der Trâger rT
sei ein Teilgebiet GT von G und die Randmenge A — G — GT bestehe aus
Punkten, normalen Schlitzen und normalen Einschnitten. Ist nun die be-
treffende Projektionsmenge PA von A eine Nullmenge, so erhâlt man fur {yT}
wie beim Beweis von Theorem 1 in § 3.3 die Beziehung A~1(yT) D(u)9
so daB also GT gemâB Définition 5 Normalgebiet ist. P. Koebe [9] hat fur
seine minimalen Schlitzbereiche die Vermutung geàuBert, daB - auf unsern
Fall iibertragen - die Menge PA auch umgekehrt bei normalem GN eine lineare
Nullmenge darstelle. Erst H. Gbotzsch [4] und R. de Possel [11] gelang
gleichzeitig deren Widerlegung. Damit wurde gezeigt, daB das Randdiskon-
tinuum AD fur die Frage der Normalitât nicht unwesentlich ist. Die be-
treffenden Gegenbeispiele haben infolge der in § 3.2 angekûndigten Âquivalenz
der Definitionen auch fur unsere Normalgebiete Gûltigkeit.

5. Es werden im folgenden die normalen Kreisbogen- und Radialschlitz-
gebiete wie auch die Parallelschlitzgebiete mit Hilfe der Extremallângen er-
klàrt. Den Âquivalenzbeweis mit der KoEBEschen Définition werden wir erst
spàter durchfuhren.

Das Gebiet GE enthalte z 0 und z oo. Wir betrachten Zahlen rj und
H, 0&lt;rj&lt;H derart, daB der Klreisring RE {z | rj&lt; | z \&lt;H} die gesamte
Berandung von GE enthâlt. GE heiBt dann normales Kreisbogen- bzw. Radial-
schlitzgebiet, falls das in RE gelegene Teilgebiet von GE fur aile derartigen r\
und H im betreffenden Sinne gemàB § 3.2 und Définition 5 normal ist.

2 Commentarii Mathematicl Helvetici
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Anderseits seien bei gegebenem Gebiete GP, das den Punkt z =00 ent-
hâlt, fî und 0 positive Zahlen derart, da8 das Rechteck

iïp {(*, y) I - &amp;&lt;x&lt;iï, - 0&lt;y&lt;0}

die gesamte Berandung von GP enthàlt. GP heiBt normales, horizontal gele-
genes Parallelschlitzgebiet, wenn das in RP gelegene Teilgebiet von GP fur
jedes û und 0 normal bezûglieh der Schar ist, die in RP die Seiten {(x, y) \ x
— #, —0&lt;y&lt;0) und {(x,y)\x =ê, —0&lt;y&lt;0} miteinander verbindet.

§ 5. Konforme Âbbildung von Normalgebieten

Die in den Theoremen 4 und 4&apos; formulierten Abbildungssâtze sind Verallge-
meinerungen von Resultaten, wie sie von H. Grotzsch [5] und E. Rengel
[13] fur einfache Spezialfâlle aufgestellt wurden. Unter Anwendung des

in § 2.1 formulierten Satzes 1 làBt sich auch die Eindeutigkeitsfrage fur
konforme Abbildungen von Normalgebieten mit Hilfe der Extremallângen be-
handeln. Auf dièse Môglichkeit wurde andernorts [14] kurz hingewiesen.

1. Das Gebiet GNczG sei einNormalgebiet bezûglich (G; Eo, Ex) sowohl
im Sinne von Définition 5 wie auch von Définition 5&apos; und {yN} die zugehôrige
ausgezeichnete Kurvenschar. GN werde durch z&apos; f(z) konform auf G&apos;Q und
{yN} auf {y&apos;o} abgebildet. Jedes Elément (G; EOi Ex), das GrQ derart zugeordnet
werden kann, da8 {y&apos;o} Teilschar der in G definierten Schar {y} ist, gehôre zur
Teilmenge ©; c ©. Die diesbezuglichen Elemente und Kurvenscharen werden
mit {G&apos; ; E!Qi E&apos;t) resp. {y1} notiert. Mit Hilfe der Sàtze 2 und 3&quot; erhâlt man

Theorem 4. Fur jede konforme Abbildung f(z) eines Normalgebietes GN und
jede zugehôrige (nicht leere) Teilmenge ®&apos;c © gilt bezûglich der ausgezeichneten
Kurvenscharen A (y&apos;) &lt; A(yjy).

Steht fur eine Schar {y1} in Theorem 4 das Gleichheitszeichen, so ist Gf0

Normalgebiet bezûglich G1 mindestens im Sinne von Définition 5. Ist nun die
erste Voraussetzung von Définition 5&apos; nicht erfûllt, so gibt es Einschnitte e{

von Gf0, die zugleich nicht zerlegende Querschnitte von G1 sind oder solche ent-
halten. Nun geht jede JoRDANkurve L, die in GN verlàuft und eine Randkom-
ponente Ct von G von den ûbrigen Randkomponenten trennt, bei der Abbildung

f(z) wieder in eine JoRDANkurve L1 ûber, die ihrerseits eine oder allenfalls
endlich viele Randkomponenten von G&apos; von den ûbrigen trennt. Dabei machen
wir ausdrûckMch von der in § 3.3 gegebenen Voraussetzung Gebrauch, wonach
auf jeder Randkomponente C{ resp. Cr{ von G bzw. G&apos; Bogen von Eo oder Et
resp. Ef0 oder E&apos;x ausgezeichnet sind. Die Zusammenhangszahl von G1 ist folg-
lich niemals kleiner als diejenige von G und muB, wenn Querschnitte e% vor-
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liegen, offensichtKch grôBer sein. Wir werden spàter zeigen, daB man durch
eine Hilfsabbildung den Fall auftretender et leicht auf denjenigen zurûck-
fûhren kann, bei dem G und (?&apos; die gleiche Zusammenhangszahl besitzen.

Es sei Q ein Querschnitt von G, der in GN verlâufb und dessen Endpunkte
zu Eo U Ex gehôren. Ferner trenne Q ein einfach zusammenhângendes Ge-
biet U von G ab. Ist nun Définition 5&apos; bezuglich G&apos; erfûllt, so trennt auch das
durch f(z) vermittelte Bild Q&apos; ein einfach zusammenhângendes Gebiet V von
G&apos; ab. Wâre dies nàmlich nicht der Fall, also V mehrfach zusammenhàngend
oder Q&apos; nicht zerlegend, so miiBte sich die Zusammenhangszahl fur G&apos; ersieht-
licherweise erhôhen.

Ist dagegen fur GfQ c G&apos; die erste Voraussetzung von Définition 5&apos; zwar erfûllt,
doch noch nicht die zweite, so gibt es normale Einschnitte ei, die in Punkten
der fur G&apos; gemâB § 3.3 definierten Randmenge E* enden. Geht man wie bei
§ 3.3 durch ScHOTTKYsche Verdoppelung von G&apos; zur RiEMANisrschen Flâche
(?* iiber, so mùssen die innern Punkte von E*, die Endpunkte von Einschnit-
ten ei sind, Nullstellen des auf 6r* definierten grad u1 sein. Folglich kann es

nur endlich viele solche Einschnitte geben. In diesem Fall betrachtet man an
Stelle von {G&apos; ; E&apos;o, E[) das Elément (G&apos; — U ej ; Er0, E[), das ebenfalls zur
Klasse © gehort. Ferner besitzen G&apos; und G&apos; — U e^ dieselbe Zusammenhangszahl,

die nach Voraussetzung mit der von G ûbereinstimmt. GemàB Satz 3&quot;

ist G&apos;o auch bezuglich des neuen Elementes normal. Unter Anwendung dieser
beiden Reduktionen darf man demnach im Fall des Gleichheitszeichens bei
Theorem 4 voraussetzen, daB GfQ auch im Sinne von Définition 5&apos; normal
bezuglich des zugeordneten Elementes ist.

2. Es stehe in Theorem 4 das Gleichheitszeichen und GNaG sowie6?^c(?A
seien Normalgebiete im Sinne von Définition 5 und 5&apos;. u(x,y) und uf(xr, y&apos;)

seien die gemâB §3.3 bezuglich G und Gr erklârten harmonischen Funktionen
und h sowie h&apos; die Menge der Punkte q und q&apos; von G und Gf, in denen grad u
resp. grad uf verschwindet. Da GN in G dicht liegt, gibt es zu jedem q e h
Folgen z{ aus GNi die gegen q konvergieren. Ferner sei H resp. H&apos; die Menge
der normalen Schlitze und Einschnitte in G und G&apos;, die Punkte aus h resp. In!

enthalten.

