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Modification von reellen und komplexen Mannigfaltigkeiten

van Alfred Abppli, Zurich

Einleitung

a) Der Begriff der Modifikation bezieht sich auf eine Situation, die in der
Théorie der komplexen Mannigfaltigkeiten hâufig vorkommt, aber auch in
geometrischen Zusammenhàngen wohlbekannt ist: man nimmt aus einer
Mannigfaltigkeit W eine Teilmenge A heraus und «ersetzt» sie durch eine
Menge 8, so daB eine neue Mannigfaltigkeit F entsteht, wobei je nach der
vorliegenden Fragestellung bestimmte Strukturen erhalten bleiben sollen (zum
Beispiel: F und W sollen differenzierbare oder komplexe Mannigfaltigkeiten
sein usw.); eine andere zusàtzliche Bedingung besteht darin, daB auch von den
Teilmengen A und 8 Mannigfaltigkeitscharakter verlangt wird - dièse ein-
schrânkende Bedingung werden wir im folgenden voraussetzen, abgesehen von
gelegentlichen Zusâtzen, in welchen auf allgemeinere Fâlle hingewiesen wird.
In der vorliegenden Arbeit sollen solche Modifikationen topologisch, insbeson-
dere im Rahmen von Homologiebetrachtungen untersucht werden. Es zeigt
sich nâmlich, daB sich aus relativ schwachen Voraussetzungen ziemlich starke
Einschrânkungen fur die auftretenden Râume ergeben.

Einfache Beispiele von Modifikationen: 1. Es werde aus der w-Sphâre En ein
Punkt p herausgenommen und an seiner Stelle der (n — l)-dimensionale reell
projektive Raum P™-1 so eingesetzt, daB Pn entsteht; oder, wenn n 2m
ist, der komplex projektive Raum P*™-1* von m— 1 komplexen Dimensio-
nen, so daB Pim) entsteht. 2. Eine komplexe Mannigfaltigkeit F werde durch
eine komplex analytische Abbildung &lt;p «fast ùberall schlicht» auf eine andere
W derselben Dimension abgebildet. Dabei heiBt &lt;p fast uberall schlicht, wenn
der Abbildungsgrad von y gleich 1 ist. cp muB dann uberall lokal topologisch
sein, bis aufeine Singularitâtenmenge 8 von niedrigerer Dimension, welche durch
&lt;p auf eine Menge A (A heiBt Ausnahmemenge, dim(,4)&lt;dim(#)) abgebildet
wird. &lt;p induziert einen Homôomorphismus von F — 8 auf W — A. - In
derartigen Fâllen, wo der Homôomorphismus von F — 8 auf W — A zu
einer stetigen Abbildung von F auf W ausgedehnt werden kann, sprechen wir
von «Modifikation mit Abbildung».

b) Im ersten Kapitel werden die Definitionen verschiedener Arten von
Modifikation gegeben (topologische, differenzierbare, reell und komplex
analytische Modifikation, spezielle und allgemeine Modifikation); dann wird auf
die Erzeugungsweisen hingewiesen, insbesondere auf die Modifikation mit
Abbildung, und schlieBlich werden die Zusammenhânge mit den Sphâren-
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faserungen und mit den Môglichkeiten des Abschlusses berandeter Mannigfal-
tigkeiten behandelt. Es zeigt sich, daB jede differenzierbare Modifikation zwei
Sphârenfaserungen des Umgebungsrandes N von A in W (oder von 8 in F)
induziert, und daB umgekehrt jedes Paar zweier Sphàrenfaserungen des

Umgebungsrandes eine Modifikation liefert. Ist weiter M eine «regulâr» berandete
Mannigfaltigkeit mit der Randmannigfaltigkeit N, und kann N in Sphâren
gefasert werden, so lâBt sich M zu einer unberandeten Mannigfaltigkeit W
abschlieBen; liegt ein differenzierbarer AbschluB von M zu W vor, so kann
N in Sphâren gefasert werden. Die §§ 5 und 6 handeln von den naheliegendsten
Anwendungen auf Sphàrenfaserungen: jedes differenzierbare Sphârenbûndel
ist âquivalent einem Normalenbundel; in § 6 betrachten wir die Antipoden-
abbildung in einem differenzierbaren Spharenbûndel, speziell bei Faserungen
durch geraddimensionale Sphàren, sowie Sphàrenblindel mit unitàrer und mit
symplektischer Strukturgruppe. In § 7 wird die «Verfeinerung der Sphâren-
faserung» besehrieben, welche zu Modifikationen mit Abbildung fuhrt; umgekehrt

kann jede differenzierbare Modifikation mit Abbildung durch Verfeinerung

der Sphàrenfaserung gewonnen werden. Es werden Beispiele von
Modifikationen mit Abbildung gegeben (&lt;7n&apos;g-ProzeB).

c) Die Kapitel II, III und IV haben die Cohomologietheorie der Modifikation
zum Gegenstand. Dabei kônnen zwei verschiedene Wege eingeschlagen werden :

1. es werden die Zusammenhànge mit den Sphàrenfaserungen benutzt, wie sie
im ersten Kapitel dargestellt wurden, und dann die Cohomologietheorie der
Sphârenfaserungen angewandt (Gysinsche exakte Sequenz); 2. wir gehen direkt
von der Modifikation aus, schreiben die exakten Sequenzen der Paare (F, S)
und (W&gt; A) an, und benutzen den Homôomorphismus zwischen F — S und
W — A, der uns den Isomorphismus Hk(W, A) ^ Hk{V, S) liefert. Es wird
meistens von der zweiten Méthode Gebrauch gemacht, welche den Vorteil hat,
auch in solchen Fâllen angewandt werden zu kônnen, wo zur Modifikation
keine Sphârenfaserungen gehôren. Gewisse Resultate der Cohomologietheorie
der Sphârenfaserungen werden dabei mitgeliefert. Neben den exakten Sequenzen

kommt der Poincarésche Dualitâtssatz in einem «Pendelverfahren» wieder-
holt zur Anwendung (§§ 10, 11, 15, 18). - In den §§ 9 bis 11 wird die «lokale»
Modifikation (Ersetzen eines Punktes) besprochen. Das Hauptergebnis lautet :

bei einer (differenzierbaren) lokalen Modifikation hat die eingesetzte
Mannigfaltigkeit S die additive und die multiplikative Cohomologiestruktur des ver-
allgemeinerten projektiven Raumes. In § 12 werden die beiden oben angege-
benen Methoden nacheinander vorgefûhrt, im Falle der Modifikation durch
Ersetzen einer Mannigfaltigkeit. - Das dritte Kapitel enthâlt die Cohomologietheorie

der Modifikation mit Abbildung (§§ 13 und 15) samt Anwendungen
und Zusâtzen (§§ 14 und 16). Die Resultate lauten im wesentlichen dahin, daB



Modifikation von reellen und komplexen Mannigfaltigkeiten 221

unter geeigneten Dimensionsvoraussetzungen die eingesetzte Mannigfaltigkeit
S additiv dieselbe Cohomologiestruktur hat wie das topologische Produkt
von A mit einem verallgemeinerten projektiven Raum. - Im vierten Kapitel
kommt die komplexe Modifikation mit Abbildung zur Sprache, wobei das
Hauptgewicht auf dem Spezialfall Kâhlerscher Mannigfaltigkeiten liegt. Die
meisten Betrachtungen liber die Kâhlersche Modifikation beruhen darauf, daB
die wichtigsten Cohomologieresultate von Kapitel III (und II) sich im Sinne
der Typeneinteilung der Differentialformen auf einer Kâhlerschen
Mannigfaltigkeit verfeinern lassen. Dabei ergeben sich Sâtze, die in der Théorie der
birationalen Transformationen in der algebraischen Géométrie bekannt sind
(Invarianz des Geschlechtes), und die auf funktionentheoretischem Wege ver-
schârfb werden kônnen.

d) Es sei in diesem Zusammenhang auf einen Satz hingewiesen, gemâB wel-
chem jede nicht triviale komplexe Modifikation mit Abbildung âquivalent
einem crn&gt;g-ProzeB ist (Einzigkeitssatz fur komplexe Modifikation mit
Abbildung). Er liefert fur komplexe Modifikationen mit Abbildung einen neuen
Zugang zu den grundlegenden Beziehungen (63&apos;) bzw. (63^) im Kâhlerschen
Fall, unter Verwendung der Spektralfolge fur projektive Biindel. Ferner lassen
sich die verfeinerten Cohomologiebeziehungen fur komplexe Modifikationen
mit Abbildung auch ohne die Voraussetzung der Kâhlerschen Metrik formu-
lieren, wenn man die Dolbeaultschen Cohomologiegruppen heranzieht, dies
wiederum auf Grund des zitierten Einzigkeitssatzes. In der vorliegenden
Arbeit wird der Einzigkeitssatz mit den genannten Anwendungen nur ange-
deutet (§ 19c); es ist daruber eine ausfûhrliche Publikation in Vorbereitung.

e) Der Begriff der Modifikation kommt in der Théorie der komplexen
Mannigfaltigkeiten unter funktionentheoretischen Gesichtspunkten mehrfach vor.
Es ist an die Arbeiten von Hopf [23], [24], Behstke und Stein [4], Kbeyszig
[26], Stoll [32], u.a. zu erinnern. In der vorliegenden Arbeit werden dagegen
die topologischen Untersuchungsmethoden in den Vordergrund geruckt. Ein
erster Ansatz hiezu, im Hinblick auf den AbschluB berandeter Mannigfaltigkeiten,

befindet sich bei Hirsch [19]. - Meinem verehrten Lehrer, Herrn
Prof. B. Eckmann, môchte ich an dieser Stelle meinen herzlichsten Dank aus-
sprechen. In vielen Diskussionen hat er mich auf die verschiedenen Frage-
stellungen gefûhrt und manche wertvolle Hinweise gegeben. Auch Herrn Prof.
H. Hopf môchte ich vielmals danken fur die zahlreichen Anregungen und
Ratschlàge. - SchlieBlich danke ich fur den Beitrag aus dem Zentenarfonds der
Eidgenôssischen Technischen Hochschule, der einen Teil der Druckkosten dieser

Arbeit deckte.
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1. Eapitel. Modifikation und Faserung

Wir betrachten im folgenden vor allem die differenzierbare Modifikation.

Als Anwendungen ergeben sich dabei bekannte Resultate. Daneben stel-
len wir Beispiele von Modifikationen bereit, die in den spâteren Untersuchun-
gen wiederholt herangezogen werden.

§ 1. Définition und Erzeugung einer Modifikation

a) Wenn im folgenden von einem Paar von Mannigfaltigkeiten (Vn, 8m) die
Rede ist, so ist damit folgendes gemeint : Vn ist eine w-dimensionale Mannig-
faltigkeit (die Dimensionsindizes werden oft weggelassenx)) und 8m eine ab-
geschlossene Teilmenge von Fn, welche eine m-dimensionale Mannigfaltigkeit
ist. Das Komplement von S in F wird wie ûblich mit F— 8 bezeichnet.
Ein Paar von Mannigfaltigkeiten (F, S) heiBt differenzierbar, wenn F diffe-
renzierbar ist und die Einlagerung 8 a V ebenfalls; dabei soll «differenzierbar»
immer unendlich oft differenzierbar bedeuten. Analog ist ein reell oder ein
komplex analytisches Paar erklart.

Définition. Unter einer Modifikation

0: (Vn, 8m) -&gt; (Wn, A*) (1)

verstehen wir ein System, bestehend aus zwei Paaren von Mannigfaltigkeiten
(F, 8) und (W, A), sowie einem Homôomorphismus

&lt;p&apos;: Vn — Sm -&gt; Wn — A« (2)

des Komplementes F — 8 auf W — A, derart, daB fur jede in F — S gegen
8 strebende Punktfolge pk die Folge &lt;p&apos;(pk) in W gegen A konvergiert. Es
wird n — 1 &gt; Max (m, q) vorausgesetzt. Wir nennen 8 Singularitâtenman-
nigfaltigkeit, A Ausnahmemannigfaltigkeit.

Sind die Paare (F, 8) und (W, A) sowie der Homôomorphismus &lt;p&apos; differenzierbar,

so sprechen wir von einer differenzierbaren Modifikation. Entspreehend
ist die reell und die komplex analytische Modifikation zu verstehen2).

Kompaktheitsvoraussetzung. In der Modifikation (1) sollen F und W (und
somit auch S und A) stets als kompakt vorausgesetzt werden. Gewisse Betrach-
tungen dieser Arbeit wâren auch ohne dièse Voraussetzung gultig, insbesondere

1) M und Mn bedeuten dieselbe Mannigfaltigkeit. Ebenso wird eine Mannigfaltigkeit gleich-
zeitig mit M und Mtn) bzw. mit M und MW bezeichnet, wenn es sich um eine komplexe bzw.
quaternionale Mannigfaltigkeit der komplexen bzw. quaternionalen Dimension n handelt.

*) Vgl. die Erklârung der Modifikation in [4] und in [24].
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gelten die Sâtze 1, 4, 5, 7, 8, 11 sinngemâB auch im nicht kompakten Fall. -
Gelegentlich treten an Stelle von F und W ofifene Teilmengen von F bzw.
von W, z. B. bei «lokalen» Fragen die offene Euklidische Umgebung eines

Punktes; dièse Abweichungen von der Kompaktheitsvoraussetzung sind jedoch
unwesentlich.

Zusammenhangsvoraussetzung. Wenn nichts anderes gesagt wird, sollen in
der Modification (1) die Mannigfaltigkeiten F, W, 8, A zusammenhângend sein.

Allgemeine Modiflkation. Wir nennen die Situation (1) eine allgemeine Modi-
fikation (im Gegensatz zu den soeben beschriebenen «speziellen» Modifikatio-
nen), wenn F, W topologische Râume und S a V bzw. A c W Teilmengen
sind. S heiBt Singularitâtenmenge, A Ausnahmemenge. Es werden keine
Dimensionsforderungen gestellt, selbst wenn fur die Ràume eine Dimension
definiert ist. Den Râumen F, W, 8, A werden jedoch meistens einschrànkende
Bedingungen auferlegt, z. B. daB es sich um Polyeder oder um Homologie-
mannigfaltigkeiten handelt (siehe Kap. II und III). - Die Erzeugungsarten
in b) und in c) bestehen auch fur solche allgemeinen Modifikationen.

b) Erzeugung durch eine Abbildung. Es sei

&lt;p : Fn ~&gt; Wn (3)

eine Abbildung3) von F auf W, welche eine Abbildung

&lt;p:8m-&gt;Ae, (4)

von 8 c F auf A c W und einen Homôomorphismus

&lt;p&apos; : Vn — Sm -+ Wn — A«, (2)

von F — S auf W — A induziert. Es ist klar, daB durch eine solche Abbildung
eine Modifikation gegeben wird. Ist ç? differenzierbar bzw. analytisch, die auf-
tretenden Mannigfaltigkeiten und Einlagerungen ebenfalls, so wird die durch
(3) erzeugte Modifikation differenzierbar bzw. analytisch. Modifikationen (1),
die durch eine Abbildung (3) erzeugt werden, heiBen Modifikationen mit
Abbildung; ç? heiBt Modifikationsabbildung («relativer Homôomorphismus» in
[16], p. 266).

c) Erzeugung durch Schnittflâche eîner Faserung. Wir bezeichnen mit

&lt;£~{E,F,B} (5)

eine lokal triviale Faserung (Bûndel). Dabei bedeutet E den Raum des Bûndels
(Faserraum), aufgefaBt als topologischen Raum aller Punkte, die zu irgend-

3) Aile betrachteten Abbildungen sind stetig.
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einer Faser des Biindels gehôren, F die Faser, B die Basis. Zu (5) gehort die
Projektionsabbildung

n\ E-+B. (6)

Es sei nun W die Basis B in einer Faserung (5). Dann liefert eine «Schnitt-
flâche F in (£ mit Singularitâtenraum 8 ûber A » eine Modifikation von W,
Dies soll heiBen: F sei eine Teilmenge von E, derart, daB die durch die Pro-
jektion (6) induzierte Abbildung q&gt;: V -&gt; W die in b) beschriebenen Eigen-
schaften hat, bezûglich gewisser Teilmengen SczV und Acpf. F— 8 ist
fur den uber W— A stehenden Teil der Faserung eine Schnittflàche im ûb-
lichen Sinn. Damit befinden wir uns im Falle b).

Umgekehrt kann die in b) beschriebene Situation aufgefaBt werden als Er-
zeugnis einer Schnittflàche in einem Faserraum : man nimmt das Bûndel

(£= {Wn x Vn, Fn, Wn}

und als «Schnittflàche» den Graph der Abbildung (3).
Eine differenzierbare Faserung, in welcher E, F, B, die Einlagerungen und

die Projektion (6) differenzierbar sind, gibt bei Vorgabe difîerenzierbar ein-
gelagerter Schnittflàchen mit differenzierbar eingelagerter Singularitâtenman-
nigfaltigkeit AnlaB zu differenzierbaren Modifikationen. Analog im analyti-
schen Fall.

Bemerkung. Ist A p ein Punkt, so kann jede Abbildung (2) fortgesetzt werden

zu einer Abbildung (3), indem y (S) p gesetzt wird, und wir befinden
uns im Falle b). Ist ûberdies S ein absoluter Umgebungsretrakt, und beschrân-
ken wir uns auf eine Umgebung U U(p) in W, so kann die Mer vorliegende
lokale allgemeine Modifikation (vgl. §§ 9-11) immer gegeben werden durch
eine Schnittflàche F in der Faserung (£ {U x 8, S, U} mit dem
Singularitâtenraum 8 liber p, d. h. bei welcher der Singularitâtenraum mit der
Faser iiber p ûbereinstimmt. DaB hier 8 als Faser in (g genommen werden

kann, wird so eingesehen: zunâchst mufite eine Faserung (£ {U X S, S, U}
genommen werden, in welcher 8 eine offene Umgebung von 8 ist; da 8 ein

absoluter Umgebungsretrakt ist, kann aus einer Schnittflàche in (£ mit dem

Singularitâtenraum S uber p durch stetige Déformation eine Schnittflàche in
(£ konstruiert werden, welche ebenfalls die gewunschte Modifikation erzeugt.

d) Erzeugung durch Faserung des Umgebungsrandes der Ausnahmemannig-
faltigkeit. W sei eine kompakte dififerenzierbare Mannigfaltigkeit, und A sei

differenzierbar eingelagert in W. A sei eine offene Umgebung U(A) in W,

derart, daB der Umgebungsrand Nn~x d(Wn — An) eine (n — l)-dimensio-

15 Commentarii Mathematici Helvetici
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nale in W differenzierbar eingelagerte Mannigfaltigkeit ist. N kann dann ge-
fasert werden durch (n — q — l)-dimensionale Sphâren £*-q-i9 indem (nach
Wahl einer Riemannschen Metrik in W) in jedem Punkt von A die zum Tan-
gentialraum an A orthogonale (n — g)-dimensionale geodâtische Vollkugel mit
N zum Schnitt gebracht wird (A sei geniigend klein gewâhlt). Das so entstan-
dene Bûndel heiBt das Normalenbundel von A in W. Wir bezeichnen es mit

9t(A) {Nn~\ Z«&quot;-*-\ A*} (7)

Kann nun N auBer durch (7) auf eine weitere Art gefasert werden:

9t(S) {Nn~\ Fn~™~\ S™} (8)

und zwar so, daB durch Identifikation jeder Faser F zu einem einzigen Punkt
aus W — A eine geschlossene Mannigfaltigkeit F entsteht, so wird durch (8)
eine (nicht triviale) Modifikation gegeben. Dièse Erzeugungsart wird in den
nâchsten Paragraphen n&amp;her untersucht und bildet den Hauptgegenstand
dièses Kapitels.

§ 2. Differenzierbare Modifikation und Faserung

Durch (1), (2) werde eine differenzierbare Modifikation gegeben. Da 9/ in
(2) eine Homôomorphie ist, wird auch

eine topologische Abbildung, wenn

#«-1 d(Wn — An), Ân U(A*)

ïjr*-i d(Vn - 8n) 8n U(8m)

und wo q&gt; die durch &lt;pf induzierte Abbildung auf N ist. Die offenen Umgebun-
gen U(A) und U(8) in W bzw. in V sollen so gewâhlt werden, daB N bzw.

1^ differenzierbar gefasert werden kônnen, wie dies in § 1 d) beschrieben wurde.
Wir bekommen dann die beiden Faserungen

A*} (7)

{Nn~\ £»*-\ S™} (7)

Da q&gt; ein Homôomorphismus ist, stellen (7) und (7) zwei differenzierbare
Faserungen desselben Baumes N dar. Wir sprechen dièse Tatsache in dem fol-
genden Satz aus:
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Satz 1. Jede differenzierbare Modification kann durch Sphàrenfaserung des

Umgebungsrandes der Ausnahmemannigfaltigkeit erzeugt werden. Genauer: liegt
eine differenzierbare Modification

0: (Vn,8m) -»(FFn, A*) (1)

vor, so kann dièse folgendermafien erzeugt werden: der Raum N d(W — A)
des Normalenbûndels $l(A) wird differenzierbar gefasert, mit der Foser En~™-i
und mit der Basis Sm, und dann wird jede Faser Zn~m~x aïs ein einziger Punkt
aufgefaflt: dadurch werden F, S) und 0 konstruiert.

Nun fragen wir, ob jede Sphârenfaserung eines Umgebungsrandes N zu
einer Modification fûhrt, und ob auBer Sphàrenfaserungen auch andere Fa-

serungen von N Modifikationen erzeugen (siehe §4). Im Hinblick darauf
untersuchen wir in § 3 die Môglichkeiten, eine berandete Mannigfaltigkeit
durch Faserung abzuschlieBen.

§ 3. AbschluC durch Faserung

a) Mn sei eine berandete Mannigfaltigkeit mit der zusammenhângenden Rand-
mannigfaltigkeit Nn~x dMn. Es soll nun N so gefasert werden konnen, daB
durch Identifikation jeder einzelnen Faser zu einem Punkt aus M eine unbe-
randete Mannigfaltigkeit Vn wird. Die Faserung der Randmannigfaltigkeit N
sei gegeben durch

R {^n_1; pn_m_K ^m} (g)

Wir sagen auch : die Mannigfaltigkeit M — N kann durch Hinzufugen der
Mannigfaltigkeit S zur Mannigfaltigkeit F gemacht werden, oder M (bzw.
M — N) kann durch S zur unberandeten Mannigfaltigkeit F «abgeschlossen&gt;&gt;

werden.
Gehen wir vom Rande N&quot;*1 aus ein Stûck weit ins Innere von Mn, und be-

trachten wir die Rinde Nn, welche eine abgeschlossene Umgebung von N in
M ist ; N ist selbst gefasert :

»(#»-*) {Nn, U1, Nn~*} (10)

mit der eindimensionalen abgeschlossenen Euklidischen Zelle U1 als Faser.
DaB die Faserung (10) existiert, soll im Begriff «berandete Mannigfaltigkeit»
enthalten sein, der Rand soll also genûgend «regulâr» sein. Die Faserung (8)

kann auf Nn ausgedehnt werden:

yi (s™+i) {Nn, Fn-m-\ S™*1} (11)

wo $w+1 entsprechend (10) gefasert ist:

à(8m) {S™*1, U\ S™} (12)
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Um sei eine abgeschlossene Umgebung, das heiBt eine genûgend kleine ab-
geschlossene Euklidische m-dimensionale Zelle, in der Basis Sm der Faserung
(8). Wegen der lokalen Trivialitât der Faserung (12) wird das Stûck des Faser-

raumes Sm+1 uber Um gegeben durch

Um+1= Um x l/i,
und Um+1 ist eine abgeschlossene Umgebung in der Basis 8m+1 der Faserung
(11). Da auch die Faserung (11) lokal trivial ist, erhalten wir in

Kn=Um x U1 x F»-™*1 (13)

das Stûck des Faserraumes Nn uber Um x U1 in der Faserung (11). Kn
kann in der Form

Kn [Um x (U1 — p) x .F»-™-1] u [Um x p X JF»-™-*] (14)

geschrieben werden, wo Um X (U1 — p) x F&quot;-™&apos;1 in Jfn — JV7*-1 liegt, und
Um X p X Fn-m-x sich in JV**-1 befindet.

Soll nun durch die Faserung (8) die berandete Mannigfaltigkeit M mit dem
Rand N zu einer unberandeten Mannigfaltigkeit V gemacht werden, das heiBt
soll Kn nach Identifikation jeder Faser in der Faserung (8) zur abgeschlos-
senen Vollkugel Kn homôomorph sein, so bedeutet dies, daB in (14) der zweite
Summand homôomorph Um wird, und der erste Summand homôomorph
jjm x (£71 — p) x Z&quot;-™&quot;1:

Um X (U1 — p) X jF1*-™-1^ Um x (U1 — p) x Z&quot;-™-1. (15)

Aus (15) folgt: Fn&quot;m~1 hat den Homologie- und den Homotopietypus der
(n — m — 1)-Sphâre. Wir sagen: F ist eine Homotopiesphâre.

b) Umgekehrt sehen wir: ist in der Faserung (8) die Faser F71*™-1 eine

Sphàre Zn&quot;m~-1y so besteht die Homôomorphie (15) und damit auch Kn&lt;-+Kn,

wo Kn aus Kn durch Identifikation jeder einzelnen Faser F in (8) zu einem

Punkt entsteht, Kn durch (13) gegeben, Kn w-dimensionale Vollkugel. Die
Faserung (8) liefert also in diesem Fall einen ProzeB zur Bildung einer
Mannigfaltigkeit F aus der berandeten M.

c) SchlieBHch gUt wie bei (7) und (7) in § 2: kann M durch S differen-
zierbar abgeschlossen werden, das heiBt kann durch Hinzufûgen der differen-
zierbaren Mannigfaltigkeit Sm zur differenzierbaren Mannigfaltigkeit Mn—Nn~x
die differenzierbare Mannigfaltigkeit Fn hergestellt werden, so daB 8 in F
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differenzierbar eingebettet ist, so wird JV zum Raum des Normalenbûndels von
8 in V, und somit kann N in Sphâren En~m-1 gefasert werden. Die so erhal-
tene Faserung ist differenzierbar. Weiter ist jede difïerenzierbare Faserung (8),
die einen differenzierbaren AbschluB erzeugt, dem Normalenbtindel von 8 in
F àquivalent und somit ein Spharenbundel (zum Âquivalenzbegriff s. §5b)).

d) ZusammengefaBt:

Satz 2. 1. Soll die berandete Mannigfaltigkeit Mn durai Faserung der zusam-
menhangenden Randmannigfaltigkeit Nn~x zu einer unJberandeten Mannigfaltig-
keit Vn gemacht werden, so muji JV*1-1 durch Homotopiespharen gefasert werden.

2. Kann die Randmannigfaltigkeit N*1&quot;1 durch Spharen gefasert werden:

91 {Nn~\ 2?1-&quot;1-1, S™} (16)

so làfit sich Mn — N71&apos;1 durch Hinzufilgen der Mannigfaltigkeit 8m zu einer
unberandeten Mannigfaltigkeit Vn erweitern. Mit andern Worten; jede Sphâren-
faserung von JV^-1 liefert eine Môglichkeit, Mn abzuschliepen zu einer unberandeten

Mannigfaltigkeit Vn.

