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Modifikation von reellen und komplexen Mannigfaltigkeiten

von ALFRED AEPPLI, Ziirich

Einleitung

a) Der Begriff der Modifikation bezieht sich auf eine Situation, die in der
Theorie der komplexen Mannigfaltigkeiten hiufig vorkommt, aber auch in
geometrischen Zusammenhingen wohlbekannt ist: man nimmt aus einer
Mannigfaltigkeit W eine Teilmenge A heraus und «ersetzt» sie durch eine
Menge S, so daBl eine neue Mannigfaltigkeit V entsteht, wobei je nach der
vorliegenden Fragestellung bestimmte Strukturen erhalten bleiben sollen (zum
Beispiel: V und W sollen differenzierbare oder komplexe Mannigfaltigkeiten
sein usw.); eine andere zusitzliche Bedingung besteht darin, da auch von den
Teilmengen A und S Mannigfaltigkeitscharakter verlangt wird — diese ein-
schrinkende Bedingung werden wir im folgenden voraussetzen, abgesehen von
gelegentlichen Zusitzen, in welchen auf allgemeinere Fille hingewiesen wird.
In der vorliegenden Arbeit sollen solche Modifikationen topologisch, insbeson-
dere im Rahmen von Homologiebetrachtungen untersucht werden. Es zeigt
sich namlich, daf3 sich aus relativ schwachen Voraussetzungen ziemlich starke
Einschrinkungen fiir die auftretenden Rdume ergeben.

Einfache Beispiele von Modifikationen: 1. Es werde aus der n-Sphéire X" ein
Punkt p herausgenommen und an seiner Stelle der (» — 1)-dimensionale reell
projektive Raum Pn-! so eingesetzt, dafl P" entsteht; oder, wenn n = 2m
ist, der komplex projektive Raum P(™-1) von m — 1 komplexen Dimensio-
nen, so daBl P(™ entsteht. 2. Eine komplexe Mannigfaltigkeit ¥V werde durch
eine komplex analytische Abbildung ¢ «fast iiberall schlicht» auf eine andere
W derselben Dimension abgebildet. Dabei heifit ¢ fast iiberall schlicht, wenn
der Abbildungsgrad von ¢ gleich 1 ist. ¢ mufl dann iiberall lokal topologisch
sein, bis auf eine Singularititenmenge S von niedrigerer Dimension, welche durch
¢ auf eine Menge A (4 heit Ausnahmemenge, dim(4) < dim(S)) abgebildet
wird. ¢ induziert einen Hom6omorphismus von ¥V —8 auf W — 4. - In
derartigen Fillen, wo der Homéomorphismus von V—8 auf W—A4 zu
einer stetigen Abbildung von V auf W ausgedehnt werden kann, sprechen wir
von «Modifikation mit Abbildung».

b) Im ersten Kapitel werden die Definitionen verschiedener Arten von
Modifikation gegeben (topologische, differenzierbare, reell und komplex ana-
lytische Modifikation, spezielle und allgemeine Modifikation); dann wird auf
die Erzeugungsweisen hingewiesen, insbesondere auf die Modifikation mit
Abbildung, und schlieflich werden die Zusammenhiénge mit den Sphiren-
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faserungen und mit den Moglichkeiten des Abschlusses berandeter Mannigfal-
tigkeiten behandelt. Es zeigt sich, daB jede differenzierbare Modifikation zwei
Sphirenfaserungen des Umgebungsrandes N von 4 in W (oder von 8§ in V)
induziert, und dafl umgekehrt jedes Paar zweier Sphérenfaserungen des Um-
gebungsrandes eine Modifikation liefert. Ist weiter M eine «regulér» berandete
Mannigfaltigkeit mit der Randmannigfaltigkeit N, und kann N in Sphiren
gefasert werden, so lift sich M zu einer unberandeten Mannigfaltigkeit W
abschlieBen; liegt ein differenzierbarer Abschlu von M zu W vor, so kann
N in Sphiren gefasert werden. Die §§ 5 und 6 handeln von den naheliegendsten
Anwendungen auf Sphirenfaserungen: jedes differenzierbare Sphirenbiindel
ist dquivalent einem Normalenbiindel; in § 6 betrachten wir die Antipoden-
abbildung in einem diflerenzierbaren Sphérenbiindel, speziell bei Faserungen
durch geraddimensionale Sphéren, sowie Sphiarenbiindel mit unitérer und mit
symplektischer Strukturgruppe. In § 7 wird die «Verfeinerung der Sphiren-
faserung» beschrieben, welche zu Modifikationen mit Abbildung fiihrt; umge-
kehrt kann jede differenzierbare Modifikation mit Abbildung durch Verfeine-
rung der Sphirenfaserung gewonnen werden. Es werden Beispiele von Modi-
fikationen mit Abbildung gegeben (o™?-ProzeB).

c¢) Die Kapitel II, I1I und IV haben die Cohomologietheorie der Modifikation
zum Gegenstand. Dabei konnen zwei verschiedene Wege eingeschlagen werden :
1. es werden die Zusammenhénge mit den Sphérenfaserungen benutzt, wie sie
im ersten Kapitel dargestellt wurden, und dann die Cohomologietheorie der
Sphérenfaserungen angewandt (Gysinsche exakte Sequenz); 2. wir gehen direkt
von der Modifikation aus, schreiben die exakten Sequenzen der Paare (V, S)
und (W, A) an, und benutzen den Homdomorphismus zwischen ¥V — 8 und
W — A, der uns den Isomorphismus H*(W, 4) o~ H*(V, S) liefert. Es wird
meistens von der zweiten Methode Gebrauch gemacht, welche den Vorteil hat,
auch in solchen Fillen angewandt werden zu kénnen, wo zur Modifikation
keine Sphiirenfaserungen gehéren. Gewisse Resultate der Cohomologietheorie
der Sphérenfaserungen werden dabei mitgeliefert. Neben den exakten Sequen-
zen kommt der Poincarésche Dualititssatz in einem «Pendelverfahren» wieder-
holt zur Anwendung (§§ 10, 11, 15, 18). — In den §§ 9 bis 11 wird die «dokale»
Modifikation (Ersetzen eines Punktes) besprochen. Das Hauptergebnis lautet:
bei einer (differenzierbaren) lokalen Modifikation hat die eingesetzte Mannig-
faltigkeit 8 die additive und die multiplikative Cohomologiestruktur des ver-
allgemeinerten projektiven Raumes. In § 12 werden die beiden oben angege-
benen Methoden nacheinander vorgefiihrt, im Falle der Modifikation durch
Ersetzen einer Mannigfaltigkeit. — Das dritte Kapitel enthilt die Cohomologie-
theorie der Modifikation mit Abbildung (§§ 13 und 15) samt Anwendungen
und Zusétzen (§§ 14 und 16). Die Resultate lauten im wesentlichen dahin, daB
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unter geeigneten Dimensionsvoraussetzungen die eingesetzte Mannigfaltigkeit
S additiv dieselbe Cohomologiestruktur hat wie das topologische Produkt
von A mit einem verallgemeinerten projektiven Raum. — Im vierten Kapitel
kommt die komplexe Modifikation mit Abbildung zur Sprache, wobei das
Hauptgewicht auf dem Spezialfall Kihlerscher Mannigfaltigkeiten liegt. Die
meisten Betrachtungen iiber die Kéhlersche Modifikation beruhen darauf, da
die wichtigsten Cohomologieresultate von Kapitel III (und II) sich im Sinne
der Typeneinteilung der Differentialformen auf einer K#hlerschen Mannig-
faltigkeit verfeinern lassen. Dabei ergeben sich Sitze, die in der Theorie der
birationalen Transformationen in der algebraischen Geometrie bekannt sind
(Invarianz des Geschlechtes), und die auf funktionentheoretischem Wege ver-
schirft werden konnen.

d) Es sei in diesem Zusammenhang auf einen Satz hingewiesen, gemil wel-
chem jede nicht triviale komplexe Modifikation mit Abbildung #quivalent
einem ¢™%Prozel ist (Einzigkeitssatz fiir komplexe Modifikation mit Ab-
bildung). Er liefert fiir komplexe Modifikationen mit Abbildung einen neuen
Zugang zu den grundlegenden Beziehungen (63') bzw. (63, ,) im Kahlerschen
Fall, unter Verwendung der Spektralfolge fiir projektive Biindel. Ferner lassen
sich die verfeinerten Cohomologiebeziehungen fiir komplexe Modifikationen
mit Abbildung auch ohne die Voraussetzung der Kihlerschen Metrik formu-
lieren, wenn man die Dolbeaultschen Cohomologiegruppen heranzieht, dies
wiederum auf Grund des zitierten Einzigkeitssatzes. In der vorliegenden
Arbeit wird der Einzigkeitssatz mit den genannten Anwendungen nur ange-
deutet (§ 19¢); es ist dariiber eine ausfiihrliche Publikation in Vorbereitung.

e) Der Begriff der Modifikation kommt in der Theorie der komplexen Man-
nigfaltigkeiten unter funktionentheoretischen Gesichtspunkten mehrfach vor.
Es ist an die Arbeiten von Hopr [23], [24], BEENKE und StEIN [4], KREYSZIG
[26], SToLL [32], u.a. zu erinnern. In der vorliegenden Arbeit werden dagegen
die topologischen Untersuchungsmethoden in den Vordergrund geriickt. Ein
erster Ansatz hiezu, im Hinblick auf den AbschluB3 berandeter Mannigfaltig-
keiten, befindet sich bei HirscH [19]. — Meinem verehrten Lehrer, Herrn
Prof. B. EckMaANN, mochte ich an dieser Stelle meinen herzlichsten Dank aus-
sprechen. In vielen Diskussionen hat er mich auf die verschiedenen Frage-
stellungen gefiihrt und manche wertvolle Hinweise gegeben. Auch Herrn Prof.
H. Horr moéchte ich vielmals danken fiir die zahlreichen Anregungen und
Ratschlige. — SchlieBlich danke ich fiir den Beitrag aus dem Zentenarfonds der
Eidgenossischen Technischen Hochschule, der einen Teil der Druckkosten die-
ser Arbeit deckte.
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1. Kapitel. Modifikation und Faserung

Wir betrachten im folgenden vor allem die differenzierbare Modifika-
tion. Als Anwendungen ergeben sich dabei bekannte Resultate. Daneben stel-
len wir Beispiele von Modifikationen bereit, die in den spidteren Untersuchun-
gen wiederholt herangezogen werden.

§ 1. Definition und Erzeugung einer Modifikation

a) Wenn im folgenden von einem Paar von Mannigfaltigkeiten (V7, 8™) die
Rede ist, so ist damit folgendes gemeint: V* ist eine n-dimensionale Mannig-
faltigkeit (die Dimensionsindizes werden oft weggelassen!)) und S™ eine ab-
geschlossene Teilmenge von V”, welche eine m-dimensionale Mannigfaltigkeit
ist. Das Komplement von 8 in ¥V wird wie iiblich mit V — 8 bezeichnet.
Ein Paar von Mannigfaltigkeiten (V, S) heilt differenzierbar, wenn V diffe-
renzierbar ist und die Einlagerung 8 < V ebenfalls; dabei soll «differenzierbar»
immer unendlich oft differenzierbar bedeuten. Analog ist ein reell oder ein
komplex analytisches Paar erklirt.

Definition. Unter einer Modifikation
@: (V», Sm) — (Wr, A9) (1)

verstehen wir ein System, bestehend aus zwei Paaren von Mannigfaltigkeiten
(V, S) und (W, A), sowie einem Homéomorphismus

p': Vr—8m — Wn— 41 (2)

des Komplementes V — 8§ auf W — A, derart, daB fiir jede in ¥V — § gegen
S strebende Punktfolge p, die Folge ¢'(p,) in W gegen A konvergiert. Es
wird n— 1 > Max (m, q) vorausgesetzt. Wir nennen § Singularititenman-
nigfaltigkeit, A Ausnahmemannigfaltigkeit.

Sind die Paare (V, S) und (W, 4) sowie der Homéomorphismus ¢’ differen-
zierbar, so sprechen wir von einer differenzierbaren Modifikation. Entsprechend
ist die reell und die komplex analytische Modifikation zu verstehen 2).

Kompaktheitsvoraussetzung. In der Modifikation (1) sollen ¥ und W (und
somit auch S und 4) stets als kompakt vorausgesetzt werden. Gewisse Betrach-
tungen dieser Arbeit wiren auch ohne diese Voraussetzung giiltig, insbesondere

1) M und M" bedeuten dieselbe Mannigfaltigkeit. Ebenso wird eine Mannigfaltigkeit gleich-
zeitig mit M und M™ bzw. mit M und M("] bezeichnet, wenn es sich um eine komplexe bzw.

quaternionale Mannigfaltigkeit der komplexen bzw. quaternionalen Dimension » handelt.
%) Vgl. die Erklirung der Modifikation in [4] und in [24].
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gelten die Sitze 1, 4, 5, 7, 8, 11 sinngem#fB auch im nicht kompakten Fall. -
Gelegentlich treten an Stelle von ¥V und W offene Teilmengen von V bzw.
von W, z. B. bei «lokalen» Fragen die offene Euklidische Umgebung eines
Punktes; diese Abweichungen von der Kompaktheitsvoraussetzung sind jedoch
unwesentlich.