Theorem 4/. Steht in Theorem 4 das Gleichheitszeichen und ist das durch

f(z) vermittelte Bildgebiet G&apos;N Normalgebiet bezilglich (Gf ; E&apos;o, E[) im Sinne
von Définition 5&apos;, so kann f(z) zu einer konformen Abbildung von G — H auf
G1 — H&apos; erweitert werden. Gilt zusàtzlich hmfizjch&apos; filr jedes q*h und

jede Folge z{ -&gt; q mit 2i c GN, so ist f(z) sogar in G konform und bildet G auf
G1 sowie {y} auf {y1} ab.
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Beweis. Es sei L entweder eine JoRDANkurve J, die in GN verîâuft und deren
Inneres U keinen Randpunkt von G enthàlt, oder es sei L ein in GN gelegener
Querschnitt Q von G, dessen Endpunkte zu Eo ^ Ex gehôren und der ein ein-
fach zusammenhângendes Gebiet U von G abtrennt. Der Durchschnitt U ^GN
werde mit F bezeichnet. Das durch f(z) vermittelte Bild L1 definiert in beiden
Fâllen gemàB §5.1 ein einfach zusammenhângendes Gebiet Uf, das in G1 liegt
und das Bild F&apos; von F enthâlt. Û(z) u(x, y) + iv(z, y) sei in U normiert
und definiert und ebenso Q&apos;(#&apos;, yf) u&apos;(x&apos;,y1) + ivf(x1,yl) in U&apos;. Wir setzen
ferner von U voraus, daB dessen Bild S in der !2-Ebene sehlicht sei. Das Bild
von F werde mit T und diejenigen von V und F&apos; vermôge Q&apos; {z&apos;) mit 8&apos;

resp. T&apos; bezeichnet.
Nach Theorem 1 und 2 sind P(z) | grad u | und P&apos;(zr) | grad uf | nor-

mierte Extremalmetriken fur {yN} und {y^}. Sie mùssen sich bei der konfor-
men Abbildung / (z) infolge der Sàtze 1 und 2 in GN und 6?^ gegenseitig ent-
sprechen. Ùbertrâgt man dièse MaBbestimmungen von F und V auf T und T1,

so erhâlt man in der Q- und jQ&apos;-Ebene die gewôhnliehe euklidische Metrik.
Fur die durch f(z) induzierte konforme Abbildung Q&apos; g{Q) von T auf T&apos;

gilt nun nach Satz 1 und §2.2 fast ûberall \dQ\~ \ dû&apos; |, woraus man die
in T gultige Beziehung g{Q) au + b \a\ 1 folgert. Also ist auch T&apos;

sehlicht und die Abbildung Q&apos; (zf) besitzt bezuglich Tr die inverse Abbildung
Q&apos;-1. Folglich gilt fur die durch f(z) beschriebene Abbildung von F auf V die
Formel f(z) ^ Q&apos;^gQ^).

Die rechte Seite von f(z) Q&apos;~~1gQ(z) ist nun eindeutig und analytisch
auf U fortsetzbar und definiert eine Abbildung von U auf V. Enthàlt nâmlich
U Randpunkte oder normale Schlitze von GN, so mussen dièse konform auf
entsprechende Randpunkte oder normale Schlitze von G&apos;N abgebildet werden.
Dasselbe gilt fur normale Einschnitte. Dabei benutzen wir einmal die Eigen-
schaft, daB fur GN und G&apos;N nach Définition 5&apos; in -B* keine Einschnitte enden.
Ferner verbinden gemâB der in § 3.3 gegebenen Voraussetzung die Intervalle
von J?* immer Punkte verschiedener Klasse Eo resp. Ex miteinander. Fur das

vom Querschnitt Q resp. Q1 abgetrennte U bzw. V darf demnach kein nor-
maler Einschnitt bei der konformen Abbildung in ein Randintervall ûbergehen.

Da nun zu jedem normalen Schlitz und zu jedem normalen Einschnitt in
G — H ein U angegeben werden kann, dessen Bild S sehlicht ist, so ist also

f(z) in G — (H ^h) konform und bildet dièses Gebiet auf G&apos; — (Hf 4&apos;)

ab. In den endlich vielen Punkten von A, die nicht zu H gehôren, hat
/(z) Qf-lgû(z) isolierte hebbare Singularitâten, so daB also f(z) das Gebiet
G - H konform auf G1 - H1 abbildet.

Bildet f(z) bei Fortsetzung auf den Rand H zusâtzlich die Menge h in h&apos; ab,
so sei U(q) die bezuglich eines Punktes q eh in der P(z)-Metrik gemessene
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(5-Umgebung und V (q) U(q)&lt;^GN. U(q) wird durch das in U(q) eindeu-

tig definierte Q(z) auf ein mehrfach verzweigtes Flàchensttiek 8 und V{q)
auf Ta 8 abgebildet. Dabei sei ô so klein, daB U(q) keine weitern Punkte
von h enthâlt. Das durch f(z) vermittelte Bild V&apos;{q&apos;) von V{q) kann in-
folge der Isometrie bezûglich der Extremalmetriken als Durchschnitt
U&apos;{q&apos;)r^ GrN aufgefaBt werden. Dabei stellt U&apos;(q&apos;) die in der P&apos;(z&apos;)-Metrik

bezliglich G&apos; gemessene â-Umgebung desjenigen Punktes q&apos; e h&apos; dar, der q
zugeordnet ist. Die in U&apos;(qr) eindeutig definierbare Funktion Qr (z1) bildet
U&apos;(qf) auf eine Verzweigung 8&apos; und V&apos;(q&apos;) auf Trcz8f ab. Ferner dûrfen wir
annehmen, daB 8 und 8r durch je eine geeignete Wurzeloperation lokal unifor-
misiert werden kônnen.

Entweder ist V(q) zusammenhângend oder zerfallt in einzelne Teilgebiete.
Die zu H gehôrenden Randufer dieser Teilgebiete sind nun in natûrlicher
Weise zyklisch um q angeordnet. Wir behaupten, daB dièse zyklische Anord-
nung bei der Abbildung von V (q) auf V {q1) erhalten bleibt, das heiBt daB
die durch die Abbildung induzierte Anordnung mit der betreffenden zyklischen
Ordnung der fur die Teilgebiete von V&apos;(q!) erklarten Randufer uberein-
stimmt.

Zum Beweise ziehen wir in GN einen einfachen Querschnitt Q, dessen beide
Enden in q liegen. Folglich wird GN durch Q zerlegt. Das Bild von Q ist nach
Voraussetzung ein Querschnitt Q1, der in q1 endigt und G!N ebenfalls zerlegt.
Enthâlt nun die eine Komponente der Zerlegung gewisse Randufer, so muB
das Bild ebenfalls die entsprechenden Randufer enthalten, so daB folglich die
zyklische Anordnung invariant bleiben muB.

Die durch f(z) induzierte Abbildung Q&apos; g(&amp;) von T auf T&apos; ist wieder-
um fur schlichte Teilgebiete von T linear. Ferner entsprechen sich die beiden

Verzweigungspunkte von S und 8&apos;. Demnach mûssen 8 und S&apos; die gleiche
Verzweigungsordnung besitzen. Durch eine Wurzeloperation bilden wir 8 und
8&apos; je auf eine schlichte Kreisscheibe ab. Dort werden die Bilder von T und T&apos;

durch eine gewisse Anzahl getrennt liegender Sektoren dargestellt, die ein-
eindeutig und zyklisch invariant aufeinander bezogen sind. Folglich kann g(Q)
auf T durchgedruckt werden und stellt eine konforme Abbildung von T
auf Tf resp. sogar von 8 auf S1 dar. Hernach ist die rechte Seite von
f(z) Ql~1gQ(z) eindeutig und analytisch auf U(q) fortsetzbar und bildet
*7(?)konformauf U&apos;(qf) ab.

Fûhrt man dièses Verfahren fur aile Punkte von h durch, so ist damit dieser
Fall auf den vorigen zurûckgefuhrt. Somit bildet /(z) das Gebiet G konform
auf G&apos; ab. Infolge {yN}a{y} und {y^}c:{y} entsprechen sich auch die
Scharen {y} und {y1}. Dabei kann EQ sehr wohl in E[ und Ex in E&apos;o transfor-
miert werden.
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3. Als Spezialfall von Theorem 4&apos; ergibt sich fur die in § 3.2 definierten Nor-
malgebiete die fur die KoEBEsche Définition zitierte eindeutige Bestimmtheit.
Ferner erhâlt man fur dièse Gebiete bei Anwendung von Theorem 4 Aus-

sagen tiber die Ânderung der Moduln der zugeordneten Rechtecke resp. Kreis-
ringe [14].

Ûbertràgt man ferner durch geeigneten Grenziibergang dassoebenaufKreis-
ringe angewandte Theorem 4 mit Hilfe der Sâtze 3 und 4 auf den Kreis und
die Ebene, so ergeben sich fur die betrefifenden, in § 4.5 erklàrten Normal-
gebiete bei geeigneter Normierung der konformen Abbildungen gewisse be-
kannte Verzerrungssàtze.

Ist zum Beispiel in der z-Ebene ein nach §4.5 normales Radialschlitzgebiet
GE gegeben, das durch / (z) normiert konform f/ oo) oo, | /&apos; oo) | 1, / (0)=0]
abgebildet wird, so gilt fur jede derartige Abbildung die Beziehung | /&apos; (0) | &gt; 1.
Zum Beweise wendet man auf das Teilgebiet GE&lt;^RE, RE {z\ rj&lt;\ z\&lt;H}
Theorem 4 an und macht nachher unter Benutzung von Satz 4 den
Grenziibergang 7) -&gt; 0, H -&gt;oo. Ein analoges Theorem gilt fur normierte konforme
Abbildungen von normalen Kreisbogenschlitzgebieten GE. In diesem Fall folgt

I /&apos;(0) I &lt; 1 fur jede zugelassene normierte Abbildung. Ferner kann man zei-

gen, daB das Gleichheitszeichen nur fur f(z) eia-z, a reell erreicht wird.

§ 6. Die klassischen Normalgebiete

In diesem Abschnitt wird als Beispiel eines Beweises fur die Identitât der
KoEBEschen minimalen Schlitzbereiche mit den in § 4.5 definierten Normal-
gebieten der Fall der betrefïenden Parallelschlitzgebiete betrachtet. Zu diesem
Zwecke zeigen wir u. a., daB fur beide Definitionen dieselben bekannten Ex-
tremaleigenschaften gelten.

1. Es sei GP ein nach § 4.5 normales horizontal gelegenes Parallelschlitz-
gebiet und f(z) eine konforme Abbildung von Gp auf ein schlichtes Gebiet G&apos;

der Zahlenkugel.