3. Wird Mn durch 8m differenzierbar abgeschlossen, so kann JV&quot;&quot;&quot;1 differen-
zierbar in Spharen 27w-™-i gefasert werden, derart, dafi der Abschlu/3 durch dièse

Faserung erzeugt wird. Wird Mn durch eine differenzierbare Faserung von N91-1

differenzierbar abgeschlossen, so mu/i dièse Faserung ein Spharenbilndel sein.

e) Ist M sowie die Faserung (16) dififerenzierbar, so heiBt die Folgerung in
Satz 2, 2. : M — N kann durch Hinzufûgen von 8 differenzierbar
abgeschlossen werden. Nehmen wir noch Satz 2, 3. hinzu, so bekommen wir:

Satz 3. Die Môglichkeit, Mn durch 8m differenzierbar abzuschliefien, ist âqui-
valent der Môglichkeit, Nn~x differenzierbar in Spharen Zn-m&quot;x zu fasern.

Ein Spezialfall zu Satz 3 wurde von G. Hirsch in [19] angegeben: dort ist
Mn eine w-dimensionale berandete Euklidische Zelle, und die auftretenden
Faserungen sind Sphârenfaserungen der {n — l)-dimensionalen Randsphàre.

f) Besteht der Rand N aus mehrerenKomponenten Nl9 Nt, Nt, wo Nk
eine zusammenhângende Mannigfaltigkeit ist, k 1, 2, t, so gelten die
Sâtze 2 und 3 bezûglich der Môglichkeit, M an einer einzelnen Randkompo-
nente Nk abzuschliefien. Ferner braucht JV in der Faserung (16) nicht zusam-
menhângend zu sein, wenn m n — 1 ist, das heiBt wenn es sich um eine

Faserung durch nulldimensionale Sphâren handelt (bei zusammenhângendem
8): N kann aus zwei Komponenten bestehen. Die Sâtze 2 und 3 lassen sich
auch auf diesen Fall ûbertragen.
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§ 4. Faserungen, die auf Modifikationen fiihren

Wir wenden Satz 2, 2. an auf die Situation der Modifikation. W und A c W
seien wieder kompakte Mannigfaltigkeiten; wir erhalten:

Satz 4. Ist (Wn,Aq) gegeben, so liefert jede Spharenfaserung des Baumes

j\T«-i d(Wn — An) eine Modifikation

0: (Fn, 8m) -+(Wn, A*) (1)

Denn eine Faserung von d(W — A) in Sphâren Zn~m~-1 mit der Basis 8
liefert einen Abschlufi von W — A durch 8, so da8 eine unberandete (in die-
sem Fall kompakte) Mannigfaltigkeit V entsteht mit der Homôomorphie
&lt;p&apos;:V — 8 -&gt;W — A. Es gehôrt also zu jeder Spharenfaserung von d(W — A)
eine Modifikation 0. Babei wird vorausgesetzt, daB W — A eine regulâr
berandete Mannigfaltigkeit ist (Existenz der Faserung (10), siehe § 3 a)).

Bemerkung. Wird die Modifikation (1) durch die identische Abbildung indu-
ziert, so daB also 8 A und V W, so sprechen wir von einer trivialen
Modifikation. Im diflferenzierbaren Fall tritt sie in Satz 4 als die zum Nor-
malenbiindel 91 (A) gehôrige Modifikation auf.

Weiter bekommen wir aus Satz 2,1 und 2, 3 : soll die Modifikation (1) mittels
einer Faserung (8) erzeugt werden, so muB (8) eine Faserung durch Homo-
topiesphàren sein, im differenzierbaren Fall durch Sphâren.

Beschrânken wir uns auf differenzierbare Modifikationen, so folgt aus Satz 1

und Satz 3 :

Satz 5, Die differenzierbaren Modifikationen

0;(Vn,8m)-+(Wn,A«) (1)

stehen bei fest gegebenen (Wn, Aq) in eineindeutiger Beziehung zu den
differenzierbaren Faserungen von Nn~x in Spharen 2Jn-m~1:

5R {Nn~\ Z«-™-\ 8m} (16)

Jede differenzierbare Modifikation (1) liefert eine differenzierbare Faserung (16)
und umgekehrt.

Satz 5 besagt also: an Stelle der differenzierbaren Modifikationen von W
mittels Ersetzen von A durch 8 kônnen die differenzierbaren Sphârenfase-

rungen von N d(W — A) betrachtet werden und umgekehrt.

Bemerkung zur Differenzierbarkeit. Wir haben in § 1 a) festgelegt, daB dif-
ferenzierbar immer unendlich oft differenzierbar heiBen soll. Unter dieser Vor-
aussetzung gelten die obigen Àquivalenzsàtze, Satz 3 und Satz 5. Verzichtet
man auf die unendliche Differenzierbarkeit, so muB berûcksichtigt werden,
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da8 bei der Konstruktion des Normalenbundels einer eingebetteten Mannig-
faltigkeit differenziert wird, so daB Satz 5 folgendermaBen lauten mùBte : eine

làngs S Jfc-mal stetig differenzierbare Modifikation liefert eine (k— l)-mal
stetig diiïerenzierbare Sphârenfaserung von N und umgekehrt4). Analoge For-
mulierung bei Satz 3.

§ 5. Berandende Mannigfaltigkeiten. Sphârenfaserungen und Normalenbundel

a) Sphârenfaserungen und berandende Mannigfaltigkeiten. Die kompakte
Mannigfaltigkeit iV*-1 sei der Raum einer Sphârenfaserung. Wir bilden das

topologische Produkt
M« N91-1 x U1, (17)

wo U1 wie in § 3 das abgeschlossene Intervall [0, 1] bedeutet. Der Rand von
M setzt sich aus den beiden Komponenten N X (0) und N X (1) zusam-

men. Da N in Sphàren gefasert werden kann, kann gemàB Satz 2, 2. M an
der Randkomponente N X (1) abgeschlossen werden, und wir erhalten eine
berandete Mannigfaltigkeit Mn mit der Randmannigfaltigkeit N X (0), das
heiBt N ist berandend. Wir sehen also : kann eine Mannigfaltigkeit in Sphâren
gefasert werden, so ist sie berandend. Dièse Bemerkung stammt von Thom
[33]. Ist N durch nulldimensionale Sphâren gefasert, so ist N zweifacher Ûber-
lagerungsraum von S, und es gilt: ist eine Mannigfaltigkeit nicht berandend,
so kann sie nicht als zweifacher Ûberlagerungsraum auftreten. Da fur eine
berandende Mannigfaltigkeit N die Euler-Poincarésche Charakteristik %(iV) ge-
rade ist, erhalten wir : der Raum einer Sphârenfaserung besitzt gerade Charakteristik.

Dies folgt auch daraus, daB fur eine Faserung (5) mit kompaktem E
dieGleichung

X(E) X(B).X(F) (18)

gilt. Zur Herleitung von (18) vergleiche man [6], IX-4 oder [7], X-5, ferner
[18], p. 113. Es folgt zum Beispiel, daB die reell projektiven Râume Pn gerader
Dimension nicht in Sphâren gefasert werden kônnen, insbesondere kônnen sie

nicht als zweifache tîberlagerungsrâume auftreten. Dasselbe gilt fur die kom-
plex projektiven Râume P(n) gerader komplexer Dimension und analog fur
die quaternional projektiven Râume.

Ist N differenzierbar und kann N differenzierbar in Sphâren gefasert werden,

so wird durch die Konstruktion bei (17) die berandete Mannigfaltigkeit
M differenzierbar, und es gilt: kann eine differenzierbare Mannigfaltigkeit
differenzierbar in Sphâren gefasert werden, so ist sie differenzierbar berandend.
Ist N orientierbar, und wird Nn~l durch Sphâren En~m~l der Dimension

4) k &gt; 1. Dabei sollen F, W und die Einlagerungen A C W, S CV von der Klasse Ck

(fc-mal stetig differenzierbar) sein. «Null-mal stetig differenzierbar» bedeutet stetig.
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n — m — l &gt;1 gefasert, so wird M orientierbar, und die Orientierungen von
M und N kônnen so gewâhlt werden, daB mit Hilfe des Randoperators
d: Hn(M, N)-&gt;Hn__x{N) dureh die Orientierung von M diejenige von N
induziert wird. Wir sagen: kann eine orientierbare Mannigfaltigkeit in Sphâ-
ren der Dimension &gt;1 gefasert werden, so ist sie orientierbar berandend.
Nach einem Satz von Pontrjagin (Theorem 3 in [30]; vgl. auch [34] und [35],
Theorem IV 2. und Theorem IV 3.) sind fur eine berandende differenzierbare
Mannigfaltigkeit aile Stiefel-Whitneyschen charakteristischen Zahlen gleich
null, und fur eine orientierbar berandende differenzierbare Mannigfaltigkeit
der Dimension 4r verschwinden aile Pontrjaginschen charakteristischen Zahlen;

ferner ist fur eine orientierbar berandende 4r-dimensionale Mannigfaltigkeit
der Index t der durch das Cup-Produkt auf der 2r-dimensionalen Cohomo-

logiegruppe definierten quadratischen Form gleich null ([35], Theorem V 11).
Damit folgt: ist fur eine differenzierbare Mannigfaltigkeit eine Stiefel-Whit-
neysche charakteristische Zahl verschieden von null, so kann die Mannigfaltigkeit

auf keine Weise differenzierbar in Sphàren gefasert werden ; ist fur eine
orientierbare 4r-dimensionale differenzierbare Mannigfaltigkeit einePontrjagin-
sche charakteristische Zahl oder der Index t verschieden von null, so kann die

Mannigfaltigkeit nicht in Sphâren der Dimension &gt;1 gefasert werden. Ein
Beispiel einer 5-dimensionalen Mannigfaltigkeit mit einer von null verschie-
denen Stiefel-Whitneyschen charakteristischen Zahl liefert die Mannigfaltigkeit

Wh von Wxj Wen-Tsun [37], eine Mannigfaltigkeit, die uber der Kreîs-
linie Z1 mit der Faser P(2) gefasert wird: man nimmt das Produkt Î71 X P(2;

und identifiziert (0) x (zl9 z2, zz) mit (1) x (5X, i2, z3), wo zl9 z2, zz homogène

Koordinaten in P(2) sind, und der Querstrich den Ùbergang zum Kon-
jugiertkomplexen bedeutet. Es ist %{Wh) 0, so daB die Betrachtung der
Euler-Poincaréschen Charakteristik keinen AufschluB darûber gibt, ob W5 in
Sphâren gefasert werden kann oder nicht. Hingegen sind die zweite und die
dritte Stiefelschen Klassen verschieden von null sowie ihr Produkt, es ist also
eine charakteristische Zahl verschieden von null, und daraus folgt, daB eine

Sphârenfaserung von W5 unmôglich ist. Es ergibt sich ferner, daB die oben
beschriebene Faserung von Wh mit P(2) als Faser nicht trivial ist.

b) Sphârenîaserungen und Normalenbtindel. N&quot;*1 sei eine kompakte
differenzierbare Mannigfaltigkeit, die durch eine Faserung (16) differenzierbar in
Sphâren gefasert wird. Bilden wir die durch (17) gegebene berandete

Mannigfaltigkeit M und schlieBen wir sie kraft der Faserung (16) an der einen Rand-
komponente ab, so erhalten wir die bei (17) beschriebene berandete
Mannigfaltigkeit M und darin differenzierbar eingelagert die Mannigfaltigkeit 8. Bei
geeigneter Wahl der Riemannschen Metrik in M kann dann die Faserung (16)
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aufgefaBt werden als Normalenbûndel von 8 in M, oder: die Faserung (16)
ist àquivalent dem Normalenbiindel von 8 in M. Dabei heiBen zwei differen-
zierbare Faserungen (Êx {El9 Fl9 Bx} und (£2 {E2i F2i B2} àquivalent,
wenn ein differenzierbarer fasertreuer Homôomorphismus Ex -&gt; E2 existiert,
der einen Homôomorphismus Bx -&gt; B2 induziert. SehlieBlich kônnen wir,
wieder nach Satz 2, 2., M abschlieBen zu einer kompakten Mannigfaltigkeit
F, und somit erhalten wir:

Satz 6. Jedes differenzierbare Sphârenbûndel

31 {Nn~\ 2n-™-\ Sm} (16)

JVn~1 kompakt, ist àquivalent dem Normalenbûndel der Mannigfaltigkeit Sm, Sm

eingebettet in einer kompakten Mannigfaltigkeit Fw, Vn mit einer geeigneten
Miemannschen Metrik versehen.

Als Strukturgruppe fur ein Normalenbûndel kann die Gruppe O(n — m)
der orthogonalen Transformationen des (n — m)-dimensionalen Euklidischen
Raumes genommen werden (zum Begriff der Strukturgruppe eines Faser-
raumes siehe Steenrod [31], insbesondere fur die Reduktion der Strukturgruppe

[31], pp. 56-59). Daraus folgt wegen Satz 6:

Satz 7. Jedes differenzierbare Sphârenbilndel

yi {Nn-\ z«-™-i, sm} (16)

ist àquivalent einem Spharenbilndel mit orthogonaler Strukturgruppe O(n — m).

Wenn man sich auf differenzierbare Sphârenbûndel besohrânkt, genûgt es

also, die Sphârenbûndel mit orthogonaler Strukturgruppe zu betrachten.

Bemerkung. Die Sâtze 6 und 7 gelten nicht nur fur unendlich oft differenzierbare

Faserungen, sondern ebenso fur i-mal stetig differenzierbare, k &gt; 1.
Im topologischen (nicht notwendigerweise differenzierbaren) Fall lautet Satz 6 :

die Mannigfaltigkeit N in (16) kann aufgefaBt werden als Umgebungsrand von
8 in F, so daB die berandete Mannigfaltigkeit M F — S durch die Sphâ-
renfaserung (16) abgeschlossen wird zu F.

§ 6. Die Ântipodenabbildung. Spharenbiindel mit unitârer Strukturgruppe

a) Die Ântipodenabbildung. N&quot;-1 sei wie in § 5 ein durch (16) differenzier-
bar gefaserter Raum. Nach Satz 7 nehmen wir als Strukturgruppe die
orthogonale Gruppe O(n — m). Nun betrachten wir in jeder Faser JE1&quot;-&quot;*-1 die
Antipodenabbildung, welche jedem Punkt p in der Faser H&quot;-™-1 seinen Anti-
poden — p in derselben Faser zuordnet. Wegen der lokalen Trivialitât der
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Faserung (16) wird dadurch zunâchst eine Abbildung von Um x Zn-m~x auf
sich definiert, wo Um eine m-dimensionale Euklidische Zelle in der Basis Sm

bedeutet. Die Antipodenabbildung einer Faser wird durch die négative Ein-
heitsmatrix dargestellt und ist daher mit allen Elementen der Strukturgruppe
O(n — m) vertauschbar. Daraus folgt, daB durch die Antipodenabbildung in
jeder Faser eine Abbildung oc des Baumes N auf sich induziert wird, die wir
wieder Antipodenabbildung nennen. oc ist eine fasertreue Abbildung von N
auf sich, welche auf der Basis S die Identitât induziert. Die Abbildung oc

wurde auch von Liao in [29], p. 185, betrachtet.
oc besitzt keine Fixpunkte und ist periodisch mit der Période 2: oc2 I,

wo / die Identitât bedeutet. Die Abbildungen / und oc sind also die Elemente
einer Gruppe {/, oc} von Decktransformationen von N, das heiBt N ist zwei-
facher Ùberlagerungsraum einer Mannigfaltigkeit No. Daraus erhalten wir
wegen Satz 2, 2. und 3., unter Benutzung der dortigen Bezeichnungen: lâBt
sich die offene berandete Mannigfaltigkeit M — N durch die Mannigfaltigkeit

S differenzierbar abschlieBen, so lâBt sich M — N durch No differen-
zierbar abschlieBen, wo N zweifacher Ùberlagerungsraum von No ist.

Nun sehen wir mit Hilfe von Satz 4: sind in (1) Wn und Aq gegeben mit
q &lt; n — 2, so existiert im differenzierbaren Fall mindestens eine nicht
triviale Modifikation von W durch Ersetzen von A, nâmlich diejenige, in welcher
A durch NQ ersetzt wird :

Satz 8, Ist die Mannigfaltigkeit Aq in der differenzierbaren Mannigfaltigkeit
Wn differenzierbar singularitatenfrei eingelagert, und ist q &lt; n — 2, so liefert
die Antipodenabbildung oc von N11&quot;1 eine nicht triviale Modifikation

0 : (Vn, N^&apos;1) -&gt; (Tfw, A*) (19^

Ist A ein Punkt p in W, so bedeutet (19X) die Ersetzung des Punktes p durch
den reell projektiven Raum P*1&quot;&quot;1. Dieser ProzeB ist das réelle Analogon in
hôheren Dimensionen des von Hopf in [23], [24] beschriebenen a-Prozesses.

Wir nennen dièse Modifikation den reellen a-ProzeB. Ist A eine Mannigfaltigkeit
der Dimension q &gt; 1, so kann die Modifikation (19x) folgendermaBen

gewonnen werden (vgl. § 7) : man nimmt in jedem Punkt p von A den zu A
in Wn orthogonalen Euklidischen Raum En~q und ersetzt den Punkt p in En~q

durch p»-«-i; dadurch entsteht aus Aq die Mannigfaltigkeit 8n-x N^1,
welche mit der Faser .f^-s-i gefasert wird, und aus W entsteht die modi-
fizierte Mannigfaltigkeit F (reeller &lt;rn&gt;g-ProzeB).

b) Faserungen durch geraddimensionale Sphâren. Die kompakte differen-
zierbare Mannigfaltigkeit Nn~l werde in geraddimensionale Sphâren 27&quot;-»*-1

diflEerenzierbar gefasert, so daB ein orientierbares diflferenzierbares Sphâren-
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biindel 9t (8) vorliegt. Sft (8) heiBt orientierbar, wenn mit Hilfe einer
Orientierung in der Basis 8 und einer Orientierung in der Faser E der Raum N
orientiert werden kann. Wir sagen dann : N wird durch E orientierbar gefasert.
Essei n ~ 1 d, d — m — 2t n—- m — 1 &gt; 2. In diesem Fall ist der
Abbildungsgrad der Antipodenabbildung auf der einzelnen Faser E2t gleich
— 1 (nach Wahl einer Orientierung), und daher ist wegen der Orientierbarkeit
von 31(8) auch der Abbildungsgrad g (oc) der Abbildung oc gleich — 1.

g (oc) — 1 bedeutet, daB N zweifacher Ùberlagerungsraum der nicht orien-
tierbaren Mannigfaltigkeit NQ ist. Nun wenden wir die von Eckmann in
[14], Theorem 6, angegebenen Beziehungen zwischen den Bettischen Zahlen
von N und No an : bezeichnen wir mit bk bzw. b\ die Bettischen Zahlen von N
bzw. No, h o, 1, 2, d, so gilt wegen [14], (16), (17), (18)

fur d 3 : bx 26? - 1 (20)

fur d 2r : br 2b°r (21)

fur d= 2r + 1: E(-l)kbk 2r(--l)*6J, (22)

Eb2k 227&amp;!&gt;* (23)
Daraus bekommen wir: *=0 ksa°

Satz 9. Ist die kompakte differenzierbare Mannigfaltigkeit Nd der Raum eines

orientierbaren differenzierbaren Sphârenbûndels, dessen Fasern 8pharen gerader
Dimension &gt; 2 sindy so gilt

fUr d 3 : bx 1 mod 2 (20&apos;)

fur d 2r + 1: 2;&amp;fc 0 mod 2 (22;)

(20&apos;) folgt aus (20), und (22&apos;) ist eine Folge von (22) oder von (23) zusam-
men mit dem Poincaréschen Dualitâtssatz fur Nd. Die modulo 2 reduzierte
Gleichung (21) liefert nichts Neues: kann Nd, d 2r, in Sphâren gefasert
werden, so ist nach § 5 a) % (N) gerade, und daher die mittlere Bettische Zahl
br ebenfalls (was fur r 2r&apos; -f- 1 fur jede orientierbare Mannigfaltigkeit
richtig ist, ob sie in Sphâren gefasert werden kann oder nicht).

(22&apos;) in Satz 9 besagt zum Beispiel, daB eine differenzierbare Faserung der
ungeraddimensionalen Sphàre 272r+1 in Sphâren gerader Dimension &gt;2

unmôglich ist, und daraus folgt, daB dasselbe fur die ungeraddimensionalen
reell projektiven Râume gilt. Eine weitere Anwendung zu Satz 9 ist die fol-
gende :

Satz 10. Ist M2r eine orientierbare kompakte differenzierbare Mannigfaltigkeit
mit ungerader mittlerer Bettischer Zahl: 6r(Jf2r) 1 mod 2, so kann die Man-
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nigfaltigheit M2r X Z28+1 nicht durch geraddimensionale Sphâren Z2t, t &gt; 1,
differenzierbar und orientierbar gefasert werden.

Bemerkung. Ans br(M2r) 1 mod 2 folgt r 2r&apos;, so da8 wir uns in
Satz 10 auf 4/-dimensionale Mannigfaltigkeiten M4*&apos; beschrânken konnen.

Der Beweis zu Satz 10 ergibt sich leicht aus der Betrachtung der Summe

Z b^M2* x Z2**1). Es ist

Z b^M2* x Z28*1) br{M*) mod 2
Jfc-0

und daraus folgt mit Hilfe von Satz 9 die Behauptung in Satz 10.

Wegen br(M2r) 1 mod 2 ist M2* nicht durch Sphâren faserbar (unge-
rade Charakteristik). Als Verschârfung von Satz 10 ist daher zu vermuten,
daB M X Z28+1 nicht durch geraddimensionale Sphâren Z2t, t &gt; 1, gefasert
werden kann, wenn M auf keine Weise in Sphâren gefasert werden kann.

Zum Fall d 3: wenn j^3 durch S2\ t &gt;I, gefasert werden soll, bleibt
nur die Faserung {Ns, Z\ Z1} ûbrig. Dann folgt aus (2O7): es ist b^N*)

b2(N3) 1, das heiBt die additive Homologiestruktur von iV&quot;3 ûber dem

Kôrper der reellen Zahlen ist diejenige von Z1 x Z2.

Bemerkung. Nach [18], Satz 40, p. 115, ist bei Sphârenfaserungen durch
geraddimensionale Sphâren die Faser Z2t nicht homolog null in N xiber den
reellen Zahlen. Daraus folgt, daB die additive Homologiestruktur von N ûber
den reellen Zahlen zusammenfallt mit derjenigen des topologischen Produk-
tes 8 X Z, wie wir dies eben fur d 3 gesehen haben. Daher gelten die
Sâtze 9, 10 ohne Differenzierbarkeitsvoraussetzungen.

c) Sphârenbûndel mit unitârer Strukturgruppe. (16) sei eine Sphârenfaserung
mit n — m 2A&gt;2 und mit der Strukturgruppe U(À) der unitâren Trans-
formationen des komplex A-dimensionalen komplex Euklidischen Raumes.
Das Zentrum Z von TJ(X) besteht aus den Matrizen z.I, wo / die Einheits-
matrix bedeutet und z eine komplexe Zahl vom Betrage 1 : z e™. Die Tran-
sitivitâtsbereiche von Z auf der Sphâre Z2*-1 sind Kreislinien Z1, welche durch
h parametrisiert werden: es wird die Hopfsche Faserung von Z2*-1 in Kreis-
linien Z1 mit dem komplex projektiven Raum P(A-1Î als Basis erzeugt (vgl.
[13], [22]). Da die Transformationen aus Z mit allen Elementen aus U(X)
vertauschbar sind, folgt, wie in a) fur die Antipodenabbildung, daB die Hopfsche

Faserung der einzelnen Fasern Z2^~x in Kreislinien eine Faserung des

gesamten Raumes N in Kreislinien Hefert: der Raum N eines Sphârenbundels
mit der Faser Z2*-1, A &gt; 1, und mit unitârer Strukturgruppe U(k) lâBt
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sich in Kreislinien S1 fasern. Dièse Faserung von N gibt wegen Satz 4 ÂnlaB
zu Modifikationen, und es gilt ein zu Satz 8 analoger Satz fur « quasikomplexe
Modifikation». Dabei wollen wir unter einer quasikomplexen Modifikation
eine differenzierbare Modifikation (1) verstehen, in welcher n — q gerade ist
und die Strukturgruppe des Normalenbiindels von Aq in Wn die unitâre Gruppe

(VI
-&quot;— fi \

——— 1. In § 7 wird nàher auf den komplexen Fall eingegangen.
1 I

Wir kônnen auch sagen: zu einem Sphàrenbiindel (16) mit n — m 2 A &gt; 2

und mit unitârer Strukturgruppe U{X) gehôrt eine Faserung

mit der Basis S und dem komplex A-dimensionalen komplex Euklidischen
Raum E{^ als Faser, E^ mit einem komplexen unitar orthogonalen Koordi-
natensystem versehen. Die Strukturgruppe bleibt U(X)\ &lt;&amp;(8) wird in natûr-
licher Weise durch die Faserung (16) mit Hilfe der Transformationen aus
U(X) induziert. Umgekehrt wird die Faserung (16) aus (£($) dadurch erhalten,
da8 in jeder Faser J?(A) die Sphâre 272*-1 mit einem fest gegebenen Radius und
mit dem Mittelpunkt im Ursprung 0 genommen wird (zum Beispiel die Ein-
heitssphâre mit dem Zentrum in 0). Nun wird die Hopfsche Kreislinienfase-

rung der einzelnen Faser H2*-1 dadurch gewonnen, dafi Z2*-1 c E{^ mit allen
komplexen Geraden in E{X) dureh 0 gesehnitten wird. Wenn dièse Konstruk-
tion in jeder Faser 2£(A) vorgenommen wird, so bekommen wir eine Faserung
von N in Kreislinien, welche mit der oben genannten Kreislinienfaserung von
N zusammenfâllt. Ist n — m 4A&gt;4 und die Strukturgruppe die sym-
plektisehe Gruppe 8p(À), so liefert die analoge quaternionale Konstruktion
eine Faserung von N in 3-Sphâren, und wir erhalten analog zu Satz 8 und zur
Existenz der obigen quasikomplexen Modifikation auch einen Satz liber
«quasiquaternionale Modifikation». In einer quasiquaternionalen Modifikation

ist n — q 0 mod 4, und das Normalenbûndel von Aq in Wn besitzt

die symplektische Gruppe Spl——— j als Strukturgruppe (es handelt sich

um differenzierbare Modifikation).