Zusammenhangsvoraussetzung. Wenn nichts anderes gesagt wird, sollen in
der Modifikation (1) die Mannigfaltigkeiten ¥V, W, S, 4 zusammenhingend sein.

Allgemeine Modifikation. Wir nennen die Situation (1) eine allgemeine Modi-
fikation (im Gegensatz zu den soeben beschriebenen «speziellen» Modifikatio-
nen), wenn V, W topologische Réume und S € ¥V bzw. 4 € W Teilmengen
sind. S heilt Singularitditenmenge, A Ausnahmemenge. Es werden keine
Dimensionsforderungen gestellt, selbst wenn fiir die Réume eine Dimension
definiert ist. Den Réumen V, W, 8, A werden jedoch meistens einschrinkende
Bedingungen auferlegt, z. B. daB3 es sich um Polyeder oder um Homologie-
mannigfaltigkeiten handelt (siehe Kap. II und III). — Die Erzeugungsarten
in b) und in ¢) bestehen auch fiir solche allgemeinen Modifikationen.

b) Erzeugung durch eine Abbildung. Es sei

p: V" > Wwn (3)
eine Abbildung?®) von V auf W, welche eine Abbildung
@: 8™~ A9, (4)

von S c V auf A ¢ W und einen HomGomorphismus
@V — §m > Wn — A1, (2)

von V — 8 auf W — A4 induziert. Es ist klar, daBl durch eine solche Abbildung
eine Modifikation gegeben wird. Ist ¢ differenzierbar bzw. analytisch, die auf-
tretenden Mannigfaltigkeiten und Einlagerungen ebenfalls, so wird die durch
(8) erzeugte Modifikation differenzierbar bzw. analytisch. Modifikationen (1),
die durch eine Abbildung (3) erzeugt werden, heilen Modifikationen mit Ab-
bildung; ¢ heit Modifikationsabbildung («relativer Homdomorphismus» in
[16], p. 266).

c) Erzeugung durch Schnittfliche einer Faserung. Wir bezeichnen mit
€= {E,F, B} (5)

eine lokal triviale Faserung (Biindel). Dabei bedeutet £ den Raum des Biindels
(Faserraum), aufgefat als topologischen Raum aller Punkte, die zu irgend-

3) Alle betrachteten Abbildungen sind stetig.
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einer Faser des Biindels gehdren, ¥ die Faser, B die Basis. Zu (5) gehort die
Projektionsabbildung
n: E—>B. (6)

Es sei nun W die Basis B in einer Faserung (5). Dann liefert eine «Schnitt-
fliche V in € mit Singularititenraum S iiber 4» eine Modifikation von W.
Dies soll heilen: V sei eine Teilmenge von E, derart, daB die durch die Pro-
jektion (6) induzierte Abbildung ¢: ¥V — W die in b) beschriebenen Eigen-
schaften hat, beziiglich gewisser Teilmengen SCV und ACW. V— S8 ist
fir den iiber W— A stehenden Teil der Faserung eine Schnittfliche im iib-
lichen Sinn. Damit befinden wir uns im Falle b).

Umgekehrt kann die in b) beschriebene Situation aufgefaBt werden als Er-
zeugnis einer Schnittfliche in einem Faserraum: man nimmt das Biindel

€ = {W" x V=, V", W}

und als «Schnittfliche» den Graph der Abbildung (3).

Eine differenzierbare Faserung, in welcher #, F', B, die Einlagerungen und
die Projektion (6) differenzierbar sind, gibt bei Vorgabe differenzierbar ein-
gelagerter Schnittflichen mit differenzierbar eingelagerter Singularitdtenman-
nigfaltigkeit AnlaB zu differenzierbaren Modifikationen. Analog im analyti-
schen Fall.

Bemerkung. Ist 4 =7 ein Punkt, so kann jede Abbildung (2) fortgesetzt wer-
den zu einer Abbildung (3), indem ¢(8) = p gesetzt wird, und wir befinden
uns im Falle b). Ist iiberdies S ein absoluter Umgebungsretrakt, und beschrin-
ken wir uns auf eine Umgebung U = U (p) in W, so kann die hier vorliegende
lokale allgemeine Modifikation (vgl. §§ 9-11) immer gegeben werden durch
eine Schnittfliche ¥ in der Faserung € = {U X 8,8, U} mit dem Singu-
laritditenraum S iiber p, d. h. bei welcher der Singularititenraum mit der
Faser iiber p iibereinstimmt. DaB hier S als Faser in § genommen werden

kann, wird so eingesehen: zunichst miiite eine Faserung €= {U % ] , S , U}
genommen werden, in welcher S eine offene Umgebung von 8§ ist; da § ein

absoluter Umgebungsretrakt ist, kann aus einer Schnittfliche in & mit dem
Singularititenraum S iiber p durch stetige Deformation eine Schnittfliche in
€ konstruiert werden, welche ebenfalls die gewiinschte Modifikation erzeugt.

d) Erzeugung durch Faserung des Umgebungsrandes der Ausnahmemannig-
faltigkeit. W sei eine kompakte differenzierbare Mannigfaltigkeit, und A4 sei

differenzierbar eingelagert in W. A sei eine offene Umgebung U(4) in W,
derart, daB3 der Umgebungsrand N”-1 = 9(W” — A") eine (n — 1)-dimensio-

15 Commentarii Mathematici Helvetici
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nale in W differenzierbar eingelagerte Mannigfaltigkeit ist. N kann dann ge-
fasert werden durch (n — ¢ — 1)-dimensionale Sphiren X"—¢-!, indem (nach
Wahl einer Riemannschen Metrik in W) in jedem Punkt von 4 die zum Tan-
gentialraum an 4 orthogonale (» — g)-dimensionale geoditische Vollkugel mit

N zum Schnitt gebracht wird (j sei geniigend klein gewihlt). Das so entstan-
dene Biindel heilt das Normalenbiindel von 4 in W. Wir bezeichnen es mit

N(4) = {N"-1, Zn-e1, 49}, (7)
Kann nun N auBler durch (7) auf eine weitere Art gefasert werden:
N(S) = {N"-1, Fr—m-1, §m}, (8)

und zwar so, daBl durch Identifikation jeder Faser F' zu einem einzigen Punkt

aus W — A eine geschlossene Mannigfaltigkeit V entsteht, so wird durch (8)
eine (nicht triviale) Modifikation gegeben. Diese Erzeugungsart wird in den
nichsten Paragraphen néher untersucht und bildet den Hauptgegenstand
dieses Kapitels.

§ 2. Differenzierbare Modifikation und Faserung

Durch (1), (2) werde eine differenzierbare Modifikation gegeben. Da ¢’ in
(2) eine Homoomorphie ist, wird auch

g: N*-1 > Nn-1 (9)
eine topologische Abbildung, wenn
Nr-l— g(Wr — A%, A" = U(49) ,
Ne1=p3(V"—8) , & =U@sm),

und wo @ die durch ¢’ induzierte Abbildung auf N ist. Die offenen Umgebun-
gen U(A) und U(S) in W bzw. in V sollen so gewdhlt werden, da N bzw.

N differenzierbar gefasert werden konnen, wie dies in § 1 d) beschrieben wurde.
Wir bekommen dann die beiden Faserungen

ER(A) = {Nﬂ——l, Z‘n-—q——l, Aq} ’ (7)
RN(S) = (N1, Zn-m-1, gm} (7)

Da @ ein Homdomorphismus ist, stellen (7) und (7) zwei differenzierbare
Faserungen desselben Raumes N dar. Wir sprechen diese Tatsache in dem fol-
genden Satz aus:



Modifikation von reellen und komplexen Mannigfaltigkeiten 227

Satz 1. Jede differenzierbare Modifikation kann durch Sphirenfaserung des
Umgebungsrandes der Ausnahmemannigfaltigkeit erzeugt werden. Genauer: liegt
eine differenzierbare Modifikation

@: (Vn, Sm) — (W, A9) (1)

vor, so kann diese folgendermapfen erzeugt werden: der Raum N = o(W — Z)
des Normalenbiindels N(A) wird differenzierbar gefasert, mit der Faser Xm—m-1
. und mit der Basis 8™, und dann wird jede Faser X1 als ein etnziger Punkt
aufgefapt: dadurch werden (V, S) und @ konstruiert.

Nun fragen wir, ob jede Sphirenfaserung eines Umgebungsrandes N zu
einer Modifikation fithrt, und ob auBer Sphirenfaserungen auch andere Fa-
serungen von N Modifikationen erzeugen (siehe § 4). Im Hinblick darauf
untersuchen wir in § 3 die Moglichkeiten, eine berandete Mannigfaltigkeit
durch Faserung abzuschliefen.

§ 3. AbschluB durch Faserung

a) M™ sei eine berandete Mannigfaltigkeit mit der zusammenhéngenden Rand-
mannigfaltigkeit N"-1 = 9 M". Es soll nun N so gefasert werden kdnnen, daf
durch Identifikation jeder einzelnen Faser zu einem Punkt aus M eine unbe-
randete Mannigfaltigkeit V" wird. Die Faserung der Randmannigfaltigkeit ;V

sei gegeben durch RN — (Nn-1, From-1 gm} (8)

Wir sagen auch: die Mannigfaltigkeit M — N kann durch Hinzufiigen der
Mannigfaltigkeit § zur Mannigfaltigkeit V' gemacht werden, oder M (bzw.
M — N) kann durch S zur unberandeten Mannigfaltigkeit ¥V «abgeschlossen»

werden.
Gehen wir vom Rande N™-! aus ein Stiick weit ins Innere von M”, und be-

trachten wir die Rinde N » welche eine abgeschlossene Umgebung von N in
M ist; N ist selbst gefasert:
R (N-1) = {N*, U1, N*-1} (10)

mit der eindimensionalen abgeschlossenen Euklidischen Zelle U! als Faser.
DaB die Faserung (10) existiert, soll im Begriff «berandete Mannigfaltigkeit »
enthalten sein, der Rand soll also geniigend «reguldr» sein. Die Faserung (8)

kann auf N* ausgedehnt werden:
R(Smi1) = (Nn, Fr-m-1, gni1} (11)
wo Sm+1 entsprechend (10) gefasert ist:
R(S™) = {S™4, U1, §m} . (12)
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U™ sei eine abgeschlossene Umgebung, das heiflt eine geniigend kleine ab-
geschlossene Euklidische m-dimensionale Zelle, in der Basis 8™ der Faserung
(8). Wegen der lokalen Trivialitit der Faserung (12) wird das Stiick des Faser-

raumes §m+1 iiber Um gegeben durch
Umtl = g™ x UL,

und U™+! ist eine abgeschlossene Umgebung in der Basis Sm+1 der Faserung
(11). Da auch die Faserung (11) lokal trivial ist, erhalten wir in

IZn = UUm x U1 x Fr—m-1 (13)

das Stiick des Faserraumes N* iiber Um X U! in der Faserung (11). K"
kann in der Form

Kn = [U™ x (Ut — p) X Fr-m=-1]y [Un X p X Fr-m-1] (14)

geschrieben werden, wo U™ x (U! — p) x F»™1 in M"® — N™! liegt, und
Um x p X F* ™1 gich in N*-! befindet.

Soll nun durch die Faserung (8) die berandete Mannigfaltigkeit M mit dem
Rand N zu einer unberandeten Mannigfaltigkeit ¥ gemacht werden, das heilt
soll K» nach Identifikation jeder Faser in der Faserung (8) zur abgeschlos-
senen Vollkugel K homGomorph sein, so bedeutet dies, daB in (14) der zweite
Summand homéomorph U™ wird, und der erste Summand hom&omorph
U™ x (Ut — p) x Xr—m-1;

Um x (Ut — p) x Fr-m=1sUm x (Ul — p) x Zn-m-1, (15)

Aus (15) folgt: F"—m-1 hat den Homologie- und den Homotopietypus der
(n — m — 1)-Sphére. Wir sagen: F ist eine Homotopiesphiire.

b) Umgekehrt sehen wir: ist in der Faserung (8) die Faser F’"*m~1 eine
Sphare 2n—m-1 g0 besteht die Homéomorphie (15) und damit auch Kr <~ K™,

wo jog aus K" durch Identifikation jeder einzelnen Faser F in (8) zu einem
Punkt entsteht, K durch (13) gegeben, K" n-dimensionale Vollkugel. Die
Faserung (8) liefert also in diesem Fall einen ProzeB zur Bildung einer
Mannigfaltigkeit ¥ aus der berandeten M .

c) Schliefllich gilt wie bei (7) und (7) in § 2: kann M durch S differen-
zierbar abgeschlossen werden, das hei3t kann durch Hinzufiigen der differen-
zierbaren Mannigfaltigkeit 87 zur differenzierbaren Mannigfaltigkeit M"—Nn-1
die differenzierbare Mannigfaltigkeit V" hergestellt werden, so dal § in V
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differenzierbar eingebettet ist, so wird N zum Raum des Normalenbiindels von
S in V, und somit kann N in Sphéren X"-™-1 gefasert werden. Die so erhal-
tene Faserung ist differenzierbar. Weiter ist jede differenzierbare Faserung (8),
die einen differenzierbaren Abschlufl erzeugt, dem Normalenbiindel von § in
V #quivalent und somit ein Sphérenbiindel (zum Aquivalenzbegriff s. §5b)).

d) Zusammengefafit:

Satz 2. 1. Soll die berandete Mannigfaltigkeit M™ durch Faserung der zusam-
menhdngenden Randmannigfaltigkeit N*— zu einer unberandeten Mannigfaltig-
keit V™ gemacht werden, so muf3 N*—1 durch Homotopresphdiren gefasert werden.