Theorem 5, Filr jede in z oo durch / (z) z + (a + i/3) z-1 + z~2 • • •

normierte konforme Abbildung eines normalen horizontalen Parallelschlitzgebietes gilt
die Ungleichung m(B) + 2arc &lt; 0. Dabei bezeichnet m(B) das Ma/3 des

Komplementes des Bildgebietes G1 bezûglich der Ebene.

Vor dem Beweis von Theorem 5 wollen wir noch eine wichtige Folgerung
ziehen. Es sei G ein Gebiet, das den Nullpunkt f 0 enthàlt und
Zp(Ç) C&quot;1 + (Ap + iBP)C + C2 (• • •) die Entwicklung um den Nullpunkt
der (als existierend vorausgesetzten) konformen Abbildung von G auf ein Nor-
malgebiet GP. Ist /(C) C&quot;&quot;1 + {A + iB)Ç + £2 (• • •) eine beliebige derart
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normierte konforme Abbildung von G auf ein Gebiet G&apos; der Zahlenkugel, so

kann /(£) als Produkt von zP(Ç) und einer geeignet gewâhlten Abbildung f(z)
aufgefaBt werden. Bei Substitution erhâlt man gemâB Theorem 5

Zusatz 2. Existiert eine normierte konforme Abbildung zP(Ç) des Ç 0

enthaltenden Gebietes G auf GP und ist

f(C) C&quot;1 + (A +
eine beliebige in Ç 0 derart normierte konforme Abbildung von G&gt; sô wird
unter ail diesen Abbïldungen der Realteïl A fur zp(Ç) maximal.

Literatur. Die fur Parallelschlitzgebiete gûltige Extremaleigenschaft des

Realteils A haben gleichzeitig H. Grotzsch [6] und R. de Possel [12] ent-
deckt. Die Ungleichung in der Form von Theorem 5 stammt von H. Grtjnsky
[7], der sie fur Sehlitzgebiete von endlichem Zusammenhang mit Hilfe von
Randintegralen herleitete.

Beweis. Wir wâhlen RP {(x, y) | — G2&lt;x&lt;02, — 0&lt;y&lt;0}. Dabei sei
&amp; so groB, daB die gesamte Berandung von GP im Innern von RP liegt. Mit G

bezeichnen wir die positiv durchlaufene Berandung von RP. Die in Rp nach
§ 4.5 ausgezeichnete Kurvenschar besitzt fur jedes vorgegebene 0 die Extre-
mallànge 0. Nach Définition 1 gilt fur jede in RP^ GP definierte zulâssige
konforme Metrik q(z) die Ungleichung L2(q)*F&quot;&quot;1(q) ^ 0. Dièse Ungleichung
wenden wir fur qq(z) \ f&apos;(z) \f Q0(z)-\dz \ \ df |, das heiBt fur die eukli-
dische Metrik des Bildgebietes G&apos; von GP an. Setzt man

f(z) u + iv^(x + iy) + (&lt;x + tj9)-(a? + iy)-1 + (x + iy)~*-(- - •)

so gelten die Entwicklungen u{x, y) x + (&lt;xx + Py)&apos;(x2 + y2)&quot;1

v(x, y)^y + (px- *y).(x* + y*)~K Folglich ist L(Qo) 20* +
und

udv xdy +1 d log (x2 + y2) — 2 x (xdx + ydy) • {fix — ay) - (x2 +1/2)&quot;&quot;2...

Somit ergibt sich fur ^(^o) + w(5) $ udv bei Ausfuhrung und Abschât-
c

zung der Integrationen nach einiger Rechnung die Entwicklung
01 x%dx

WV 4 03 _ 4 «6^^-^ + 0-i.O(l)

4 e3 — 4 ol arc tang 0 + S-1-0(1)

Infolge L2(q0) 404 + 0(1) erhâlt man mit Hilfe von
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beim Grenzûbergang 0 -&gt;oo die gewiinschte Beziehung

0 &lt; — 2*n — m(B)

2. Nach P. Koebe und R. Courant [9, 3] werden die minimalen Parallel-
schlitzbereiche mit Hilfe der sogenannten Strômungspotentiale definiert. Es
sei also G ein sehlichtes Gebiet in der £(= £ + i?y)-Ebene, das f 0 und also
auch einen Kreis K (vom Radius a) um £ 0 enthâlt. Ferner sei 8(t;,rj) die

folgendermaBen definierte Singularitâtsfunktion : 8($9rj) —^ H—2&quot;

in JT und 8(Ç, rj) 0 in G — K Man betrachtet nun aile in dem in £=0
punktierten G stetig differenzierbaren Funktionen &lt;p(Ç,r]), die in £ 0
dieselbe Singularitàt wie S{£frj) besitzen, so daB also die Funktionen
u(Ç, rj) 9?(|, rj) — 8 (Ç, tj) in f 0 stetig verschwinden.

Dann existiert eine Funktion U(Ç,rj) derart, daB fur die uber G erstreck-
tenDniiCHLETintegrale von U(Ç9rj) resp. u(Ç,r]) dieUngleichung D(U)^D(u)
gilt. Femer ist &lt;P(£, rj) /S(|, 7?) + 17 (f, ij) der Realteil der Funktion
z — fs(Ç), die G konform derart auf einen minimalen Parallelschlitzbereich
abbildet, daB C 0 in z =00 ûbergeht. Aile Randkomponenten des Bild-
bereiches sind dabei Punkte oder horizontale Strecken, und die gesamte Be-
randung besitzt das FlâchenmaB Null.

Wir wenden nun dièses Résultat auf folgende Unterklasse von Funktionen
&lt;p(£&gt; y) an : Es sei ç?(f, rj) der Realteil einer konformen Abbildung /(C), die
um C 0 die Entwicklung

besitzt. HO t-&gt; + (A+iB) +

Theorem S&apos;. Ist fs(Ç) die normierte KowBmche 8chlitzabbildung von G und
U($,ri) die daraus hergehitete Funktion mit minimalem UiBiCKL^Tintegral
D(U) ilber G, so gilt bezûglich jeder normierten konformen Abbildung /(£) von
G und jeder daraus hergdeiteten Funktion u(è,rj) die Beziehung D(u)—D(U)=
2tc(As — A) — m(B) ^ 0. Dabei bezeichnet m(B) das Map des Komplementes
des durch /(£) vermiUdten Bildgebietes, wâhrend As resp. A der Realteil des

Koeffizienten von f in der Entwicklung von fs(Ç) bzw. /(£) darstellt.

Beweis. Es sei G die positiv durchlaufene Berandung von K. Dann kann
der Anteil DK(u) von D(u) bezûglich K durch DK{u) $u*dv* ausgedrûckt

c
werden. Dabei werde «*(f, rj) ç?(|, t]) ~— 8(£9rj) und das Differential dv*
der zu u*(£, rj) konjugiert-harmonischen Funktion von K stetig auf C fort-
gesetzt. Da in G — K fur die Funktion u(£, rj) 81/(f) gilt, so kann das

tiber G — K erstreckte DQ_K (u) als Flâche des Bildgebietes von G — K ge-
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deutet werden. Folglich ist DG_K(u) -f m(B) — fudv, wobei u und das
c

konjugierte Differential dv von G — K auf C stetig fortgesetzt werden. Nun

gilt — 0 fur die Normalableitung lângs G. Also verschwindet das konjugierte

Difïerential von S(Ç,r)) und es gilt dv — dv* lângs G. Damit ergibt sich

D(u) -\-m{B) — $8dv. Dabei ist S 2a~1-cos ip, xp arg C. Es muB da-
c

her fur die Entwicklung von v infolge der Orthogonalitâtsrelationen der tri-
gonometrischen Funktionen nur der Koeffizient von sin y&gt; bestimmt werden.
Dann erhàlt man D{u) -\-m(B) — — 2 An + 2a~2-n. Da anderseits fur D(U)
der Anteil von m (B) nach dem Satz von Koebe uber das MaB der Berandung
wegfàllt, so gilt D{u) — D(U) + m(B) — 2Atc + 2As7t und somit Theo-
rem 5\

Zusatz 3. Setzt man u — U h, so ergibt sich aus D(u) ^ D(U) be-

kanntlich die Orthogonalitâtsrelation D(U9h) 0. Daraus folgt D(u) D(U)
+ D(h). Anderseits ist h &lt;p — &amp;, so dafi Theorem 5&apos; in der Form D(h)~
D{cp — 0) 2n(As — A) — m(B) geschrieben werden kann.

3. Gegeben sei ein horizontales normales Parallelschlitzgebiet GP. Dièses
kann auf ein KoEBEsches Parallelschlitzgebiet Gs und nachher auf ein belie-
biges Gebiet G weiter abgebildet werden. Wir kônnen folglich den Fall be-

trachten, daB die gemâB § 6.1 und § 6.2 normierten Abbildungen zP(Ç) von
G auf GP resp. fs(0 von G auf Gs existieren. Nun gilt nach Zusatz 2 einer-
seits As &lt; AP, nach Theorem 5&apos; anderseits Ap ^ As. Stimmen nun aber

As und AP ûberein, so erhâlt man nach Zusatz 3 die Beziehung D(&lt;pP— @) 0

mit &lt;pp 5Rzp(C) und 0 91/^(C)- Also mussen bei unsern Normierungen
die Abbildungen ùbereinstimmen und GP ist zugleich ein Gebiet Gs.