§ 7. Modifikation durch Verfeinerung der Sphârenfaserung

a) Modifikation durch gleichmâBige Verfeinerung der Sphârenfaserung. Wir
wollen eine Méthode angeben, wie gewisse Modifikationen mit Abbildung
erhalten werden kônnen. Gehen wir von (Wn, Aq) aus, und nehmen wir an, daô
A aus dem Umgebungsrand N in W durch eine Sphârenfaserung

{Nn~\ Zn-*~\ A*} - (7)
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erhalten wird. Im differenzierbaren Fall geht dies immer: 3l(A) ist das Nor-
malenbûndel von A in W. Kann nun jede einzelne Faser Jp-Q-i in (7) so in
Sphâren gefasert werden:

© {Z1&quot;-*-1, 27*-™-i, P™-«}
&quot;

(24)

(jede Faser En~q~x in (7) ist gemâB (24) gefasert, das heiBt die Faserung in
jeder einzelnen Faser 2&apos;n~ff~&quot;1 ist âquivalent (24)), daB dadurch eine Sphâren-
faserung des ganzen Umgebungsrandes N entsteht :

{Nn~\ Zn~m-\ 8m} (16)

so bekommen wir eine Modifikation (1) mit Abbildung

0: (Vn,8m) -&gt;(ïfn, A*) (1)

Dabei wird S mit der Faser P und der Basis A gefasert:

(25)

wo Pw-« die Basis in der Sphârenfaserung (24) ist. Die zu (1) gehorige Modi-
fikationsabbildung &lt;p wird folgendermafien erhalten: auf F — S ist ç? die
Identitât; ist x ein Punkt in S, so nehmen wir die liber x gelegene Faser in
(16), welche nach Voraussetzung ganz in einer Faser der Faserung (7) liegt;
dièse Faser in (7) wird durch die Projektionsabbildung der Faserung (7) auf
einen Punkt y in A abgebildet, und die auf dièse Weise gegebene Zuordnung
x -&gt;y definiert die Abbildung (p auf S; dadurch ist y auf ganz V definiert,
(p ist stetig und erzeugt die Modifikation (1). &lt;p, auf 8 beschrànkt, nennen wir
wie in (4) q&gt;9 und wir sehen: g? ist die zur Faserung (25) gehorige Projektionsabbildung.

Wir nennen die eben beschriebene Methède zur Erzeugung einer Modifikation

die Méthode der gleichmàBigen Verfeinerung der Sphârenfaserung, womit
wir betonen, daB die Faserung (7) durch (24) so verfeinert wird, daB aile Fase-

rungen der einzelnen Fasern Zn~q&quot;1 in (7) der Faserung (24) âquivalent sind.
Wird das Bundel (7) zu (16) verfeinert, so daB nicht notwendigerweise aile
Faserungen der einzelnen Fasern Z^-tf-1 miteinander âquivalent sind, so spre-
chen wir von Modifikation durch allgemeine Verfeinerung der Sphârenfaserung
(im Unterschied zur gleichmàBigen Verfeinerung) oder von Modifikation durch
Verfeinerung der Sphârenfaserung schlechthin.

Beispiel 1. Ein Beispiel einer Modifikation durch gleichmâBige Verfeinerung
der Sphârenfaserung wurde in §6 a), Satz 8, gegeben: reeller o^-ProzeB.
Dort ist m n —¦ 1, P&quot;»-ff jp*-ff-i der (n — q — l)-dimensionale reell
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projektive Raum, und die Faserung (24) stellt die zweifache Ûberlagerung
dièses projektiven Raumes dar, welche durch die Antipodenabbildung in
En~q~x erzeugt wird.

Beispiel 2. In § 6 c) sahen wir, dafi wir aus (7) eine Faserung (16) herstellen
kônnen durch gleichmâBige Verfeinerung, falls (7) ein Sphârenbundel mit
n — q 2 A und mit unitârer Strukturgruppe ist. Es ist dann m n — 2,
die Faserung (24) wird ermôglicht durch die Hopfsche Faserung von 21&quot;&quot;&quot;*&quot;&quot;1

in Kreislinien mit der Basis P™-« p&lt;A-i&gt; (dem komplex (A — l)-dimensio-
nalen komplex projektiven Raum). Zur komplexen Realisierung siehe c).

Beispiel 3. Ist (7) ein Bundel mit n —- q 4 A und mit symplektischer
Strukturgruppe, so erhâlt man mittels gleichmâfiiger Verfeinerung der Sphâ-
renfaserung durch 3-Sphâren analog zu den beiden ersten Beispielen eine
Modifikation der oben beschriebenen Art (vgl. § 6 c)).

b) Diflerenzierbare Modifikation mit Âbbildung. Im differenzierbaren Fall
kann die Modifikation durch gleichmâBige Verfeinerung der Sphârenfaserung
auch dadurch erhalten werden, daB wir in jedem Punkt p von A den Ortho-
gonalraum En~q zu Aq in Wn nehmen (bezuglich einer Riemannschen Metrik),
und dann in jedem En~q eine Modifikation vornehmen, bei welcher der Punkt
p in En~q durch die Mannigfaltigkeit Pm~Q ersetzt wird. Der Bedingung, daB
die Faserungen aller einzelnen Fasern En~q~x in (7) eine Faserung (16) ergeben,
entspricht hier die Bedingung, daB sich die Menge der Mannigfaltigkeiten
pm-q in (jeil modifizierten Orthogonalrâumen zu Aq in Wn zu einer einzigen
Mannigfaltigkeit zusammenfassen lâBt.

Wir haben in a) gesehen : jede Modifikation durch gleichmâBige Verfeinerung
der Sphârenfaserung ist eine Modifikation mit Abbildung, und dasselbe gilt
fur die Modifikation durch allgemeine Verfeinerung der Sphârenfaserung. Sind
die auftretenden Faserungen differenzierbar, ebenso W und die Einlagerung
A c W, so erhalten wir differenzierbare Modifikationen mit Abbildung (die
Abbildung &lt;p soll differenzierbar sein, wenn wir von einer differenzierbaren
Modifikation mit Abbildung sprechen). Nun gehen wir aus von einer
differenzierbaren Modifikation (1) mit Abbildung &lt;p. Es ist leicht zu sehen, daB solche
Riemannsche Metriken in V und in W gefunden werden kônnen, daB jede
Normale zu 8 in V durch &lt;p in eine Normale zu A in W abgebildet wird. Dièse

Abbildung ç&gt; (vgl. § 2 (9)) der Normalen zu S in V in die Gesamtheit der
Normalen zu A in W ist eine eineindeutige Abbildung auf, das heiBt q&gt; kann

mit dem Homôomorphismus von N auf N in § 2 identifiziert werden. Es folgt:
das Normalenbûndel 31 (8) stellt eine differenzierbare Verfeinerung des Nor-
malenbûndels 91 (A) dar, das heiBt jede differenzierbare Modifikation mit Ab-
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bildung kann dureh differenzierbare Verfeinerung des Normalenbûndels von
A erhalten werden (nach geeigneter Wahl der Riemannschen Metriken in F
und in W). Wir fassen zusammen:

Satz 11. Jede Modification durch Verfeinerung der Spharenfaserung ist eine

Modification mit Abbildung. Jede differenzierbare Modifikation durch
Verfeinerung der Sphârenfaserung ist eine differenzierbare Modifikation mit Abbildung

und umgehehrt.

c) Komplexe Modifikation mit Abbildung. In gewissen Fàllen kann die
Modifikation des Beispiels 2 in a) komplex vorgenommen werden. Es sei zunâchst
A p9 wir wollen also die Modifikation

0 : ÏÏ™9 S &lt;&quot;-*&gt;) -&gt; U &lt;w\ p) (26)

betraehten. U{n) ist eine komplex w-dimensionale komplexe Koordinaten-
zelle, Uin) die modifizierte Zelle. Wenn zl9 z29 zn komplexe Koordinaten
in U{n) sind, p der Ursprung des Koordinatensystems, P*&quot;-1* der komplex
(n — l)-dimensionale komplex projektive Raum mit den komplexen homo-

genen Koordinaten tl9t%9 tn9 so betrachten wir im topologischen Pro-
dukt X U{n) X P^-1) die Mannigfaltigkeit F(w), welche dureh die Glei-
ehungen

hzo — tozQ 0, Q,a 1, 2, ...,n,
gegeben wird. In X, aufgefafit als Faserraum mit der Faser P&lt;w~1&gt; und der
Basis Uin), ist F(n) komplex analytische Schnittflâche mit der komplex ana-
lytischen Singularitâtenmannigfaltigkeit pin-u iiber p, und dadurch wird
gemâB § 1 c) eine komplex analytisehe Modifikation (26) gegeben mit S P&lt;n-*&gt; :

0: (ÏÏ™, P&lt;&quot;-«) -&gt; (UW9 p). (27(1))

Die hier beschriebene Konstruktion erweist sich als unabhângig von der
Wahl der Koordinaten in Z7&lt;n) (siehe [24] oder [26]).

Ist nun W{n) eine komplexe Mannigfaltigkeit, Aiq) ebenso, und ist A
regulâr eingelagert in W (das heiBt komplex analytisch), so ist nach Wahl
einer Hermiteschen Metrik in W in jedem Punkt p von A der Orthogo-
nalraum Ein^} zn A in W komplex analytisch: der Tangentialraum
Tiq) in p an A ist komplex analytisch, und ist t ein Vektor in T{q)9 n ein
Vektor in i?(n&quot;~s), so daB das Skalarprodukt bezûglich der gewâhlten Hermiteschen

Metrik (n, t) verschwindet, so ist auch (n, t) 0, und deswegen auch

(ti, t) 0, wo der Querstrich den Ûbergang zum Konjugiertkomplexen be-
deutet. IMes besagt, daB Ein~q) komplex analytisch ist, genauer: E{n~q) ist
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ein komplex Euklidischer Raum, dessen komplexe Struktur durch diejenige
des Tangentialraumes in p an W induziert wird. In J5(n~ff) kann die Modifikation

(27(1)) vorgenommen werden, indem J5?(n-«&gt; durch Ersetzen des Punktes
p modifiziert wird. Wenn wir dies fur aile p in A ausfuhren, entsteht aus A
eine komplexe Mannigfaltigkeit 8{n-l), und W wird modifiziert zu einer
komplexen Mannigfaltigkeit F(n). Da8 die beschriebene Konstruktion zu einem
differenzierbaren Paar (F, S) fuhrt, ist mit Hilfe der entsprechenden Fase-

rungen sofort einzusehen (Beispiel 2 in a)) ; in [26] wird gezeigt, daB man tat-
sâchlich eine komplexe Modifikation

0: (F(n), 8&lt;n-V) -&gt; (W™, AM) (19(1))

bekommt. (19(1)) ist ein Spezialfall zu Beispiel 2 in a). Zu (19(1)) gehôrt eine

komplex analytische Modifikationsabbildung y, und die Faserung (25) ist
hier eine komplexe Faserung (25(1)) mit dem komplex projektiven Raum
p(n-q-i) ais yaser# (27(1)) ist der (hôherdimensionale) Hopfsche ff-ProzeB

(vgl. [24], [26]), auch quadratische Transformation genannt ([25], p. 30).
(19U)) heiBt cr^-ProzeB oder komplexer (rn&apos;?-ProzeB. In [26] wird bewiesen:
der orn&apos;?-ProzeB (19(1)) kann ohne Benutzung einer Hermiteschen Metrik her-
gestellt werden, wobei die Wahl der Koordinatensysteme in W keine Rolle
spielt, die Mannigfaltigkeiten F, S samt der Einlagerung S &lt;zV und die
Modifikation (19(1)) sind also bis auf komplexe Homôomorphie durch (W, A)
eindeutig bestimmt.

d) Entsprechend zu (27(1)) existieren die Modifikationen, in denen an Stelle
des komplex projektiven Raumes der reell projektive Raum P*1-1 oder der
quaternional projektive Raum P^n~^ steht, und an Stelle der komplexen
Koordinatenzelle eine réelle bzw. quaternionale. Dièse Modifikationen werden

genau wie (27(1)) mit Hilfe einer Schnittflâche F in X erhalten, nur nimmt
man an SteDe der komplexen Koordinaten réelle bzw. quaternionale. Wir
erhalten so den reelien bzw. quaternionalen or-ProzeB. Anstatt (19(1)) bekommt
man weiter im reelien Fall die Modifikation des Beispiels 1 in a): reeller
orn&apos;«-ProzeB (19X). Daneben gibt es auch den quaternionalen cr^-ProzeB

0: (F*11, ffl*-*) -&gt; (WM, AM), (19m)

in welchem F, W quaternionale Mannigfaltigkeiten sind, und S, A quaternional

eingelagert in F bzw. W (regulare Einlagerungen). Dabei heiBt eine

Mannigfaltigkeit quaternional (oder quaternional analytisch), wenn sie mit
quaternionalen Koordinatensystemen so ûberdeckt werden kann, daB die
Koordinatentransformationen durch quaternionale Potenzreihen dargestellt
werden (unter Berûcksichtigung der Nichtkommutativitât der Quaternionen).

16 Commentarii Mathematici Helvetici
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n. Kapitel. Cohomologietheorie der Modiflkation

Nachdem in Satz 1 festgestellt wurde, daB wir an Stelle der differenzierbaren
Modifikationen die differenzierbaren Faserungen von N in Sphâren betrach-
ten kônnen, liegt es nahe, die Cohomologietheorie der Sphârenfaserungen her-
anzuziehen. Dies wird in § 12 b) getan. Sonst ziehen wir es aber vor, eine andere
direkte Méthode zu verwenden, bei welcher kein Gebrauch gemacht wird von
der Existenz irgendwelcher Faserungen. Dièse Méthode hat auBerdem den
Vorteil, daB sie auch auf nicht differenzierbare Modifikationen angewandt
werden kann, wobei ûberdies die Mannigfaltigkeitsvoraussetzungen in gewis-
sem Sinne abgeschwâcht werden kônnen.

§ 8. Homologiemaimigfaltigkeiten. Exakte Sequenzen

a) Es sei die allgemeine Modifikation (1) gegeben. Die auftretenden Ràume
seien Polyeder, so daB simpliziale Homologie- und Cohomologietheorie getrie-
ben werden kann, oder, was in vielen Fâllen bequemer ist, auch die singulâre
Théorie angewandt werden kann. Fur aile Fragen, die speziell die Homologie-
und Cohomologietheorie angehen, verweise ich auf das Buch [16] von Eilen-
bebg und Steenrod. Wir werden meistens die Sprache der Cohomologie be-
nutzen, nur an wenigen Stellen, wo wir uns fur die Torsion interessieren,
kommen Homologiegruppen vor.

Im folgenden werden Homologiemannigfaltigkeiten betrachtet. Dies sind
Baume, fur welche der Poincarésche Dualitâtssatz gilt. Genauer: unter einer
n-dimensionalen Homologiemannigfaltigkeit Mn verstehen wir ein Polyeder,
fur welches die folgenden Bedingungen erfûllt sind: n sei die Dimension von
M6), das heiBt dim(Jf) n; es sei J — K oder J Z2 der Koeffizienten-
bereich der Homologie- und Cohomologiegruppen, wo K ein beliebiger Kôrper
ist und Z2 die ganzen Zahlen modulo 2 ; dann soll

(a) H«(M»;J)^J,
(b) H*(M*; J) ^ Hn~k(Mn; J)

und der letzte Isomorphismus wird durch das Alexandersche Produkt (Cup-
Produkt) in der Weise induziert, daB zu jeder Basis zf, z\, z*k von
Hk(M; J) eine Basis 3?&quot;*, «?&quot;&quot;*, z^~k in Hn~~k(M ; J) existiert mit

k n-k * n * 10 fur r # 5
zrz9 =«flm% ^==(ifûrr 5&apos; r, « 1, ...f6»,

wo mn die n-dimensionale Fundamentalklasse von M ist. Sind fur M die
Bedingungen (a), (b) erfûllt fur J K, K jeder beliebige Kôrper, so nennen

8) Der Dimensionsindex n wird wie bei den Mannigfaltigkeiten ôfters weggelassen.
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wir M eine orientierbare Homologiemannigfaltigkeit. Wir konnen dann
J R wâhlen, R Korper der reellen Zahlen. Gilt (a), (b) fur J Z29

aber nicht fur J R, so heifit M nicht orientierbare Homologiemannigfaltigkeit,

und wir sagen in diesem Fall : M ist eine Homologiemannigfaltigkeit
modulo 2.

Bemerkung. Unter der Dimension eines Polyeders verstehen wir die topo-
logische Dimension. Fur die Homologiemannigfaltigkeit Mn ist also n die
topologische Dimension. An vielen Stellen geniigt es jedoch, unter n die
«Homologiedimension» von Mn zu verstehen, das heiBt diejenige Zahl n, so
da6 Hn(M\J) ^0 (im Fall einer Homologiemannigfaltigkeit Hn(M;J)g*J)
und Hk(M; J) 0 fur aUe k &gt; n + 1.

Jede kompakte Mannigfaltigkeit (als Polyeder vorausgesetzt) ist
Homologiemannigfaltigkeit modulo 2, und jede orientierbare kompakte
Mannigfaltigkeit ist orientierbare Homologiemannigfaltigkeit.

b) Aile im folgenden vorkommenden Sequenzen von Gruppen und Homo-
morphismen sind ezakte Sequenzen, wenn nichts anderes gesagt wird.

Der bei einer allgemeinen Modifikation (1) auftretende Homôomorphismus
(2) induziert den Isomorphismus $*:

0 -&gt;Hk(W, A)^Hk(V, S)-&gt;0. (28)

Die exakten Cohomologiesequenzen fur (F, 8) und fur (W, A) fuhren wegen
(28) zu dem folgenden Diagramm:

0

8)

f 0* (29)

t
0

Wegen q dim^4 ist Hk(A) 0 fur k&gt;q + l9 so daB aus (29) folgt:

* fur k&gt;q + 2. (30)

Bemerkung. (28), (29), (30) gelten fur jede allgemeine Modifikation, in
welcher fur die auftretenden Râume eine Cohomologietheorie im Sinne von
Eilenberg und Steenrod aufgestellt werden kann (vgl. das oben zitierte
Bueh [16]), sobald A ein Deformationsretrakt einer Umgebung von A in W
ist und desgleichen 8 in F.
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§ 9. Allgemeine Modiflkation durch Ersetzen eines Punktes: ein Lemma

In der Modifikation (1) seien zunâchst Fw, Wn kompakte Mannigfaltig-
keiten, Aq A0 sei ein Punkt p in W, und 8m sei ein Teilraum von F mit
m &lt; n — 1. Es handelt sich also um eine allgemeine Modifikation von W
durch Ersetzen des Punktes p durch 8. Eine solche Modifikation von W ist
eine lokale Angelegenheit fur W, das heiBt die Môglichkeiten, die fur 8 in
Betracht kommen, sind unabhângig von den globalen Eigenschaften von W.
Wir nennen daher nach Hopf [24] die Modifikationen, in denen A p ist,
lokale Modifikationen. Es kommt nur darauf an, daB eine Umgebung Un=U (p)
des Punktes p (Un ist die n-dimensionale Euklidische Zelle) in eine n-dimen-
sionale Mannigfaltigkeit eingebettet werden kann, und daB bei der Modifikation

aus Un ein Raum Un entsteht, der wieder in eine n-dimensionale
Mannigfaltigkeit eingelagert werden kann. Um die lokale Modifikation

0: {Ûnt8m) -&gt;(Un,p) (31)

zu untersuchen, betten wir also Un in die Sphâre En ein und betrachten an
Stelle von (31) die Modifikation

&amp;:(Vn, 8m)-&gt;(Zn, p). (32)

Wir woUen Homologieeigenschaften von 8 untersuchen. Dazu machen wir
die folgende Voraussetzung, welche bei allen Betrachtungen ûber lokale
Modifikation gelten soll: die Euklidische Umgebung Un lasse sich in der Homo-
logiesphâre Zn (S bezeichnet sowohl die Sphâre wie die Homologiesphàre)
einbetten, und die Modifikation (31) induziere dadurch eine Modifikation (32),
in welcher F eine w-dimensionale Homologiemannigfaltigkeit (eventuell mod 2)
wird. Wir interessieren uns also fur die Modifikation (32), in welcher S eine

Homologiesphàre und F eine Homologiemannigfaltigkeit ist.
Es sei J K oder J Zt, je nachdem F orientierbar ist oder nicht.

(30) liefert unmittelbar

Hk(V)^Hk(8) fur 2 &lt;k &lt;n-2.
AuBerdem gilt fur n &gt; 2

0

t

H»(p) -&gt; HHZ, p)

I / f
0 0



Modifikation von reellen und komplexen Mannigfaltigkeiten 245

es ist also JET1 (F, S) ^ H1^, p) 0, so daB miV) ^ H1(8) und JEf°(F)
£*H°(8) g*J, 8 ist also zusammenhângend. Aus (29), Hn(V) g* Hn(£) g* J
und #»(£) 0 (wegen m &lt; ti - 1) folgt noch J?&quot;-1^) £ë H&quot;-1 (8). Fur
n 1 bleibt die Isomorphie H°{V) ^ J5T0(jS) ^ J richtig, wie leioht einzu-
sehen ist.

Die obigen Resultate zusammengefaBt ergeben :

Lemma 1. Fur die Modifikation

&amp;:(Vn,S™)-+(Zn,p)9 (32)

F n-dimensionale Homologiemannigfaltigkeit, S Teilraum in F, m &lt; n — 1,
gritt

Hk(Vn;J)g±Hk(Sm;J) fur 0 &lt; fc &lt; n - 1 (33)

Zusatz: Die Isomorphismen (33) werden induziert durch die Inklusiomabbïl-
dung i: 8 -&gt; F, es fem^ afôo geschrieben werden:

0-+Hk(Vn&apos;,J)^Hk(Sm;J)-&gt;0 fur 0&lt;k&lt;n — I. (33*)

Die Behauptung des Zusatzes folgt sofort: die Isomorphismen (33) stammen
aus (30) bzw. (29), und in (29) werden die Homomorphismen i* durch die
Inklusionsabbildung i induziert.

Bemerkung. Lemma 1 und sein Zusatz gelten auch dann, wenn F ein topo-
logischer Raum ist mit H°(V) ^ Hn(V) ^J, denn es wurden zum Beweis
neben (28), (29) nur dièse Eigenschaften von F gebraucht.

Da die durch Abbildungen induzierten Homomorphismen zwischen den
Cohomologiegruppen produkttreu sind (bezûglich des Alexanderschen Pro-
duktes zwischen den Cohomologieklassen), folgt aus (33*) :

Lemma V. Filr die Modifikation

0:(Vn9S™)-&gt;(i:n9p), (32)

F n-dimensionale Homologiemannigfaltigkeit, 8 Teilraum in F, m &lt; n — 1,
gilt

S (M ; J) bezeichnet den Cohomologiering des Baumes M liber dem Koeffizien-
tenbereich J (J mu6 hier ein Ring sein), und $f M ; J) ist der Ring $ (M ; J),
beschrânkt auf die Elemente zk €Hk(M;J) mit k &lt; r.
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§ 10. Ersetzen eines Punktes durch eine Mannigfaltigkeit

a) Ersetzen eines Punktes durch eine (n — l)-dimensionale
Homologiemannigfaltigkeit. In den Modifikationen (31), (32) sei 8 eine (n — l)-dimen-
sionale Homologiemannigfaltigkeit. Als Koeffizientenbereich nehmen wir wie
in §9 K oder Z2, je nachdem die Homologiemannigfaltigkeiten F und 8
orientierbar sind oder nicht, und wir schreiben in beiden Fâllen J.

Lemma 2. FUr die Modifikation

0: (Fn, S71-1) -&gt; (27n, p), (32t)

F, 8 Homologiemannigfaltigkeiten, gilt

Hk(Vn ;J)g*J, 0&lt;k&lt;n,

Beweis:

(33), angewandt fur k n — 1, liefert ff^fF) ^ H71-1 (8) ^ J,
nach dem Poincaréschen Dualitâtssatz fur F ist H1 F) ^ H&quot;-1 F) ^ J,
(33), angewandt fur k 1, liefert Zf1 (8) g^H1 (V)g*J,
nach dem Poincaréschen Dualitâtssatz fur S ist Hn~2(8) g* H1 (8) g^J,
(33), angewandt fur &amp; n — 2, liefert #W~2(F) ^ Hn~*(8) ^ J,
usw.

Man erkennt: setzt man dièses Verfahren fort, indem abwechslungsweise
(33), dann der Dualitâtssatz fur F, dann wieder (33), dann der Dualitâtssatz
fur 8, dann (33) usw. angewandt wird, so gelangt man schrittweise zu den

Isomorphismen (34).

Das Vorgehen in dem obigen Beweis durch wiederholtes Anwenden von (33)
und des Dualitàtssatzes in F und in 8 wird in mehreren Beweisen wieder vor-
kommen. Dièse Beweismethode nennen wir das «Pendelverfahren».

Da fur eine Homologiemannigfaltigkeit Jf4r+2 die mittlere Bettische Zahl
6ar+1 gerade ist, folgt aus (34), daB fur n 2 mod 4 und fur n 3 mod 4

der Koeffizientenbereich J Z2 genommen werden muB, in diesen beiden
Fâllen ist also entweder F oder 8 nicht orientierbar. Es gilt daher: Modifikation

von Un durch Ersetzen des Punktes p durch eine orientierbare
Homologiemannigfaltigkeit /S&quot;-1, so daB Un orientierbar wird (das heiBt Fn in der zuge-
hôrigen Modifikation (32X) orientierbar wird), ist unmôglich fur n 4r + 2

und fur n 4r + 3. Dies folgt mit Hilfe von (34) allein daraus, daB F und
8 Homologiemannigfaltigkeiten sind. Ziehen wir noch die spezieUe multi-
plikative Struktur von §(F) und von §(#) in Betracht, so folgt:
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Satz 12. Modifikation von Un(n&gt;2) durch ErsetzendesPunktes p durch eine

orientierbare (n — l)-dimensionale Homologiemannigfaltigkeit /S**-1, so daji Un
orientierbar wird, ist unmoglich.

Beweis: Es ist zu beweisen, da6 die Modifikation (32!) unmoglich ist, wenn
sowohl F wie 8 orientierbar sind. Mit andern Worten : es ist zu zeigen, dafl fur
J nicht B gewâhlt werden kann. GemâB (34) kann eine Basis

x\ x\ x\ ...,*«, xkeHk(V),
fur die additiven Cohomologiegruppen Hk(V) gewâhlt werden. Wir setzen

i*xk P, 0 &lt; k &lt; n - 1, (35)

so daB die xk wegen (33*) eine Basis fur die additiven Cohomologiegruppen
Hk(8) bilden. Ferner bestimmen die ~xk wegen (33&apos;) dieselbe multiplikative
Struktur wie die xk in § n~1 F), so daB wir die ~xk mit den xk fur 0 &lt; k &lt; n — 1

identifizieren kônnen. Wir lassen daher im folgenden die Querstriche wieder
weg.

Dv bzw. Ds sei der Poincarésche Dualitâtsoperator in F bzw. 8 :

0 -&gt; Hk(V; J) -X Hn~k(V; J) -&gt; 0

0 -&gt; Hk(8; J) 4 Hn-k~l(S; J) -^ 0
(36)

Nun kônnen wir die Basiselemente xk geeignet wâhlen. xQ sei die null-
dimensionale Fundamentalklasse von F und von 8. Dann ist xn DV%P
die w-dimensionale Fundamentalklasse von F, xn~x Dsx° die (n — 1)-
dimensionale Fundamentalklasse von 8. Das Produkt zwisohen den Cohomo-
logieklassen ist das Alexandersche Produkt. Wir bestimmen x1 so, daB

x1 Dvxn~19 und daher x^x71*1 xn;

weiter wâhlen wir xn~2 so, daB

x1 Dsxn~2, und daher x1xn~2

Daraus folgt

Wegen xrx* (— l)r8xsxr ist x1x1 0 liber dem Koeffizientenbereich
JB, und daraus folgt zusammen mit (37), daB fur J nicht B genommen werden
kann, womit Satz 12 bewiesen ist.