2. Kann die Randmannigfaltigkeit N*—* durch Sphiren gefasert werden:
N = {Nn——l’ Z'n—m—l’ Sm} , (]_6)

so lafpt sich M"™ — N"' durch Hinzufiigen der Mannigfaltighkeit S™ zu einer
unberandeten Mannigfaltigkeit V" erweitern. Mit andern Worten: jede Sphdren-
faserung von N1 liefert eine Maoglichkeit, M"™ abzuschliefen zu einer unberan-
deten Mannsgfaltighkeit V™.

3. Wird M™ durch S™ differenzierbar abgeschlossen, so kann N"-! differen-
zierbar in Sphiren X1 gefasert werden, derart, daf3 der Abschluf3 durch diese
Faserung erzeugt wird. Wird M™ durch eine differenzierbare Faserung von N"—!
differenzierbar abgeschlossen, so muf diese Faserung ein Sphirenbiindel sein.

e) Ist M sowie die Faserung (16) differenzierbar, so heiflt die Folgerung in
Satz 2, 2.: M — N kann durch Hinzufiigen von § differenzierbar abge-
schlossen werden. Nehmen wir noch Satz 2, 3. hinzu, so bekommen wir:

Satz 8. Die Moglichkeit, M™ durch S™ differenzierbar abzuschlieflen, ist dqui-
valent der Moglichkeit, N*—! differenzierbar in Sphdren X"—™-1 2y fasern.

Ein Spezialfall zu Satz 3 wurde von G. HirscH in [19] angegeben: dort ist
M" eine n-dimensionale berandete Euklidische Zelle, und die auftretenden
Faserungen sind Sphirenfaserungen der (n — 1)-dimensionalen Randsphire.

f) Besteht der Rand N aus mehreren Komponenten N,,N,, ..., N,, wo N,
eine zusammenhingende Mannigfaltigkeit ist, ¥ = 1,2, ...,%, so gelten die
Siitze 2 und 3 beziiglich der Méglichkeit, M an einer einzelnen Randkompo-
nente N, abzuschlieBen. Ferner braucht N in der Faserung (16) nicht zusam-
menhingend zu sein, wenn m = n — 1 ist, das heilt wenn es sich um eine
Faserung durch nulldimensionale Sphéren handelt (bei zusammenhéngendem
S): N kann aus zwei Komponenten bestehen. Die Sitze 2 und 3 lassen sich
auch auf diesen Fall iibertragen.
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§ 4. Faserungen, die auf Modifikationen fiihren

Wir wenden Satz 2, 2. an auf die Situation der Modifikation. W und 4 « W
seien wieder kompakte Mannigfaltigkeiten; wir erhalten:

Satz 4. Ist (W*, A9 gegeben, so liefert jede Sphirenfaserung des Raumes
Nr-1 = g(W" — A") eine Modifikation

@: (P, 8™) - (W", A9). (1)

Denn eine Faserung von 9(W — A ) in Sphéren X"—™-1 mit der Basis S lie-
fert einen AbschluB von W — A durch S, so daB eine unberandete (in die-
sem Fall kompakte) Mannigfaltigkeit V' entsteht mit der Homéomorphie
¢':V—8—>W— A. Esgehort also zu jeder Sphirenfaserung von 9(W — A )
eine Modifikation @. Dabei wird vorausgesetzt, dal W — A4 eine regulir
berandete Mannigfaltigkeit ist (Existenz der Faserung (10), siehe § 3 a)).

Bemerkung. Wird die Modifikation (1) durch die identische Abbildung indu-
ziert, so dafl also § =4 und V = W, so sprechen wir von einer trivialen
Modifikation. Im differenzierbaren Fall tritt sie in Satz 4 als die zum Nor-
malenbiindel N (4 ) gehorige Modifikation auf.

Weiter bekommen wir aus Satz 2, 1 und 2, 3: soll die Modifikation (1) mittels
einer Faserung (8) erzeugt werden, so mull (8) eine Faserung durch Homo-
topiesphiiren sein, im differenzierbaren Fall durch Sphiren.

Beschrinken wir uns auf differenzierbare Modifikationen, so folgt aus Satz 1
und Satz 3:

Satz b. Die differenzierbaren Modifikationen
D (V" 8™) — (W™, A9) (1)
stehen bet fest gegebenen (W™, A9) in eineindeuiiger Beziehung zu den differen-
zierbaren Faserungen von N1 in Sphdren X"—m-1;
N = {N*-1, Zn-m-1 gm}, (16)

Jede differenzierbare Modifikation (1) liefert eine differenzierbare Faserung (16)
und umgekehrt.

Satz 5 besagt also: an Stelle der differenzierbaren Modifikationen von W
mittels Ersetzen von A durch § kénnen die differenzierbaren Sphirenfase-

rungen von N = o(W — .71) betrachtet werden und umgekehrt.
Bemerkung zur Differenzierbarkeit. Wir haben in § 1 a) festgelegt, daB dif-
ferenzierbar immer unendlich oft differenzierbar heien soll. Unter dieser Vor-

aussetzung gelten die obigen Aquivalenzsiitze, Satz 3 und Satz 5. Verzichtet
man auf die unendliche Differenzierbarkeit, so muBl beriicksichtigt werden,
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daB bei der Konstruktion des Normalenbiindels einer eingebetteten Mannig-
faltigkeit differenziert wird, so daf Satz 5 folgendermaBen lauten miiBte: eine
langs S k-mal stetig differenzierbare Modifikation liefert eine (k — 1)-mal
stetig differenzierbare Sphérenfaserung von N und umgekehrt ). Analoge For-
mulierung bei Satz 3.

§ 6. Berandende Mannigfaltigkeiten. Sphiirenfaserungen und Normalenbiindel

a) Sphiirenfaserungen und berandende Mannigfaltigkeiten. Die kompakte
Mannigfaltigkeit N"-! sei der Raum einer Sphirenfaserung. Wir bilden das
topologische Produkt N

M" = N*-1 x U?, (17)

wo U! wie in § 3 das abgeschlossene Intervall [0, 1] bedeutet. Der Rand von
M setzt sich aus den beiden Komponenten N X (0) und N X (1) zusam-

men. Da N in Sphiren gefasert werden kann, kann gemaf Satz 2, 2. M an
der Randkomponente N x (1) abgeschlossen werden, und wir erhalten eine
berandete Mannigfaltigkeit M™ mit der Randmannigfaltigkeit N X (0), das
heifit N ist berandend. Wir sehen also: kann eine Mannigfaltigkeit in Sphéren
gefasert werden, so ist sie berandend. Diese Bemerkung stammt von THOM
[33]. Ist N durch nulldimensionale Sphiren gefasert, so ist N zweifacher Uber-
lagerungsraum von 8, und es gilt: ist eine Mannigfaltigkeit nicht berandend,
so kann sie nicht als zweifacher Uberlagerungsraum auftreten. Da fiir eine be-
randende Mannigfaltigkeit N die Euler-Poincarésche Charakteristik y(XN) ge-
rade ist, erhalten wir: der Raum einer Sphéirenfaserung besitzt gerade Charak-
teristik. Dies folgt auch daraus, daB fiir eine Faserung (5) mit kompaktem E

die Gleichung 2(B) = 4(B). y(F) (18)

gilt. Zur Herleitung von (18) vergleiche man [6], IX-4 oder [7], X-5, ferner
[18], p. 113. Es folgt zum Beispiel, dafl die reell projektiven Réume P” gerader
Dimension nicht in Sphiren gefasert werden konnen, insbesondere kénnen sie
nicht als zweifache Uberlagerungsriume auftreten. Dasselbe gilt fiir die kom-
plex projektiven Riume P™ gerader komplexer Dimension und analog fiir
die quaternional projektiven Réume.

Ist N differenzierbar und kann N differenzierbar in Sphéren gefasert wer-
den, so wird durch die Konstruktion bei (17) die berandete Mannigfaltigkeit
M differenzierbar, und es gilt: kann eine differenzierbare Mannigfaltigkeit
differenzierbar in Sphiren gefasert werden, so ist sie differenzierbar berandend.
Ist N orientierbar, und wird N"-! durch Sphéren X"-™-1 der Dimension

4) k> 1. Dabei sollen V, W und die Einlagerungen AC W, SCV von der Klasse Ok
(k-mal stetig differenzierbar) sein. «Null-mal stetig differenzierbar» bedeutet stetig.
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n—m — 1 > 1 gefasert, so wird M orientierbar, und die Orientierungen von
M und N konnen so gewihlt werden, daB mit Hilfe des Randoperators
d0:H,(M, N) - H,_ ;(N) durch die Orientierung von M diejenige von N
induziert wird. Wir sagen: kann eine orientierbare Mannigfaltigkeit in Sphi-
ren der Dimension >1 gefasert werden, so ist sie orientierbar berandend.
Nach einem Satz von PONTRIJAGIN (Theorem 3 in [30]; vgl. auch [34] und [35],
Theorem IV 2. und Theorem IV 3.) sind fiir eine berandende differenzierbare
Mannigfaltigkeit alle Stiefel-Whitneyschen charakteristischen Zahlen gleich
null, und fiir eine orientierbar berandende differenzierbare Mannigfaltigkeit
der Dimension 47 verschwinden alle Pontrjaginschen charakteristischen Zah-
len; ferner ist fiir eine orientierbar berandende 4 r-dimensionale Mannigfaltig-
keit der Index 7 der durch das Cup-Produkt auf der 27-dimensionalen Cohomo-
logiegruppe definierten quadratischen Form gleich null ([35], Theorem V 11).
Damit folgt: ist fiir eine differenzierbare Mannigfaltigkeit eine Stiefel-Whit-
neysche charakteristische Zahl verschieden von null, so kann die Mannigfaltig-
keit auf keine Weise differenzierbar in Sphiren gefasert werden; ist fiir eine
orientierbare 4 r-dimensionale differenzierbare Mannigfaltigkeit eine Pontrjagin-
sche charakteristische Zahl oder der Index 7 verschieden von null, so kann die
Mannigfaltigkeit nicht in Sphidren der Dimension >1 gefasert werden. Ein
Beispiel einer 5-dimensionalen Mannigfaltigkeit mit einer von null verschie-
denen Stiefel-Whitneyschen charakteristischen Zahl liefert die Mannigfaltig-
keit W* von Wu WEN-TSuN [37], eine Mannigfaltigkeit, die iiber der Kreis-
linie 2'* mit der Faser P'® gefasert wird: man nimmt das Produkt U! x P
und identifiziert (0) X (2, 25, 25) mit (1) X (21, 23, 23), WO 2, 24, 23 homo-
gene Koordinaten in P® sind, und der Querstrich den Ubergang zum Kon-
jugiertkomplexen bedeutet. Es ist y(W5%) = 0, so daBl die Betrachtung der
Euler-Poincaréschen Charakteristik keinen Aufschluf3 dariiber gibt, ob W? in
Sphéren gefasert werden kann oder nicht. Hingegen sind die zweite und die
dritte Stiefelschen Klassen verschieden von null sowie ihr Produkt, es ist also
eine charakteristische Zahl verschieden von null, und daraus folgt, daB eine
Sphirenfaserung von W*® unmoglich ist. Es ergibt sich ferner, dafl die oben
beschriebene Faserung von W® mit P als Faser nicht trivial ist.

b) Sphiirenfaserungen und Normalenbiindel. N"-! sei eine kompakte dif-
ferenzierbare Mannigfaltigkeit, die durch eine Faserung (16) differenzierbar in
Sphéren gefasert wird. Bilden wir die durch (17) gegebene berandete Mannig-
faltigkeit M und schlieBen wir sie kraft der Faserung (16) an der einen Rand-
komponente ab, so erhalten wir die bei (17) beschriebene berandete Mannig-
faltigkeit M und darin differenzierbar eingelagert die Mannigfaltigkeit S. Bei
geeigneter Wahl der Riemannschen Metrik in M kann dann die Faserung (16)
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aufgefaBBt werden als Normalenbiindel von 8 in M, oder: die Faserung (16)
ist dquivalent dem Normalenbiindel von 8 in . Dabei heilen zwei differen-
zierbare Faserungen €, = {£,, F',, B,} und G, = {#,, F,, B,} #quivalent,
wenn ein differenzierbarer fasertreuer Homéomorphismus FE, — E, existiert,
der einen Homo6omorphismus B, — B, induziert. Schlieflich kénnen wir,
wieder nach Satz 2, 2., M abschlielen zu einer kompakten Mannigfaltigkeit
¥V, und somit erhalten wir:

Satz 6. Jedes differenzierbare Sphdrenbiindel
N = {Nn—-l’ Z'n—m—l’ Sm} , (16)

N™=1 kompakt, ist dquivalent dem Normalenbiindel der Mannigfaltigkeit 8™, S™
eingebettet in einer kompakten Mannigfaltigkest V*, V™ mit einer geeigneten
Riemannschen Metrik versehen.