Umgekehrt sei Rp {(x,y) | — &amp;&lt;x&lt;ê, — 0&lt;y&lt;0} derart gegeben,
daB die gesamte Berandung von Gs in RP liegt. Dann gilt nach dem Ansatz
fur die Strômungspotentiale fur jede in Gs erklârte stetig differenzierbare
Vergleichsfunktion u(x, y), die die verlangte Singularitât in z =oo besitzt,
die Ungleichung D[u(x, y)] ^ D(x) bezuglich der auf Gs^Rp beschrânkten
DmiCHLETintegrale. Speziell gilt dièse Beziehung fur die Funktionen u(x9y),
die auf

{(x,y) \x= -&amp;,-0&lt;y&lt;0} und {(x, y) | x &lt;&amp;, - 0&lt;y&lt;0}

die konstanten Werte — § resp. ê annehmen. Folglich ist Gs ^ Rp nach §3.2
ein KoEBEsches Minimalgebiet. Setzen wir voraus, daB die in § 3.2 angekiin-
digte Âquivalenz fur die betreflfenden Rechtecke bewiesen sei, so ist Gs ^ Rp
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normal im Sinne von Définition 5. Da aber BP beliebig ist, muB Gs nach
§4.5 zugleich ein Gebiet GP sein.

§ 7. Normale Schlitze und normale Einschnitte

Als Vorbereitung zur Aufgabe der konformen Abbildung auf Normalgebiete
behandeln wir in diesem Abschnitt unter Lemma 1 und Lemma 2 zwei Spezial-
fâlle. Es handelt sich dabei um die noch zu prâzisierende Fragestellung, ob
einerseits ein inneres Randkontinuum in einen sogenannten normalen Schlitz
bzw. anderseits ein auf dem Rande gelegener Bogen in einen normalen Ein-
schnitt verwandelt werden kann. Gleichzeitig wird sich ergeben, da8 die in
Theorem 4&apos; angegebene Willkûr tatsâchlich vorliegt. Ferner werden wir zeigen,
wie dièse aber durch zusâtzliche normierende Bedingungen beseitigt werden
kann.

1. In der komplexen z(= x + i^)-Ebene sei ein Elément (6? ; i?0, 2^) der
in § 3.4 definierten Menge © gegeben. Vom Gebiet G werde ein beliebiges
Kontinuum K, KaG entfernt. Infolge des RiEMANNschen Abbildungssatzes,
angewandt auf das Komplement von K bezûglich der Ebene, darf K als
abgeschlossene Kreisscheibe angenommen werden. Ferner sei G die Peripherie
von K.

Wir betrachten diejenige in G G — K enthaltene Teilsehar {y}c {y},
die Eo mit Ex innerhalb G verbindet. Analog §5.1 ordnen wir den konformen

Abbildungen f(z) von G eine gewisse Teilmenge ©&apos;c© zu. Dabei gehôre
(G1 ; Ef09 Ei) dann zu ©&apos;, wenn die BUdsehar (y&apos;} von {y} eine Teilsehar
der fur (Gf ; E&apos;Qy E[) erklârten Schar {y1} ist.

Lemma 1. Das Gebiet G mit der Schar {y} làfit sich durch eine konforme
Abbildung F(z) derart in ein Gebiet G&apos;, (G1 ; E&apos;o, E[) c ©&apos; abbilden, dafidas Bïld-
gebiet G1 von G normal ist.

* « ~ ss

Beweis. Wir spiegeln G an C und erhalten ein Gebiet G, GczG. Die Rand-

einteilung werde dabei von G auf G spiegelbildlich ubertragen. Zu G kon-
struieren wir gemâB §3.3 dureh ScHOTTKYsche Verdoppelung die Riemann-

sche Flâche (?*. Das auf G* erklârte harmonische MaB der nach §3.3 ausge-

zeichneten Randkurven beschrânken wir auf G und nachher auf G. In G
erhalten wir so die harmonische Funktion u(x, y), fur die u 0 auf Eo bzw.

u 1 auf Ex gilt, wâhrend — auf der komplementâren Berandung und da-
dn

mit auf G verschwindet.
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Es sei U eine e-Umgebung von C bezûglich und F U&lt;~s G. Ein ein-
facher Fall liegt nun dann vor, wenn die normierte Funktion D(z) u(x,y)
+ iv(x,y) in F schlicht ist und also F auf ein Ringgebiet S abbildet. Die
innere Berandung von S ist als Bild von C ein horizontaler Schlitz N. Es sei

T dasjenige einfach zusammenhàngende Gebiet, das S enthâlt und durch die

âuBere Berandung von S begrenzt wird. Die beiden Gebiete G und T mit dem

gegebenen konformen Zusammenhang in S definieren zusammen eine Rie-
MANNsche Flâche R. Dabei werde die Funktion u in natiirlicher Weise auf T
und damit auf R stetig fortgesetzt.

Da R schlichtartig ist, kann R konform in die komplexe z-Ebene abgebildet
werden [3, 10]. Es sei G&apos; das Bildgebiet von R und u&apos;(x, y) die von R auf G&apos;

iibertragene Funktion u. E&apos;o bzw. E[ bezeichne die durch u&apos; 0 resp. uf 1

ausgezeichneten Randbogen von G&apos;. Bei der konformen Abbildung von R auf
G&apos; wird nun NtzR einem normalen Schlitz N&apos; czGr zugeordnet, so daB das

dadurch induzierte Bild G&apos; von GczR normal ist. Ferner ist R nach Theorem
4&apos; eindeutig bestimmt, wenn konform âquivalente RiEMANNsche Flâchen nicht
unterschieden werden.

Nun wenden wir uns dem allgemeinen Fall zu. Hier kann die analoge Ein-

bettung von G in R im allgemeinen auf verschiedene, konform nicht âquivalente

Arten geschehen. Fur den Beweis von Lemma 1 genûgt aber die Kon-
struktion einer einzigen Flâche R. Diesem Ziel ist das folgende Verfahren
gewidmet. ^

Es war u(x,y) in G eindeutig. Beim Durchlaufen von C gilt also J du — 0,
c

und es gibt deshalb auf C mindestens eine Nullstelle von grad u, wo du
das Vorzeichen wechselt. Es sei p ein solcher Punkt und u(p) u0 zum Bei-
spiel ein relatives Minimum. Wir verfolgen nun auf C die Funktion u(x, y)
von p aus nach beiden Seiten so lange, bis wir auf eine erste Schwelle ux
stoBen, fur die du auf mindestens einer Seite verschwindet. Dann markieren
wir uns beidseitig die Stellen p&apos; und p&quot;, an denen u(x,y) erstmalig den
Wert ux annimmt. Es sei Cp derjenige offene Teilbogen von C, der p enthâlt
und durch p&apos; und p&quot; begrenzt wird. Up bezeichne ein noch nâher zu bestim-

mendes, in G gelegenes einfach zusammenhângendes Gebiet, das Cp als Quer-
schnitt enthâlt.

Wir normieren Q{z) in Up durch Q{p) u0. Das noch nâher zu bestim-
mende Up werde durch Q(z) auf ein mehrblàttriges, nur im Punkte (u0, 0)

verzweigtes RiEMANNsches Flâchenstuck Up abgebildet. Das Bild Cp von Cp

liegt dabei uber dem Intervall

I {(^, v) | u0 ^u&lt;ul9 v 0}
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Polglich windet sich das Bild Vp von Vp UP^G ebenfalls, zum Beispiel
ft-fach, um den Punkt (u0, 0) herum. Bei geeignet gewâhlter Umgebung Up

i
wird deshalb VP durch co(Û) [Q(z) — u0]^ auf ein schlichtes Gebiet 8P ab-
gebildet, wàhrend Cp dem mit Ausnahme des Nullpunktes doppelt zu zâhlenden
Intervall

i
NP {co |0&lt;9to&gt;&lt;(tt1--«*o)1s3&lt;» 0}

zugeordnet ist. Setzt man Tp 8P^ Np9 so stellt Np einen Einschnitt von
Tp dar. Nun definieren G und Tp mit ihrem konformen Zusammenhang in Sp

eine RiEMANNsche Flâehe Rp. Ferner kann die in G definierte Funktion
u(x,y) eindeutig auf Rp fortgesetzt werden und stellt dort eine harmonische
Funktion dar, deren Normalableitung lângs Np verschwindet. Bildet man
jetzt das schlichtartige Rp konform auf ein schlichtes Gebiet Gp ab und be-
zeichnet u&apos;{x, y) die von Rp auf Gp ubertragene Funktion u, so geht bei der
induzierten Abbildung von G in G!v der Randbogen Cp in einen auf einer
FluBlinie von Gp gelegenen Einschnitt N&apos;p iiber.

Um die Rekursion zu vervollstândigen, fassen wir jetzt Gp als neues
Gebiet G auf, so daB also im Vergleieh zum alten G die Berandung um den
Einschnitt N!p reduziert wurde. Fur das neue G wird nun dasselbe Verfahren
Schritt fur Schritt iteriert. Ist dabei der betreffende auf der Berandung lie-
gende ausgezeichnete Punkt p ein relatives Maximum fur die Funktion u, so

geht der Beweis ganz analog. Da die Funktion u bei jeder neuen Einbettung
nur fortgesetzt wird und also in entsprechenden Punkten immer gleich bleibt,
bleibt auch das entsprechende Bild von Np bei den weitern Reduktionen auf
einer FluBlinie. Sukzessive wird nun die zu reduzierende Berandung verkleinert,
bis zuletzt der ganze Rand C in einen normalen Schlitz verwandelt ist. Es
bricht nâmlich das Verfahren nach endlich vielen Schritten ab. Dabei wird
beim vorletzten Schritt die gesamte Berandung bis auf einen Punkt reduziert,
so daB der letzte Schritt darin besteht, die Flàche R und damit G1 durch
Hinzunahme dièses Punktes zu erklâren. Damit ist Lemma 1 auch fur den all-
gemeinen Fall bewiesen.