Modulo 2 ergibt (37) keinen Widerspruch, sondern es kann durch weitere
Anwendung von Dv und Ds die multiplikative Struktur der Ringe §(F; Z2)
und §(/S; Z2) besthnmt werden («multiplikatives Pendelverfahren ») :
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1, #* eeien wie oben gew&amp;hlt;

x1 wird durch x1 DyX**1 bestimmt, so daB

^n-2 ^^(j (Jurch xi -g B8xn-% bestimmt, so daB

se* wird durch x2 =* Dpa;*&apos;&quot;2 bestimmt, so daB x2xn~t xn ;

es folgt a;2 xxxx\
xn-a ^ird durch a;2 Dsxn~z bestimmt, so daB x2xn~z xn~x\

xz wird durch xz DFa;n-3 bestimmt, so daB a;3#n&quot;~3 xn ;

es folgt xz a;1 a;2 a:1 a;1 a:1 (a;1)3;

usw.

Nehmen wir noch #° Dv xn D8 xn~x hinzu, so erhalten wir :

Satz 13. Bei den Modifikatumen

0: (ÏÏnf S»-1) ~&gt; (Un, p) (31x)

0:(F«,S«-i)-&gt;(r»,î&gt;), (32,)

F, 8 Homologiemannigfaltigkeiten, wird

S (F* ;22)={s°, x ]A) }&gt;]

a) {a;o, ^, (^)2, (a;1)-1} j

b) Ersetzen eînes Punktes durch eine (n — l)-dimensionale kompakte
Mannigfaltigkeit. Satz 13 besagt, daB die Ringe $&gt;(Vn;Z2) und SfS&quot;-1;^^

ûbereinstimmen mit den Cohomologieringen §(Pn;Z2) und ^(Pn-1; Z2).
Wenn wir uns den Zusammenhang mit den Sphârenfaserungen zunutze machen,
wie er im ersten Kapitel beschrieben wurde, das heiBt in diesem Fall den
Zusammenhang mit den Môglichkeiten, den Umgebungsrand N11-1 E&quot;*1 von
p in Un als zweifachen Ûberlagerungsraum einer Mannigfaltigkeit N%~* S&quot;-1

darzustellen, wenn wir nun also voraussetzen, daB F, S, Mannigfaltigkeiten
sind tind nicht nur Homologiemannigfaltigkeiten, so gilt der folgende Satz :

Satz 14. Fur die Modifikationen

F, 8 kompakte Mannigfaltigkeiten, £ 8phâre, gelten die folgenden Homoomor-

(39)
^«-x «_* p»-i, j

wo P1* den r-dimensionalen redl projektiven Raum bedeutet.
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Zusatz: Fur die Modifikationen (31^, (322), F, 8 kompakte Mannigfattig-
keiten, E Sphare, sind

fur n Q mod 2 Un und Vn nicht orientierbar, S&quot;-1 orientierbar,

filr n 1 mod 2 Un und Vn orientierbar, S11&quot;1 nicht orientierbar.

Aus Satz 14 und dem Zusatz folgen Satz 13 und Satz 12 fur den Fall, daB
F, 8 Mannigfaltigkeiten sind und E die Sphâre. Anderseits wird durch die
Betrachtung in a) die additive und multiplikative Struktur des Ringes
§(Pn; Z2) bestimmt: man nimmt fur die Modifikation (31^ den reellen
cr-ProzeB.

Beweis zu Satz 14: Es genûgt, die Modifikation (32j) zu betraohten. Die
Modifikationen durch Ersetzen des Punktes p in En durch /S*1&quot;1 entsprechen
den Môglichkeiten, den Umgebungsrand E&quot;-1 von p in En als zweifachen
Ûberlagerungsraum einer Mannigfaltigkeit /S&quot;-1 darzustellen (Spezialfall des
Satzes 5, ohne daB hier Differenzierbarkeitsvoraussetzungen gemacht werden
mûssen). Zu jeder zweifachen Ûberlagerung gehôrt eine Decktransformation oc

von Z*1&quot;1 mit oc2 /; / ist die Identitât.
Sei n 0 mod 2. Fur jede fixpunktfreie Decktransformation % von 2&apos;w~1,

fur welche also die Lefschetzsche Zahl Â(oc) 0 (vgl. [3], p. 531) ist, ist der
Abbildungsgrad gleich 1: g (oc) 1. Nach [3], p. 509, Satzl, ist dann oc

homotop zur Antipodenabbildung von 27*-1. Dièse Homotopie fuhrt zu einer
Homôomorphie zwischen P*1&quot;1 und der Mannigfaltigkeit iS*&quot;1, welche durch
Identifikation von x mit oc(x)9 x Punkt in 27*-1, entsteht. Wegen g(oc) =z 1

ist S11&quot;1 orientierbar. Ist p eine Umgebung von p in En, so entsteht durch die
obige Identifikation auf En~x aus En — p ein zu Pn homôomorpher Raum,
der wegen n 2nf nicht orientierbar ist, was auch aus Satz 12 wegen der
Orientierbarkeit von iSn&quot;&quot;x folgt.

Ist n 1 mod 2, so wird fur eine fixpunktfreie Decktransformation oc

wegen A (a) 0 der Abbildungsgrad g (oc) — 1, oc ist homotop zur
Antipodenabbildung der Sphâre E11&quot;1, und daher /S*1&quot;&quot;1 homôomorph P1*-1. Wegen
g (oc) — 1 ist in diesem Fall 8n~l nicht orientierbar. Fn wird dann homôomorph

Pn und ist orientierbar.

Entsprechend zu Satz 14 beweist man den folgenden etwas stârkeren Satz :

Satz 14&apos;. Jede lokale Modifikation

8 kompakte Mannigfaltigkeit, ist équivalent dem reellen a-Prozef} in p.
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Zum reellen cr-ProzeB vgl. § 6 a) und § 7 d). Zwei Modifikationen
*i: (Vl981)-+(W,A) und #2: (F2, S,) -+ (ÏF, ,4) mit den Abbildungen
Vi-Vx-ï-W und ç&gt;2: F2 -&gt;W heiBen àquivalent, wenn es einen Homôomorphis-
mus 6 : Vx -&gt; F2 gibt, so daB q&gt;x ç&gt;2 0 gilt.

Als Korollar zu Satz 14&apos; erhalten wir :

Satz 16. Die einzige Môglichkeit bis auf topologische Âquivalenz, den Euklidi-
schen Raurn En durch eine (n — l)-dimensionale kompakte Mannigfaltigheit
S&quot;-1 zu einer kompakten Mannigfaltigkeit Vn abzuschliejien, besteht im bekann-
ten Abschlu/i von En zum reell projektiven Raum Pn durch S»-1 P»-1.

c) Ersetzen eines Punktes durch eine (n — r)-dimensionale Homologieman-
nigfaltigkeit. In der Modifikation (31) bzw. (32) sei 8m 8n~r eine (n—r)-
dimensionale Homologiemannigfaltigkeit. J sei wieder K oder Z2. Die dem
Lemma 2 entsprechende Aussage lautet :

Lemma 3. Fur die Modifikation

0:(V»,S»-&apos;)-&gt;(Zn,P) (32,)

r &gt; 1, F, S Homologiemannigfaltigkeiten, gilt

n Xr (40)

Hk (Vn J)==O, &amp;#0 modr,

Hk (Sn-r; J) 0, &amp; =zé 0 mod r.
Beweis: Mit Hilfe des Pendelverfahrens.

(33), angewandt fur k n — r, liefert Z/n~r (F) ^ I?w-r (8) ^ J,
nach dem Poincaréschen Dualitâtssatz fur F ist Hr (V) ^Hn-r (V) ^J,
(33), angewandt fur k r, liefert #r (8) g±Hr (F) ^ J,
nach dem Poincaréschen Dualitâtssatz fur /S ist Hn-2r(8) ^Hr (8) ^ J,
(33), angewandt fur &amp; n — 2r, Kefert #n~2r(F) ^ Hn~2r(8) g* J,
usw.
Es sei 1 &lt; 8 &lt; r — 1. Dann folgt :

(33), angewandt fur k n — s, Kefert Hn~8 (F) ^ ^fn~* (/S) =0,
nach dem Poincaréschen DuaKtâtssatz fur F ist H8 (V)Q±Hn-* (F) 0,

(33), angewandt fur k 5, Kefert #« (5) ^ #* (F) 0,
nach dem Poincaréschen DuaKtâtssatz fur S ist Hn-+-*(S) g* H* (8) 0,

(33), angewandt fur &amp; w — r — 5, Kefert #*-»•-«(F) ^ Hn-*-*(8) 0,
usw.
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Es muB (40) gelten: es sei n Ar + t, 0 &lt;t &lt;r — 1, ferner /** [A/2],
so daB /** &lt; A/2, /** + 1 &gt; A/2. Dann gilt (41) kraft des obigen Pendelverfah-
rens fur aile k &lt; /bi*r und fur k &gt; m — [A*r, m n — r. Ist nun

0 &lt; | m/2 - fji*r \ &lt; r/2 (42)

so fuhrt die Anwendung des Poincaréschen Dualitâtssatzes fur 8 im Falle
m/2 &lt; /i*r und fur F im Falle m/2 &gt; yftr zu einem Widerspruch, und es
mufi daher in (42) entweder links oder rechts das Gleichheitszeichen stehen.
Daraus folgt t 0 und damit (40).

Wegen (40) schlieBt sich das Pendelverfahren luckenlos in der Mitte, und
aile Isomorphismen (41) sind als richtig erwiesen.

d) Die diflerenzierbaren Modiflkationen (31f) und (32r). Betrachten wir die
Modifikation (32r) mit n — 1 &gt; r &gt; 2. Dann wird wegen der Orientierbarkeit
von Zn auch V orientierbar. Dieselbe Ûberlegung wie im Beweis zu Satz 12

fuhrt auf die zu (37) analoge Gleichung

2r= zn, (37r)

wo xn die n-dimensionale Fundamentalklasse von V bedeutet, und xr die zur
Fundamentalklasse xn~r von 8 in V duale Cohomologieklasse. Aus (37r) folgt :

ist in der Modifikation (32r), r &gt; 2, 8n~r orientierbar, so muB r gerade sein,
Fur eine differenzierbare Modifikation (32r) mit r &gt; 2 ist die Mannigfaltig-
keit 8 orientierbar, denn 8 ist nach Satz 1 Basis einer Sphârenfaserung des

Umgebungsrandes Z&quot;&apos;1 von p mit der Faser Z*-1, und in einem Bûndel (5),
in welchem zwei der Râume E, F, B orientierbar sind, ist auch der dritte
orientierbar, wenn E einfach zusammenhângend ist. Wir kônnen also sagen:
fur eine topologische Modifikation (32r), r &gt; 2, welche durch Faserung des

Umgebungsrandes Zn~x erzeugt wird, sind F und 8 orientierbar, und daher
ist wegen (37r) r gerade. Wir bestimmen fur J K wie bei Satz 13 den
Cohomologiering von V und denjenigen von 8 mit Hilfe der in (36) definierten
Dualitâtsoperatoren Dv und Ds (multiplikatives Pendelverfahren). Wir er-
halten :

Satz 16. Bei den differenzierbaren Modifikationen

0: (Û«,Sn-r)-&gt;(U»9p), (31r)

0: {V«,Sn^)^{Z\ p), (32r)

r &gt; 2, F, 8 kompakte differenzierbare Mannigfaltigkeiten, S Sphare, werden

Un, F, 8 orientierbar, es mu/3

n Ar; r 2r&apos;, wenn n — 1 &gt; r;
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und die Cohomohgieringe von F und 8 ûber K werden gegeben durai

}, |
&gt; (43)

}

E$ wurden in Satz 16 die Orientierungen von F und von 8 (das heiBt die
Elemente xn und xn-*) so gewâhlt, daB (43) zutrifft : es soll

0,1,..., A,

gelten. Eine zweite Môglichkeit besteht darin, daB

xi&quot; (af)/*, fi 0, 1,..., A- 1, sn= —

Dann wird
^ /* 0, 1,..., A - 1

/* 0, 1, •.., A

Im Falle des Hopfschen a-Prozesses handelt es sich um eine Realisierung
difâser zweiten Môglichkeit (fur r 2), falls die Orientierungen von Fn und

von 8n~~2 P(A-1) durch die komplexe Struktur von Un induziert werden
(siehe [24], pp. 140-141, wo dies fûr n 4 gezeigt wird; fur n 2A &gt; 4

fûhrt eine analoge Betrachtung zum Ziel).

Torsion. Es gilt (33*) duaJ fur die Homologiegruppen, und der Poincarésche

Dualitâtsoperator DM fûhrt in einer kompakten Mannigfaltigkeit M uber
einem beliebigen Koeffizientenbereich von der Cohomologie zur Homologie:

DM:H*(M»)^Hn_k(M»). (44)

Fûhrt man die Ûberlegungen im Beweis zu (41) mit Hilfe dièses durch (44)
definierten Operators D bzw. D~~x aus, und benutzt man neben (33*) den dazu
dualen Isomorphismus fur die entsprechenden Homologiegruppen, so kann als
Koeffizientenbereich der Ring Z der ganzen Zahlen genommen werden, und
wir sehen, daB bei den differenzierbaren Modifikationen (31r), (32r) im Falle
r &gt; 2 wegen der Orientierbarkeit von F und 8 keine Torsion auftritt. Daher
haben die Ringe £(F; Z) und ${8;Z) dieselbe Struktur wie diejenigen
ûber^:

Satz 16&apos;. Bei den differenzierbaren Modifikationen (31r), (32r) wird fur r &gt; 2

n Xr ; r 2rr, wenn n — 1 ^ r ;

$(F&quot; ; Z) {«•, af, (af)«,.... (af)» } I
&gt; (43

&apos;; Z) {*•, af, (af)«,.... (f)^1}
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Bemerkung 1. Es wird durch (43) bzw. (43&apos;) fûr r 2 und fur r 4 die
Cohomologiestruktur der komplex und quaternional projektiven Râume be-
stimmt, denn in diesen Fâllen existieren die entsprechenden Modifikationen,
bei denen ein Punkt durch den komplex projektiven Raum pin~» oder durch
den quaternional projektiven Raum pi&quot;-1* ersetzt wird (komplexer bzw.
quaternionaler cr-ProzeB).

Bemerkung 2. An Stelle der Differenzierbarkeit kann in Satz 16 sowie in
Satz 16&apos; vorausgesetzt werden, dafl die topologische Modifikation (31r) bzw.
(32r) durch Sphàrenfaserung des Umgebungsrandes En-X von p in Un erzeugt
wird, oder es kann vorausgesetzt werden, dafi Fn, 8n~r Homologiemannigfal-
tigkeiten sind, En die w-Homologiesphâre, und 8 orientierbar ist, und daB bei
Satz 16&apos; der Dualitâtssatz in V und in 8 tiber Z gilt (vermôge des Operators
(44)).

e) Beziehung zu den Sphârenfaserungen der Sphâre. Âus Satz 4 und Satz 16&apos;,

Bemerkung 2, folgt: liegt die Faserung

S {Zn~\ Sr~\ #»-&apos;} n - 1 &gt; r &gt; 2

vor, so muB n Xr, r 2r&apos;, und

$(S-*; Z) {^o, af, (af)«,..., (a:-)^1}

man bekommt also die Faserungen

)r} r 2rf.

Dièses Résultat ist bekannt als Folge aus der Gysinschen exakten Sequenz.
Nach Adem [1], Theorem 2. 2, insbesondere Corollary 2. 3, muB fur r die

Gleichung r 2*, h 0, 1,..., gelten, und fûr k &gt; 3 muB X 2, so daB

fur die Basis 8 fur k &gt; 3 nur noch Homologiesphâren in Betracht kommen.
Entsprechend werden nach Satz 1 die môglichen differenzierbaren Modifikationen

(31r), (32r) eingeschrânkt, oder wir kônnen wie in Satz 15 an Stelle
dieser Modifikationen vom AbschluB des Euklidischen Raumes sprechen :

Satz 17. Wird der Euklidische Raum En durch die (n — r)-dimen8ionale kom-

pakte differenzierbare MannigfaUigkeit 8n~r differenzierbar abgeschlossen zur
komjxikten differenzierbaren MannigfaUigkeit Vn, n — r &gt; 1, so mufi

n^Xr, r 2fe, X 2 fur k&gt;3,

|
} wenn r &gt; 2 (43;)

${8*-*; Z) {x°, af, {*)*(^)A1}
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r)x} \
\ &gt; wenn r &gt; 1 (43&quot;)

; Z2) {x«, x\ (af)«,..., (af)^1} J

Satz 17 kann folgendermaBen angewandt werden: liegt ein AbschluB von
En zur kompakten differenzierbaren Mannigfaltigkeit Fn vor, und ist fur F
oder fur 8 eine der in (43&quot;) gegebenen Bedingungen nicht erfûllt, so han-
delt es sich um einen AbschluB mit Singularitâten, das heiBt 8 ist nicht sin-
gularitâtenfrei eingelagert in F, oder S ist als ein in F eingelagerter Raum
keine Mannigfaltigkeit. 8 ist keine orientierbare Mannigfaltigkeit, falls eine

Bedingung in (43&apos;) verletzt wird. Zu Satz 17 gilt betrefifend die Differenzierbar-
keit dieselbe Bemerkung wie zu Satz 16&apos; (Bemerkung 2 in d)).

§ 11. Hoherdimensionale Hopfsche Baume

a) Wir betrachten allgemeine Modifikationen (31), (32), in denen F eine

Homologiemannigfaltigkeit ist, und S sich zusammensetzt aus mehreren
Homologiemannigfaltigkeiten 8^f $f,..., Sf, m n — r: S ist ein zusam-
menhângender Teilraum von F, welcher die Vereinigung ist von t Komponen-
ten 8Q9 q 1, 2,..., t, es ist also

t
Sm 8? \J8% U U/S7 ll/S^.

Weiter soll der Durchschnitt zweier Komponenten 8e und 8a fur g ^ a
hôchstens aus endlich vielen Punkten bestehen, das heiBt es ist

8°Qa 8% n 8% nulldimensionaler Zyklus fur q ^ a (45)

wo zu den nulldimensionalen Zyklen auch der Zyklus, bestehend aus der leeren

Punktmenge, gerechnet wird. Es kann sowohl in F wie in jeder einzelnen Kom-
ponente 8Q der Poincarésche DuaKtâtssatz verwendet werden. Es gelten (33*),
(33&apos;). AuBerdem soll die folgende Bedingung erfûllt sein :

4*rf 0ftrn-l&gt;«&gt;l,«{ €H*(SQ), zno&quot;9 €Hn-&apos;(8a), q^o, (46)

das Produkt in F genommen. Es werden wegen (33*) wie bei (35) die Cohomo-

logieklassen von F identifiziert mit den mittels der Inklusionsabbildung ent-
sprechenden von S, und mit z*Q €H*(SQ) meinen wir, daB das Elément
z*9 durch eine Cohomologieklasse in 8Q induziert wird. In der hier beschriebe-

nen Situation gilt :
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Satz 18: IAegt die folgende Modifikation vor:

0:(Û»,S»-*)-&gt;(U»,p), (31,,,)

0:(V*,8~)-+ (27», p), (32,,,)

s™ u s?-&apos;,

/SJ&lt;t Sç~r n 5^~r nulldimensionaler ZyUus fur q # a (45)

«•sÇ-» 0 fur n - 1 &gt; s &gt; 1, sj eH&gt;(8ç),
\

2»-. eH«-&gt;(Sa), q^&lt;t, J

F, /Sfe HomologiemannigfaMigkeiten, r &gt; 2, «o wird » Ar,

ist Se orientierbar, n — r &gt; 1, so ist n Xr, r 2r&apos;,

&apos;; JT) {*•, *;, «)2,..., («J)^}
Zusatz: Ist in Satz 18 n 2r &gt; 2, so wYd Sc 6iwe Homologiesphare liber

Z2 bzw. Uber K, auch wenn (46) nicht erfûllt ist.

Handelt es sich um eine «differenzierbare» Modifikation (31f^) bzw. (32M),
das heiBt sind in (32f t) V nnd SQ, q 1, 2,..., t, kompakte differenzierbare

Mannigfaltigkeiten und die Einlagerungen SQ cV differenzierbar regu-
lar, und ist Zn die w-Sphâre, so wird wie in § 10 d) bei Satz 16 eingesehen, da8

wegen r &gt; 2 8Q orientierbar wird fur aile q. Denn das «Normalenbxindel»

von 8 in Un bzw. in V liefert eine Sphârenfaserung von Z11-1 mit Singulari-
tâten iiber der Menge \J8°Qa, bestehend aus hôchstens endlich vielen Punkten,

q-zta
so da8 die Orientierungen von E&quot;-1 und der Fasern E*&quot;1 eine Orientierung in
jeder Komponente 8Q induzieren. Somit ist in Satz 18 die Bedingung «8e
orientierbar» fur aile q erfûllt, wenn wir differenzierbare Modifikationen (31f^),
(32ft) betrachten.

Wir werden sehen: der Cohomologiering $(8) wird gleich der direkten
Stunme der Cohomologieringe §&gt;(8Q)9 und wegen (33&apos;) ebenso $p~1(V), das
heiBt die additive Cohomologiegruppe Hk{8), k &gt; 1, ist gleich der direkten
Summe der Gruppen Hk(8Q), $(8e) ist additiv und multiplikativ isomorph
eingebettet in § (8), und es gilt

zuQzl 0 fur u &gt; 1, v &gt; 1, zue eHu(SQ), zl€Hv(8Q)9 q^o, (46&apos;)

das Produkt in 8 genommen. (46;) folgt aus (45).
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Da $(#) gleich der direkten Summe der Ringe $)(Se) ist, wird 8 ans den
Komponenten 8Ç so zusammengesetzt, daB beim Aufbau von 8 aus den ein-
zelnen Komponenten keine neuen Zyklen entstehen : das Diagramm6) von 8
enthâlt keine Zyklen. Das Diagramm von 8 ist ein Streckenkomplex. Jeder
Komponente 8Q entspricht im Diagramm ein Eckpunkt und umgekehrt, und
zwei Eckpunkte im Diagramm werden durch eine A-fach gezàhlte Kante ver-
bnnden, wenn die entspreehenden Komponenten in 8 k Punkte gemeinsam
haben. Wie wir soeben festgestellt haben, kônnen zwei Eckpunkte im
Diagramm durch hôchstens eine einfach gezàhlte Kante verbunden werden, und
das Diagramm enthalt keine Zyklen, es handelt sich also um einen Baum:

Satz 19. Unter den Voraussetzungen des Satzes 18 ist fur die Modifikationen
(31f&gt;e), (32f t) das Diagramm von 8 ein Baum (Hopf [24]).

Dies folgt auch direkt daraus, daB der Umgebungsrand von /S1*-*, r &gt; 2,
in Un bzw. in F die Sphâre 2Jn~1, n &gt; 4, ist: jede geschlossene Kurve auf
8 lâBt sich innerhalb S auf einen Punkt zusammenziehen. Satz 19 ist richtig
unabhangig von der Gûltigkeit von (46). Wesentlich ist die Voraussetzung
r &gt; 2. In Anlehnung an das Diagramm nennen wir die hier betrachteten
Gebilde /Sn~r, r &gt; 2, a-Bâume.

b) Beweis zu Satz 18: Mit Hilfe des Pendelverfahrens.

1. / sei wie immer Z% oder K. Es sind die Ringe $(SQ; J) und §(#; J)
zu bestimmen. Es genugt, die Modifikation (32f t) zu betrachten. Es ist r &gt; 2.

2. Ist 1 &lt; s &lt; r — 1, so liefert das Pendelverfahren, beginnend mit

fur k zjà 0 mod r und fur n-i^éO mod r, k &lt; n/2, genau wie im Beweis

zu Lemma 3, und dies gilt unabhangig von (46). Es wird dabei der Poincaré-
sche Dualitâtssatz in F und in den einzelnen Komponenten 8Q benutzt. Man
erkennt : es mufl r &lt; n/2, und der Zusatz ist als richtig erwiesen. Insbeson-
dere folgt H1 (8) 0, und damit Satz 19.

3. oP ist die nulldimensionale Fundamentalklasse von F und ebenso die-

jenige von 8Q fur aile q. Dann ist xn Dv%° die n-dimensionale Fundamentalklasse

von F, und #J~r Ds x° ist die (n — r)-dimensionale Fundamen-

talklasse von 8Q. Wegen L, 2., (45), (33*) bildendie t Elemente a£~r, %ï~r,

xnt-r eine Basis in H«-r(8) und in firn-f(F). Der Operator Dv liefert die
Elemente xroi r ^ tt_r o 9 n-r fi _ /jlwx«

xrQ Dvx* r, so daB x^xl r dQaxn. (47)

«) Bei Hopy [24] als «Nerv» bezeichnet.
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Die Elemente zrQ bilden eine Basis in Hr(V) und nach (33*) ebenso in Hr(8)&lt;

Wegen (45), (46), (47) liegt xrQ in Hr(88). Nun wenden wir in jeder Kompo-
nente 8e den Operator D8 an :8

so dafi a%-*rcHn~*r{8Q), und wegen (46&apos;) wird

das Produkt in 8 genommen. Die Elemente z%~2r bilden also eine Basis in
Hn~2r(8) und damit wegen (33*) auch in Hn~2r{V). Jetzt kommt wieder
der Operator Dv an die Reihe, welcher die Basiselemente o?|r e H2r(8Q)
liefert (mit Hilfe von (33*), (45) und (46)), worauf von neuem die Operatoren
Ds verwendet werden, usw.

4. Damit sich das Pendelverfahren, wie es in 2. und 3. beschrieben wird, in
der Mitte schlieBt, mufi n kr sein. Dies wird wie im Beweis zu Lemma 3

eingesehen.

5. Es folgt nun wie bei den Sâtzen 13 und 16, dafi

r; J) {*°, K&gt;

und die obige Konstruktion zeigt, dafi §(/S; J) gleich der direkten Summe
der Ringe $(8Q; J) ist. Ist 8Q orientierbar und gilt r &lt; n — 1, so mufi
r =5 2r;, was wie bei (37r) gezeigt wird. Dazu genûgt, dafi unter den t Kom-
ponenten 8Q eine einzige orientierbar ist.

Bemerkung 1. Liegen solche orientierbaren Homologiemannigfaltigkeiten
vor, fur welche der Poincarésche Dualitâtssatz mit Hilfe von (44) ûber Z gilt,
das heifit kann man an Stelle der Operatoren DF, D8 die durch (44) definier-

ten entspreehenden Dualitâtsoperatoren nehmen (wie dies fur kompakte orien-
tierbare Mannigfaltigkeiten der Fall ist), so wird analog zur obigen Konstruktion

der Cohomologiering von 8Q ûber Z gewonnen. Es mufi dann fur r &lt; n — 1

r 2r;, und $&gt;(8Q; Z) hat dieselbe Struktur wie $&gt;(8Q; K).