Als Strukturgruppe fiir ein Normalenbiindel kann die Gruppe O(n — m)
der orthogonalen Transformationen des (n — m)-dimensionalen Euklidischen
Raumes genommen werden (zum Begriff der Strukturgruppe eines Faser-
raumes sieche STEENROD [31], insbesondere fiir die Reduktion der Struktur-
gruppe [31], pp. 56-59). Daraus folgt wegen Satz 6:

Satz 7. Jedes differenzierbare Sphdrenbiindel
m — {Nn—l’ Zn—m—-l, Sm} (16)
ist dquivalent einem Sphdrenbiindel mit orthogonaler Strukturgruppe O(n — m).

Wenn man sich auf differenzierbare Sphérenbiindel beschrankt, geniigt es
also, die Sphéirenbiindel mit orthogonaler Strukturgruppe zu betrachten.

Bemerkung. Die Sdtze 6 und 7 gelten nicht nur fiir unendlich oft differen-
zierbare Faserungen, sondern ebenso fiir k-mal stetig differenzierbare, &k > 1.
Im topologischen (nicht notwendigerweise differenzierbaren) Fall lautet Satz 6:
die Mannigfaltigkeit N in (16) kann aufgefafit werden als Umgebungsrand von

S in V, so daB die berandete Mannigfaltigkeit M = ¥V — 8§ durch die Sphé-
renfaserung (16) abgeschlossen wird zu V.

§ 6. Die Antipodenabbildung. Sphérenbiindel mit unitirer Strukturgruppe

a) Die Antipodenabbildung. N"-! sei wie in § 5 ein durch (16) differenzier-
bar gefaserter Raum. Nach Satz 7 nehmen wir als Strukturgruppe die ortho-
gonale Gruppe O(n — m). Nun betrachten wir in jeder Faser X"-m-1 die
Antipodenabbildung, welche jedem Punkt p in der Faser X"-™-1 geinen Anti-
poden —p in derselben Faser zuordnet. Wegen der lokalen Trivialitdt der
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Faserung (16) wird dadurch zunichst eine Abbildung von U™ x X»—m-1 guf
sich definiert, wo U™ eine m-dimensionale Euklidische Zelle in der Basis 8™
bedeutet. Die Antipodenabbildung einer Faser wird durch die negative Ein-
heitsmatrix dargestellt und ist daher mit allen Elementen der Strukturgruppe
O(n — m) vertauschbar. Daraus folgt, daB durch die Antipodenabbildung in
jeder Faser eine Abbildung « des Raumes N auf sich induziert wird, die wir
wieder Antipodenabbildung nennen. « ist eine fasertreue Abbildung von N
auf sich, welche auf der Basis S die Identitét induziert. Die Abbildung «
wurde auch von Li1ao in [29], p. 185, betrachtet.

o besitzt keine Fixpunkte und ist periodisch mit der Periode 2: «% = I,
wo I die Identitdat bedeutet. Die Abbildungen I und « sind also die Elemente
einer Gruppe {I, «} von Decktransformationen von N, das heilt N ist zwei-
facher Uberlagerungsraum einer Mannigfaltigkeit N,. Daraus erhalten wir
wegen Satz 2, 2. und 3., unter Benutzung der dortigen Bezeichnungen: 140t
sich die offene berandete Mannigfaltigkeit M — N durch die Mannigfaltig-
keit S differenzierbar abschlieBen, so 1iBt sich M — N durch N, differen-
zierbar abschlieBen, wo N zweifacher Uberlagerungsraum von N, ist.

Nun sehen wir mit Hilfe von Satz 4: sind in (1) W und 42 gegeben mit
g <n— 2, so existiert im differenzierbaren Fall mindestens eine nicht tri-
viale Modifikation von W durch Ersetzen von 4, ndmlich diejenige, in welcher
A durch N, ersetzt wird:

Satz 8. Ist die Mannigfaltigkeit A2 vn der differenzierbaren Mannigfaltigkest
W differenzierbar singularititenfres eingelagert, und ist ¢ <n — 2, so liefert
die Antipodenabbildung oo von N™! eine nicht triviale Modifikation

@ : (Vn, Nt-1) = (Wn, A9) . (19,)

Ist A ein Punkt p in W, so bedeutet (19,) die Ersetzung des Punktes p durch
den reell projektiven Raum P!, Dieser Prozell ist das reelle Analogon in
hoheren Dimensionen des von HorpF in [23], [24] beschriebenen o-Prozesses.
Wir nennen diese Modifikation den reellen o-ProzeB. Ist 4 eine Mannigfaltig-
keit der Dimension ¢ > 1, so kann die Modifikation (19,) folgendermafen
gewonnen werden (vgl. § 7): man nimmt in jedem Punkt p von 4 den zu 4
in W" orthogonalen Euklidischen Raum E"-? und ersetzt den Punkt p in E"—¢
durch P*2-1; dadurch entsteht aus A? die Mannigfaltigkeit S"-1 = N},
welche mit der Faser P"-2-! gefasert wird, und aus W entsteht die modi-
fizierte Mannigfaltigkeit V (reeller ¢™'?-ProzeB).

b) Faserungen durch geraddimensionale Sphiren. Die kompakte differen-
zierbare Mannigfaltigkeit N™-! werde in geraddimensionale Sphéiren Xn"-m-1
differenzierbar gefasert, so da8 ein orientierbares differenzierbares Sphéren-
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biindel N(S) vorliegt. N(S) heiBt orientierbar, wenn mit Hilfe einer Orien-
tierung in der Basis § und einer Orientierung in der Faser 2' der Raum N
orientiert werden kann. Wir sagen dann: N wird durch 2 orientierbar gefasert.
Essei n—1=d, d—m=2t=n—m —1>2. In diesem Fall ist der
Abbildungsgrad der Antipodenabbildung auf der einzelnen Faser X'2! gleich
— 1 (nach Wahl einer Orientierung), und daher ist wegen der Orientierbarkeit
von N(S) auch der Abbildungsgrad g(x) der Abbildung « gleich —1.
g(x) = —1 bedeutet, daB N zweifacher Uberlagerungsraum der nicht orien-
tierbaren Mannigfaltigkeit N, ist. Nun wenden wir die von EcCKMANN in
[14], Theorem 6, angegebenen Beziehungen zwischen den Bettischen Zahlen
von N und N, an: bezeichnen wir mit b, bzw. b}, die Bettischen Zahlen von N

bzw. Ny, k =0,1, 2, ..., d, so gilt wegen [14], (16), (17), (18)
fir d =3 : b, = 20 — 1 , (20)
fir d = 2r . b, = 2b? , (21)
r r
fir d =2r+1: Z(—1)¥%b, = 22 (—1)*b5, (22)
k=0 k=0
Daraus bekommen wir: k=0 =il

Satz 9. Ist die kompakte differenzierbare Mannigfaltigkeit N% der Raum eines
orientierbaren differenzierbaren Sphirenbiindels, dessen Fasern Sphdren gerader
Dimension >2 sind, so gilt

fur d = 3 : b, = mod 2 , (20")
fir d = 2r + 1: 2b, = mod 2 . (22%)
k=0

(20) folgt aus (20), und (22') ist eine Folge von (22) oder von (23) zusam-
men mit dem Poincaréschen Dualititssatz fir N9. Die modulo 2 reduzierte
Gleichung (21) liefert nichts Neues: kann N?¢, d = 2r, in Sphéren gefasert
werden, so ist nach § 5a) y(N) gerade, und daher die mittlere Bettische Zahl
b, ebenfalls (was fiir r = 2¢' 4+ 1 fiir jede orientierbare Mannigfaltigkeit
richtig ist, ob sie in Sphiren gefasert werden kann oder nicht).

(22') in Satz 9 besagt zum Beispiel, dal eine differenzierbare Faserung der
ungeraddimensionalen Sphire 2X?+! in Sphiéren gerader Dimension >2
unméglich ist, und daraus folgt, daBl dasselbe fiir die ungeraddimensionalen
reell projektiven Réume gilt. Eine weitere Anwendung zu Satz 9 ist die fol-
gende:

Satz 10. Ist M2 eine orientierbare kompakte differenzierbare Mannigfaltigkest
mit ungerader mittlerer Bettischer Zahl: b,(M?*) =1 mod 2, so kann die Man-
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nigfaltigkeit M2 X X2+1 micht durch geraddimensionale Sphdren X% t > 1,
differenzierbar und orientierbar gefasert werden.

Bemerkung. Aus b,(M?) =1 mod 2 folgt r = 27/, so daBl wir uns in
Satz 10 auf 4r'-dimensionale Mannigfaltigkeiten M4’ beschrinken koénnen.

Der Beweis zu Satz 10 ergibt sich leicht aus der Betrachtung der Summe
r+s
X b (M x X2+l) . Esist

k=0
r+s

2 b (M x 2*#+H) =b,(M*) mod 2,
k=0
und daraus folgt mit Hilfe von Satz 9 die Behauptung in Satz 10.

Wegen b,(M?*)=1 mod2 ist M* nicht durch Sphiren faserbar (unge-
rade Charakteristik). Als Verschirfung von Satz 10 ist daher zu vermuten,
daBl M x X?+1 nicht durch geraddimensionale Sphiren X2, ¢t > 1, gefasert
werden kann, wenn M auf keine Weise in Sphéiren gefasert werden kann.

Zum Fall d = 3: wenn N2 durch 2%, t > 1, gefasert werden soll, bleibt
nur die Faserung {N8, X2 2} iibrig. Dann folgt aus (20'): es ist b,(N?)
= by(N3%) = 1, das heiBlt die additive Homologiestruktur von N3 iiber dem
Korper der reellen Zahlen ist diejenige von 21 x X2,

Bemerkung. Nach [18], Satz 40, p. 115, ist bei Sphiérenfaserungen durch
geraddimensionale Sphédren die Faser X% nicht homolog null in N iiber den
reellen Zahlen. Daraus folgt, daB die additive Homologiestruktur von N iiber
den reellen Zahlen zusammenfillt mit derjenigen des topologischen Produk-
tes § X X, wie wir dies eben fiir d = 3 gesehen haben. Daher gelten die
Sétze 9, 10 ohne Differenzierbarkeitsvoraussetzungen.