Bemerkung. Es soll nun ein Ûberblick iiber die môglichen Einbettungen von G

gewonnen werden. Bei der Vorbereitung zum Beweise des elementaren Falles
von Lemma 1 wurde das Ringgebiet F eingefûhrt. In V kann die konjugierte

Funktion v(x,y) infolge — 0 lângs C nach erfolgter Normierung ein-

deutig bestimmt werden. Also ist auch Q(z) in V eindeutig dagegen im ail-
gemeinen, wie wir im folgenden annehmen, nicht schlicht und bildet F auf
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ein verzweigtes Flâchenstuck 8 ab, wobei die C entsprechende Berandung tiber
demselben horizontalen Intervall liegt. Jetzt muB das zweifach zusammen-
hângende S in ein zulâssiges einfach zusammenhângendes Flâchenstuck T der-
art eingebettet werden, daB die Berandung von T nur aus der âuBern
Berandung von S besteht. Jeder mogliehen Einbettung von S entspricht dann
eine gewisse RiEMANNsche Flàche R. Schreibt man zusâtzlich fur T die auf-
tretenden, liber dem erwàhnten Intervall liegenden Windungsstellen in zu-
làssiger Weise vor, so werden dièse bei der Abbildung auf G1 zu Nullstellen
der dort definierten Punktion grad u&apos;, so daB dann der Spezialfall von
Theorem 4&apos; vorliegt.

BeispieL Es wechsle du làngs C genau viermal das Vorzeichen. Dann gibt
es auf C fur die Funktion u(x, y) zwei relative Minima #x und #2 sowie zwei
relative Maxima 01 und 02. Ferner gilt offenbar

max {êl9#2} &amp;0 &lt; #o min {0lt 6&gt;2}

Wir setzen noch voraus, daB das betreffende S ein zweiblàttriges Flâchenstuck
darstelle. Die Einbettung in T kann nun derart geschehen, daB zuerst ein be-

liebiger Wert #* mit #0 &lt; #* &lt; 0O vorgeschrieben wird. Nun identifiziert
man auf dem innern Rand von S diejenigen Punkte, in denen u den Wert ê*
annimmt, und wâhlt den daraus resultierenden Punkt als einzigen Windungs-
punkt von T. Jedem vorgegebenen Wert #* entspricht so nach dem weitern
bekannten Verfahren eine zugelassene RiEMANNsche Flàche R. Es ist instruktiv,
sich die verschiedenen Môglichkeiten in den hierfur auftretenden, konform
nicht âquivalenten Gebieten G&apos; zu veranschaulichen. Die vier sich an der aus-
gezeichneten Nullstelle von grad u&apos; verzweigenden Arme des normalen Schlitzes
kônnen demnach sozusagen gegenseitig verschoben werden. Fur f&amp;1 #2 resp.
0X 02 kônnen sogar je zwei Arme ganz zum Verschwinden gebracht werden,

was fur #x zfc ^2 und 0X ^ 02 dagegen nicht vorkommen kann.

2. Unsern Betrachtungen sei ein Elément (G ; E0) Ex) € © zugrunde gelegt.
Im Gegensatz zu § 7.1 ândern wir diesmal die Randeinteilung von G. Es werde
also zum Beispiel auf Ex ein abgeschlossenes Intervall / ausgezeichnet, und

{y}a {y} sei diejenige Teilschar, deren Elemente die beiden Punktmengen
Eo und Ex—I in G verbinden. Nun ist zu beachten, daB (G ; Eo, Ex — I) ge-
mâB § 3.3|4 nicht zu © gehôrt. Den konformen Abbildungen f(z) von G wird
deswegen eine Teilmenge ®&apos;c © zugeordnet, wobei (G&apos; ; E&apos;o, E[) dann zu ©&apos;

gehôrt, wenn {y} durch f(z) in eine Teilschar von {y&apos;} transformiert wird.

Lemma 2. Die Schar {y} und ihr Tràger G lassen sich durch eine kon-
forme Abbildung F(z) von G derart in ein Gebiet (?&apos;, {G&apos; ; E&apos;o&gt; Eft) c ©&apos; abbilden,

dafi das Bildgébiet von G normal bezilglich (Gf ; E&apos;o, E&apos;x) ist.
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Beweis. Es sei /* das um die beiden Endpunkte verminderte Intervall /.
Wir konstruieren zunâchst zu G wie in § 3.3 durch ScHOTTKYsche Verdoppe-
lung die RiEMANNsche Flàche 6?*, und zwar fur die abgeânderte Randein-
teilung, so da8 also /* einen Quersehnitt von (?* darstellt. Das harmonische
MaB der liber Ex — I liegenden Randkurven von G* beschrànken wir auf
G und erhalten so die gewûnschte, zur neuen Randeinteilung gehorende
harmonische Funktion u(x,y). Beim Durchlaufen von / gilt nun die Beziehung
§ du 0, so da8 also das Rekursionsverfahren von § 7.1 angesetzt werden

kann, wobei G* die Rolle von G zu ûbernehmen hat. Das Verfahren bricht ab,
sobald /* in einen normalen Einschnitt verwandelt ist. Damit ist dieser
Beweis auf denjenigen von Lemma 1 zurûckgefûhrt.

Bemerkungen. Der Fall der sogenannten eindeutigen Einbettung bei Lemma
2 kann àhnlich wie derjenige von §7.1 gesondert behandelt werden. Ferner
lâBt sich auch fur Lemma 2 durch zusâtzliche zulàssige Normierungen der
Spezialfall von Theorem 4&apos; herstellen. Die Bedingung J du 0 zum An-

satz des Rekursionsverfahrens verdeutlicht die Forderung von §3.3, daB nâm-
lich die Intervalle von E* immer Intervalle verschiedener Klasse Eo resp. Ex
miteinander verbinden sollen.

Anmerkung. Mit Hilfe von Lemma 2 kônnen wir die in §5.1 angekiindigte
Reduktion vornehmen. Es enthalte also et einen nicht zerlegenden Quersehnitt
von G&apos;. Ist G&apos; G1 — ett so besitzt G&apos; im Vergleich zu G&apos; kleinern Zusam-
menhang infolge der beiden zusâtzlichen ûber e{ gelegenen Randbogen. Es sei

c einer der beiden Bogen, und Wo(= E&apos;o) resp. Er1(=Er1) seien die fur
G&apos; ausgezeichneten Randmengen. Durchlàuft man diejenige Randkomponente
von G&apos;, die ê enthâlt, so gibt es einen ê umfassenden Randbogen ~ë von G\
der entweder Intervalle ungleicher oder gleicher Klasse E&apos;o resp. Wx miteinander

verbindet. Im ersten Fall wird *e zu der fur G1 definierten Randmenge
E* gerechnet. Im zweiten Fall dagegen verwandeln wir i durch eine konforme
Abbildung gemâB Lemma 2 in einen normalen Einschnitt N&apos; und operieren
nachher fur die weiter vorzunehmenden Reduktionen in dem durch Hinzu-
nahme von Nf erweiterten Bildgebiet von G&apos;.

§ 8. Ein Extremalproblem

In diesem Abschnitt befassen wir uns mit der Aufgabe, einige spezielle Ge-
biete konform auf Normalgebiete abzubilden. Dazu formulieren wir zuerst
ein gewisses Extremalproblem, dessen Lôsung eine notwendige Bedingung
unserer Abbildungsaufgabe darstellt. Die dabei an die gegebenen Gebiete ge-
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stellten Forderungen werden sich als hinreichend erweisen, so daC dann Extre-
malproblem und Abbildungsaufgabe gleichzeitig gelôst werden kônnen. Ein-
leitend geben wir in diesem Abschnitt eine Ûbersicht ûber Problemstellung und
Resultate. Nachher lôsen wir das Extremalproblem.

1. Es sei ein Elément (G; Eo, Ex) der in § 3.4 defînierten Menge © gege-
ben. {y} sei eine Teilschar der in G ausgezeichneten Schar {y} und EoczEo

und EA dEx seien die fur {y} definierten Punktmengen, in denen die Kurven
y € {y} enden.

Forderungen. Die gegebene Schar {y} genûge den Bedingungen

a) der Trager F von {y} sei ein Gebiet ffcC,
b) jede Eandkomponente C{ von G lasse sich durch eine in G verlaufende Jor-

BANkurve L{ von den ûbrigen Randkomponenten trennen,

c) der Durchschnitt [Eo ^ E^rs Ct- sei fur jedes C{ nicht leer,

d) die Teilrandmenge EQ ^ Ex von G sei offen,

e) die nach d) aus abzâhlbar vielen Kurvenbogen bestehende Menge Eo ^ Et ge-
hô&apos;re zur freien Berandung von G, das heiflt jeder abgeschlossene Teilbogen von

Eo w Ex lasse sich in G durch einen Querschnitt von G von der ûbrigen, nicht

zu Eo vy E1 gehôrenden Berandung von G trennen.

Den konformen Abbildungen f(z) von G ordnen wir eine gewisse Teilmenge
®&apos;c© zu. Dabei gehôre (Gf ; Ef0, E[) dann zu ©&apos;, wenn G&apos; die gleiehe Zu-
sammenhangszahl wie G besitzt und die Bildschar (y1) von {y} eine
Teilschar der fur G&apos; definierten Schar {y1} ist. Unter Benutzung der Gesetze ûber
die Rânderzuordnung bei konformer Abbildung zeigt sich, daB auch die
Bildschar (y&apos;} im zugeordneten Gebiet G1 die obigen Eigenschaften a) bis e)
besitzt. Ferner bemerken wir, dafi infolge d) und e) die Extremallânge A (y) end-
lich ausfallt. Folglich existiert gemâB Satz 2 und 3&quot; eine endliche obère Grenze

{Y&apos;)

Extremalproblem. Existiert fur die genannten konformen Abbildungen von
G in G1, {G1 ; ErQ, E&apos;±) e ©&apos; ein Elément (G1 ; E&apos;o, E[) derart, dafi sup X{y&apos;) an-

iy&apos;}

genommen wird, das heifit dafi fur dièses Elément A (y&apos;) A gilt?