Bemerkung 2. Falls der Dualitâtssatz ûber Z in F und in SQ verwendet werden

kann, gelten wie in § 10 e) wegen des Satzes von Adem fur r und fur A

dieselben Gleichungen wie in Satz 17.

Bemerkung 3. Ist »=2r, eo ist SQ nach dem Zusatz zu Satz 18 eine
r-Homologiesphâre ûber Z2 bzw. K&gt; unabhângig von (46). Fur n «= 4, r » 2

erhalt man im differenzierbaren Fall fur S2 Spharenbàume, in welchen aile
Komponenten S2Q 2-Sphâren sind, und im Falle komplexer lokaler Modifika-

17 Commentarii Mathematici Helvetici
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tion ergeben sich die von Hopf in [23], [24] beschriebenen Sphârenbâume. -
Da nun (46) im allgemeinen nicht gilt, sind zur Bestimmung des gesamten
Cohomologieringes $(V;J) spezielle Betrachtungen nôtig. Liegt der topo-
logische Fall vor (F, 8Q kompakte Mannigfaltigkeiten), so handelt es sich um
die Bestimmung der Schnittzahlen in F.

c) Analog zur obigen Méthode kônnen an Stelle der a-Bâume solche Gebilde
behandelt werden, in denen die Komponenten nicht aile dieselbe Dimension
haben. Ist weiter zugelassen, daB der Durchschnitt zweier verschiedener
Komponenten in 8 ein hôherdimensionaler Komplex ist, ist also (45) nicht mehr
erfullt, so kann das Pendelverfahren auch in diesem Fall benutzt werden. Fur

t
Sm 8n~r U S%e, mQ n — rQ, r Min (rQ), folgen mit Hilfe einer zu 2.

in b) analogen Ûberlegung bei Verwendung der untenstehenden Voraussetzung

(46) die Beziehungen Hk(8) 0 fur k =é 0 mod r und Hme-k(8Q) 0 fur
h fé 0 mod r, k &lt; n/4, und rQ &lt; n/2 fur aile q. Satz 18 ist in dem folgen-
den Satz enthalten.

Satz 18;. Es seien in den Modifikationen (31r&gt;e), (32f t) die folgenden Bedin-
gungen erfullt: t

F, SQ Honwtogiemannigfaltigkeiten, m n — r, mQ n — rQ, r Min(re)&gt; 1 ;

fur 8Qa 8%e n 8%a dQG-dimensionaler Komplex ist d Max (dQa) und

Hk{8Q) 0 fur 1 &lt; k &lt; d ; (45)
es ist

zU^-&apos; 0 fur n — r&gt;s&gt;r, \ _(46)
z&apos;QeH&lt;(Sç), zï-&apos;tH*-*^), g^a. j

Dann wird n AQrQ9 und

$(^«; Z2) {x\ a#?, (&lt;«)2,..., {xl*?*-1} ;

ist 8Q orientierbar, mQ &gt; 1, so folgt n KQrQ, rQ 2r&apos;Q, und

ô(i8J»; K) {x\ xl*9 (a??)1, • • •, (^)x^&quot;&quot;1}

Zusatz: Ist n 2rQ 2r fur aile g, so werden aile Komponenten 8Q

Homologiespharen ûber Z2 bzw. ûber K, auch wenn die Bedingung (46) weg-
gelassen wird.

Der Beweis zu Satz 18&apos; verlâuft paraîlel demjenigen zu Satz 18. Es gelten
die den Bemerkungen 1 und 2 in b) entsprechenden Aussagen hier ebenso.
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Falls die Bedingungen (45) und (46) weggelassen werden, kônnen im all-
gemeinen keine so weitgehenden Behauptungen iiber die Cohomologiestruktur
von S gemacht werden. Vergleiche dazu § 16 c). Man denke zum Beispiel an
das topologische Produkt Mn Uf1 x E™1 X X 27* der t Sphâren
Z™Q, welches durch lokale Modifikation aus der Sphâre 27n, n m1 + m2

+ • • • + m&gt;t, erhalten wird. Dort ist7)

sm u ^xi?2x x 2;y« x x i?ïk

Weitere Beispiele liefern die Produkte Mn Vf1 X Vf2 X X V?*,
wo jedes V™e durch lokale Modifikation aus Em* gewonnen wird.

§ 12. Modifikation durch Ersetzen einer Mannigfaltigkeit

a) Allgemeine Modiflkation. Fn, Wn seien in der allgemeinen Modifikation
(1) kompakte Mannigfaltigkeiten, so daB die Poincaréschen Dualitâtsopera-
toren Dv, Dw mit Hilfe von zueinander dualen Zellteilungen erhalten werden
(siehe [28], p. 188). 8m, A* seien Teilrâume in F bzw. in W (F, W sind Poly-
eder, 8 und A Teilpolyeder in F bzw. W). Es sei

l, m&gt;q. (48)

Wir treiben Cohomologietheorie ûber dem Koeffizientenbereich J, J Z2
oder J K. Aus (29) und (48) folgt

0

t

fur k &gt; m + 2 (49)

t
0

es gilt also

Hk(V) c*. Hk(W), j*Hk{V, 8) ^j*Hk(W, A) fur k &gt;m + 2, (49&apos;)

wo der erste Isomorphismus in (49&apos;) durch

ç&gt;*: Hk(W) -&gt;Hk(V)9 &lt;p* ;*(P*j*-i, (49&quot;)

gegeben wird.
(49) liefert bei Anwendung des Dualitâtssatzes fur F und fur W (mit Hilfe

7) Das Zeichen ^ ûber einem Symbol bedeutet hier das Weglassen des betreffenden Symbols.
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der durch duale Zellteilungen definierten Operatoren Dv, Dw)

Hk(V)g*Hk(W), j*Hk(V,8)g*j*Hk(W,A) fur k&lt;n-~{m + 2). (50)

Begrundung zu (50) : da F — 8 mit W — A homôomorph ist, identifizie-
ren wir F — 8 mit W — A ; die Isomorphismen ç?* in (49&quot;) induzieren
dann mittels der Dualitât in F und in W Isomorphismen von Hk(W) auf
Hk(V) fur k&lt;n-(m + 2):

ç&gt;*: Hk(W)-+H*(V), Jc&lt;n-(m+2),
die durch Homomorphismen Ck(W) -&gt;(7&amp;(F) gegeben werden, welehe auf
F — 8 TF — -4 durch die Identitât dargestellt werden; daher ist auch fur
h &lt; n — (m + 2) ?*&lt;P* ç?*;*, wie dies fur jfc &gt; m + 2 nach (49&quot;) der
Fall ist. Ck(M) ist die k-te Cokettengruppe von M. Damit gilt auch (50).
Aus (50) folgt mit Hilfe von (28), (29)

Hk(S) ^ Hk(A) fur k &lt; n - (m + 3), (51)

denn es ist wegen (29)

Hk(8) ç*i*Hk(V) + ÔHk(S)

gs H*(V) - j*Hk(V, 8) + Hk+l(V, 8) - fHk^{V, 8),

^ i*Hk(W) + ôHk(A)
W, A),

und darin (50), (28) berucksichtigt, ergibt (51).
Wir haben also erhalten :

Satz 19. Liegt die Modifikation

0: (F*, S™) -&gt; (W*, A*) (1)

vory m&gt;q, V und W kompakte Mannigfaltigkeiten, 8 und A Teilrâume in
V bzw. in W, so gilt

Hk{8m; J) g* Hk(A«; J) fUr k &lt; n - (m + 3). (51)

J K, jalls F, W orientierbar, J Z2 son**-

Korollar 1. Ist unter den Voraussetzungen des Satzes 19 2m-)-3 ^», so

folgt Hk(8m; J) ^ Hk(A*; J) fur aile k (51&apos;)

Korollar 2. Sind unter den Voraussetzungen des Satzes 19 auch 8 und A
kompakte Mannigfaltigkeiten, und ist 2m + 3&lt;n, soist m q, und es

gilt (51&apos;). J s» K, wenn F, Wf 8, A orientierbar sind, J Z% sonst.
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Korollar 3. Sind unter den Voraussetzungen des Satzes 19 8 und A Homo-
jogiemannigfaltigkeiten, und ist m q, 3m + 6 &lt; 2n, so gilt (51&apos;), J wie

jn Korollar 2 gewâhlt.

b) Beziehung zu den Sphârenfaserungen, Modifikation durch Faserung des

Umgebungsrandes. Ist Aq eine Mannigfaltigkeit und der Umgebungsrand
2fn-i von A in Wn ebenfalls, so liefert nach Satz 4 jede Sphàrenfaserung von
N mit der Basis 8m eine Modifikation (1), worin 8 eine m-dimensionale
Mannigfaltigkeit wird. Nun gehen wir von einer Mannigfaltigkeit Nn&apos;~1 aus und
setzen voraus, daB N in Sphâren En&quot;q-1 mit der Basis A* gefasert werden
kann. Wir haben in § 5 b) gesehen : es kann in diesem Fall N immer als
Umgebungsrand von A in einer geschlossenen Mannigfaltigkeit W gedeutet werden,

und aile Sphârenfaserungen von N erzeugen nach Satz 4 Modifikationen
dieser Mannigfaltigkeit. Somit haben Satz 19 und die Korollare 2 und 3 zur
Folge : ist das Sphârenbûndel

9t(A*) {Nn~\ En-«-\ A*} (7)

gegeben, N kompakte Mannigfaltigkeit, und lâBt sich die Mannigfaltigkeit N
auf eine weitere Art in Sphâren fasern :

qi(8m) {Nn~\ 27»-*»-i, 8m} m&gt;q, (16)

so gilt (51) fur J K, falls 9t(8) und 91(^4) orientierbar sind, fur J Z%

sonst; ist 2m + 3 &lt; n, so ist m q und es ist (51&apos;) erfûllt; wird m g,
3m + 6 &lt; 2n vorausgesetzt, so folgt ebenfalls (51&apos;). Ein Bûndel yt(S) heiBt
wie in § 6 b) orientierbar, wenn mit Hilfe einer Orientierung in 8 und einer
solchen in der Faser E eine Orientierung in N definiert werden kann, das heiBt
die Basis ist orientierbar und H (E; K) als Garbe ûber 8 trivial.

Nun wollen wir dièses Résultat mit Hilfe der Gysinschen exakten Sequenz
direkt herleiten. Es sei

m n — r, q n —-s; s &gt;r &gt;29 so daB m &gt; q

Dann liefern die Gysinschen exakten Sequenzen (vgl. [7], X-9; [6], IX-8)
fur 31 (A) und 51 (8) zusammen mit dem Homôomorphismus q&gt;: Nn~x -&gt; Nn&quot;1

(hier ist N N, und &lt;p ist die Identitât):
0

t
-&gt;Hk(8) -&gt;HJ&quot;»(8) -

f?* }. (52)
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Der Koeffizientenbereich ist J — K, wenn die beiden Bûndel &apos;SI(A) und
31(8) orientierbar sind, J Z2 sonst. Fur k + r &gt; q + 1, das heiBt
fur k &gt;q — r+l=m+g+l— n, folgt aus (52) :

-&gt;Hk(S) -&gt;J?(fl) +H(A) ^H(S) &gt; \
/ (52

fwk&gt;m + q+l—n. j

(52&apos;) Hefert
#*+*(£) iî*+M+1(4) fur fc + ^ &gt; m + 1

und der Dualitatssatz fur 8 und fur ^4 ergibt

H*{8) ^ ,fffc(4) fur k &lt; n - (m + 2). (51)

(51) entspricht dem Résultat (51), und es gilt also der folgende Satz :

Satz 20. Sind die beiden Spharenbûndel

9t(A*) {N*-1, Zn~*~\ A*} (7)

9l(S™) {Nn-\ 2J»~m-\ S™} m &gt; q (16)

gegeben, N kompakte Mannigfaltigkeit, so gilt

Hk(8m; J) ^ Hk(A«; J) fur k &lt; n - (m + 2) (51)

J K, falls 91 (A) und 31(8) orientierbar sind, J Z2 sonst.

Korollar. Ist unter den Voraussetzungen des Satzes 20 2m + 2 ^ n, so

ist m q, und es gilt

Hk(Sm;J)ç*Hk(A*;J) fur aile &amp;. (5T)

Wird m q und 3m + 4 &lt; 2n vorausgesetzt, so folgt ebenfalls (51&apos;).

Bemerkungl. Sind 91(^4) und 91 (8) uber Z orientierbar, so sind Satz 20
und sein Korollar fur J Z richtig (vgl. die oben zitierten Arbeiten [6]
und [7]).

Bemerkung 2. Sind (7) und (16) «Homologiesphàrenfaserungen», das heiBt
Faserungen durch Homologiesphàren ûber den Homologiemannigfaltigkeiten
A und 8, so gelten Satz 20 und sein Korollar ebenso, und Bemerkung 1 bleibt
richtig. Auch dies geht aus [6], [7] hervor.

Satz 20 impliziert Satz 19 fur den Fall einer Modifikation mit Hilfe von
Sphârenfaserungen des Umgebungsrandes, genauer: einer Modifikation, in
welcher sowohl zu A wie zu 8 ein Spharenbûndel 91 (A) bzw. 31(8) gehôrt

(mit s &gt; r &gt; 2), so daB kraft dieser Faserungen W — A und F — 8 zu
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W und zu F abgeschlossen werden. Dabei steht an Stelle von (51) die stârkere

Aussage (51), und dementsprechend gelten auch stârkere Korollare 2 und 3.
Es ist J K und nach der Bemerkung 1 sogar J Z, faDs F, W, 8, A
orientierbare Mannigfaltigkeiten sind, J Zz sonst. Nach Satz 1 kann
Satz 20 insbesondere auf die differenzierbare Modifikation angewandt werden.
Die Beweismethode zu Satz 19 ist deshalb von Interesse, weil es a priori nicht
klar ist, dafi man unter den Voraussetzungen des Satzes 19 das Résultat (51)
erhàlt, ein Cohomologieresultat, das fur die entsprechenden Homologie-
sphârenfaserungen ebenso erhalten wird.

In Satz 19 kônnen 8 und A aus mehreren Komponenten bestehen. Nach
(51) 1St

H°(8m) s H°{A«) fur r &gt; 3, (51°)

das heiBt die Anzahl der Komponenten von 8 ist gleich der Anzahl der
Komponenten von A, falls r n —- m &gt; 3. Handelt es sich um Modifikation
durch Faserung des Umgebungsrandes, wie dies soeben beschrieben wurde,
und besitzen S und A mehrere Komponenten (jede Komponente von 8 und
von A ist eine Mannigfaltigkeit), so gilt dieselbe Aussage fur r &gt; 2.

Wir sehen : die Isomorphismen

ôHk{8m) g* SHk(A*) fur k &lt; n - (m + 3)

sind eine Folge von (50). Wenn wir (51) hinzunehmen, erhalten wir dieselben
Isomorphismen fur k &lt; n — (m -f- 2). Daraus folgt : sind die Polyeder 8m,
Am (m q) m-Zyklen in V bzw. in W, und ist 2m + 3 &lt;n, so sind aie

entweder beide homolog null in V bzw. in W oder beide nicht homolog null.
Bei Modifikation durch Faserung des Umgebungsrandes gilt dièse Aussage fur
2m + 2 &lt; n. Vgl. auch § 14 b).

Bemerkung zur Orientierbarkeit. Fur Modifikationen durch Faserung des

Umgebungsrandes in Sphâren der Dimension &gt; 1 gilt : ist der Umgebungs-
rand j\f einfach zusammenhângend, so sind entweder 8 und A beide orientier-
bar oder beide nicht orientierbar; ist N einfach zusammenhângend und orien-
tierbar, so sind S und A orientierbar. Ferner gilt fur jede Modifikation: ist
n — m &gt;2, m &gt; q, so sind entweder F und W beide orientierbar oder beide
nicht orientierbar.

c) Zwei Spezialfâlle (1. 8 Z, 2. A E). Als weitere Anwendungen von
(52) auf Modifikationen durch Sphârenfaserung fassen wir die Fâlle 8m Sm

und A* Zq nâher ins Auge.
1. Es sei 8m die m-Homologiesphâre Em fur m &gt; 1 und die Homologie-

zelle fur m 0. Dann ist wegen (52) fïir r &gt; 2

Hk+r-*+l(A*) 0 fur k + r&gt;q + l, k + r ^ m, k + 1 ^ m, A^-l,
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das heiBt es ist

2ï*t4«) 0 fur k&gt;2q + 2 — n% k # m + q+l—n, k

Daraus folgt : sind die beiden Homologiespharenfaserungen

31 (£m) {tf*-1, En-m~\ Em) n — 2 &gt; m &gt; g

3? + 4: &lt; 2n, 2m + q + 2 &lt; 2n, gegeben, so wird A* die g-Homologie-
sphâre ûber J fur g &gt; 1 bzw. die Homologiezelle uber /fur g 0 (An-
wendung des Dualitâtssatzes in A) :

H«(A*; J) ûg J5T«(^«; J) ^ J; ^(^«j J) 0 fur fc ^ 0, g;

J K, falls die beiden Bûndel orientierbar sind, J Zz sonst. Somit kôn-
nen wir sagen :

Satz 21. Die berandete Mannigfaltigkeit W — A werde durch die Sphàren-
faserung 91 (A) zut kompakten Mannigfaltigkeit W abgeschlossen, und durch die
Sphàrenfaserung 91(8) zur kompakten Mannigfaltigkeit V, so da/3 die Modi-
fikation

$&gt;: (Vn,8m) -&gt;(TFn, A*) (1)

vorliegt. lêt nun 8m die m-Sphâre Zm fur m &gt; 1 oder ein Punkt fur m 0,
und ist

3q + é&lt;2ni 2m + q + 3 &lt; 2n, m&gt;q,

so wird A eine q-Homologie&amp;phâre ûber J fur q &gt; 1 bzw. ein Punkt fur q 0;
J K, wenn F, W, A orientierbar sind, J Z% sonst.

Falls F, W, A orientierbar sind» kann in Satz 21 auch J Z genommen
werden.

2. Es sei A9 die g-Homologiesphâre S* fiir g &gt; 1 und die Homologiezelle

fur g 0. In diesem Fall ergibt (52) (es ist immer n — 2 &gt; m &gt; g)

fïir Jfc + r&gt;g + 2, ifc+ r — # #0, g,

Es folgt : sind die beiden Homologiesphârenbùndel

n - 2 &gt; m &gt; g,
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gegeben, und ist

3m + l&lt;2w, m + 2q + 3 &lt;2n, m + 1 &lt; 2q,

so wird 8m die m-Homologiesphâre ûber J (es wird m &gt; q &gt; 1); J K,
falls es sich um orientierbare Bûndel handelt, J Z2 sonst. Dies wird ein-
gesehen mit Hilfe des Dualitâtssatzes in 8 und der Beziehung Hh (8) s lïfc+r (/S)

fur m/2 &lt; ifc &lt; m — 1. Wir erhalten analog zu Satz 21 :

Satz 22. Ist die Modifikation

0: (Fn, 8m)-&gt;(Wn,A«) (1)

wie in Satz 21 durcA die Sphàrenbilndel 9t(-4) ^ridî Îl(/S) gegeben, ist A* 21*

die q-Sphâre (q &gt; 1), und ist

3m+ 1 &lt;2n, m + 2q + 3 &lt; 2n, m + 1 &lt; 2q, m&gt;qf

so wird 8m die m-Homologiesphâre ûber J; J K, wenn F, îF, 8 orientierbar
sindy J Z2 sonst.

Wenn F, TF, 8 orientierbar sind, kann in Satz 22 J Z genommen werden.
Wie bei Satz 20 kônnen die Sâtze 21 und 22 wegen Satz 1 auf die differenzier-
bare Modifikation angewandt werden.

d) Ânhang: Verwendung der Homotopiesequenzen. Wenn es sich um
Modifikation durch Faserung des Umgebungsrandes handelt, wie wir es in b) be-
schrieben haben, so spielen neben den Gysinschen Sequenzen die exakten
Homotopiesequenzen der beiden Faserungen (7) und (16) eine Rolle (vgl. [31],
p. 90). Wir bekommen an Stelle von (52)

0

Daraus folgt

• • • «- n^iZ*-1) &lt;- nk(8m) &lt; k() ^()
fur 2&lt;k&lt;s-2, J

und weiter

fur 2&lt;i&lt;r-2 ^-(m + 2). (II)
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Ferner ist

(II) und (III) entsprechen (51). Setzt man voraus, daB A eine g-Sphâre ist,
so daB

7ik(A*) 0furl&lt;4&lt;g — 1,
so folgt aus (I) ^

nk{8m) £é nt-i^*-1) fur 2 &lt; h &lt; Min (5-2, g — 1).

Ist S eine m-Sphâre, so wird wegen (I)

nk{Aq) ^ n^Z*-1) fur 2 &lt; i &lt; Min (5 — 2, m — 2).

III. Kapitel. Cohomologietheorie der Modiflkation mit Abbildung

In diesem Kapitel werden allgemein solche Modifikationen untersucht, bei
denen eine Modifikationsabbildung &lt;p existiert. Da jede lokale Modifikation
eine Modifikationsabbildung besitzt, sind die Hauptergebnisse ùber die lokale
Modifikation in diesem Kapitel von neuem enthalten.

§ 13. Cohomologieeigenschaften der Modiflkation mit Âbbildung

a) Wir treiben Cohomologietheorie ûber dem Koeffizientenbereich J, J Z2
oder J K. Die Modifikation (1) sei eine allgemeine Modifikation und werde
durch die Abbildung 9? in (3) induziert. F, W seien n-dimensionale Homologie-
mannigfaltigkeiten, und 8m, Aq seien Teilrâume in V bzw. in W mit
n — 1 &gt; m &gt; q. Dann hat &lt;p den Abbildungsgrad ± 1 : g(&lt;p) ± 1, und
daraus folgt nach einem Satz von Hopf in [21] :

Hk(V). (53)

Die Abbildung ç&gt; in (4) induziert die Homomorphismen

^*: Hk(A) -+Hk(S), (54)

und wir erhalten wegen (53), (54), (29) :

0 0

f
i*

f

• (55)

t t t t
0 0 0 0
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Das Diagramm (55) ist kommutativ, denn die Homomorphismen 0*, &lt;p*,

* werden durch die Abbildung &lt;p induziert. Aus (55) folgt

S) s i*HX+^W, A),
unddaraus

ÔHk(S) ^dHk(A), \
} (56)

das heifit &lt;P*ÔHk{A) ** ôy*Hk(A) c* ÔHk(A) g* ÔHk{8) J

Ferner ist wegen (55)

j*H*(V,8)sâj*H*(W,A),
so daû fur L Hk(V) - &lt;p*Hk(W) »

i*H«(V) « »*fT*(TF) + I» ^ ï*ç&gt;*#*(JT) + L s ^*Ï*#*(ÏF) + L (57)

(57) besagt: ^* liefert einen Isomorphismus von i*Hk(W) in Hk(S).
Daraus folgt zusammen mit (56) : &lt;p* liefert einen Isomorphismus von
Hk(A) — i*Hk(W) in Hk{S), und ïp* ist ein Isomorphismus von Hk{A) in
Hk(8):

Lemma 4. Liegt die folgende Modifikation vor:
€&gt;: (Vn,Sm) -+(Wn,A«), (1)

V, W Homologiemannigfaltigkeiten, 8 und A Teilrâwme in V bzw. in W,
n — 1 &gt; m &gt; q, und ivird die Modifikation (1) durch die Abbildung

&lt;p:
F&quot; -+Wn (3)

induziert, so ist ^, (53)

(58)

b) Lemma 5. Unter den Voraussetzungen von Lemma 4 gilt

Hk(Vn) se Hk(Wn) + Hk(Sm) - Hk(A«). (59)

Beweis: (55) lautet bei Berucksichtigung von Lemma 4

0 0

(55&apos;)

t t t t t
0 0 0 0 0
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Aus (55&apos;) folgt

H*(8) « i*£T*(F) + ÔHk(8), #*(;!) s i*#*(TF) + SHk(A),
und ^JÏ^MF,^)^?*^^^^^), Hk+l(V,S)gÉHk+1(W,A),
so da8

d#*(#)^#*+MF,iS)~?*#fc+MF,iS)^

und damit
i*Hk(V) - î*J5T*(ÏF) s H*(8) -

Daraus folgt unter erneuter Anwendung von (55&apos;)

Hk(V) g* j*Hk(V, 8) + i*Hk(V) s ?*

^ J5T*(ÏF) - i*Hk(W) + i*Hk(V) ^ £T&amp;(Tf) + Hk(S) -
womit (59) bewîesen ist.

c) Koeîflzientenbereich J Z. Es wurde in a) und in b) J K bzw.
J Z% vorausgesetzt. Sind V und W n-dimensionale Homologiemannigfaltig-
keiten, die ûber Z orientierbar sind (das heiBt es gilt der Poincarâ3che DuaK-
tâtssatz ûber Z mit Hilfe der Operatoren (44)), so bleiben unter den Voraus-
setzungen von Lemma 4 die Beziehungen (53) und (58) ùber J Z richtig :

(53&apos;)

(58&apos;)

Wenn F, W Mannigfaltigkeiten sind, wird (58) bzw. (58&apos;) (im orientierbaren
Fall liber einem beliebigen Koeffizientenbereich) auch sofort so eingesehen:

man nimmt offene Umgebungen 8 von 8 in F und A in W, verdoppelt 8 zur

kompakten Mannigfaltigkeit 8 und A zu A, &lt;p induziert eine Modifikations-

abbildung ç?: 5 -&gt;-4, die Homologiegruppe Hk(8) liegt isomorph in -ff^t/S)

vermôge der Inklusionsabbildung i:8 -±8, ebenso Hk(A) in £rfc(.4); dies

nûtzt man dual aus und wendet (53) auf &lt;p an, woraus (58) folgt.
Nun gilt fur einen beliebigen Koeffizientenbereich J : gehôrt zu einer stetigen

Abbildung &lt;p: (F, 8) -&gt; (W, A), F, W9 8, A Polyeder, das (kommutative)
Homomorphismenschema

t t t t t
0 0 0 0 0



Modifikation von reellen und komplexen Mannigfaltigkeiten 269

so fûhrt dies zur exakten Sequenz

A Hk(V, 8) I 0*Hk(W, A)&apos;^Hk(V) I &lt;p*Hk(W)^Hk(8)/v*Hk(A)

Im Falle einer Modifikation mit Abbildung erhalten wir daraus mit Hilfe
von (28)

Hk(V) I ç&gt;*Hk(W) g* Hk{S) I y*Hk(A), (59&apos;)

wobei der Isomorphismus (59&apos;) durch i* vermittelt wird, und wo zu bemerken
ist, daB (59&apos;) bei einer allgemeinen Modifikation mit Abbildung (F, W, S, A
Polyeder) gilt, falls (53) und (58) (es geniigt (53)) erfullt sind. (59&apos;) gilt ins-
besondere liber J Z, wenn F und W ûber Z orientierbare Homologie-
mannigfaltigkeiten sind. Wegen (53&apos;), (58;), (59&apos;) kônnen wir schreiben:

Hk(V) I Hk(W) s Hk(8) I Hk(A). (59*)

Dabei wird Hk(W) durch &lt;p* in Hk(V) und Hk(A) durch ^* in H*(8) iso-
morph eingebettet. (59&quot;) stimmt fur J K bzw. J Z% mit der Isomor-
phie (59) ûberein.