¢) Sphérenbiindel mit unitirer Strukturgruppe. (16) sei eine Sphérenfaserung
mit » — m = 21 > 2 und mit der Strukturgruppe U (4) der unitéren Trans-
formationen des komplex A-dimensionalen komplex Euklidischen Raumes.
Das Zentrum Z von U (A) besteht aus den Matrizen z.I, wo I die Einheits-
maitrix bedeutet und z eine komplexe Zahl vom Betrage 1:z = ¢'*, Die Tran-
sitivitéitsbereiche von Z auf der Sphire 2?21 sind Kreislinien X1, welche durch
» parametrisiert werden: es wird die Hopfsche Faserung von X?*-! in Kreis-
linien 2 mit dem komplex projektiven Raum P -1 als Basis erzeugt (vgl.
[13], [22]). Da die Transformationen aus Z mit allen Elementen aus U (4)
vertauschbar sind, folgt, wie in a) fiir die Antipodenabbildung, da die Hopf-
sche Faserung der einzelnen Fasern 22A-1 in Kreislinien eine Faserung des
gesamten Raumes N in Kreislinien liefert: der Raum N eines Sphirenbiindels
mit der Faser X?-1, A > 1, und mit unitérer Strukturgruppe U(4) 1aBt
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sich in Kreislinien 2* fasern. Diese Faserung von N gibt wegen Satz 4 AnlaB
zu Modifikationen, und es gilt ein zu Satz 8 analoger Satz fiir « quasikomplexe
Modifikation». Dabei wollen wir unter einer quasikomplexen Modifikation
eine differenzierbare Modifikation (1) verstehen, in welcher n — ¢ gerade ist
und die Strukturgruppe des Normalenbiindels von 42in W* die unitire Gruppe

2
Wir konnen auch sagen: zu einem Sphédrenbiindel (16) mit » — m = 21 > 2
und mit unitirer Strukturgruppe U (4) gehort eine Faserung

E(8m) = {L2A+m’ EW, Sm}

U ( n—4 ) In § 7 wird néher auf den komplexen Fall eingegangen.

mit der Basis § und dem komplex A-dimensionalen komplex Euklidischen
Raum EW als Faser, E‘) mit einem komplexen unitir orthogonalen Koordi-
natensystem versehen. Die Strukturgruppe bleibt U (4); €(S) wird in natiir-
licher Weise durch die Faserung (16) mit Hilfe der Transformationen aus
U (4) induziert. Umgekehrt wird die Faserung (16) aus ¢(S) dadurch erhalten,
daB in jeder Faser E™ die Sphire 22! mit einem fest gegebenen Radius und
mit dem Mittelpunkt im Ursprung O genommen wird (zum Beispiel die Ein-
heitssphire mit dem Zentrum in O). Nun wird die Hopfsche Kreislinienfase-
rung der einzelnen Faser X?-! dadurch gewonnen, daB X2A-1 = EV mit allen
komplexen Geraden in E® durch O geschnitten wird. Wenn diese Konstruk-
tion in jeder Faser EV) vorgenommen wird, so bekommen wir eine Faserung
von N in Kreislinien, welche mit der oben genannten Kreislinienfaserung von
N zusammenfillt. Ist n — m = 441 >4 und die Strukturgruppe die sym-
plektische Gruppe Sp(4), so liefert die analoge quaternionale Konstruktion
eine Faserung von N in 3-Sphéiren, und wir erhalten analog zu Satz 8 und zur
Existenz der obigen quasikomplexen Modifikation auch einen Satz iiber
«quasiquaternionale Modifikation». In einer quasiquaternionalen Modifika-
tion ist » — ¢ = 0 mod 4, und das Normalenbiindel von 42 in W* besitzt
n—q
4

) als Strukturgruppe (es handelt sich

/

die symplektische Gruppe Sp(

um differenzierbare Modifikation).

§ 7. Modifikation durch Verfeinerung der Sphirenfaserung

a) Modifikation durch gleichmiBige Verfeinerung der Sphirenfaserung. Wir
wollen eine Methode angeben, wie gewisse Modifikationen mit Abbildung er-
halten werden kénnen. Gehen wir von (W", A?) aus, und nehmen wir an, dafl
A aus dem Umgebungsrand N in W durch eine Sphéirenfaserung

N(49) = {N"-1, Zn-e-1, 49} - (7)
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erhalten wird. Im differenzierbaren Fall geht dies immer: R (4) ist das Nor-
malenbiindel von 4 in W. Kann nun jede einzelne Faser X"9-! in (7) so in
Sphiiren gefasert werden:

S = {Zr-et, Zn-m-l, pr-ay T (24

(jede Faser X"—2-1 in (7) ist gemal (24) gefasert, das heiflt die Faserung in
jeder einzelnen Faser X"—¢-1 ist dquivalent (24)), daB dadurch eine Sphiren-
faserung des ganzen Umgebungsrandes N entsteht:

N(S™) = {N»-1, Zr-—m-1 §m} | (16)
80 bekommen wir eine Modifikation (1) mit Abbildung

&: (V, 8m) — (W™, A9). (1)
Dabei wird S mit der Faser P und der Basis 4 gefasert:

P(49) = {§m, Pm9, A9}, (25)

wo Pm-2 die Basis in der Sphérenfaserung (24) ist. Die zu (1) gehorige Modi-
fikationsabbildung ¢ wird folgendermafBlen erhalten: auf V — 8 ist ¢ die
Identitdt; ist  ein Punkt in S, so nehmen wir die iiber » gelegene Faser in
(16), welche nach Voraussetzung ganz in einer Faser der Faserung (7) liegt;
diese Faser in (7) wird durch die Projektionsabbildung der Faserung (7) auf
einen Punkt y in A4 abgebildet, und die auf diese Weise gegebene Zuordnung
xz —y definiert die Abbildung ¢ auf S; dadurch ist ¢ auf ganz V definiert,
@ ist stetig und erzeugt die Modifikation (1). ¢, auf § beschrinkt, nennen wir
wie in (4) @, und wir sehen: ¢ ist die zur Faserung (25) gehorige Projektions-
abbildung.

Wir nennen die eben beschriebene Methode zur Erzeugung einer Modifika-
tion die Methode der gleichmiéBigen Verfeinerung der Sphérenfaserung, womit
wir betonen, daB die Faserung (7) durch (24) so verfeinert wird, dag} alle Fase-
rungen der einzelnen Fasern 2"-¢-1 in (7) der Faserung (24) dquivalent sind.
Wird das Biindel (7) zu (16) verfeinert, so daB nicht notwendigerweise alle
Faserungen der einzelnen Fasern 2"—¢-! miteinander dquivalent sind, so spre-
chen wir von Modifikation durch allgemeine Verfeinerung der Sphirenfaserung
(im Unterschied zur gleichmiBigen Verfeinerung) oder von Modifikation durch
Verfeinerung der Sphérenfaserung schlechthin.

Beispiel 1. Ein Beispiel einer Modifikation durch gleichmifige Verfeinerung
der Sphirenfaserung wurde in § 6 a), Satz 8, gegeben: reeller o¢"?-Prozef.
Dort ist m =n — 1, Pm%= P*4¢1 der (n— q — 1)-dimensionale reell
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projektive Raum, und die Faserung (24) stellt die zweifache Uberlagerung
dieses projektiven Raumes dar, welche durch die Antipodenabbildung in
2"—e-1 erzeugt wird.

Beispiel 2. In § 6 ¢) sahen wir, daBl wir aus (7) eine Faserung (16) herstellen
konnen durch gleichmiBige Verfeinerung, falls (7) ein Sphirenbiindel mit
n — ¢ = 21 und mit unitérer Strukturgruppe ist. Es ist dann m = n — 2,
die Faserung (24) wird ermoglicht durch die Hopfsche Faserung von 2"-¢-1
in Kreislinien mit der Basis P™~2 = P(-1 (dem komplex (4 — 1)-dimensio-
nalen komplex projektiven Raum). Zur komplexen Realisierung siehe c).

Beispiel 3. Ist (7) ein Biindel mit n» — ¢ = 41 und mit symplektischer
Strukturgruppe, so erhilt man mittels gleichméBiger Verfeinerung der Sphi-
renfaserung durch 3-Sphiren analog zu den beiden ersten Beispielen eine
Modifikation der oben beschriebenen Art (vgl. § 6 ¢)).

b) Differenzierbare Modifikation mit Abbildung. Im differenzierbaren Fall
kann die Modifikation durch gleichmiBige Verfeinerung der Sphirenfaserung
auch dadurch erhalten werden, da3 wir in jedem Punkt » von 4 den Ortho-
gonalraum E"-2zu 42 in W™ nehmen (beziiglich einer Riemannschen Metrik),
und dann in jedem E"-¢? eine Modifikation vornehmen, bei welcher der Punkt
p in E"—2 durch die Mannigfaltigkeit P™~2 ersetzt wird. Der Bedingung, daf3
die Faserungen aller einzelnen Fasern 2”21 in (7) eine Faserung (16) ergeben,
entspricht hier die Bedingung, dafl sich die Menge der Mannigfaltigkeiten
Pm2 in den modifizierten Orthogonalriumen zu 42 in W” zu einer einzigen
Mannigfaltigkeit zusammenfassen laBt.

Wir haben in a) gesehen: jede Modifikation durch gleichméfBige Verfeinerung
der Sphirenfaserung ist eine Modifikation mit Abbildung, und dasselbe gilt
fiir die Modifikation durch allgemeine Verfeinerung der Sphirenfaserung. Sind
die auftretenden Faserungen differenzierbar, ebenso W und die Einlagerung
A c W, so erhalten wir differenzierbare Modifikationen mit Abbildung (die
Abbildung ¢ soll differenzierbar sein, wenn wir von einer differenzierbaren
Modifikation mit Abbildung sprechen). Nun gehen wir aus von einer differen-
zierbaren Modifikation (1) mit Abbildung ¢. Es ist leicht zu sehen, daB solche
Riemannsche Metriken in ¥V und in W gefunden werden konnen, daB jede
Normale zu 8 in ¥V durch ¢ in eine Normale zu 4 in W abgebildet wird. Diese
Abbildung @ (vgl. § 2 (9)) der Normalen zu § in V in die Gesamtheit der
Normalen zu A4 in W ist eine eineindeutige Abbildung auf, das heiBt @ kann
mit dem Homéomorphismus von N auf N in § 2 identifiziert werden. Es folgt:
das Normalenbiindel R (S) stellt eine differenzierbare Verfeinerung des Nor-
malenbiindels N (A4) dar, das heit jede differenzierbare Modifikation mit Ab-
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bildung kann durch differenzierbare Verfeinerung des Normalenbiindels von
A erhalten werden (nach geeigneter Wahl der Riemannschen Metriken in V
und in W). Wir fassen zusammen:

Satz 11. Jede Modifikation durch Verfeinerung der Sphirenfaserung ist eine
Modifikation mit Abbildung. Jede differenzierbare Modifikation durch Ver-
fesnerung der Sphdrenfaserung ist eine differenzierbare Modifikation mit Abbil-
dung und umgekehrt.

c) Komplexe Modifikation mit Abbildung. In gewissen Féllen kann die Modi-
fikation des Beispiels 2 in a) komplex vorgenommen werden. Es sei zuniichst
A = p, wir wollen also die Modifikation

b (ﬁ(n)’ S =1y (U W), p) (26)

betrachten. U™ ist eine komplex n-dimensionale komplexe Koordinaten-

zelle, U™ die modifizierte Zelle. Wenn 215 23, -+« , 2, komplexe Koordinaten
in U™ gind, p der Ursprung des Koordinatensystems, P (-1 der komplex
(n — 1)-dimensionale komplex projektive Raum mit den komplexen homo-
genen Koordinaten ¢,,t,, ...,%,, so betrachten wir im topologischen Pro-
dukt X = U™ x P=-1 die Mannigfaltigkeit V™, welche durch die Glei-
chungen

te2g — to2%e = 0, e,a=1,2,...,n,

gegeben wird. In X, aufgefaBt als Faserraum mit der Faser P -1 und der
Basis U™, ist V™ komplex analytische Schnittfliche mit der komplex ana-
lytischen Singularitétenmannigfaltigkeit P (-1 iiber p, und dadurch wird
gemifl § 1c) eine komplex analytische Modifikation (26) gegeben mit § = P"-1):

@: (U™, P-1) > (U™, p), (27(p)

Die hier beschriebene Konstruktion erweist sich als unabhingig von der
Wahl der Koordinaten in U™ (siehe [24] oder [26]).