Wir werden in diesem Abschnitt zeigen, daB unsere Voraussetzungen a) bis
e) hinreichen, um das Extremalproblem zu lôsen. Ferner kônnen wir im nàch-
sten Abschnitt zusâtzlich beweisen, daB sogar A X(y) gilt. Damitergibt
sich der
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Abbildungssatz. Bei unsern Forderungen bezûglich {y} làfît sich das Gebiet

G mit der Schar {y} Jconform derart in ein Gebiet Gf, (Gr ; E&apos;o, E[) &lt;¦
©&apos; abbilden,

dafi dann {y1} durch die Bildschar (y&apos;} von (y) ersetzbar ist bzw. dafi das Bïld-
gebiet G1 von G ein Normalgebiet bezûglich {G&apos; ; E&apos;o, E&apos;±) darstellt.

2. Im folgenden geben wir zuerst den Weg an, den wir zur Lôsung des in
§ 8.1 formulierten Extremalproblems einschlagen. AnschlieBend werden wir
die verschiedenen Schritte einzeln ausfiïhren.

a) In § 8.1 wurden auf dem Rande von GczG die beiden Punktmengen Eo

und Ex ausgezeichnet. Es sei Ct- eine Randkomponente von G. Die Kompo-
nenten des Durchschnitts [Eo ^Ex]rs C{ sind auf dem Rande C{ in natûrlicher
Weise zyklisch geordnet. So folgt in dieser Ordnung auf eine hôehstens ab-

zâhlbare Menge von Bogen von Eo (resp. Ej) eine ebensolche Menge von Bogen

von Et (resp. Eo), und zwar ist die Anzahl pi dieser Wechsel von Eo zu Ex

bzw. von Ex zu Eo fur jedes Ct- dureh eine bestimmte eventuell verschwin-
dende gerade Zahl gegeben.

Es sei (G&apos;k ; E&apos;ok, Eflh) e ©&apos; (k 1,2...) eine zum Extremalproblem pas-
sende Extremalfolge, das heifit es gelte lim A (y&apos;k) A bezûglich der betreffen-

den Extremallângen. Ist jetzt fk(z) eine zugehôrige Abbildungsfolge von G, so

liegen sâmtliche durch fk(z) vermittelten Bildpunkte von [Eo w Et] ^ Ci ge-
mâfi § 8.1 auf einer gewissen Ct- zugeordneten Randkomponente C&apos;ik von Gk.
Es sei p&apos;ik die Anzahl der auf Cfik alternierenden Bogen von E&apos;ok und E&apos;lk. Da
das Bild von EQ zu E&apos;ok resp. dasjenige von Ex zu Erlk gehort, muB p&apos;ik ^ ^&lt;

sein.
Der erste Schritt besteht nun darin, daB wir dieFolge (Gk ; E&apos;oki Eflk) durch

eine geeignet abgeânderte, mit (G[ ; Efol, Efu) (l 1, 2... bezeichnete
Folge ersetzen, die auch zu ©&apos; gehort und ebenfalls eine Extremalfolge
darstellt. Sind dabei p&apos;u die bezûglich (G[ ; E&apos;ol, Erxl) berechneten Anzahlen, so
soll die neue Folge durch die Eigenschaft pru pt ausgezeichnet sein.

p) Nun geben wir zu (G&apos;t ; E&apos;ol, E&apos;u) eine mit (G&apos;m ; Erm, E&apos;lm) (m=l, 2...)
notierte Teilfolge an, deren Randeinteilung in noch nàher zu beschreibender
Weise konvergiert. Ist dann fm(z) (m 1, 2... eine zur Folge (Grm ; Efm, E&apos;lm)

gehôrende Abbildungsfolge des Gebietes G, so wâhlen wir aus fm(z) eine mit
fn(z) (w 1, 2... bezeichnete Teilfolge aus, die gegen eine konforme Abbil-
dung F(z) von G strebt. Daraufhin zeigen wir, daB auch zur Teilfolge Gfn ein
Limesgebiet G&quot; existiert, das ebenfalls ausgezeichnete, durch die Konvergenz
bestimmte Randmengen E% resp. JEj besitzt. Bezeichnet (G&quot; ; El, E%) das
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Grenzelement der Folge (G&apos;n ; EfOn, E&apos;ln)9 so sei {y&quot;} diejenige Kurvenschar, die
die Punktmengen E\ und E^ in G&quot; miteinander verbindet. Bei der Grenz-
abbildung F(z) geht schlieBlieh (y} in eine Teilschar von {y&quot;} ûber.

y) Wir beweisen endlich, daB die Extremallânge aufgefaBt als Funktional
bezuglich der zu betrachtenden Folge {yn} (n 1, 2...) nach oben halb-
stetig ist, bzw. daB lim X(yrn) [= A] &lt; A(/&apos;) gilt. Damit lâBt sich jetzt zeigen,

daB (G&quot; ; El, E{) zur Menge (g gehôrt. Da aber {y&quot;) zugleich das Bild von
{y} enthâlt, gilt sogar (G* ; 1%, E&quot;) c &amp;. Somit folgt die Relation A(/)&lt;4,
die vereint mit A ^ A (y&quot;) das gewlinschte Résultat X{y&quot;) A liefert.

Die nach dem vorliegenden Schéma durchzufïihrende Lôsung des Extremal-
problems beruht im wesentlichen auf dem Auswahlprinzip, m. a. W. auf der
Théorie der Normalen Familien von P. Montel. So werden wir insbesondere
auch die speziellen Sâtze iiber konforme Abbildung von Gebietsfolgen be-
nutzen [2].

Zu a). Fur die bezuglich der Extremalfolge (Grk ; E&apos;ok, Erlk) berechneten An-
zahlen gelten die Ungleichungen pfik ^ p{. Ist prik pt fur aile i, so lassen

wir das betreffende Elément unveràndert. Ist dagegen p&apos;ik&gt;Pi fur min-
destens ein i, so rûhrt dies von jenen Komponenten eOk von Efok und elk von
Eflk her, die keine Bildpunkte von Eo resp. Ex enthalten. Es seien

flou E&apos;ok — U eok und Ê&apos;lk E&apos;lk — U elk die an Stelle von E&apos;ok und E[k
ausgezeichneten Randmengen, wâhrend die Schar {yk} die Punktmengen
Wok und Wlk innerhalb Gk Gk) verbindet. Dann enthâlt auch {yk} die
durch fk(z) vermittelte Bildschar von {y}. Nach Satz 3&quot; gilt ferner

Nun gehôrt im allgemeinen das Elément (Gk ; Erok, Erlk) nicht zu (5, da die
zu EfQk ^ Erlk komplementâre Randmenge Komponenten enthalten kann, die
Intervalle gleicher Klasse ErQk resp. Erlk verbinden. In diesem Fall wenden
wir Lemma 2 so oft an, bis die stôrenden Intervalle in normale Einschnitte
verwandelt sind. Jedenfalls gibt es also ein Elément (G[ ; Erol, E&apos;lt) c © der-
art, daB die in G\ ausgezeichnete Kurvenschar {yft}9 die E&apos;ol mit ETxl

verbindet, durch {yk} oder dann durch die betreffende Bildschar im Sinne von
Définition 3 ersetzbar ist.

Daraus folgt nun sofort, daB die derart abgeânderte Folge (G[ ; Erolt Efu)
(l 1,2...) die verlangte Eigenschaft pru p€ besitzt und a fortiori eine

Extremalfolge darstellt.

Zu P). Fur das folgende nehmen wir an, daB z 0 in 6? liège und /j(0) 0

gelte. Ferner werden wir den Beweis schrittweise bezuglich der einzelnen

3 Commentarii Mathematici Helvetici
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Randkomponenten durchfuhren. Es sei also Cx eine Randkomponente von G

und Cxl seien die Cx zugeordneten Randkomponenten von G[. Nun bilde gt (zr),

Qt(0) 0 (l 1, 2...) das durch 0^ begrenzte, G[ enthaltende einfach zu-
sammenhângende Gebiet nach dem RiEMANNsehen Abbildungssatz konform auf
den Einheitskreis R {q\\q\&lt;1} ab. Die 2px Endpunkte der auf Cxl ausge-
zeichneten Intervalle kommen dabei auf die Peripherie r von R zu liegen. Jetzt
làfit sich nach bekanntem Verfahren eine Teilfolge (G&apos;m ; E&apos;m, Eflm) (m= 1, 2...
der in M liegenden, wieder mit (G[ ; E&apos;Qli Exl) bezeichneten Elemente derart
auswâhlen, daB die Endpunkte der px Intervalle auf r fur m-&gt;oo konvergieren.

Fur die zugeordneten Abbildungen fm (z) (m 1, 2... gelten die Bezie-

hungen fm(G)c:Gfm und /TO(0) 0. Nach der Théorie der Normalen Familien
von P. Montel enthàlt fm(z) eine Teilfolge fn(z) (n 1, 2...), die entweder

gegen die Grenzfunktion Null oder gegen eine konforme Abbildung F (z) von
G konvergiert [2]. Aufder Peripherie r von i? liegen aber fur jedes n Bilder von
Bogen, die zu Eo &lt;-» Et gehôren. GemâB §8.1 kann nun die Funktion /„ (z) fur
n 1,2... ûber dièse Bogen hinaus durch Spiegelung fortgesetzt werden.
Auf den Bogen, die nachher im Innern liegen, gilt daher | fn(z) \ 1 und
somit kann die Folge fn (z) niemals gegen die Konstante Null konvergieren.