Duale Konstruktion. Gehôrt zu q&gt;: (F, 8) -&gt; (W, A) das (kommutative)
Homomorphismenschema

lHk(V,8) ^Hk(V) ^Hk(S) lHh+1(V,8)
\&lt;p*

I I I 4-

0 0 0 0

so bekommen wir die exakte Sequenz

...l {Hk(V, 8) | &lt;P*}£ {Hk(V) \v*}£ {Hk(8)

wo fur y^: L-&gt;Lf (L, Lr Gruppen, f# Homomorphismus) die Gruppe
{L | y&gt;*} den Kern des Homomorphismus y&gt;% bedeutet. Fur eine Modifikation
mit Abbildung bekommen wir daraus

und (59^) gilt wie (59&apos;) ûber J Z, wenn F und W iiber Z orientierbare
Homologiemannigfaltigkeiten sind.
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§ 14. Airwendungen

a) Die Voraussetzungen zu Lemma 4 und 5 kônnen auch so formuliert wer-
den : &lt;p ist eine Modifikationsabbildung der Homologiemannigfaltigkeit F auf
die Homologiemannigfaltigkeit W mit der Singularitâtenmenge 8 iiber A,
oder : F und W sind modifikationsàquivalent durch die Abbildung &lt;p mit der
Singularitâtenmenge 8 ûber A. Nun formulieren wir Lemma 5 nochmals als
Satz:

Satz 23. Sind die Homologiemannigfaltigkeiten Vn, Wn modifikationsâqui-
valent durch die Abbildung &lt;p mit der Singularitâtenmenge 8m liber Aq,
n — 1 &gt; m &gt; q8), so gilt

Hk(Vn) g* Hk(Wn) + Hk{8m) - Hk(A*) (59)

die Cohomologiegruppen liber dem Korper K genommen, wenn V und W orien-
tierbar sind, Hier dem Korper Z2 andernfalls.

Bemerkung. Es ist zu betonen, da8 S und A keine Homologiemannigfaltigkeiten

zu sein brauchen, sondern nur Teilpolyeder in F bzw. in W. Es handelt
sich um allgemeine Modifikation.

Als Korollar zu Satz 23 bekommen wir :

Korollar. Unter den Voraussetzungen des Satzes 23 ist

Hk(V) g* Hk(W) + Hk(8) fur k &gt; q + 1 (69)

H*(V) g* Hk(W) fur k &gt; m + 1 (59;)

Bei (49), (49&apos;) in §12 wurde die Isomorphie Hk(V) ^ Hk(W) fur k &gt; m + 2

festgestellt fur allgemeine Modifikationen (1) (auch ohne Abbildung) mit
w&amp;i&gt; ?• (59;) ist also eine Verschârfung von (49;) fur den Fall einer Modifikation

mit Abbildung.
(59)besagtfûr k 0

H«(S)^H«(A)9 (59°)

die Anzahl der Komponenten von 8 ist also gleich der Anzahl der Komponen-
ten von A. (59°) ist eine Verschârfung von (51°).

Beispiel. Es sei Mn JE1&quot;-1 x U1 die n-dimensionale Kugelrinde, n &gt; 2.
Mn werde einmal durch Identifikation der Endpunkte von U1 und das zweite
Mal durch Identifikation der Antipodenpunkte auf den beiden Randsphâren
abgeschlossen. Dann erhalten wir die Modifikation

0: (Z*-1 x Z\ En~x) ~&gt; (P~, P&quot;-1 X

8) Vgl. die Bemerkung ûber die Dimensionen am Schluû von c).
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in welcher Wn P* den durch den reellen or-ProzeB lokal modifizierten
w-dimensionalen reell projektiven Raum darstellt. Hier besteht 8 aus einer
Komponente und A aus zwei, so daB weder dièse Modifikation 0 noch die
dazu inverse 0~~x durch eine Abbildung erzeugt werden kann (unabhàngig von
der Wahl des zu 0 gehôrenden Homôomorphismus (2)). Ist n 2nf &gt; 2, so
kann der zweite AbschluB durch Faserung in Kreislinien (Hopfsche Faserung)
vorgenommen werden, wir bekommen die Modifikation

welche nicht durch Abbildung erzeugt werden kann (dasselbe gilt fur &lt;P~1),

und fur n in&apos; &gt; 4 liefert der AbschluB durch Faserung in 3-Sphâren in
analoger Weise eine weitere Modifikation dieser Art. Wird der zweite AbschluB
dadurch gewonnen, daB die Randsphâren von Mn(n &gt; 2) je auf einen Punkt
zusammengezogen werden, so erhalten wir die Modifikation

0 : (S»&apos;1 X Z1, Z»-1) -&gt; (Zn, Z°)

welche samt ihrer inversen wiederum von keiner Abbildung stammen kann.

b) Anwendung von (59&apos;). A*, 8q seien #-dimensionale Polyeder (m q),
A sei ein g-Zyklus in W, und 8 ein solcher in F. Dann gilt : soll F durch
Modifikation von W durch Ersetzen von A durch 8 erhalten werden, so daB dièse
Modifikation durch eine Abbildung cp : F -» W induziert wird, so sind ent-
weder A und 8 beide nicht homolog null in W bzw. in F oder beide homolog
null. Es ist also unmôglich, einen Rand A in W durch einen Zyklus 8 zu
ersetzen, der in F nicht berandet, und es kann auch nicht ein Zyklus A, A r^ 0

in W, durch einen Rand in F ersetzt werden, wenn wir uns auf Modifikation
mit Abbildung beschrânken.

Beweis: Es sei Aq &lt;±, 0 in W, so daB

und es sei 8q ~ 0 in F, so daB

Daraus folgt mit (29), angewandt an der Stelle k q + 1,
0

t
ï) -£j5r«+i(F) -»(

t
0
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es ist also
H*(8) s H**(V) + J,

entgegen (59;) fur m q, angewandt fur i w + l, so dafi die betrach-
tete Modifikation nicht durch eine Abbildung erzeugt werden kann. Genau

gleich zeigt man im Falle A* ~ 0 in W, 8* r^ 0 in F, daB

H**(V) &amp; H**(W) + H«(A) &amp; H**(W) + J
so dafi auch jetzt die Modifikation nicht durch eine Abbildung induziert werden

kann.

Beispiel. Es sei die Torusflàche T2 in der 3-Sphâre Sz eingebettet, und es
werde das Innere von T% ausgebohrt, so dafi T2 der Rand einer berandeten
3-dimensionalen Mannigfaltigkeit M3 wird. Nun schliefien wir M3 auf zwei
verschiedene Arten ab : einmal benutzen wir dazu die Faserung von T% in die
Meridiankreise, und das zweite Mal diejenige in die Parallelkreise, so dafi wir
aus M3 — T% durch Hinzufugen von S1 bzw. von A1 (beides Kreislinien) die
beiden geschlossenen Mannigfaltigkeiten F3 Zz und Wz S1 X E2 er-
halten. Es ergibt sich somit die Modifikation

0: (i73, Z1) -* (Z1 x I^Z1).
Es ist nun sofort zu erkennen, dafi die beschriebene Modifikation sowie ihre

inverse nicht durch eine Abbildung gegeben werden kann, denn in F3 ist S1

homolog null, wâhrend A1 in W9 nicht homolog null ist.

Bemerkung. Der hier besprochene Sachverhalt folgt auch sofort aus (56) :

dH*(S)g*dH*(A)9
was allgemein ftir k &lt; n — (m + 3) gilt (auch ohne Abbildung, vgi. Schlufi
von § 12 b)). Wegen (29) folgt daraus:

Hk(W)^Hk(A)-+O (a)

ist dann und nur dann richtig, wenn

Hk(V)^Hk(8) -*0 (b)

gilt. Falls (a) erfullt ist fur aile k9 nennen wir die Einlagerung A c W homo-

logietreu (ûber dem Koeffizientenbereich J). Damit sind bei einer Modifikation

mit Abbildung die Einlagerungen A c W und 8 cV entweder beide

homologietreu oder beide nicht homologietreu.

c) Ânwendung von (59) auf Bimodiflkationen. (59) gilt auch, wenn F und
W bimodifikationsâquivalent sind durch die Abbildung q&gt; (&lt;px\ ç?2). Dar-
unter verstehen wir folgendes: in F besteht 8 aus den beiden zueinander

punktfremden Mengen 8t und 8%, und in W besteht A aus den punktfremden
Mengen Ax und A29 so dafi F — #2 durch Modifikation aus W — A2 erhal-
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ten wird mit Hilfe einer Modifikationsabbildung von F — 82 auf W — A2
mit der Singularitâtenmenge 8X ûber Al9 und daB desgleichen W — At durch
Modifikation aus F — 8X erhalten wird durch eine Modifikationsabbildung
von W — Ax auf V — 8X mit der Singularitâtenmenge A2 tiber 82. Wenn
wir die Abbildungen auBer Betracht lassen, so ist eine Bimodifikation eine
Modifikation, in welcher 8 und A eventuell aus mehreren Komponenten beste-
hen; jede Bimodifikation ist eine Modifikation. Wir beschreiben eine Bimodifikation

folgendermaBen : gehen wir von Vt F —- S2 + A% aus, das heiBt
von F, modifiziert durch Ersetzen von 82 durch A2 (der Homôomorphismus 9/
zwischen V — 8 und W — A kann als Identitât angenommen werden), so
wird durch eine Abbildung yx : Fl -&gt; W die Modifikation

induziert, und mit W2 W — Ax + 8X Vx haben wir eine Abbildung
ç&gt;2 • ^2&quot;^ ^i welche die Modifikation

02: (W2,A2)-&gt;(V9S2)

erzeugt. Wir sagen: die Bimodifikation wird durch «die Abbildung» &lt;p (ç^;
q&gt;2) erzeugt, wobei q&gt; aus zwei Abbildungen yx und ç&gt;2 besteht. ç? ist also keine
Abbildung im ublichen Sinne, vielmehr handelt es sich hier um ein Paar
zweier Abbildungen von Vx auf W und von W2 auf F. Wenn wir von Bimodifikation

sprechen, so meinen wir immer eine solche Modifikation mit den
beiden Abbildungen &lt;px und &lt;p2.

Wenden wir nun (59) auf die beiden Modifikationen &amp;l9 &amp;2 an, und berûck-
sichtigen wir Fx W2) so folgt

« H*(W)

Hk(W2) ^HHV) + HHA2) - Hk(82)

J5T*(F) « J5r*(TT)

Es gilt somit der folgende Satz :

Satz 23 6. 8ind die Homologiemannigfaltigkeiten Fn, Wn bimodifikations-
âquivalent durch die Abbildung &lt;p (q&gt;x\ &lt;p2) mit den kritischen Mengen
8m (8X; 82) und Aq (Ax\ A2), n — 1 &gt; Max (m, q), so gilt

H*(V) ^ H*(W) + HH8t) + H*(82) - Jff»^) - HHA2) \
\ (596)

s #W + ^W - H*(A), j

J =z K, wenn V und W orientierbar sind9 liber J Z2 andernfalls.

18 Commentarii Mathematici Helvetici
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Dabei ist also 8X Sf% die Singularitâtenmenge von &lt;px ûber der Aus-
nahmemenge A1 A\X&gt; und A2 A\% ist die Singularitâtenmenge von
&lt;p2 ûber der Ausnahmemenge 82 Sf2, und es ist

m1&gt;ql9 m2&lt;q29 m Max (ml9 m2), Max (ql9 q2).

Satz 23 ist in Satz 236 enthalten. Entsprechend dem Korollar zu Satz 23

gilt hier :

Korollar. Unter den Voraussetzungen des Satzes 23
&amp; ist

JET*(F) qé Hk(W) fûri&gt; Max (m, q) + 1. (596)

Aus Satz 23Ô folgt: sind die beiden Homologiemannigfaltigkeiten F, W
homôomorph, so gelten fur die kritischen Mengen S, A bei einer Bimodifika-
tion zwischen F und W die Isomorphismen

Hk(8)g*Hk(A) fur aile ifc,

die kritischen Mengen in F und in W haben also dieselbe additive Homologie-
struktur ûber dem Kôrper K bzw. ûber Z2. Sind zum Beispiel die homôomor-
phen Mannigfaltigkeiten F, W bimodifikationsàquivalent durch 9? (ç?x ; ç&gt;2),

so da6 &lt;px die Teilmenge Sf1 von F mit mx &gt; 1, bmi (8J &gt; 1 auf einen Punkt
Al p in W abbildet, so muB auch ç&gt;2 eine Singularitâtenmenge Aq22 mit
Ï2 ^ 1 besitzen, denn es ist

H*(8i) + H*(S2) ^ JBT*(p)

so daB fur die Bettischen Zahlen: bk(A2) &gt; bk(81)9 und daher q2 &gt; 1. Ist
auBerdem ^S2 P&apos; eîn Punkt in F, so erhalten wir bk(A2) 6A;(/8&apos;1).

Bemerkung. Wir haben in Satz 23 bzw. 236 angenommen, daB n — 1

&gt; ^ ^ î bzw. ^ — 1 &gt; m1 &gt; g-L und n — l &gt; q2&gt;m2. Dièse Bedingung
wurde nur in der Form benutzt, daB n — 1 &gt; Min (m, g) bzw. n — l
&gt; Max (Min (%, gx), Min (m2, q2)) gilt, und daraus folgt dann naeh (58),
(59), daB die Ungleichungen n — 1 &gt; m &gt; q bzw. n — 1 &gt;m1&gt; ql9
n — 1 1&gt; ?2 ^ m2 f™ dte Homologiedimensionen richtig sind.

d) Anwendung von (59&apos;)
9 (59 &amp;) auf komplexe Modiflkation mit Abbildung

bzw. komplexe Bimodifikation. Sind die komplexen Mannigfaltigkeiten F(n),

Win) komplex modifikationsâquivalent durch die Abbildung &lt;p, so daB &lt;p kom-
plex analytisch ist mit der komplexen Singularitâtenmenge 8{m) ûber der

komplexen Ausnahmemenge AW (8 und A bestehen aus endlich vielen
komplexen Mannigfaltigkeiten mit eventuellen Singularitâten, es handelt sich um
aUgemeine Modifikation), so muB q &lt; m &lt; n — 1 oder fur die reellen Dimen-
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sionen 2q &lt; 2m &lt; 2n — 2. Es folgt aus (59&apos;), dafi die (2n — l)-te Bettische
Zahl 62n-i eîne Invariante bei der Abbildung &lt;p ist, fur J den Kôrper R ge-
nommen (oder den beliebigen Kôrper K) :

(60)

und der Dualitâtssatz in F und in W impliziert

bl(V) bl(W). (60&apos;)

(60), (60&apos;) gelten wegen (596) ebenso bei komplexer Bimodifikation : die erste
Bettische Zahl ist eine Invariante bei komplexer Bimodifikation. Siehe auch
Satz 336. Zur Beziehung der komplexen Bimodifikation zu den birationalen
Transformationen in der algebraischen Géométrie vgl. § 19a).

e) Quateraionale Modifikation. Ist die Modifikation (1) quaternional :

0: (FM, SM)-&gt;(WM,AM),

das heiBt sind F, W quaternionale Mannigfaltigkeiten, und 8, A quaternional
eingelagert in F bzw. W (evtl. mit Singularitâten), so folgt aus (49&apos;) wegen
n — 1 &gt; m ^ &lt;1 oder fur die reellen Dimensionen wegen 4n — 4&gt;4m&gt;4#

Hk(V) g* Hk(W) fur k &gt; in - 2

fur J B. Handelt es sich um quaternionale Modifikation mit Abbildung
entsprechend der in d) betrachteten komplexen Modifikation mit Abbildung,
so wird wegen (59r)

Hk(V) ^ Hk(W) fur k &gt; in - 3

wir erhalten also analog zu (60&apos;) bk(V) bk(W) fur k 1, 2, 3. Dasselbe

gilt bei quaternionaler Bimodifikation: die Bettischen Zahlen bl9 b2, bz sind
Invarianten bei quaternionaler Bimodifikation.

f) Anwendung au! die lokale Modiflkation (Ersetzen eines Punktes). p sei
ein Punkt in W. Naeh § 1 c) wird jede Modifikation (1) mit A p durch

eine Abbildung cp induziert, so daB aus (59) bzw. (59) unter Berûcksichtigung
der Bemerkung in c) folgt :

Satz 24, Liegt eine lokale Modifikation vor:

0: (Vn,8m)-&gt;(Wn,p), (61)

F, W Homologiemannigfaltigkeiten, 8 Teilraum in F, so ist 8 ztisammenhân-

gend, und es gilt
Hk(Vn) ^ Hk(Wn) + Hk(8m) fur k&gt;\9 (590)

Uber J K, fàlls V und W orientierbar sind, tiûer J Z% sonst.
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Satz 24 enthâlt Lemma 1. Er kann angewandt werden auf die Hopfschen
(r-Prozesse (reeller, komplexer und quaternionaler cr-ProzeB). Daraus ist er-
sichtlich, daB eine Mannigfaltigkeit W und ihre durch einen or-ProzeB in
einem Punkt p modifizierte Mannigfaltigkeit F nicht homôomorph sind. All-
gemeiner folgt aus (590) : wird die Mannigfaltigkeit W durch Ersetzen des

Punktes p durch eine kompakte Mannigfaltigkeit 8 zur Mannigfaltigkeit F
modifiziert, so ist F nur dann homôomorph mit W, falls 8 mit dem Punkt p
zusammenfâllt. Dieselbe Aussage bleibt richtig, wenn 8 zusammengesetzt ist
aus mehreren kompakten Mannigfaltigkeiten $^&lt;?, q 1, 2,..., t (vgl. § 11).

Bemerkung zur Torsion. Benutzt man Satz 23 in der Formulierung (59&apos;), so

folgt fur die Modifikation (61)

Hk(V) I &lt;p*Hk(W) ss Hk(8) ftir k &gt; 1, (59£)

und dies gilt auch uber J Z, falls F und W ûber Z orientierbar sind.

§ 15. Cohomologieeigenschaften im Falle, wo A und 8
Homologiemannigfaltigkeiten sind

a) Wird die Modifikation (1) durch die Abbildung (3) induziert, und sind
F, Wf 8 Homologiemannigfaltigkeiten, so kônnen wir das folgende Lemma
aussprechen :

Lemma 6. Wird die Modifikation (1), in welcher Vn, Wn, 8m Hvmologie-
mannigfaltigkeiten sind, durch die Abbildung (3) induziert, und ist fur
r n — m &gt; 1

n Xr (62)
so gilt „ „

v-o ^-o l (63)
fur 0 &lt;s &lt;r — 1, fir + s &lt; m/2 J

die Cohomologiegruppen ûber J K genommen, wenn F, W, S orientierbar
sind, ilber J Z% andernfalls.

Beweis: Mit Hilfe des Pendelverfahrens, in welchem an die Stelle von (33)
die Isomorphie (59) tritt.

Beweisen wir zunâchst (63) fur «==0: es gUt (59°): H°(8) ç*
(59), angewandt fur k n — r, liefert

s H*-+(W) + H»-r(8) - H«-*(A) g* Hn~*{W) + H°(S) -
H°(A) - H*
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nach dem Poincaréschen Dualitâtssatz fur V und fur W ist

Hr(V) g* Hr(W) + H*(A) - Hn~r(A) ;

(59), angewandt fur k r, liefert

Hr(V) s Hr(W) + Hr(S) - Hr(A)

so da8 die beiden letzten Isomorphien zur Folge haben :

Hr(8) g* H°(A) + Hr(A) - H*~+(A) ;

nach dem Poincaréschen Dualitâtssatz fur 8 ist

Hn-f(S) g* Hr(8) g* H* {A) + Hr{A) - Hn~&apos;(A) ;

(59), angewandt fur k n — 2r, liefert

Hn~2r(V) ^ Hn-*(W) + H&quot;-»(8) - Hn~

H°(A) + Hr(A) - Hn~&apos;(A) - H«~

nach dem Poincaréschen Dualitâtssatz fur V und fur W wird bei Anwendung
von (59) fur k 2r

H°(A) + Hr(A) - Hn-r(A) -
H2r(8) -

so dafi

H»(8) ^ JÎ0(-4) + #&apos;(4) + H2y(^) - Hn~r(A) ~
usw.

Bei Berûcksichtigung von Hn(A) 0 erhalten wir in dieser Weise fort-
fahrend(63) fur s 0.

Ist l&lt;s&lt;r-—l, so liefert das obige Verfahren, beginnend mit k n — 89

die Isomorphien (63) fur diesen Fall.
Wegen (62) schliefit sich das Pendelverfahren lûckenlos in der Mitte, und

damit ist das Lemma bewiesen.

b) Unter den Voraussetzungen von Lemma 6 wird die additive Cohomologie-
struktur von 8 ûber K oder ûber Z2 mittels (63) durch diejenige von A be-

stimmt. Ist insbesondere A eine Homologiemannigfaltigkeit der Dimension

q m, so impliziert (63) wegen des Dualitâtssatzes in A

Hk(8)^Hk(A) und Hk(V) g* Hk{W) fur aile k9

und es ist sofort ersichtlich, daB dies auch dann gilt, wenn (62) nicht erfullt
ist. Ausfiihrlich:
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Satz 26. Wird die Modification

0: (Vn,8m)-+(WntAm),

F, W, 8, A Homohgiemannigfaltigkeiten, n — 1 &gt; m, durch eine Abbildung
&lt;p: F -&gt; W induziert, so ist

Hk(Sm;J)^Hk(A™;J) fur aile h

Hk(Vn;J)g*Hk(Wn;J) fur aile Je,

J — K, wenn F, W, S, A orientierbar, J Z% sonst.

Folgerung: sind die beiden kompakten Mannigfaltigkeiten Fn, Wn gegeben,
und sind Fn — Sm und Wn — Am homôomorph, 8 und A kompakte
Mannigfaltigkeiten mit verschiedenen additiven Cohomologiestrukturen ûber J,
J wie in Satz 25 gewâhlt, m &lt; n — 1, so lâBt sich der Homôomorphismus
(p1 zwischen F — 8 und W — A nicht fortsetzen zu einer stetigen Abbildung
von F auf W oder von W auf F. Dasselbe gilt, wenn F und TF verschiedene
additive Cohomologiestrukturen ûber J besitzen.

Ferner ist unmittelbar einzusehen : unter den Voraussetzungen des Satzes 25

induziert die Abbildung &lt;p eine Abbildung !p : Sm -&gt; Am vom Abbildungsgrad
gÇp) j- 1, J wie oben gewâhlt.

Ist 0 eine differenzierbare Modifikation, so lâBt sich Satz 25 mit Hilfe von
Satz 11 versehârfen: &lt;p muB dann unter den Voraussetzungen des Satzes 25 ein
Homôomorphismus sein.

c) Mit PJ? bezeiehnen wir einen Raum der Dimension n Xr mit dem
Poincaréschen Polynom

_|_ £r _[_ |2r _|_

0 fur k ^ yix
das heiBt es soll bk(P?; J) {r 1 fur k^iir

J K oder J Z2.

(64)

Unter H(Mn; J) verstehen wir die direkte Summe aller Cohomologiegrup-
pen von M ûber J : n

Ist in Lemma6 neben (62) noch g (A~a)r erfûllt, das heiBt mit
0 a — 1

m — g pr &gt; 0 (65)
so gilt :
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Lemma 6&apos;. Wird die Modifikation (1), in wehher Fn, Wn, 8m, A* Homologie-
mannigfaltigkeiten sind, durai die Abbildung (3) induziert, und ist

n=: Ar, (62)

r n — m &gt; 1, ferner q (A — oc)r, so da/î mi£ /? a — 1

m — q pr&gt;0 (65)
50 ^ft iï(Sw; J) « ff^ff X P^-»; /) (63&apos;)

J K, wenn F, W, 8, A orientierbar sind, J Z2 sonst.

Denn mit (62), (65), (63), (64) bekommen wir bei Berûoksichtigung des
Dualitâtssatzes in A for H(S;J) die additive Cohomologiestruktur von
A* x F?~q uber «7, J — K oder J jZ2, nach dem Satz von Kûnneth
(vgl. [3], p. 308).

d) Nun wollen wir die Bedingung (62) fallen lassen :

Satz 26. Die Modifikation

0: (Vn,8m) -&gt;(TFn, 4«) (1)

werde durch die Abbildung
(p l V —&gt;¦ W \o)

erzeugt. F, W, 8, A seien Homologienumnigfaltigkeiten, und es sei fur
r n — m &gt; 1 - ¦ « ^ ^, ^ i— A + £ 0&lt;«&lt;1

m — q j?r &gt; 0 (65)

^ H (S™; J) ^ H(^« X P?-*; J). (63&apos;)

hingegen m — q&gt; 0 und
m — q =é 0 modr (66)

m^ x x

EH*r-*{A*\ J) ç*ZHvr+t + e(A«; J)

/ttr aKc em^ 0&lt;e&lt;tr-l/2, a (r — f)/2

rd at^cA jetzt H(8m;J) mit Hilfe von H(A*;J) durch (63) bestimmt:

H*r+S(8m\ J) g*ZHvr+8(A«; J) — ZH&quot;-&quot;&quot;&apos;^*; J)

&lt;«&lt;r-~l, /*/• + «&lt; m/2

J K, wenn F, îf, /S, -4 orientierbar sind, J Z2 sonst.

(63)
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Beweis: Setzen wir fi* [A/2], so wird

Iu*r
— m/2, wenn u*r — m/2 &gt; 0

\ (68)
(/** + l)r — n/2, wenn n*r — m/2 &lt; 0 J

Das Pendelverfahren liefert die Isomorphismen (63) fur aile k /jr + 5
&lt; /**r, und wegen des Dualitâtssatzes fur 8 werden dadurch auch die Co-

homologiegruppen Hk(S) fur k &gt; m — ^*r bestimmt.
Ist nun A gerade, das heiBt /**r — m/2 &gt; 0, so ergibt der Dualitâtssatz in S

H»*r~6 (8) ûg JïC*-1)&apos;* &lt;+*(£), o &lt; e &lt; a - 1/2

&lt;y dureh (68) gegeben. Zusammen mit (63) bekommen wir dann (67).
Ist X ungerade oder [t*r — m/2 &lt; 0, so ergibt der Dualitâtssatz in F und

in W zusammen mit (59)

oder nach dem Dualitâtssatz in 8
^?&apos;-«(5) — ir*-&apos;*&apos;&apos;*-*^) s H{fi*-1)r+t+e(8) —

ftir 0 &lt; e &lt; a — 1/2, cr durch (68) gegeben. Daraus folgt (67) wegen (63).
Ist (67) erfûllt, so stôBt das Pendelverfahren auf keinen Widerspruch, und

es gilt (63) fur aile k &lt;m/2. Dadurch wird H (8) durch H (A) bestimmt,
sowohl im Falle (65) als auch im Falle (66). Gilt (65), so wird

q (A - fi ~ l)r + t,
und daher ist (67) eine direkte Folge des Dualitâtssatzes fur A, so daB H(8)
durch jBT(^I) mittels (63) bestimmt wird. Es gilt dann (63&apos;) wie bei Lemma 6&apos;.