Ist nun W™ eine komplexe Mannigfaltigkeit, A(? ebenso, und ist 4
regulir eingelagert in W (das heiBt komplex analytisch), so ist nach Wahl
einer Hermiteschen Metrik in W in jedem Punkt p von A der Orthogo-
nalraum E®-2 zu 4 in W komplex analytisch: der Tangentialraum
T'? in p an A ist komplex analytisch, und ist t ein Vektor in 79, n ein
Vektor in E *~9, so daB das Skalarprodukt beziiglich der gewéihlten Hermite-
schen Metrik (1, t) verschwindet, so ist auch (1, ) = 0, und deswegen auch
(m,t) = 0, wo der Querstrich den Ubergang zum Konjugiertkomplexen be-
deutet. Dies besagt, daB E -2 komplex analytisch ist, genauer: E -2 ist
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ein komplex Euklidischer Raum, dessen komplexe Struktur durch diejenige
des Tangentialraumes in p an W induziert wird. In £ *~2 kann die Modifika-
tion (27(;,) vorgenommen werden, indem Z (-2 durch Ersetzen des Punktes
p modifiziert wird. Wenn wir dies fiir alle p in 4 ausfiihren, entsteht aus A4
eine komplexe Mannigfaltigkeit 8"~V und W wird modifiziert zu einer kom-
plexen Mannigfaltigkeit V™). DaB3 die beschriebene Konstruktion zu einem
differenzierbaren Paar (V, §) fiihrt, ist mit Hilfe der entsprechenden Fase-
rungen sofort einzusehen (Beispiel 2 in a)) ; in [26] wird gezeigt, daB man tat-
séichlich eine komplexe Modifikation

@: (V™ §n-1) 5 (W™, A@) (19(n)

bekommt. (19(,,) ist ein Spezialfall zu Beispiel 2 in a). Zu (19,,) gehort eine
komplex analytische Modifikationsabbildung ¢, und die Faserung (25) ist
hier eine komplexe Faserung (25(,,) mit dem komplex projektiven Raum
Pn-e-1) als Faser. (27,) ist der (hoherdimensionale) Hopfsche o-Prozef3
(vgl. [24], [26]), auch quadratische Transformation genannt ([25], p. 30).
(19(y)) heiflt o™?-Prozell oder komplexer ¢"'?-Prozefl. In [26] wird bewiesen:
der ¢™?-ProzeB (19(;) kann ohne Benutzung einer Hermiteschen Metrik her-
gestellt werden, wobei die Wahl der Koordinatensysteme in W keine Rolle
spielt, die Mannigfaltigkeiten V, S samt der Einlagerung S c ¥V und die
Modifikation (19(;) sind also bis auf komplexe Homéomorphie durch (W, 4)
eindeutig bestimmt.

d) Entsprechend zu (27,,) existieren die Modifikationen, in denen an Stelle
des komplex projektiven Raumes der reell projektive Raum P"-! oder der
quaternional projektive Raum P[*-1 steht, und an Stelle der komplexen
Koordinatenzelle eine reelle bzw. quaternionale. Diese Modifikationen wer-
den genau wie (27,,) mit Hilfe einer Schnittfliche ¥ in X erhalten, nur nimmt
man an Stelle der komplexen Koordinaten reelle bzw. quaternionale. Wir er-
halten so den reellen bzw. quaternionalen o-Proze. Anstatt (19,,) bekommt
man weiter im reellen Fall die Modifikation des Beispiels 1 in a): reeller
o™ %-ProzeB (19,). Daneben gibt es auch den quaternionalen o¢™?-Proze3

@: (Vi Sin-1l) — (Wi, Ald), (19¢y)

in welchem V, W quaternionale Mannigfaltigkeiten sind, und 8, 4 quater-
nional eingelagert in ¥V bzw. W (regulire Einlagerungen). Dabei heilt eine
Mannigfaltigkeit quaternional (oder quaternional analytisch), wenn sie mit
quaternionalen Koordinatensystemen so iiberdeckt werden kann, daB die
Koordinatentransformationen durch quaternionale Potenzreihen dargestellt
werden (unter Beriicksichtigung der Nichtkommutativitét der Quaternionen).

16 Commentarit Mathematici Helvetici
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II. Kapitel. Cohomologietheorie der Modifikation

Nachdem in Satz 1 festgestellt wurde, daB wir an Stelle der differenzierbaren
Modifikationen die differenzierbaren Faserungen von N in Sphiren betrach-
ten konnen, liegt es nahe, die Cohomologietheorie der Sphirenfaserungen her-
anzuziehen. Dies wird in § 12b) getan. Sonst ziehen wir es aber vor, eine andere
direkte Methode zu verwenden, bei welcher kein Gebrauch gemacht wird von
der Existenz irgendwelcher Faserungen. Diese Methode hat auBerdem den
Vorteil, daBl sie auch auf nicht differenzierbare Modifikationen angewandt
werden kann, wobei iiberdies die Mannigfaltigkeitsvoraussetzungen in gewis-
sem Sinne abgeschwiicht werden konnen.

§ 8. Homologiemannigfaltigkeiten. Exakte Sequenzen

a) Es sei die allgemeine Modifikation (1) gegeben. Die auftretenden Riume
seien Polyeder, so daf3 simpliziale Homologie- und Cohomologietheorie getrie-
ben werden kann, oder, was in vielen Féllen bequemer ist, auch die singulire
Theorie angewandt werden kann. Fiir alle Fragen, die speziell die Homologie-
und Cohomologietheorie angehen, verweise ich auf das Buch [16] von EmLEN-
BERG und STEENROD. Wir werden meistens die Sprache der Cohomologie be-
nutzen, nur an wenigen Stellen, wo wir uns fiir die Torsion interessieren,
kommen Homologiegruppen vor.

Im folgenden werden Homologiemannigfaltigkeiten betrachtet. Dies sind
Réume, fiir welche der Poincarésche Dualititssatz gilt. Genauer: unter einer
n-dimensionalen Homologiemannigfaltigkeit M" verstehen wir ein Polyeder,
fiir welches die folgenden Bedingungen erfiillt sind: n sei die Dimension von
M), das heiBt dim (M) = n; essei J = K oder J = Z, der Koeffizienten-
bereich der Homologie- und Cohomologiegruppen, wo K ein beliebiger Korper
ist und Z, die ganzen Zahlen modulo 2; dann soll

(a) H*(M™; J)=J,
(b) H*(M"; J) > H**(M"; J) ,

und der letzte Isomorphismus wird durch das Alexandersche Produkt (Cup-
Produkt) in der Weise induziert, daB zu jeder Basis 2,2}, ...,2}, von
H*(M; J) eine Basis 27~%, 2375, ..., 20~% in H**(M;J) existiert mit

Ofir r £s
kn—k — —
2,2y © =6, m", 3, { , roB=1, sus 5,

T l1fir r=s

wo m" die n-dimensionale Fundamentalklasse von M ist. Sind fir M die
Bedingungen (a), (b) erfiillt fir J = K, K jeder beliebige Korper, so nennen

8) Der Dimensionsindex n wird wie bei den Mannigfaltigkeiten dfters weggelassen.
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wir M eine orientierbare Homologiemannigfaltigkeit. Wir koénnen dann
J = R wihlen, R = Korper der reellen Zahlen. Gilt (a), (b) fiir J = Z,,
aber nicht fiir J = R, so heilt M nicht orientierbare Homologiemannigfal-
tigkeit, und wir sagen in diesem Fall: M ist eine Homologiemannigfaltigkeit
modulo 2.

Bemerkung. Unter der Dimension eines Polyeders verstehen wir die topo-
logische Dimension. Fiir die Homologiemannigfaltigkeit M™ ist also n die
topologische Dimension. An vielen Stellen geniigt es jedoch, unter n die
«Homologiedimension» von M™ zu verstehen, das heifit diejenige Zahl %, so
daB H"(M;J) # 0 (im Fall einer Homologiemannigfaltigkeit H"(M ; J)==J)
und H¥(M;J) =0 firalle k >n + 1.

Jede kompakte Mannigfaltigkeit (als Polyeder vorausgesetzt) ist Homo-
logiemannigfaltigkeit modulo 2, und jede orientierbare kompakte Mannig-
faltigkeit ist orientierbare Homologiemannigfaltigkeit.

b) Alle im folgenden vorkommenden Sequenzen von Gruppen und Homo-
morphismen sind exakte Sequenzen, wenn nichts anderes gesagt wird.

Der bei einer allgemeinen Modifikation (1) auftretende Homdomorphismus
(2) induziert den Isomorphismus &*:

*
0 — H*(W, A) = H*(V, 8) - 0. (28)

Die exakten Cohomologiesequenzen fiir (¥, 8) und fiir (W, A) fithren wegen

(28) zu dem folgenden Diagramm:

0

¥ 8 j* ix 8
.. > H1(8) > HE(V, 8) >-H (V) —>H¥(8)—> ...

| tox i . (29)
S e 4)S> HR W, A5 2R W) S BR4)> ..
0
0

Wegen ¢ = dimA ist H*(4) =0 fir £ >q 4 1, so daB aus (29) folgt:
. —> H*(8) - H*(W) - H*(V) - H*(8) - ... fir k >q + 2. (30)

Bemerkung. (28), (29), (30) gelten fiir jede allgemeine Modifikation, in
welcher fiir die auftretenden Riéume eine Cohomologietheorie im Sinne von
EmexBERG und STEENROD aufgestellt werden kann (vgl. das oben zitierte
Buch [16]), sobald 4 ein Deformationsretrakt einer Umgebung von 4 in W
ist und desgleichen § in V.
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8§ 9. Aligemeine Modifikation durch Ersetzen eines Punktes: ein Lemma

In der Modifikation (1) seien zunidchst V", W* kompakte Mannigfaltig-
keiten, A2 = A° sgei ein Punkt p in W, und S™ sei ein Teilraum von V mit
m <n — 1. Es handelt sich also um eine allgemeine Modifikation von W
durch Ersetzen des Punktes p durch 8. Eine solche Modifikation von W ist
eine lokale Angelegenheit fiir W, das heiflt die Moéglichkeiten, die fiir S in
Betracht kommen, sind unabhingig von den globalen Eigenschaften von W.
Wir nennen daher nach Horr [24] die Modifikationen, in denen A4 = p ist,
lokale Modifikationen. Es kommt nur darauf an, daB eine Umgebung U" = U (p)
des Punktes p (U™ ist die n-dimensionale Euklidische Zelle) in eine n-dimen-
sionale Mannigfaltigkeit eingebettet werden kann, und daf3 bei der Modifika-

tion aus U ein Raum U" entsteht, der wieder in eine n-dimensionale Mannig-
faltigkeit eingelagert werden kann. Um die lokale Modifikation

@: (U", 8m) - (U™, p) (31)

zu untersuchen, betten wir also U*® in die Sphére 2" ein und betrachten an
Stelle von (31) die Modifikation

@: (V" 8™) — (2", p) . (32)

Wir wollen Homologieeigenschaften von S untersuchen. Dazu machen wir
die folgende Voraussetzung, welche bei allen Betrachtungen iiber lokale Modi-
fikation gelten soll: die Euklidische Umgebung U" lasse sich in der Homo-
logiesphiire X" (X bezeichnet sowohl die Sphiére wie die Homologiesphire)
einbetten, und die Modifikation (31) induziere dadurch eine Modifikation (32),
in welcher V eine n-dimensionale Homologiemannigfaltigkeit (eventuell mod 2)
wird. Wir interessieren uns also fiir die Modifikation (32), in welcher X eine
Homologiesphiére und V eine Homologiemannigfaltigkeit ist.

Es sei J = K oder J = Z,, je nachdem V orientierbar ist oder nicht.
(30) liefert unmittelbar

H* (V) >~ H¥8) fir 2<k<n-—2.
Auflerdem gilt fir n > 2

0
0 .
0 — H°(V) - H°(S) - HY(V,S) - H(V) - H*(8) - 0
t o ,
0 —» H°(2) - H°(p) > H(2,p) >0

A
0 0
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es ist also HY(V,8)~ H(Z,p) =0, so da8 H'(V) =~ H'(S) und H°(V)
=~ H°(S) =~ J, § ist also zusammenhiingend. Aus (29), H"(V) =~ H" (Z) o
und H"(S) =0 (wegen m <mn — 1) folgt noch H"(V) ~ H™1(8).
n = 1 bleibt die Isomorphie H®(V) o~ H°(S) o~ J richtig, wie leicht einzu-
sehen ist.

Die obigen Resultate zusammengefa3t ergeben:

Lemma 1. Fiir die Modifikation
D: (V™ 8™ - (2", p), (32)

V n-dimensionale Homologiemannigfaltigkeit, 8 Teilraum in V, m <n — 1,
gilt
Hx(V*; J) >~ H8™; J) fir 0<k<n-—1. (33)

Zusatz: Die Isomorphismen (33) werden induziert durch die Inklusionsabbil-
dung ©:S — V, es kann also geschrieben werden :

0 > HE(V™; J)> H¥@Sm; J) >0 far 0<k<n—1. (33%)

Die Behauptung des Zusatzes folgt sofort: die Isomorphismen (33) stammen
aus (30) bzw. (29), und in (29) werden die Homomorphismen ¢* durch die
Inklusionsabbildung ¢ induziert.

Bemerkung. Lemma 1 und sein Zusatz gelten auch dann, wenn V ein topo-
logischer Raum ist mit H(V) >~ H"(V) >~ J, denn es wurden zum Beweis
neben (28), (29) nur diese Eigenschaften von V gebraucht.

Da die durch Abbildungen induzierten Homomorphismen zwischen den
Cohomologiegruppen produkttreu sind (beziiglich des Alexanderschen Pro-
duktes zwischen den Cohomologieklassen), folgt aus (33*):

Lemma 1'. Far die Modifikation
&: (V8™ — (2", p), (32)

V n-dimensionale Homologiemannigfaltigkeit, S Teilraum in V, m <n — 1,
gilt
9V J) =2 H(8™; J) . (33')

$H(M; J) bezeichnet den Cohomologiering des Raumes M iiber dem Koeffizien-
tenbereich J (J muf hier ein Ring sein), und §"(M; J) ist der Ring $H(M; J),
beschrinkt auf die Elemente z* e H¥(M;J) mit k£ <.
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§ 10. Ersetzen eines Punktes durch eine Mannigfaltigkeit

a) Ersetzen eines Punktes durch eine (n — 1)-dimensionale Homologie-
mannigfaltigkeit. In den Modifikationen (31), (32) sei S eine (n — 1)-dimen-
sionale Homologiemannigfaltigkeit. Als Koeffizientenbereich nehmen wir wie
in §9 K oder Z,, je nachdem die Homologiemannigfaltigkeiten ¥V und S
orientierbar sind oder nicht, und wir schreiben in beiden Fillen .J.