Folglich bildet F(z) das Gebiet G konform derart in den Kreis R ab, daB

das nicht leere Bild von [Eo ^ Et] ^ Ct auf r eine offene freie Randmenge dar-
stellt, also ebenfalls den in § 8.1 angegebenen Forderungen d) und e) geniigt.
Da nun das durch fn(z) vermittelte Bild von Eo zu E&apos;On bzw. dasjenige von

Ex zu Erln gehôrt und die Konvergenz lim fn(z) — F{z) fur jeden abgeschlos-

senen Teil von [Uo ^ Ex] ^ Gx gleichmâBig ist, mûssen infolge prXn px
die Intervalle von E&apos;On bzw. EXn wiederum gegen Intervalle konvergieren.
Ûbertrâgt man jetzt die Klasseneinteilung auf die Grenzintervalle, so sind da-
mit auf r zwei Klassen E% und Ex erklàrt. Ferner mtissen dièse Limesinter-
valle, deren Anzahl px betrâgt, wiederum bezûglich der Klasseneinteilung
auf r alternieren.

Sind die Gebiete Grn einfach zusammenhàngend, so definiert G&quot; R) mit
der auf r angegebenen Einteilung ein Elément {G&quot; ; Eq, Ex). Es sei {y*} die-
jenige Kurvenschar, die El mit Ex in G&quot; verbindet. Dann ist die durch F(z)
vermittelte Bildschar von {y} eine Teilschar von {y&quot;). Dagegen steht noch
nicht fest, ob das Komplement von El ^ Ex bezûglich r keine isolierten
Punkte enthâlt, das heiBt ob (G&quot; ; JBj, E{) zur Menge © gehôrt.

Ist aber G mehrfach zusammenhàngend, so mtissen wir das Verfahren in
geeigneter Weise iterieren. Vorgângig bemerken wir noch, daB nach der For-

derung b) von § 8.1 zu Cx eine JoRDANkurve Lx existiert, die in G verlâuft
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und Cx von den ûbrigen Randkomponenten von G trennt. Dasselbe gilt ent-

sprechend im Bildgebiet F (G).
Es sei nun C2 eine weitere Randkomponente von G, und C2n bezeichne die

C2 entsprechenden Berandungen von Gfn. Jetzt bilden wir das Grn enthaltende,
durch C2n begrenzte einfach zusammenhângende Gebiet mit Hilfe von (Tn(g),

an(0) 0 (n 1, 2...) konform auf /S {cr||a|&lt;l} ab. Dabei entspricht
C2n der Peripherie s von S, auf der jeweils p2 Intervalle ausgezeichnet sind.
Ferner sollen dièse bereits konvergieren.

Nun ist lim an(g) entweder die Konstante Null oder stellt eine konforme
n—&gt;oo

Abbildung 27(#) des sogenannten Kernes 0 auf 8 dar [2]. Im ersten Fall
miiBte die in G definierte Folge anfn(z) gegen die Konstante Null konvergieren,

was man durch Spiegelung an \E0 ^ Ex] ^ C2 widerlegt. Also konvergiert
anfn(z) gegen eine konforme Abbildung E(z) von G. Infolge F(G)a&lt;P ist die

zusammengesetzte Funktion EF(z) in G definiert und stimmt, da die Kon-

vergenz lim an(g) £(q) stetig ist [2], in G mit Z(z) iiberein.
n—&gt;. oo

Aus L[ F(L1)cz0 folgt rc^. Deshalb wird r durch U(q) auf eine mit
G!!x bezeichnete analytische Kurve abgebildet. Ûbertràgt man dabei die Rand-
einteilung von r, so sind jetzt auf Gnx und s mit El resp. E\ notierte Inter-
vallmengen erklârt. Bei zweifachem Zusammenhang stellt das durch G![ und
s begrenzte Gebiet samt der ausgezeichneten Berandung das gesuchte Grenz-
element (G&quot; ; El, E[&apos;) dar. Ferner enthâlt die zugehôrige Schar {y&quot;} die durch

Z(z) vermittelte Bildschar von {y}. Dagegen muB noch (G&quot; ; El, El) c ©
gezeigt werden.

Analog werde nun das Verfahren bei grôBerer Zusammenhangszahl fur die
iibrigen Randkomponenten von G iteriert.

Zu y). Es sei u&quot;(x&apos;,y&apos;) die zur Randeinteilung von G&quot; passende gemâB
§ 3.3 erklârte harmonische Funktion. Fur das DiRiCHLETintegral iiber G&quot;

gilt nach Theorem 1 die Beziehung k~x(y&quot;) DQn{u&quot;), Wir fûhren nun den

verlangten Beweis, indem wir die entsprechende bekannte Halbstetigkeit fur
die betreffenden DraiCHLETintegrale herleiten [3].

Ist D0«{u&quot;) endlich, so sei T&apos; ein einfach zusammenhàngendes Teilgebiet
von G&quot; derart, daB DQft{u&quot;) — DT,(uff)&lt;e/2 ist. T bezeichne ein Teilkonti-
nuum von Tf mit DT, (u&quot;) — DT{u&quot;) &lt; e/2 Infolge der Konvergenz der Ge-
biete G&apos;n gegen G&quot; gilt gemâB (}) fur geeignetes festes N und n&gt;N die Inklu-
sion yc6?^. Bezeichnet un(x&apos;,yr) die (Gfn ; E&apos;Qn, Efln) zugeordneteharmonische
Funktion, so kônnen die Funktionen Qn(z&apos;) un(xf, y1) + ivn(x&apos;, y&apos;) fur
n&gt;N in T eindeutig definiert werden. Nun enthàlt die Folge Qn(zr) eine
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wieder mit Qn{z&apos;) notierte konvergente Teilfolge, deren Ableitungen Q&apos;n{z&apos;)

gegen die Ableitung QfQ{zf) der Grenzfunktion £30(z() konvergieren [2]. Infolge

T(n) Mn()ygilt dann T

limDT(un) DT(u0) uQ «Q0(zr)
n—&gt;oo

Es kann uQ{x&apos;,y&apos;) in G&quot; eindeutig definiert resp. auf G&quot; eindeutig fort-
gesetzt werden. Da die Randeinteilung von G&apos;n gegen diejenige von G&quot; kon-
vergiert, hat u0 dasselbe Randverhalten wie u&quot; und muB deshalb mit u&quot; ûber-
einstimmen. Dabei geht man wie in /?) schrittweise bezùglich der einzelnen
Randkomponenten vor. So streben fur abgeschlossene Teilbogen von
[El ^ E^]^ C&apos;I die Funktionen un gleichmâBig gegen 0 bzw. 1. Zum Beweise

ùbertràgt man die Funktionen un in die £-Ebene und setzt sie ûber die be-
treffenden auf r gelegenen Teilbogen von E&apos;On und E&apos;ln hinaus harmonisch fort,
so da8 nachher dièse abgesehlossenen Teilbogen im Innern liegen und die
Konvergenz auf ihnen somit gleichmâBig ist. Mit Hilfe harmonischer Fort-

du
setzung zeigt man analog, daB -^ fur abgeschlossene Teilbogen der zu

El ^ Er[ komplementâren Berandung beziiglich r gleichmâBig gegen Null
strebt. Âhnlich gestaltet sich der Beweis fur die ùbrigen Teilberandungen
von G&quot;.

Also gilt lim DT{un) DT{u&quot;). GemâB § 8.1 ist ferner A&gt;0. Mit Hilfe
n—&gt;oo

von Theorem 1 folgt jetzt

A-1 lim A-My») Hm Do&apos; (un) &gt; DT(u&quot;) &gt;DQff{u&quot;) - e
nn

woraus sich sofort X{y&quot;) ^ A ergibt. Weiter zeigt sich, daB fur beliebiges abge-
schlossenes T die Intégrale DT{u&quot;) beschrânkt sind und die Annahme
DOh(u&quot;) &lt;oo demnach erlaubt war.

Infolge X {y&quot;) &gt; 0 kann die zu El ^ Ef[ komplementâre Berandung von
G&quot; nach § 3.3 keine isolierten Punkte enthalten. Also gehôrt (G&quot; ;Eq,E%)
zur Menge ©.

§ 9. Konîorme Àbbildung auf Normalgebiete

In diesem Abschnitt wird zuerst der in § 8.1 angekûndigte Abbildungssatz
bewiesen. Nachher stellen wir den Zusammenhang mit einer von H. Gbotzsch
[5] stammenden und von K. Strebel [15] wieder aufgenommenen Extremal-
aufgabe her.
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1. Es sei F(z) die in § 8.2 angegebene konforme Abbildung von G in G&quot;,

die das in § 8.1 gestellte Extremalproblem lôst. Mit a bezeichnen wir irgend-
eine Komponente von A G&quot; — Gf, G1 F (G). Dann mu8 a auf einer
FluBlinie der dem Elément (G&quot; ; El, Er[) zugeordneten harmonischen Funktion
u&quot;{x,y) liegen, m. a. W. die Komponente a muB entweder ein Punkt, ein
normaler Schlitz oder ein normaler Einschnitt von (G&quot; ; E%9 E&apos;[) sein.

Zum Beweise nehmen wir an, daB a ein Kontinuum darstelle, das nicht
auf einer FluBlinie liège. {ya} bezeichne diejenige Kurvenschar, die El mit
El innerhalb G&quot; — a verbindet. GemàB Theorem 3&apos; und § 4.4 gilt
A(ya) &gt;k(y&quot;) fur die betrefïenden Extremallângen. Nun wenden wir Lemma 1

resp. Lemma 2 an und bilden G&quot; — a auf ein Normalgebiet ab, das heiBt wir
verwandeln a in einen normalen Schlitz bzw. in einen normalen Einschnitt.
Die Extremallânge des betreffenden zugeordneten Elementes stimmt dann
nach Satz 2 und Définition 5 mit X{ya) iïberein und ist damit grôBer als
X(y&quot;). Dies widerspricht aber der in § 8.2 dargelegten Extremaleigenschaft
von F{z).