Bemerkung zur Bedingung (66). Im Falle einer differenzierbaren Modifikation
tritt (66) nie ein, sondern es gilt (65) und damit (63&apos;) ; fur r &gt; 2, m -— q &gt; 0 ist
weiter r 2 rr. Denn eine differenzierbare Modifikation mit Abbildung ist nach
Satz 11 eine Modifikation durch Verfeinerung der Sphârenfaserung, und (65)
nebst r 2r/ fur r&gt;2, m — q&gt;0 folgen aus § 10 e).

e) Torsion. Sind die Homologiemannigfaltigkeiten F und W ûber Z orien-
tierbar, so kann versucht werden, ein Verfahren liber J Z anzuwenden,
das dem in diesem Paragraphen besprochenen Pendelverfahren analog ist.
Man bekommt

&lt;p*HHW) s Hn_k(V) /

wo der erste Isomorphismus (59&quot;) darstellt, der zweite durch den Poincaré-
schen Dualitâtssatz in F und in W (nach (44)) erzeugt wird, der dritte wegen
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^y- g(cp)I (g(&lt;p) Abbildungsgrad von q&gt;9 I Identitât) und
g(&lt;p) ±1 gilt, und der vierte nach (59*) richtig ist. Wir erhalten also

H*{S)

und ist 8m eine uber Z orientierbare Homologiemannigfaltigkeit, m n —- r,
SO folgt

Die Gruppe Hk(S) ist also eine Gruppenerweiterung von !p*Hk(A) (das
heiBt von Hk{A)) mit der Faktorgruppe {Hk-r(8) \y*Ds}. (63*) liefert
jedoch fur J Z kein Verfahren zur schrittweisen Bestimmung von H (8)
bei bekanntem H (A), wie wir dies fur J K bzw. J Z2 durchfuhren
konnten. Denn es spielt der Homomorphismus ci* eine Rolle, und auBerdem
sind nach (63*) Gruppenerweiterungen vorzunehmen, welche fur J Z nicht
eindeutig bestimmt sein mûssen. Man erkennt immerhin : besitzt A keine
Torsion, so trifït dasselbe auf 8 zu, falls F, W und S uber Z orientierbar sind.

f) Zur Orientierbarkeit. Es kann dieselbe Ûberlegung gemacht werden wie
bei (37r) bzw. bei (37) im Beweis zu Satz 12. Ist nâmlich m — q &gt; 2r &gt; 2,
und ist i : S -&gt; F die Inklusionsabbildung, so existiert nach (55&apos;) bzw. (59;)
eine Cohomologieklasse xm € Hm(V) mit i*zm &apos;zmt wo xm die m-dimen-
sionale Fundamentalklasse von S ist, und ebejiso gilt fur die durch das Pendel-
verfahren mit Hilfe von Dv, D8 aus xm erhaltenen Klassen xr, x2r, xn~&quot;2r

i*x x t^ 0 (a; ist eine der Klassen xr, x2r, xn-2r9 x ist die entsprechende
Klasse in 8). Wir bekommen dann die Gleichung (37r) :

xrxrxn-2r xn,

wo xn die w-dimensionale Fundamentalklasse von F bezeichnet. Es folgt : ist
r ungerade und m — q &gt; 2r &gt; 2, so ist mindestens eine der Homologie-
mannigfaltigkeiten F, W, 8 nicht orientierbar.

§ 16. Beispiele, Ânwendungen, zusâtzliche Bemerkungen

a) BeispieL Wir geben ein Beispiel zweier Mannigfaltigkeiten F und W, die
nicht modifikationsâquivalent durch Abbildung sind, falls die kritischen Men-

gen 8 und A als Homologiemannigfaltigkeiten vorausgesetzt werden. Z* sei die
4-Sphâre und E2 X E2 das topologische Produkt zweier 2-Sphâren. Wir be-

haupten :

1. Es gibt keine stetige Abbildung von Z&quot;4 auf Z2 x Z2, welche eine
Modifikation

0: (Z\8)-*(Z2 x Z\A)
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erzeugt, 8 und A Homologiemannigfaltigkeiten mit dim(#) &lt; 3 oder
dim(^l) &lt;3;

2. es gibt keine stetige Abbildung von Z2 x Z2 auf 274, welche eine Modi-
fikation

0f: (Z* x Z\ 8f) -&gt; (27«, A1)

erzeugt, 8f und A&apos; Homologiemannigfaltigkeiten mit dim(5&quot;) &lt; 3 oder

Beweis zu 1. : Fur die Modifikation 0 muBte (58) gelten, das heiBt

0 -&gt; Hk(Z2 x Z2) -^ Hk(Z*),

und dies ist falsch fur h 2.

Beweis zu 2. : Fur die Modifikation &amp;f impliziert (59) (J Z2)

b%(A&apos;) + 2 h(S&apos;), bz(Al) b%(Sf),

und daraus folgt: es ist 6&amp;(aS&apos;) O fur &amp;&gt;3 unmôglich wegen
und ist die Homologiedimension von 8&apos; gleich 3, so kommt man zu einem
Widerspruch wegen des Dualitâtssatzes fur A&apos; und fur S&apos;.

Es sind dieselben Behauptungen 1. und 2. richtig fur die beiden
Homologiemannigfaltigkeiten Z2n und Zn x Zn, wenn Zk die ^-Homologiesphàre uber
Z2bedeutet, h &gt; 1.

b) Weitere Beispiele von Homologiemannigfaltigkeiten, die nicht modifika-
tionsâquivalent durch Abbildung sind, liefern die Paare Fn, Wn, so daB weder
F auf W noch W auf F mit dem Abbildungsgrad ± 1 abgebildet werden kann.
Hier mûssen 8 und A Teilpolyeder sein mit dim(#)&lt;w— 1 oder
dim(A) &lt; n — 1. Nach (58) geniigt es, zwei solche Homologiemannigfaltigkeiten

Fn, Wn anzugeben, fur welche

br(V) &gt; br(W) fur ein gewisses r,
\ (69)

b8(V) &lt; ba(W) fur ein gewisses s, J

J K oder J Z2. Wir sehen also: ist (69) erfûllt fur zwei
Homologiemannigfaltigkeiten F und W, so sind sie nicht modifikationsâquivalent durch
Abbildung.

Beispiele. Es sei F4 (Z1)* Z1xZ1xZ1xZ1, Z1 ist die Kreislinie,
und W* Z\ Pj sei die mittels des reellen cr-Prozesses ftinfmal lokal
modifizierte 4-Sphâre Z* (bzw. der viermal lokal modifizierte reell projektive
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Raum P4). Wir bekommen dann die Poincaréschen Polynôme

i7(F4; S) 1 + 4f + 6|2 + 4£* + |4,

uber J Z2, so daB ô^F4) &lt;61(Wr*), 62(F4) &gt; b2{W*)
Dièses Beispiel lâBt sich auch komplex durchfûhren : es sei F8 (272)4

Z2 x Z2 x Z2 X 212, 212 ist die 2-Sphâre, und Tf8 P^4) sei der mit Hilfe
des komplexen a-Prozesses viermal lokal modifizierte komplex projektive
Raum P(4). Dann erhalten wir die soeben angegebenen Poincaréschen
Polynôme ûber J K, wenn wir an Stelle der reellen Dimensionen die komplexen
nehmen.

Es gilt also : (Z1)*, Z\ P\ bzw. {Z2)\ P{^ sind nicht modifikations-
àquivalent durch Abbildung, und dasselbe ist richtig fur die Paare (-T1)*, PJJ

bzw. (212)*, Pjln), n &gt; 4

Weitere Beispiele liefern die Paare von Sphârenprodukten : Sr x Z* und
Zu X Zv sind nicht modifikationsâquivalent durch Abbildung fur r + 8

u + v &gt; 4; r, s, u, v &gt; 1; r ^u, r ^v. Dasselbe gilt fur 27r x 21*

und P(n) fur r + s 2w, r s 1 mod 2.

Bemerkung zum Begrifl der Modifikationsâquivalenz durch Abbildung. Wir
sagten in § 14 a) : F, W sind modifikationsâquivalent durch die Abbildung
&lt;p: V -+W mit der Singularitâtenmenge S ûber der Ausnahmemenge A,
wenn &lt;p die Modifikation &amp;: (V, S)-&gt; (W, A) induziert. Nun wollen wir
noch hervorheben, daB dabei m dim(#) &lt; n — 1 dim(F) — 1 oder

q dim(^4) &lt; n — 1 vorausgesetzt wird (vgl. die Bemerkung am Ende von
§ 14 c)). Lassen wir dièse Bedingung weg, so sind zwei beliebige kompakte
Mannigfaltigkeiten Fn, Wn modifikationsâquivalent durch Abbildung, da es

immer eine stetige Abbildung 9? von F auf W (und eine solche von W auf F)
gibt, so daB F, W modifikationsâquivalent sind durch (p : V -&gt; W mit
S V und A W (bzw. JF, F modifikationsâquivalent durch 9? : W -&gt; F
mit /S W und A V). Wenn wir also sagen, daB die beiden Homologie-
manmgfaltigkeiten F und W modifikationsâquivalent durch Abbildung sind,
so bedeutet dies, daB eine stetige Abbildung von F auf W oder von W auf F
existiert, die eine allgemeine Modifikation erzeugt, in welcher entweder S oder
A eine Dimension &lt; n — 1 hat. Es sollen die entsprechenden Dimensions-

bedingungen erfûllt sein, wenn wir von Bimodifikationsâquivalenz zwischen
F und W sprechen.

c) Jede kompakte Mannigfaltigkeit Mn ist modifikationsâquivalent durch
Abbildung mit der w-Sphâre Zn. A p ist ein Punkt in Zn, und 8m ist die-
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jenige Menge in M, welche tibrigbleibt bei der Ausschôpfung von M mittels
einer maximal ausgedehnten Zelle in M. Es handelt sich um allgemeine Modi-
âkation (8 ist im allgemeinen keine Mannigfaltigkeit), und wegen (590) in
Satz 24 wird m àim(S) &gt; Max(jfc), so daB Hk(M) ^0 fur i &lt; n — 1.
AuBerdem ist m &lt; n — 1. Daraus folgt : es gibt zu irgend zwei kompakten
Mannigfaltigkeiten Fn, Wn eine allgemeine Modification

0: (Vn,Sm) -+{Wn,A«)
mit n — 1 &gt; m &gt; Max(i), so daB Hk(V) ^ 0, Jfc &lt; n — 1

w — 1 &gt; q &gt; Max(i), so daB Hk(W) ^0, k &lt; n — 1

Dièse allgemeine Modifikation ist die Zusammensetzung einer lokalen Modi-
fikation und der Inversen einer lokalen Modifikation. Wir haben die beiden
Abbildungen &lt;plf q&gt;2 in folgender Anordnung :

zu (px gehôrt die Modifikation &amp;x : (Fn, 8m) -&gt; (Zn, p), zu ç?2 die Modifikation
*2: (Wn&gt; A*) -&gt; (£n&gt; p)9 und wenn wir die zu &amp;2 inverse Modifikation
ÎF: (Zn, p) -&gt; (Wn, Aq) wie in § 14a) mit &amp;Ï1 bezeichnen, so bekommen wir
ftir die obige allgemeine Modifikation 0 0^&quot;1&lt;î&gt;1. F, Tf sind durch 0 modi-
fikationsâquivalent. Wàhlen wir bei den Modifikationen &amp;x und &amp;2 in Un zwei
verschiedene Punkte px und p2 als Ausnahmemengen, so ergibt sich sofort, daB

F, W bimodifikationsàquivalent sind (durch eine allgemeine Bimodifikation).
Wenn wir uns auf solche allgemeine Modifikationen (1) beschrànken, in

denen 8 und A Homologiemannigfaltigkeiten sind, n — 1 &gt; Max (m, q), so

gibt es Paare von kompakten Mannigfaltigkeiten F, W, die nicht miteinander
modifikationsâquivalent sind, zu denen es keine Modifikation (1) gibt mit
n — 1 &gt; Max(m, q).

Beispiel. Es sei F I1x21 die Torusflâche, und W Z2 die 2-Sphâre.

Iiegt eine Modifikation
0: (Z1 x E\ 8) -&gt; (272, A)

oder ihre inverse vor, so folgt aus (29)

so daB ^(8) &gt; 2 wird. Wegen àimS &lt; 1 kann also 8 keine Homologie-
mannigfaltigkeit sein J Z% oder J K). Daraus entnehmen wir :

Z*1 x E1 und E% sind nicht modifikationsâquivalent, wenn 8 und A
Homologiemannigfaltigkeiten sein sollen und m, q &lt; 1 (es genûgen hier die Bedingungen
ftir 8). Dasselbe gilt fur jedes Paar J^, r2, g &gt; 1, wenn F] die kompakte
orientierbare ilâche vom Geschlecht g bedeutet.
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d) Satz 26 besagt: sind in der Modifikation (1) die Râume F, W, S, A
Homologiemannigfaltigkeiten, und ist eine Isomorphie in (67) falsch, so kann
die betreffende Modifikation (1) nicht durch eine Abbildung (3) induziert
werden (fur jeden zu (1) gehôrigen Homôomorphismus (2)).

1. r 2. Fur r 2, t 1, m - q 1 mod 2, bedeutet (67) %(A) °&gt;

und fur r 2, t 0, m — q 1 mod 2, ist q ungerade, also x(A) 0.
Mit andern Worten : ist in der Modifikation

0: (Fn, Sn~2) -&gt; (Wn, A*) n — g &gt; 2

n — q ungerade, sind F, TF, $, -4 Homologiemannigfaltigkeiten, und ist die
Euler-Poincarésche Charakteristik von A verschieden von null, so kann dièse
Modifikation nicht durch eine Abbildung erzeugt werden.

Fur topologische Modifikationen durch Faserung des Umgebungsrandes gilt
aUgemein :

Satz 27. Die Modifikation

0: (Vn,Sm)-+(Wn,A«) (1)

werde wie in Satz 21 durch die Spharenbûndel $l(A) und 91 (S) gegeben. Ist
dann n — m gerade und n — q ungerade, so wird %{A) gleich null&apos;, ist n — q
gerade und n — m ungerade, so wird x (8) gleich null.

Nach Satz 1 gilt Satz 27 insbesondere fur die differenzierbare Modifikation.

Beweis: Die Bezeichnungen seien dieselben wie in § 12 b). Zur Einbettung
8 &lt;zV gehôrt die Sphârenfaserung (16), und zur Einbettung A c W die

Faserung (7). Ist n — m gerade, so folgt aus (18), angewandt auf das Bûndel
(16), x(N) 0, und ist weiter n — q ungerade, so liefert (18) fur die Faserung

(7) unter Berûcksichtigung des letzten Résultâtes #(-4) 0. Analoge
Ûberlegung im Falle n — q gerade, n — m ungerade.

2. r — 4. Zur Illustration des Satzes 26 geben wir die Bedingungen (67) an
fur den Fall r 4. bk sei die k-te Bettische Zahl von A (J Z2 oder J K).
Wir erhalten :

t 0: a 2; (67) liefert fur e 1

2f64v_1 Zbév+1 fur n m 0 mod 4 ; (a)
V V

t=l: a |; (67) liefert e 0 und e 1

fur n m 1 mod 4 ; (b)
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t 2: a 1; (67) liefert fûr e 0

2764v 2r64l,+2 fur n m 2 mod 4 ; (c)

t 3: er J; (67) liefert fur e 0

27&amp;4j, i^+x fur n m 3 mod 4. (d)

Die obigen Summen sind ûber aile entsprechenden von null verschiedenen
Bettischen Zahlen erstreckt. Ist eine der Bedingungen (a), (b), (c), (d) nicht
erfullt, so kann die betreffende Modifikation (1) nicht durch eine Abbildung
erzeugt werden.

Beispiel. Jf sei eine kompakte Mannigfaltigkeit der Dimension n—
mit m1 4tm[ + 2, m2 émf29 m[&gt;l, m&apos;2 &gt; 1. Zk ist die i-Sphâre.
Wir betten in M den durch Nn-X Zz x Emi X 2&quot;W2 berandeten drei-
fachen Volltorus ein, bohren das Innere davon aus und identifizieren auf
dem Rand N auf zwei Arten : das eine Mal, indem in N die Faserung in 3-

Sphâren benutzt wird, das andere Mal mit Hilfe der Faserung in mi-Sphâren.
Es entstehen durch die beiden Abschlûsse zwei kompakte Mannigfaltigkeiten
F und Wy und wir erhalten die Modifikation

0: (Vn, Zm* x Zm*) -&gt; (Wn, Z* x Zm*),

eine Modifikation durch Faserung des Umgebungsrandes N. Wir befinden uns
im Falle r 4, t 2, und (c) impUziert, daB dièse Modifikation nicht durch
eine Abbildung induziert werden kann, denn fur A Zz x Zm*, m2 imf2,
wird

Zbiv{A) 2 # Zb^iA) 0

Im differenzierbaren Fall kann auch die Bemerkung zur Bedingung (66) in
§ 15 d) herangezogen werden.

e) (1) sei eine Modifikation mit Abbildung, wie sie in § 7 a) beschrieben
wurde, es handle sich also um eine Modifikation durch gleichmâBige Verfeine-

rung der Sphârenfaserung (7), so daB die Faserungen (24) und (25) vorhanden
sind. Nach § 10 e) ist dann (65) erfullt, und daher ist die additive Cohomologie-
struktur ûber J des Raumes S in der Faserung (25) gemâB (63&apos;) diejenige des

topologisehen Produktes der Basis Aq mit der Faser P™-« Ff~q. Im all-
gemeinen bekommen wir fur die multiplikative Cohomologiestruktur von S
nicht diejenige des topologisehen Produktes Aq x P?~g, wie wir auch die

multiplikative Struktur fur Ff~q wâhlen. Dies wird durch die folgenden Bei-
spiele gezeigt.
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Beispiele. Es sei A P4*+1 der {it + l)-dimensionale reell projektive
Raum, und es sei N w~1 der Raum des Tangentenbundels vonP 41+1, n 81 + 2,
so daB wir das Tangentenbùndel

haben. X(Pàt+1) kann gemâB Satz 6 als Normalenbûndel von P4*+* in einer
geschlossenen Mannigfaltigkeit Wn aufgefafit werden. Nun modifizieren wir
W mittels der Antipodenabbildung in N und bekommen nach Satz 8 die
Modifikation ^ {yn ^ ^
N0 ist gefasert in et-dimensionale reell projektive Ràume (Spezialfall von (25)) :

^0 ist der Raum der Linienelemente von P4*+1, so daB eine Schnittflâche in
JV0 ein Linienelementfeld auf P4**1 ist. Wegen #(P4*+1) 0 existieren
Schnittflâchen in i\^0, und je zwei Schnittflâchen schneiden sich : in No ist der
Schnitt der Basis P4**1, realisiert als Schnittflâche in -^0, mit sich selbst ver-
schieden von null, das heiBt die Homologieklasse dièses Selbstschnittzyklus
in No ist verschieden von null. Dies wird mit Hilfe der eindimensionalen Stie-
felschen charakteristischen Homologieklasse von P4**1 eingesehen. Daher ist
fïir J Z2 die multiplikative Cohomologiestruktur von No nicht diejenige
von P4**1 x P4* im Gegensatz zur additiven Struktur.

Das obige Beispiel làBt sich auch komplex durchfuhren. Hier nehmen wir
J B. Man kommt dann zur Faserung

welche aus dem Tangentenbtindel £(P(2&apos;+1)) mittels Verfeinerung durch
Kxeislinien hergestellt wird. In aS(4*+1) gibt es Schnittflâchen, das heiBt es

gibt Felder komplexer Linienelemente auf P&lt;2*+1&gt;, und je zwei Schnittflâchen
schneiden sich in einem Zyklus, der in 8{àt+1) nicht homolog null ist (vgl. [27]).

Ein weiteres Beispiel liefert die Faserung des komplex ungerad dimensio-
nalen komplex projektiven Raumes P&lt;2n+!&gt; in komplex projektive Geraden
P(1) (das heiBt in 2-Sphâren) mit dem quaternional projektiven Raum P[n]
als Basis. Dièse Faserung erhalten wir aus den beiden folgenden Faserungen
der Sphâre 274n+3 :

&lt;3l(P[n]) S(-PCnl) {^4n+3&gt; -S», PW}
9l(P(2M+1)) S(P&lt;2*+1&gt;) {Z*n+*, Z\ p&lt;2n+i)} 9

(quaternionale und komplexe Hopfsche Faserungen, Spezialfalle von (24)),
welche die Bûndel (7) und (16) darstellen: S(P(2n+^) ist eine gleichmâBige
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Verfeinerung von S(PEn]), und dièse beiden Faserungen geben AnlaB zu einer
Modifikation mit Abbildung (vgl. § 7 a), § 12 b))

4? p(2n+l))

Dazu gehôrt die Faserung

welche die Faserung (25) darstellt. Es gilt wohl H(P&lt;*n+l&gt;) ^ H(P™ x P(1)),
die multiplikative Straktur von P&lt;2n+*î ist jedoch nicht diejenige des Pro-
duktes P[n] X P(lî, fur J einen Kôrper K genommen.

Ganz analog kann der ungerad dimensionale reell projektive Raum P2**1
in Kreislinien S1 P1 gefasert werden, und fur J Z2 gilt H(P2n^)
^H(Pin) X P1), jedoch gilt keine solche multiplikative Isomorphie.

Es kann ferner der reell projektive Raum P4w+3 |n 3-dimensionale reell
projektive Râume P3 gefasert werden, es gehôrt dazu eine Modifikation
0: (F4n+4, P4n+a) -&gt;(WF4n+4, PW) mit Abbildung, und es gilt die additive
(aber nicht multiplikative) Isomorphie fî(P4n+3;Z2)^fl(P[fl] X P3;22).

f) Gehen wir von zwei simultanen Sphârenfaserungen (7), (16) von N aus,
so gehôrt dazu eine Modifikation (1), wie wir dies in § 12 b) festgestellt haben.
Ist N kompakt differenzierbar und s n — q &gt;2, so Hefert die Antipoden-
abbildung &lt;x (vgl. § 6 a)) eine Faserung

ÎKff-1) {N&quot;-1, Z\ S*-1} (lôx)

und als zugehôrige Modifikation bekommen wir eine Modifikation (19^ (Satz 8;
es ist /S*1&quot;&quot;1 Nq^1), welche dureh eine Abbildung erzeugt wird. Es handelt
sich um eine Modifikation durch gleichmàBige Verfeinerung der Sphâren-
faserung, und die Faserung (25) lautet hier

$(u4«) {Sn-\ F»-*-\ A*} (25J

(Beispiel 1 in § 7 a)). Faserungen durch projektive Râume heiûen projektive
Bûndel (reell, komplex oder quaternional projektive Bûndel). (25J) ist ein
reell projektives Bûndel. Da im Falle der Modifikation (19^ die Isomorphie
(63&apos;) fur r=l, J Za, 5 N^1 gilt, folgt : es kann nicht jedes reell
projektive Biindel mit Hilfe eines Spharenbûndels (7) und zugehôriger Antipoden-
abbildung eraeugt werden (es brauchen keine Differenzierbarkeitsvoraussetzun-

gen gemacht zu werden).

Beispiel. Die Hopfsche Sphârenfaserung

\ E\ P(*&gt;} q &gt; 1,
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kann aufgefaBt werden als Faserung in reell projektive Geraden P1 :

Fur S(P(ff)) ist (63&apos;) offensichtlich nicht erfûllt, S&apos;(P&lt;«&gt;) besitzt also kein
zugehôriges Sphârenbûndel, so daB die Antipodenabbildung in diesem Bûndel
die Faserung &lt;5&apos;(P{q)) induziert. Insbesondere ist S&apos;(P(1)) inâquivalent dem
Bûndel der tangentiellen Linienelemente an die 2-Sphâre £2. DaB die Faserung

(5&apos;(P&lt;8)) nicht von einer Kreislinienfaserung mit zugehôriger Antipodenabbildung

stammen kann, folgt auch sofort daraus, daB 2*2«+1 einfach zusam-
menhàngend ist, also nicht Basis eines zweiblâttrigen Ûberlagerungsraumes
sein kann.

Bemerkung. Da nach [6], IX-5, Théorème 5 und Théorème 6, fur jedes
kompakte projektive Bundel

&lt;P(4«) {Sm, F?~\ A*}

F?~q komplex oder quaternional projektiver Raum (r 2 oder r 4), die
Isomorphie (63&apos;) gilt, wenn fur J ein Kôrper der Charakteristik 0 gewâhlt
wird, sind Beispiele analog dem obigen fur komplex oder quaternional projektive

Bûndel hôchstens ûber einem Kôrper mit von null verschiedener Charakteristik

môglich.

g) Regnlâre projektive Bûndel. Es liège ein reell projektives Bûndel (25^
vor, in welchem als Strukturgruppe die orthogonale Gruppe wirkt, das heiBt
nach Wahl eines Koordinatensystems in pn~Q-it bestehend aus n — q reellen
homogenen Koordinaten to,tt,. £n_a-_i, die Gruppe der orthogonaJen
Transformationen in den Variablen t0,..., £n_g_i. Ein solches Bûndel heiBt
regulâres reell projektives Bûndel, und entsprechend werden die regulâren
komplex und quaternional projektiven Bûndel definiert. Zu einem regulâren
reell projektiven Bûndel gehôrt dann in natûrlicher Weise ein Bûndel mit
dem EuMidischen Raum En~q als Faser, und daraus ergibt sich ein zugehôriges
Sphârenbûndel mit Antipodenabbildung. Es folgt ako : ein regulâres reell
projektives Bûndel (25^ kann immer dadurch erzeugt werden, daB in einem
Sphârenbûndel (7) die Antipodenpunkte in jeder Faser identifiziert werden

(Identifikation vermôge der Faserung (16!)). Dazu gehôrt dann eine
Modifikation (19X) mit Abbildung, und es folgt: fur ein regulâres reell projektives
Bûndel (25^ gilt (63;) fur r 1, J Z2, S JV*-1. Damit ergibt sich, daB

zum Beispiel die oben betrachtete Faserung S&apos;(P((r)) kein regulâres reell
projektives Bûndel liefert. - Die analogen Konstruktionen im komplexen und im
quaternionalen Fall ergeben : jedes regulâre komplex bzw. quaternional
projektive Bûndel (252) bzw. (254) lâBt sich durch gleichmâBige Verfeinerung

19 Commentarii Mathematici Helvetici



290 Alfred Aeppli

einer Sphârenfaserung (7) mittels Kreislinien bzw. 3-Sphâren erzeugen. (7)
ist dann eine Faserung in (2k + 1)- bzw. in (ék + 3)-Sphâren. Weiter erhal-
ten wir dazu eine quasikomplexe bzw. eine quasiquaternionale Modifikation
(192) bzw. (194) mit Abbildung, und es gilt (63&apos;) fûr r 2 bzw. r 4,
J K oder J Z2, je nachdem die Basis A in (252) bzw. (254) orientierbar
ist oder nicht. ZusammengefaBt :

Satz 28. ^n~r sei eine kompakte Mannigfaltigkeit. Zu jedem regularen pro-
jelctiven Bilndel

r 1, 2, 4 im reetten bzw. komplexen bzw. quaternionalen Fail, n —- q — r
/?r &gt; 1, gehort ein Spharenbûndel

(7)

eine gleichmafiige Verfeinerung von (7) :

(16r)

80 dafî ans der Faserung (7) mittels Identifikation jeder Foser E*&apos;1 in der

Faserung (16r) zu einem Punkt dos projektive Bilndel (25r) entsteht. Die Fase-

rungen (7) und (16r) induzieren eine Modifikation

0: (Fn, 8^r) -&gt; (Wn, A«) (19r)

mit Abbildung, und es gilt

H(8n~r; J) ^ H(A« x P?-«-f ; J) (63&apos;)

iièer J K fur r 2, 4 6ei orientierbarem A, #6er J Z2 sonst.