Lemma 2. Fir die Modifikation
G: (7", §71) > (27, p), (32,)
V, 8 Homologiemannigfaltigkeiten, gilt

He(Vr ; Nxd, 0<k<n, } (34)
HeS, N~d, 0<k<n-—1.
Beweis:
(33), angewandt fiir £ = n — 1, liefert HY(V)~ H1(S) =~ J,
nach dem Poincaréschen Dualitdtssatz fir Vist H! (V) >~ H"Y(V)x~J,
(33), angewandt fiir k£ = 1, liefert H (8) ~H* (V)=~J,
nach dem Poincaréschen Dualititssatz fiir Sist H"*2(S) ~H! (S) =~J,
(33), angewandt fiir k£ = n — 2, liefert H2(V) >~ H*2*(S) =~ J,
usw.

Man erkennt: setzt man dieses Verfahren fort, indem abwechslungsweise
(33), dann der Dualititssatz fiir V, dann wieder (33), dann der Dualitédtssatz
fiir 8, dann (33) usw. angewandt wird, so gelangt man schrittweise zu den
Isomorphismen (34).

Das Vorgehen in dem obigen Beweis durch wiederholtes Anwenden von (33)
und des Dualitéitssatzes in ¥ und in S wird in mehreren Beweisen wieder vor-
kommen. Diese Beweismethode nennen wir das « Pendelverfahren ».

Da fiir eine Homologiemannigfaltigkeit M4r+? die mittlere Bettische Zahl
bari1 gerade ist, folgt aus (34), daB fir » = 2 mod 4 und fiir n =3 mod 4
der Koeffizientenbereich J = Z, genommen werden muf}, in diesen beiden
Fillen ist also entweder V oder 8 nicht orientierbar. Es gilt daher: Modifika-
tion von U*" durch Ersetzen des Punktes p durch eine orientierbare Homologie-

mannigfaltigkeit "1, so daB U™ orientierbar wird (das heiBt V* in der zuge-
horigen Modifikation (32,) orientierbar wird), ist unméglich fir » = 4r 4- 2
und fiir n = 4r 4+ 3. Dies folgt mit Hilfe von (34) allein daraus, da ¥ und
S Homologiemannigfaltigkeiten sind. Ziehen wir noch die spezielle multi-
plikative Struktur von $ (V) und von $(8) in Betracht, so folgt:
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Satz 12. Modifikation von U™(n > 2) durch Ersetzen des Punktes p durch eine

orientierbare (n — 1)-dimensionale Homologiemannigfaltigkeit S™1, so daf U
orientierbar wird, ist unmoglich.

Beweis: Es ist zu beweisen, daf} die Modifikation (32,) unméglich ist, wenn
sowohl V wie S orientierbar sind. Mit andern Worten: es ist zu zeigen, daB fiir
J nicht B gewahlt werden kann. GemiB (34) kann eine Basis

xd, at, 28, ..., 2" x*c H*(V),
fiir die additiven Cohomologiegruppen H*(V) gewihlt werden. Wir setzen
k=2 0<k<n—1, (36)

so daB die z* wegen (33*) eine Basis fiir die additiven Cohomologiegruppen
H*(8) bilden. Ferner bestimmen die z* wegen (33') dieselbe multiplikative
Struktur wie die z* in §"-1(¥), so daB wir die z* mit den «* fiir 0 <k <n — 1
identifizieren konnen. Wir lassen daher im folgenden die Querstriche wieder
weg.
Dy bzw. Dy sei der Poincarésche Dualitdtsoperator in ¥V bzw. S:
D
0 > HE(V;J) > H¥(V;J) —0,
Dg (36)
0 —>H*(S; J) > H**1(8;J) - 0.

Nun konnen wir die Basiselemente z* geeignet wihlen. z° sei die null-
dimensionale Fundamentalklasse von ¥ und von 8. Dann ist 2" = D, a°
die n-dimensionale Fundamentalklasse von V, "1 = Dga® die (n — 1)-
dimensionale Fundamentalklasse von §. Das Produkt zwischen den Cohomo-
logieklassen ist das Alexandersche Produkt. Wir bestimmen 2! so, daB

2! = Dyx™!, und daher z'z"! = z";
weiter wihlen wir "2 so, daf3

2l = Dgx"2, und daher 212" 2= 2",
Daraus folgt
glylgh-1 = 20, (37)

Wegen z'a® = (— 1)y *z*2" ist z'a' = 0 iiber dem Koeffizientenbereich
R, und daraus folgt zusammen mit (37), daB fiir J nicht R genommen werden
kann, womit Satz 12 bewiesen ist.

Modulo 2 ergibt (37) keinen Widerspruch, sondern es kann durch weitere
Anwendung von D, und Dy die multiplikative Struktur der Ringe $(V; Z,)
und $(8; Z,) bestimmt werden («multiplikatives Pendelverfahren »):
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"1, " seien wie oben gew#hlt;

2!  wird durch 2! = D, 2" bestimmt, so daB zlz"*! = 2" ;
"% wird durch 2! = Dga"—? bestimmt, so daB z!a"2 = z"-1;
z? wird durch 2? = Djz"* bestimmt, so daB 222" = 2* ;

es folgt o == gl

"3 wird durch 22 = Dga"-2% bestimmt, so dafl 22z"—3 = z"-1;
2® wird durch 2® = D, z"-% bestimmt, so da 3z2"3% = 2" ;
es folgt x® = gla® = glalz} = (21)3;
usw.
Nehmen wir noch 2° = Dy 2" = Dga"! hinzu, so erhalten wir:
Satz 13. Bei den Modifikationen
@: (U, 8*1) — (U™, p) (31,)
und ®: (V7 §%1) > (27, p), (32,)

V, 8 Homologiemannigfaltigkeiten, wird
DV 5 Zg) = {2 2, (22)3, ..., (2})* },
H(8"1; Zy) = {a° 2, (23, ..., (27"},

b) Ersetzen eines Punktes durch eine (n — 1)-dimensionale kompakte
Mannigfaltigkeit. Satz 13 besagt, daB die Ringe $(V"; Z,) und $H(S*1; Z,)
iibereinstimmen mit den Cohomologieringen $(P";Z,) und $£(P";Z,).
Wenn wir uns den Zusammenhang mit den Sphiirenfaserungen zunutze machen,
wie er im ersten Kapitel beschrieben wurde, das heiit in diesem Fall den Zu-
sammenhang mit den Moglichkeiten, den Umgebungsrand N"-! = X*-1 von
p in U™ als zweifachen Uberlagerungsraum einer Mannigfaltigkeit N?~!= gn-1
darzustellen, wenn wir nun also voraussetzen, daB ¥V, S, Mannigfaltigkeiten
sind und nicht nur Homologiemannigfaltigkeiten, so gilt der folgende Satz:

Satz 14. Fur die Modifikationen

(38)

@: (U, 81 ~ (U*, p), (31,)

D (V™ 871 —» (2", p), (32,)

V, 8 kompakte Mannigfaltigkeiten, X Sphdre, gelten die folgenden Homéomor-
phien : Pr o«spn |

(39)

Su—l P Pn-—-l’

wo P den r-dimensionalen reell projektiven Raum bedeutet.
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Zusatz: Fir die Modifikationen (31,), (32,), V, S8 kompakie Mannigfaltig-
keiten, X Sphire, sind

fir n =0 mod 2 U* und V™ nicht orientierbar, S™ ! ortentierbar,
fir n=1 mod 2 U"und V" orientierbar, 8™ nicht orientierbar.

Aus Satz 14 und dem Zusatz folgen Satz 13 und Satz 12 fiir den Fall, daB
V, 8 Mannigfaltigkeiten sind und X die Sphére. Anderseits wird durch die
Betrachtung in a) die additive und multiplikative Struktur des Ringes
H(P"; Z,) bestimmt: man nimmt fir die Modifikation (31,) den reellen
o-ProzeB.

Beweis zu Satz 14: Es geniigt, die Modifikation (32,) zu betrachten. Die
Modifikationen durch Ersetzen des Punktes p in Z" durch §"-! entsprechen
den Moglichkeiten, den Umgebungsrand X"-! von p in X" als zweifachen
Uberlagerungsraum einer Mannigfaltigkeit S darzustellen (Spezialfall des
Satzes 5, ohne daB hier Differenzierbarkeitsvoraussetzungen gemacht werden
miissen). Zu jeder zweifachen Uberlagerung gehort eine Decktransformation «
von 2" 1 mit «? = I; I ist die Identitit.

Sei » = 0 mod 2. Fir jede fixpunktfreie Decktransformation x von X"-1,
fiir welche also die Lefschetzsche Zahl A(x) = 0 (vgl. [3], p. 631) ist, ist der
Abbildungsgrad gleich 1: g(x) = 1. Nach [3], p. 509, Satz I, ist dann «
homotop zur Antipodenabbildung von X*-1. Diese Homotopie fiihrt zu einer
Homé6omorphie zwischen P"! und der Mannigfaltigkeit 8", welche durch
Identifikation von 2 mit «(x), « Punkt in 2"-1, entsteht. Wegen g(x) = 1
ist §7-1 orientierbar. Ist » eine Umgebung von p in X*, so entsteht durch die
obige Identifikation auf X*! aus £* — p ein zu P* homéomorpher Raum,
der wegen n = 2n' nicht orientierbar ist, was auch aus Satz 12 wegen der
Orientierbarkeit von S7-1 folgt.

Ist » =1 mod 2, so wird fiir eine fixpunktfreie Decktransformation «
wegen A(x) = 0 der Abbildungsgrad g(x) = —1, « ist homotop zur Anti-
podenabbildung der Sphire 21, und daher §*-! homéomorph P"-1, Wegen
g(x) = —1 ist in diesem Fall 87! nicht orientierbar. ¥* wird dann homéo-
morph P”" und ist orientierbar.

Entsprechend zu Satz 14 beweist man den folgenden etwas stirkeren Satz:
Satz 14'. Jede lokale Modifikation
®: (U", 8" - (U", p), (31,)
S kompakte Mannigfaltigkeit, ist dquivalent dem reellen a-Prozef in p.
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Zum reellen o-Prozef vgl. § 6a) und § 7 d). Zwei Modifikationen
D,: (Vy,8,) > (W,A4) und D,: (V,, S,) > (W, A) mit den Abbildungen
@1:Vy—W und @,: ¥V, —>W heiflen dquivalent, wenn es einen Homéomorphis-
mus 6: V, -V, gibt, so daB ¢, = ¢,0 gilt.

Als Korollar zu Satz 14’ erhalten wir:

Satz 156. Die einzige Méoglichkeit bis auf topologische Aquivalenz, den Euklidi-
schen Raum E" durch eine (n — 1)-dimensionale kompakte Mannigfaltigkeit
S"-1 zu einer kompakten Mannigfaltigkeit V" abzuschliefen, besteht im bekann-
ten Abschluf von E* zum reell projektiven Raum P™ durch S* ! = P™1,

c) Ersetzen eines Punktes durch eine (» — r)-dimensionale Homologieman-
nigfaltigkeit. In der Modifikation (31) bzw. (32) sei S™ — 8" eine (n—7)-
dimensionale Homologiemannigfaltigkeit. J sei wieder K oder Z,. Die dem
Lemma 2 entsprechende Aussage lautet:

Lemma 3. Fir die Modifikation

D:(Vr, 8*1) - (2, p) , (32,)
r > 1, V, 8 Homologiemannigfaltigkeiten, gilt
n=Ar, (40)

Her(Vr 3 J) = d, 0<u<i,
He (Y ;J)=0, k£ 0 modr,

Her(§rr Jy=J, 0<u<i—1, (1)
H¥ (87, J) =0, k% 0 mod .
Beweis: Mit Hilfe des Pendelverfahrens.
(33), angewandt fiir £ = n — r, liefert H (V) >~ H™»" (8) =~ J
nach dem Poincaréschen Dualititssatz fir Vist H* (V)x~H" " (V) =~
(33), angewandt fiir £ = r, liefert Hr 8)~Hr (V) J
nach dem Poincaréschen Dualititssatz fiir S ist H"-27(S) ~ H* (S) =~=J,
(33), angewandt fiir £ = n — 2r, liefert H"2r (V) >~ H*27(S) =~ J,
usw.
Essei 1 <8 <r— 1. Dann folgt:
(33), angewandt fiir k¥ = n — s, liefert H** (V) H** (8) =0,
nach dem Poincaréschen Dualititssatz fiir V ist H* (V) H"™* (V)=0,
(33), angewandt fir £ = s, liefert H* (S)~xH* (V)=0,

nach dem Poincaréschen Dualititssatz fiir Sist H*"*(S) ~H* (8) =0,
(33), angewandt fiir £k = n — r — 8, liefert H* (V) H*"*(S) =0,
USW.
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Es muB (40) gelten: es sei n = Ar + ¢, 0 <t <r—1, ferner u*=7[4/2],
so daf p* < 4/2, p* 4+ 1> A/2. Dann gilt (41) kraft des obigen Pendelverfah-
rens fir alle £ < p*r und fir £ > m — u*r, m =n — r. Ist nun

0<|m/2 —p*r|<r/2, (42)

so fithrt die Anwendung des Poincaréschen Dualititssatzes fiir § im Falle
m/2 < u*r und fiir V im Falle m/2 > u*r zu einem Widerspruch, und es
mul} daher in (42) entweder links oder rechts das Gleichheitszeichen stehen.
Daraus folgt ¢ = 0 und damit (40).