Somit besteht A aus Punkten, normalen Schlitzen und normalen Einschnit-
ten. Bildet zusâtzlich die in § 4.4 erklârte Projektionsmenge PA auf E![ eine

lineare Nullmenge, so ist G1 gemâB § 4.4 normal. Fur diesen Spezialfall ist
damit der in § 8.1 formulierte Abbildungssatz bewiesen. Als Korollar ergibt
sich das Résultat, daB G&apos; dann normal ist, wenn A aus hôchstens abzâhlbar
vielen Komponenten besteht.

2. Jetzt wenden wir uns dem allgemeinen Fall zu. Es bezeichne (?* die

aus G durch ScHOTTKYsche Verdoppelung bezùglich Eo ^ Ex erzeugte Rie-
MANNsche Flâche. Demnach kann (?* durch zwei ûbereinanderliegende Exem-

plare von G dargestellt werden, die lângs Eo ^ Et miteinander verheftet
sind. ^* (v 1, 2... sei eine noch nâher einzuschrânkende, (?* aus-
schôpfende Gebietsfolge, das heiBt es gelte g*c^*+1 (v 1, 2...) sowie

Km ^* G*. Weiter sei &quot;gv 6^^ ~g* und {yv} bezeichne die in ~gv gele-
V—&gt;.oo

gène Teilschar von {y}.
Bei geniigend groBem v erfûllt auch (yv) die Forderungen a) bis e) von

§ 8.1. Die Folge ^* soll jetzt so gewâhlt werden, daB fur ~qv der in § 9.1
zitierte Spezialfall vorliegt und also &quot;gv konform auf ein Normalgebiet abge-
bildet werden kann. Hierzu bestimme man z. B. die Folge ~g* derart, daB

jedes Elément endlichen Zusammenhang besitzt und [Eo ^ Et] ^ ^* jeweils
aus endlich vielen Komponenten besteht. Zur effektiven Konstruktion von
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0* benutzt man dabei wie ûblich am besten eine sogenannte Quadrateinteilung
von G*.

Nach § 9.1 gehort zu jedem ~gv ein konform âquivalentes Normalgebiet.
fv(z) bezeichne die diesbezûgliche Abbildungsfunktion. Mit (Gv; EQv, Elv)
notieren wir ferner die zugehôrige Elementenfolge, wâhrend {yv} die EOv mit
Elv innerhalb Gv verbindende Kurvenschar darstellt. Infolge der Normalitât
gilt die Beziehung X(yv) X(yv).

Jetzt kônnen wir den Beweis von §8.2 Sehritt fur Schritt auf unsern Fall
ûbertragen. Einmal besitzen bei genugend groBem v die Gebiete Gv den glei-
ehen Zusammenhang wie G. Somit ist jeder Randkomponente Ct von G eine

Berandung Civ von Gv zugeordnet, fur die ihrerseits die Anzahl piv der auf
Civ alternierenden Bogen von EOv und Elv erklârt ist. Infolge der Normalitât
von fv(gv) ist bei genugend groBem v ofïensichtlich piv — /pi erfullt.

Was fi) betrifft, so muB beim ersten durchzufûhrenden Schritt aus der Folge
fv{z) eine konvergente Teilfolge ausgewâhlt werden, die gegen eine konforme

Abbildung F(z) konvergiert. Nun ist zu beachten, daB fv(z) zwar nur in gv

definiert ist. Da aber gv gegen G konvergiert, ist somit F(z) in G konform
[2]. Die ubrigen Ûberlegungen von fi) lassen sich mutatis mutandis sofort

ûbertragen. Es existiert demnach eine wiederum mit F(z) bezeichnete Grenz-
/S yN /^

abbildung. Ihr ist ein Elément (G; Eo, Ej) zugeordnet und diesem eine aus-

gezeichnete Kurvensehar {y}. Ferner geht {y} bei der Abbildung F(z) in
eine Teilschar von {y} tiber, so daB gemâB Satz 3&quot; die Ungleichung
A(y)&lt;A(y) gilt.

Dank der Ausschôpfung bildet A(yv) [= A(yv)] infolge Satz 3&quot; eine mono-
ton fallende, dureh X (y) beschrànkte Zahlenfolge, die also konvergiert. Wie
bei y) lâBt sich nun die Beziehung lim X(yv) &lt; X(y) herleiten. Damit ergibt

sich jetzt X(y) &lt; lim X(yv) &lt; X(y) &lt; X{y). Da ferner (G;E0, Ex) zur
v-&gt;oo

Menge © wie auch zu der in § 8.1 erklârten Menge &amp; gehort, ist damit die
behauptete Normalitât und also die in § 8.1 angegebene Gleichung A X(y
bewiesen.

Bemerkung. Die Ûberlegungen von § 9.2 kônnen zu einem selbstândigen,
vom Extremalproblem unabhângigen Beweis des Abbildungssatzes vervoll-
stândigt werden. Es wurde nâmlich einzig benutzt, daB zu ljv ein Normalgebiet

existiert. Wàhlt man aber die ^* wie oben angegeben, so kann dieser
Existenzsatz direkt durch mehrmalige Anwendung der Lemmata 1 und 2 her-

geleitet werden. DaB bei dem so gewonnenen Abbildungssatz zugleich das

Extremalproblem gelôst wurde, folgt dann aus Theorem 4.
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Anmerkung. Endlich lâfit sich jetzt der in § 3.2 angekiindigte und in § 6.3
benutzte Satz beweisen, daB jeder im Rechteck gelegene minimale Schlitz-
bereich normal ist. Andernfalls wùrde nâmlich eine konforme Abbildung des

Schlitzbereiches auf ein Normalgebiet existieren, wobei der Modul des zuge-
ordneten Rechtecks gemâB Theorem 4 und 4&apos; zunehmen miiBte. Also kônnte
dann im gegebenen minimalen Schlitzbereich gemàB Theorem 1 und 2 eine
harmonische Funktion mit kleinerm DiRiCHLETintegral angegeben werden in
Widerspruch zur Définition in § 3.2 a).

3. Es sei {y} eine Kurvenschar, die den Forderungen von § 8.1 genugt.
Ferner sei {y} eine Schar derart, daB {7} im Sinne von Définition 3 durch

{y} ersetzbar ist und die beiden Trâger der Kurvenscharen ubereinstimmen.

Wir fragen uns nun, ob auch zu {y} ein Normalgebiet im Sinne der Abbil-
dungsaufgabe von §8.1 existiert.

Zusatz 4. Zu gegebenem {y} gibt es entweder hein derartiges Normalgebiet
oder jedes im Sinne von Définition 5 und 5r zu {y } passende Normalgebiet ist zu-

gleich Normalgebiet fur {y}.

Beweis. Existiert nâmlich zu {y} ein Normalgebiet, so ist dièses nach Vor-
aussetzung gemâB Définition 5 ebenfalls Normalgebiet fur {y }. Da aber nach
Theorem 4&apos; die Normalgebiete bis auf die dort angegebene Willkur eindeutig
bestimmt sind, ist jede zu {y} gehôrende Lôsung des Abbildungssatzes zu-

gleich Lôsung fur {y }.

Es ist leicht, explizite Konstruktionen fur den ersten Fall von Zusatz 4 anzu-
geben. Es sei {y} die einem Elément (G; Eo, Ex) c © zugeordnete Kurvenschar.

Die Schar {y} erfulle in (0 ; EOi Et) die Forderungen von §8.1 und sei

normal bezuglich {y}. Wâhlt man jetzt eine Schar {y±} mit A(yx) =00 und

setzt {y} {y} ^ {y±}, so ist einmal {y} nach dem Beispiel zu Définition
3 in § 2.6 durch {y} ersetzbar. Der zweite Fall von Zusatz 4 ist nun dann

ausgeschlossen, wenn {y} und {y} den gleichen Trâger besitzen und {y±}
keine Teilschar von {y} ist. Mit Hilfe des Beispiels b) von § 2.1 lâfit sich
unter Benutzung von Satz 5 nachprûfen, daB in dem von H. Gbotzsch [5] an-
gegebenen und von K.Strebel [15] wieder aufgenommenen Extremalproblem
tatsâchlich dieser Sachverhalt vorliegt.

Mit Hilfe von Définition 4 lâBt sich Zusatz 4 verallgemeinern. Es sei {y}
eine Kurvenschar, die mit {y} vertauschbar ist. Ferner erfulle {y} die

Forderungen von § 8.1 und die beiden Trâger sollen wiederum ûbereinstim-

men. Dann gilt Zusatz 4 unverândert fur {y}. Dazu betrachten wir den
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Durchschnitt {y^} (y} ^ {y}. Durch zweimalige Anwendung des Beweis-
verfahrens von Zusatz 4 erhàlt man sofort die Verallgemeinerung.

Um also die Abbildungsaufgabe fur eine gegebene Kurvenschar anzupacken,
darf manzu ersetzbaren oder vertauschbaren Scharen ûbergehen. Ist nàmlich
fur dièse die Aufgabe lôsbar, so erhâlt man entweder die verlangte Lôsung oder
man hat dadurch ein unlosbares Problem durch geeignete Abànderung einer
Lôsung entgegengefûhrt.

Anmerkung. Nach Abschlufi der Redaktion erschien die Arbeit ,,Die extre-
male Distanz zweier Enden einer RiEMANNschen Flâehe&quot; (Ann. Acad. Sci.
Fenn. Ser. A I 179, 1955, p. 1) von K. Strebel. Dort wird die betreffende
Abbildungsaufgabe bei zweifach zusammenhângendem Grundgebiet allgemein
behandelt.
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