Bemerkung. An Stelle der Regularitât des Bûndels (25r) kann in Satz 28

direkt gefordert werden, dafi (25r) in der oben beschriebenen Weise von einem

Sphârenbundel (7) stammt. In (63&apos;) ist dann J K, wenn r 2, 4 und N,
S, A orientierbar sind, J Z2 sonst.

Zur Behauptung (63&apos;) in Satz 28 vergleiche man [6], IX-5, Th. 5 und 6,
ferner [10], Th. 2.

h) Anwendung von (59), (63&apos;) au! den or^-ProzeB. Liegt der komplexe
(19(1)) vor, so ergeben (59), (63&apos;) sofort

ûber J K. Dièses Résultat ist in [11] enthalten. Entsprechende Isomor-
phien gelten fur den reellen und fur den quaternionalen orn&gt;tf-ProzeB (19i) bzw.
(19£13), sowie ftir den quasikomplexen und fur den quasiquaternionalen an&gt;q-

Prozefi (192) bzw. (194), in gewissen F&amp;Uen nur fur J Z%.
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i) Modifikation mit homologietreuen Einlagerungen. Sind in der Modifikation

(1) die Einlagerungen 8 czV und A czW homologietreu (siehe die Be-
merkung in § 14 b)), so heiBt die Modifikation (1) eine Modifikation mit
homologietreuen Einlagerungen (uber dem Koeffizientenbereich /). Insbesondere
mûssen dann A und 8 zusammenhângend sein (bei zusammenhângendem F
und W), wegen (a) und (b) in § 14 b) fur k 0. Aus (29) folgt fur eine
Modifikation mit homologietreuen Einlagerungen sofort (59). Dies ist richtig
fur allgemeine Modifikation (F, W, S, A Polyeder). Wir sehen: die Sâtze
25 und 26 gelten auch dann, wenn die Voraussetzung «Modifikation mit
Abbildung» ersetzt wird durch die Voraussetzung «Modifikation mit
homologietreuen Einlagerungen liber «7», denn das Pendelverfahren kann nun
ebenso angewandt werden. Die Hauptergebnisse dièses Kapitels gelten also
auch im Falle der Modifikation mit homologietreuen Einlagerungen.

IV. KapiteL Kâhlersche Modifikation mit Abbildung
In Kapitel II und III wurde die Mannigfaltigkeitsvoraussetzung naeh Môg-

lichkeit abgesehwâcht, es wurden allgemeine Modifikationen untersucht. Nun
wollen wir wieder spezielle (sogar komplexe) Modifikationen betrachten
(speziell im Sinne von § 1 a)). Es werden in diesem Kapitel hauptsâchlich
Cohomologieeigenschaften der Kàhlerschen Modifikation, wie sie unten de-
finiert wird, behandelt.

§ 17. Exakte Sequenzen fur Kâhlersche Mannigfaltigkeiten

a) Kâhlersche Modifikation mit Abbildung. Unter einer Kàhlersehen
Modifikation mit Abbildung verstehen wir folgendes: es handelt sieh um eine
Modifikation (1) mit Abbildung (3), F F(n&gt; und W W&lt;w) sind kom-
pakte Kâhlersehe Mannigfaltigkeiten, das heiBt kompakte komplexe
Mannigfaltigkeiten mit Kâhlerscher Metrik (vgl. Eckmann und Gttggenheimer
[15]), und die Abbildung &lt;p in (3) ist komplex analytisch mit der komplexen
Singularitàtenmannigfaltigkeit 8im) ûber der komplexen Ausnahmemannig-
faltigkeit A{QK 8 ist singularitâtenfrei komplex analytisch eingelagert in F
und desgleichen A in W. S und A sind dann Kâhlersch, und es ist m n — 1,
da 8 als Singularitàtenmannigfaltigkeit der komplex analytischen Abbildung
(p mit der Nullstellenmannigfaltigkeit der Funktionaldeterminante D(q&gt;) zu-
sammenfâllt.

b) Harmonische Formen. Die im folgenden auftretenden Gruppen sind
C-Moduln, das heiBt Vektorrâume ûber C, wo C der Kôrper der komplexen
Zahlen ist. Ist M eine kompakte Kâhlersche Mannigfaltigkeit, so wird die
Gruppe H^(M) der harmonischen i-Formen auf M unterteilt in die Gruppen
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und der de Rham-Hodgesche Satz besagt

H9à%t(M) der reinen harmonischen Formen vom Typus (s, t), s + t h (vgl.
[15]):

fli ¥ (70)

(71)

Neben dem âuBeren Differentiationsoperator d und dem verallgemeinerten
Laplaceschen Operator A dô + ôd sind die Operatoren d&apos; und d&quot; zu be-

trachten (vgL [8], [20]; bei Hodge [20] mit d, ikdC bezeichnet), undweiter
der Operator V d&apos;d&quot; — d&quot;df.

Ist F*&apos;* die Gruppe der reinen (s, £)-Formen auf M, das heiôt die Gruppe
der komplexen Cartanschen (s + £)-Formen vom Typus (s9t) auf Jf, so
werden die Gruppen Z^,*, Z*^, Zs^dn wie folgt definiert :

W ={f\f*F&apos;-t, d&apos;/ 0},

Dann gelten die Hodgeschen Isomorphismen ([20]) :

s H5-&apos;(if),

{M) 1 (if) s fli*&apos;

(72)

c) Exakte Sequenzen. Ist F eine kompakte Kâhlersche Mannigfaltigkeit und
S darin komplex analytisch singularitâtenfrei eingelagert, so werden die rela-
tiven Gruppen H9^(V9S)f H9d^(VtS), H&apos;dSdnlv{V, S) analog den absoluten
definiert (vgl. [2]). Mît Hilfe von (72) erhalten wir die exakten Sequenzen

i*
(73)

Der Beweis der Exaktheit der âequenzen (73) verlâuffc nach den ûblichen
Methoden unter Verwendung von (72) (vgl. [2]). (73) tritt nun an die Stelle
der gewôhnlichen exakten Sequenzen, wie wir sie in Kapitel II und III ver-
wendet haben, Wir werden im folgenden nur von der ersten exakten Sequenz
in (73) Gebraueh machen; die beiden andern wurden der Vollstândigkeit halber
angefiïhrt und konnten ebenso benutzt werden.
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§ 18. Cohomologietheorie der Kâhlerschen Modiflkation mit Âbbildung

a) Verfeinerung von Lemma 4 und 5. Liegt die Kàhlersche Modifikation

0: (V&lt;n\S&lt;n~v) -
mit der Abbildung &lt;p vor, so gelten (53) und (58) in Lemma 4. Mit (70), (71)
folgen dann wegen der komplexen Analytizitât von &lt;p die Beziehungen

(Mt&gt;()

0^H&apos;/(A)^H&apos;/{8) (68,,,)

Fur fl^, (F, 8) 2&quot; #^&apos;(F, S) gilt das kommutative Diagramm

L(S) ^ JETJ,(F, 5)
&apos;X E\ (F)-^ ffj(5)¦

(74)

E\{8Y

in welchem die Doppelpfeile Isomorphismen auf bedeuten. Die obère Sequenz
in (74) ergibt sieh durch Summation aus der ersten in (73), die untere entsteht
aus der ûblichen Sequenz fur die de Rhamschen Gruppen. H\{V, 8) ist die
&amp;-te de Rhamsche relative Cohomologiegruppe, und es ist

H\(V98)ç±H*iy,8)9 (75)

was mit Hilfe des de Rhamsehen Satzes fur F und fur 8 sowie der exakten
Sequenzen des Paares F, 8) fur die de Rhamschen und fur die gewôhnlichen
Cohomologiegruppen bewiesen wird. (74) und (75) implizieren

H*é.{V,8)^H\(V,B)ç*H*{V98). (76)

Da der Isomorphismus 0* in (28) durch &lt;p induziert wird, und da &lt;p komplex
analjrtisch ist, erhalten wir wegen (76) die Isomorphismen

0 -&gt;Htf (W,A)&quot; HV(V9S)-*0. (28,,,)

Wegen (28M), (53, t)9 (58tt) bekommen wir mit Hilfe der ersten Sequenz
in (73) ein zu (55&apos;) analoges Diagramm :
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0

t
..AlI^iS) ^Hi&apos;H7,8) ^H&apos;/{V) ^H&apos;/(8) *

fç?* f(p* fç?* f (p*

t t t t
0 0 0 0

Daraus folgt wie bei (55&apos;) analog zu (59)

Es gilt also der folgende Satz :

Satz 29. Sind die beiden kompakten Kâhlerschen Mannigfaltigheiten F(n),
Win) modifikationsàquivalent durch die komplex analytische Abbildung &lt;p mit
der SingvlaritMenmannigfaltigkeit /g(w~&quot;1) ilber der Avsnahmernannigfaltigkeit
Ai9) (die Einlagerungen 8 c V und A &lt;zW sind komplex analytisch singu-
laritatenfrei), so gilt

H9/(8) - H°/{A). (59M)

b) Yerîeinerung von Lemma 6&apos;. Invarianz des Geschlechtes g8. Sind die
Voraussetzungen des Satzes 29 erfûllt, so befinden wir uns im Falle von
Lemma 6; mit r 2, J C. Pur P^ nehmen wir den komplex projektiven
Raum P(n). (63&apos;) gilt dann verfeinert fur die einzelnen Gruppen der reinen
harmonischen Formen, wenn

~ [ (77)
H&apos;/(PW) 0 sonst, ]

berûcksichtigt wird :

Satz 30. Unter den Vorawsetzungen des Satzes 29 gilt

Hï&apos;iS**-») s H9/(AW x P&lt;»-*-»). (63^)

Zum Beweis von (63^,) benutzt man das Pendelverfahren mit Beriicksich-

tigung der Typen der Differentialformen (Verfeinerung des Pendelverfahrens
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von §15). Dabei werden (59M), #2&apos;e(£) (H%%(A) 0, und der Poincaré-
sche Dualitâtssatz in der Form

wie er durch den de Rham-Hodgeschen Operator * induziert wird, angewandt
(M ist eine komplex w-dimensionale kompakte Kàhlersche Mannigfaltigkeit).
Aus (59,,,), (63;,), (77) folgt

H*/(V) &amp; H°/(W), HY(V) s HY{W), (78)

die Bettischen Zahlen b8 0, b0 t sind also invariant bei Kâhlerscher Modifikation

mit Abbildung. Es bedeutet b8 t b8 t(M) den Rang der Grappe
H&apos;j^M), und die Zahl 6,0 b0

8 g8 heiBt das «Geschlecht» der Dimension
s von M. Damit haben wir den folgenden Satz :

Satz 31. Ist wie in Satz 29 eine Kàhlersche Modifikation mit Abbildung ge-
geben, so gilt

(78&apos;)

das heifit das Geschlecht g8 ist invariant bei Kâhlerscher Modifikation mit Abbildung.

c) Kàhlersche Bimodiflkation. Eine Kàhlersche Bimodifikation ist eine Bi-
modifikation (vgl. § 14 c)), in welcher V und W kompakte Kàhlersche
Mannigfaltigkeiten sind, die Abbildungen &lt;px und ç&gt;2 komplex analytisch sind, und
die kritischen Mengen 8l9 S2, Al9 A2 sich zusammensetzen aus endlich vielen
Komponenten, bestehend aus in F bzw. in W komplex analytisch singularitâ-
tenfrei eingelagerten Mannigfaltigkeiten. Es ist sofort ersichtlich : (59M), (78)
bzw. (78&apos;) sind auch im Falle Kâhlerscher Bimodifikation richtig, wobei in (59,, t)

S Sx U 82, A Ax U A2 zu setzen ist (wie in (596)). Wir bekommen also :

Satz 29b. Bei Kâhlerscher Bimodifikation gilt

H&gt;/{SX) + H&lt;/(82) - E^{AX) - H&apos;/(A2)

Satz 31 b. Das Geschlecht g8 ist invariant bei Kâhlerscher Bimodifikation.

d) Weitere Untersuchung des Geschlechtes g8. g8 g8(M) ist der Rang des

Moduls der holomorphen 5-Pormen auf M, und dièse Définition bleibt bestehen

fur eine beliebige kompakte komplexe Mannigfaltigkeit. M sei also eine
kompakte komplexe Mannigfaltigkeit. g9(M) ist dann endlich (vgl. [9]). Eine
allgemeine komplexe Modifikation ist eine Modifikation (1), in welcher

F, W kompakte komplexe Mannigfaltigkeiten sind, 8 und A «komplexe
Mengen», das heifit aufgebaut aus endlich vielen in F bzw. in W komplex
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analytisch eingebetteten Mannigfaltigkeiten mit eventueUen Singularitâten,
und in welcher der Homôomorphismus &lt;pf in (2) komplex analytisch ist. Fur
solche Modifikationen gilt der folgende Satz :

Satz 32, Idegt die aUgemeine komplexe Modification

0: (F&lt;n&gt;, 8™) -&gt; (W™, AW) (1)

vor, und ist n -— 2 &gt; q, so gilt

98(V)&lt;g8(W); (79,)
ist n —• 2 &gt;m, so gilt

gs(V)&gt;g8(W); (792)

ist n — 2 &gt; Max (m, q), so gilt

9.(V) 9,(W). (78&apos;)

Beweis: Jede holomorphe Form in F lâBt sich mittels des komplexen
Homôomorphismus &lt;pl von F — S auf W — A ûbertragen. Ist n — 2 &gt; q, so
lâBt sie sich mit Hilfe des Kontinuitâtssatzes (vgl. [5], pp. 49-51) in ganz W
eindeutig analytisch fortsetzen. Nimmt man noch das Prinzip der Permanenz
der Funktionalgleichung hinzu, so folgt: linear unabhàngige Formen in F
induzieren linear unabhàngige Formen in W, und damit ergibt sich die Un-
gleichung (79J. Ist n — 2 &gt;m, so kommt man analog zur Ungleichung
(792), ausgehend von den holomorphen Formen in W. Ist n — 2 &gt; Max (m, q),
so folgt (78&apos;) aus (79J und (792).

Bemerkung. Die Ungleichung (79j) ist schon richtig fur eine Modifikation
(1), in welcher F und W kompakte komplexe Mannigfaltigkeiten sind, 8 und
A Teilmengen in F bzw. in W mit dim(-4) &lt; 2n — 3. Der Beweis ist der-
selbe wie oben. Entsprechend gilt (792), wenn dim(/S) &lt;2n — 3, und fur
2n — 3 &gt; Max(dim(S), àim(A)) bekommt man (78&apos;).

Handçlt es sich um eine aUgemeine komplexe Modifikation mit Abbildung,
das heifit wird die aUgemeine komplexe Modifikation (1) durch eine komplex
analytische Abbildung &lt;p induziert, so ist m n — 1, da S mit der NuU-
steUenmenge der Funktionaldeterminante D(q&gt;) zusammenfàUt, und es ist
^ — 2 &gt; g, denn ist fur eine Komponente von A die komplexe Dimension
gleich n — 1, so kann der komplex (n — l)-dimensionale Teil dieser
Komponente als Teil der Ausnahmemenge weggelassen werden (vgl. [26]). Somit
gilt nmh. Satz 32 die Ungleichung (79j). Da die komplexe Modifikation (1)
durch die komplex analytische Abbildung ç? induziert werden soll, ist auch
(79t) richtig, denn &lt;p gibt Anlaû zu einem Isomorphismus &lt;p* von F\(W) in
F*h(V) (F9h(M) bezeichnet den Modul der holomorphen «-Formen auf der
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komplexen Mannigfaltigkeit M): zu y: F -» W gehôrt der Homomorphis-
mus q&gt;* : Fk(W) -+Fk(V) (Fk(M) ist der Modul der ifc-Formen auf Jf), &lt;p*

transformiert holomorphe Formen in holomorphe (allgemeiner : 99* erhàlt den
Typus einer reinen Form), und &lt;p* ist auf F*h(W) ein Isomorphismus in F&apos;h(V)

wegen dem Prinzip der Permanenz der Funktionalgleichung (linear unabhân-
gige holomorphe Formen werden durch &lt;p* in linear unabhângige abgebildet).
Wir bekommen also :

Satz 33. Wird die allgemeine komplexe Modifikation

0: (V™,8i*-1)-+{W™9AM) (1)

durch die komplex analytische Abbildung &lt;p: F -&gt; W induziert, so ist

(78&apos;)

Mit andern Worten : das Geschlecht gs ist invariant bei einer fast iiberall
schlichten komplex analytischen Abbildung (zum Begriff «fast uberall schlicht»
siehe Einleitung a)). Man erkennt sofort : versteht man unter einer allgemeinen
komplexen Bimodifikation eine Bimodifikation, in welcher F und W kom-
pakte komplexe Mannigfaltigkeiten sind, die AbbUdungen q&gt;± und &lt;p2 komplex
analytisch, und die kritischen Mengen 8 und A komplexe Mengen, so gilt :

Satz 33&amp;. Das Geschlecht g8 ist invariant bei allgemeiner komplexer
Bimodifikation.

Bemerkung. Der Beweis zu Satz 33 bzw. 33b lâBt sich tibertragen auf die
Moduln F*m(V) und F*m(W) der meromorphen 5-Formen auf F und W, so daB
bei einer allgemeinen komplexen Modifikation mit Abbildung bzw. Bimodifikation

die Isomorphie F°m(V) ^ F°m(W) gilt. Insbesondere ist F°m(V) ^
F°m{W), das heiBt der Kôrper der meromorphen Funktionen auf F ist iso-

morph demjenigen auf W (additiv und multiplikativ; vgl. auch [17]).

Die Satze 33 und 336 gelten insbesondere fur allgemeine Kâhlersche
Modifikation mit Abbildung und fur allgemeine Kâhlersche Bimodifikation, das
heiBt fur allgemeine komplexe Modifikation mit Abbildung bzw. Bimodifikation

mit Kâhlerschem F und W. Dabei folgt die Ungleichung (792) im Kâhler-
schen Falle auch direkt aus (53, 0).

§ 19. Zusâtzliche Bemerkungen iiber die komplexe Modifikation

a) Beziehung zu den birationalen Transforniationeii. Nachdem in der
Bemerkung zu Satz 33ft festgestellt wurde, daB bei allgemeiner komplexer
Bimodifikation der Kôrper jPJ,(F) der meromorphen Funktionen erhalten bleibt,
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ist damit auch gesagt, da8 im Falle algebraischer Mannigfaltigkeiten F, W
eine allgemeine komplexe Bimodifikation zwischen F und W eine birationale
Transformation darstellt. Umgekehrt ist zu vermuten : jede birationale
Transformation zwischen singularitâtenfreien algebraischen Mannigfaltigkeiten F,
W lâBt sich durch Zusammensetzen endlich vieler Kâhlerscher Bimodifika-
tionen (im Sinne von § 18 c)) erzeugen. Vgl. dazu [32]. Daraus wurde die
birationale Invarianz des Geschlechtes g8 fur singularitàtenfreie algebraische
Mannigfaltigkeiten folgen 9).

Definieren wir analog zu § 18 c) die komplexe Bimodifikation : F, W kom-
pakte komplexe Mannigfaltigkeiten, &lt;pt und &lt;p2 komplex analytische Abbil-
dungen, 8l9 82, Al9 A2 wie in § 18 c), so kann die folgende Frage gestellt
werden : lâBt sich jede allgemeine komplexe Bimodifikation durch Zusammensetzen

endlich vieler komplexer Bimodifikationen erzeugen? Wir kônnen noch
weiter gehen. Betrachten wir solche allgemeine komplexe Modifikationen 0,
bei welchen 8 8X U 829 A Ax U A2, und ç/ eine komplex analytische
Abbildung 9i von V — 82 auf (W — A2) U Ax und eine solche ^2 von
W — Ax auf (F — 8X) U 82 induziert. 8lf 82, Al9 A2 sind komplexe Men-

gen; im allgemeinen ist 8X fl 82 ^ 0, Ax f) A2 ¥=¦ 0. LâBt sich nun jede solche

komplexe Modifikation durch Zusammensetzen endlich vieler komplexer
Bimodifikationen erzeugen? Man kommt unter anderem zur Aufgabe, 8X von S2 und
At von A2 durch Zusammensetzen komplexer Bimodifikationen zu trennen. Die
hier gestellten Fragen sind verwandt mit der Frage nach der Auflôsbarkeit
der Singularitâten einer algebraischen Vielfaltigkeit durch birationale (oder
durch monoidale) Transformationen.

b) Kâhlersche Modifikation mit stark regulâren Einlagerungen. Wir betrachten
nun eine komplexe Modifikation (1) mit kompakten Kâhlerschen
Mannigfaltigkeiten F, W, JS, A, die nicht durch eine Abbildung erzeugt sei.

Um verfeinerte Cohomologieaussagen ûber dièse Kâhlersche Modifikation
zu machen, wird man versuchen, die Isomorphie (28M) zu beweisen. Ob dies
ohne weitere Voraussetzungen geht, ist fraglich. Es ist jedoch einzusehen, daB

(28,^) richtig ist, falls die Einlagerungen 8 c F und A c W «stark regulâr»
sind, das heiBt falls es sich um Kâhlersche Modifikation mit stark regulâren
Einlagerungen handelt (vgl. [2]). Dabei heiBt die Einlagerung S cV stark

regulâr, wenn eine Umgebung U(8) 8 existiert, die in Zellen U{n~m) mit
der komplex linearen Grappe als Strukturgruppe komplex gefasert wird :

(g {8&lt;nK U&lt;n~m

») Wegen Satz 33&amp;. Die birationale Invarianz von g$ lâBt sich jedoch ohne dièse Vermutung
ûber die Zerlegbarkeit einer birationalen Transformation àhnlich wie Satz 33&amp; mit Hilfe des
Kontinuitâtssatzes direkt herleiten. Vgl. auch [36].
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so da8 8 eine komplex analytische Schnittflâche in © wird. Es gibt dann eine

komplex analytische Projektionsabbildung n:8 -+8, so daB die folgenden
Beziehungen gelten :

H&apos;dS(8) § H°/(S) *=* 0 HfoniS) g H^(8) ^ 0

Dann kann auch die Betrachtung von § 12 a) mit Hilfe der exakten Sequen-
zen (73) und des Poincaréschen Dualitàtssatzes mit Berûcksiehtigung der
Typen der Differentialformen durchgefiïhrt werden. Ist also

0: (V&lt;n\SM)-&gt;(W&lt;n\AW)

eine Kâhlersche Modifikation mit stark regulâren Einlageningen, n — 1 &gt; m
&gt;q,so gilt

Hï&apos;(8) g* H*/{A) fur s + t &lt; 2n - (2m + 3). (51M)

Handelt es sich weiter um eine Kâhlersche Modifikation mit homologie-
treuen Einlagerungen (uber J C), so gelten die Beziehungen (a) und (b)
in der Bemerkung in § 14 b) fur die Gruppen der harmonischen Formen nach
den verschiedenen Typen aufgeteilt. Daher lâBt sich eine zu § 16 i) analoge
Aussage machen: es gilt (59, t) fur Kâhlersche Modifikation mit homologie-
treuen stark regulâren Einlagerungen (bei homologietreuen Einlagerungen
wird kein Gebrauch gemacht von der Eigenschaft, daB die Strukturgruppe
von (g die komplex lineare Gruppe sein soll, vgl. [2]). Die in Satz 26 gemachten
Aussagen lassen sich ebenfalls ûbertragen, insbesondere gilt fur m — q /?r,
r n - m &gt; 1, ^e(S(m)) H&gt;/{ x P$-«) (63^)

wenn wir symbolisch setzen :

H&apos;/iP™) ç^C fur 0&lt;8 t [ir &lt; n n Xr

fl^(PP O sonst.

Es bleibt auch Satz 31 richtig, wenn wir an Stelle Kâhlerscher Modifikation
mit Abbildung Kâhlersche Modifikation mit homologietreuen stark regulâren
Einlagerungen betrachten. - Es ist mir allerdings nicht bekannt, ob auBer

naheliegenden ganz trivialen Fâllen derartige Modifikationen existieren.

c) Komplexe Modifikation mit Abbildung. Die komplexe Modifikation mit
Abbildung wird wie die Kâhlersche in § 17 a) definiert, nur daB es sich nicht um
Kâhlersche, sondern nur um komplexe Mannigfaltigkeiten handelt. Beispiele
komplexer Modifikationen mit Abbildung werden gegeben durch den in § 7 c) be-
schriebenen an&apos;*-ProzeB (19(1)). ImKâhlerschenFall kônnen dann auf (19(1)) die
verfeinerten Cohomologiebeziehungen (59, t), (63^) angewandt werden, es gilt
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eine zu § 16 h) analoge verfeinerte Bemerkung. Nun gilt ein Satz, der das

Ergebnis (63&apos;) in Satz 26 im Falle komplexer Modifikation mit Abbildung
wesentlich verschârft, welcher besagt, daB es auBer den &lt;rn&gt;g-Prozessen keine
anderen nicht trivialen10) komplexen Modifikationen mit Abbildung gibt : jede
nicht triviale komplexe Modifikation mit Abbildung ist âquivalent einem on&apos;q-

ProzeB (Einzigkeitssatz fur komplexe Modifikation mit Abbildung). Daraus
folgt (63&apos;) von neuem unter Benutzung der Spektralfolge fur die zum ern)(Z-Pro-

zeB (19(1)) gehôrige komplex projektive Faserung (25(1)), und im Kâhlerschen
Fall gelangt man in âhnlicherWeise zu (63^) unter Berxicksichtigung der
komplexen Analytizitât der Faserung (25(1)) und der Typeneinteilung der Differen-
tialformen. Ferner kônnen die Cohomologiebeziehungen in den Sàtzen 29 und
30 unter allgemeineren Voraussetzungen fur die Dolbeaultschen Gruppen
(vgl. [12]) bewiesen werden, wieder unter Benutzung des obigen Einzigkeits-
satzes. tîber dièse hier angedeutetenErgebnisseisteineArbeitinVorbereitung.
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