Wegen (40) schlieBt sich das Pendelverfahren liickenlos in der Mitte, und
alle Isomorphismen (41) sind als richtig erwiesen.

d) Die differenzierbaren Modifikationen (31,) und (32,). Betrachten wir die
Modifikation (32,) mit » — 1 > r > 2. Dann wird wegen der Orientierbarkeit
von X" auch V orientierbar. Dieselbe Uberlegung wie im Beweis zu Satz 12
fithrt auf die zu (37) analoge Gleichung

xr af g = ", (37,)

wo z" die n-dimensionale Fundamentalklasse von ¥V bedeutet, und zr die zur
Fundamentalklasse 2" von § in V duale Cohomologieklasse. Aus (37,) folgt:
ist in der Modifikation (32,), r > 2, 8™ orientierbar, so muf} » gerade sein.
Fiir eine differenzierbare Modifikation (32,) mit r > 2 ist die Mannigfaltig-
keit S orientierbar, denn § ist nach Satz 1 Basis einer Sphirenfaserung des
Umgebungsrandes 2! von p mit der Faser 271, und in einem Biindel (5),
in welchem zwei der Riume E, F, B orientierbar sind, ist auch der dritte
orientierbar, wenn E einfach zusammenhéngend ist. Wir konnen also sagen:
fiir eine topologische Modifikation (32,), r > 2, welche durch Faserung des
Umgebungsrandes 2*~! erzeugt wird, sind ¥ und § orientierbar, und daher
ist wegen (37,) r gerade. Wir bestimmen fiir J = K wie bei Satz 13 den
Cohomologiering von V und denjenigen von S mit Hilfe der in (36) definierten
Dualitétsoperatoren D, und Dg (multiplikatives Pendelverfahren). Wir er-
halten:

Satz 16. Bet den differenzierbaren Mod:fikationen
¢: (U, 8" - (U", p), (31,)
@: (Vr, 8*7) — (X", p), (32,)

r>2, V, 8 kompakte differenzierbare Mannigfaltigkeiten, X Sphdre, werden
U, V, 8 orientierbar, es muf

n=2Air; r=2r, wenn n —1>r;
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und die Cohomologieringe von V und 8 iber K werden gegeben durch
$(V* ; K)= {2 2", (@) ..., (@)} }, (43)
H8™"; K) = {2 a7, («7)% ..., ()1},
Es wurden in Satz 16 die Orientierungen von ¥ und von S (das heiBt die
Elemente #" und 2"-*) so gewihlt, daf (43) zutrifft: es soll
b = ()¢, u=0,1,...,4,

gelten. Eine zweite Moglichkeit besteht darin, dag

ohr = ("), u=20,1,...,4A—1, z"= — (2"
Dann wird

Dy(a®)p = (a"r1, 4u=0,1,...,A—1,

Dy (2P = — (2, u=20,1,...,4.

Im Falle des Hopfschen o-Prozesses handelt es sich um eine Realisierung
dieser zweiten Moglichkeit (fir » = 2), falls die Orientierungen von V" und
von 872 = P@-1 durch die komplexe Struktur von U* induziert werden
(siehe [24], pp. 140-141, wo dies fir n = 4 gezeigt wird; fir n = 21 > 4
fithrt eine analoge Betrachtung zum Ziel).

Torsion. Es gilt (33*) dual fiir die Homologiegruppen, und der Poincarésche
Dualitétsoperator D,, fiihrt in einer kompakten Mannigfaltigkeit M iiber
einem beliebigen Koeffizientenbereich von der Cohomologie zur Homologie :

Dy : HE(M") - H, ,(M"). (44)

Fiithrt man die Uberlegungen im Beweis zu (41) mit Hilfe dieses durch (44)
definierten Operators D bzw. D! aus, und benutzt man neben (33*) den dazu
dualen Isomorphismus fiir die entsprechenden Homologiegruppen, so kann als
Koeffizientenbereich der Ring Z der ganzen Zahlen genommen werden, und
wir sehen, daB bei den differenzierbaren Modifikationen (31,), (32,) im Falle
r > 2 wegen der Orientierbarkeit von ¥ und 8 keine Torsion auftritt. Daher
haben die Ringe $H(V;Z) und $H(S;Z) dieselbe Struktur wie diejenigen
iiber R:

Satz 16’. Bei den differenzierbaren Modifikationen (31,), (32,) wird fir r >2
n=2Ar; r=2¢v, wenn n—1>r;
HV* ;2) = {2% a, ()}, ..., (@) },

(43")
H(8%; Z) = {a° af, (273, ..., (z")A1}.
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Bemerkung 1. Es wird durch (43) bzw. (43') fiir » = 2 und fiir » = 4 die
Cohomologiestruktur der komplex und quaternional projektiven Rdume be-
stimmt, denn in diesen Fillen existieren die entsprechenden Modifikationen,
bei denen ein Punkt durch den komplex projektiven Raum P (-1 oder durch
den quaternional projektiven Raum Pi"-11 ersetzt wird (komplexer bzw.
quaternionaler o-Proze8).

Bemerkung 2. An Stelle der Differenzierbarkeit kann in Satz 16 sowie in
Satz 16’ vorausgesetzt werden, daB3 die topologische Modifikation (31,) bzw.
(32,) durch Sphirenfaserung des Umgebungsrandes 2™-! von p in U" erzeugt
wird, oder es kann vorausgesetzt werden, da V», §*" Homologiemannigfal-
tigkeiten sind, 2" die n-Homologiesphire, und S orientierbar ist, und daf3 bei
Satz 16’ der Dualitétssatz in ¥V und in § iiber Z gilt (vermoge des Operators

(44)).

e) Beziehung zu den Sphiirenfaserungen der Sphiire. Aus Satz 4 und Satz 16/,
Bemerkung 2, folgt: liegt die Faserung

S={ZvL,2-L,8""}, n—1>r>2,
vor,so mull n = Ar, r = 27/, und
H(8™T; Z) = {a° a7, (2")?,..., (")},
man bekommt also die Faserungen
S, = {ZAr-1, Zr-1, 0T} =2,

Dieses Resultat ist bekannt als Folge aus der Gysinschen exakten Sequenz.
Nach ApewMm [1], Theorem 2. 2, insbesondere Corollary 2.3, mufl fir r die
" Gleichung r = 2%, k= 0,1,..., gelten,und fiir £ >3 mul 1 = 2, sodaf
fiir die Basis S fiir £ > 3 nur noch Homologiesphéren in Betracht kommen.
Entsprechend werden nach Satz 1 die moglichen differenzierbaren Modifika-
tionen (31,), (32,) eingeschréinkt, oder wir kénnen wie in Satz 15 an Stelle
dieser Modifikationen vom AbschluBl des Euklidischen Raumes sprechen :

Satz 17. Wird der Euklidische Raum E" durch die (n — r)-dimensionale kom-
pakte differenzierbare Mannigfaltigkeit S™ differenzierbar abgeschlossen zur
kompakten differenzierbaren Mannigfaltigkeit V", n — r > 1, so muf

n = Ar, r = 2% A=2 fur k>3,
V" ;2) = {2° o, (273, ..., (")}

wenn r>2, (43)
g(S""'; Z) = {xo, xf’ (xr)z’ L) (xr)l—l}
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DU i) =t (% (1) wenn r>1. (43”)
H8™1; Zy) = {20, &, (@), ..., (@)A1} ] -

Satz 17 kann folgendermafen angewandt werden: liegt ein Abschlufl von
E* zur kompakten differenzierbaren Mannigfaltigkeit V" vor, und ist fir ¥V
oder fiir S eine der in (43”) gegebenen Bedingungen nicht erfiillt, so han-
delt es sich um einen Abschlul mit Singularitdten, das heiflt S ist nicht sin-
gularititenfrei eingelagert in ¥V, oder S ist als ein in V eingelagerter Raum
keine Mannigfaltigkeit. S ist keine orientierbare Mannigfaltigkeit, falls eine
Bedingung in (43’) verletzt wird. Zu Satz 17 gilt betreffend die Differenzierbar-
keit dieselbe Bemerkung wie zu Satz 16’ (Bemerkung 2 in d)).

§ 11. Hoherdimensionale Hopfsche Biume

a) Wir betrachten allgemeine Modifikationen (31), (32), in denen V eine
Homologiemannigfaltigkeit ist, und 8 sich zusammensetzt aus mehreren
Homologiemannigfaltigkeiten S7, 8%,...,87, m =n — r: § ist ein zusam-
menhéngender Teilraum von V, welcher die Vereinigung ist von ¢ Komponen-
ten S,,0=1,2,...,1t, esist also

Sm=8"US™U... US" =

e

I C -

Sz -
1

Weiter soll der Durchschnitt zweier Komponenten S, und S, fir ¢ # o
hochstens aus endlich vielen Punkten bestehen, das hei3t es ist

8% = 8% n Sy = nulldimensionaler Zyklus fiir ¢ # o, (45)

wo zu den nulldimensionalen Zyklen auch der Zyklus, bestehend aus der leeren
Punktmenge, gerechnet wird. Es kann sowohl in V wie in jeder einzelnen Kom-
ponente S, der Poincarésche Dualitéitssatz verwendet werden. Es gelten (33%*),
(33'). AuBerdem soll die folgende Bedingung erfiillt sein :

zzzZ" =0 fir n —1 =8 = 1, Z:n GH’(SQ), zz” ‘H”’_’(So): e 7# 0, (46)

das Produkt in ¥V genommen. Es werden wegen (33*) wie bei (35) die Cohomo-
logieklassen von V identifiziert mit den mittels der Inklusionsabbildung ent-
sprechenden von §, und mit 2z}, ¢ H*(S,) meinen wir, daB das Element
2z durch eine Cohomologieklasse in §, induziert wird. In der hier beschriebe-
nen Situation gilt:
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Satz 18: Laregt die folgende Modifikation vor:

D: (5”, Sy - (U*", p), (3L,,,)
oder @: (V*, §7r) - (Zn, p), (32, )
§nr = U §37
e=1
8% = 837" n 857" = nulldimensionaler Zyklus fir o # o, (45)

ZeZg ' =0 fiir m—12>s82>1, 25 e H*(S,),

(46)
e H(S,), ¢ # 0,

V, 8o Homologiemannigfaltigkeiten, r > 2, so wird n = Ar, und
DT Zy) = {a°, Ty, (%)% ..., (xf?))\“l} ;

18t 8, orientierbar, n —r > 1, soist m = Ar, r = 2r', und
H8™"; K) = {a° 2, (23)%, ..., (xp)1} .

Zusatz: Ist in Satz 18 n = 2r > 2, so wird S, eine Homologiesphdire iiber
Zgy bzw. iber K , auch wenn (46) nicht erfallt st.

Handelt es sich um eine «differenzierbare » Modifikation (31, ,) bzw. (32, ,),
das heiflt sind in (32, ,) V und S,, ¢ =1,2,...,¢, kompakte differenzier-
bare Mannigfaltigkeiten und die Einlagerungen 8, c V differenzierbar regu-
lar, und ist 2 die n-Sphére, so wird wie in § 10 d) bei Satz 16 eingesehen, daB
wegen r > 2 S, orientierbar wird fiir alle gp. Denn das «Normalenbiindel»
von § in U" bzw. in V liefert eine Sphérenfaserung von 2"—1 mit Singulari-

titen iiber der Menge USy,, bestehend aus hochstens endlich vielen Punkten,
eZo
so dafl die Orientierungen von 2”-! und der Fasern 27-! eine Orientierung in

jeder Komponente S, induzieren. Somit ist in Satz 18 die Bedingung «S,
orientierbar » fiir alle g erfiillt, wenn wir differenzierbare Modifikationen (31, ,),
(32, ,) betrachten.

Wir werden sehen: der Cohomologiering $(S) wird gleich der direkten
Summe der Cohomologieringe $(S,), und wegen (33’) ebenso $"-1(V), das
heift die additive Cohomologiegruppe H¥(8), k > 1, ist gleich der direkten
Summe der Gruppen H¥*(S,), $(S,) ist additiv und multiplikativ isomorph
eingebettet in §)(S), und es gilt

252, =0 fir u>1, v>1, 25 e H(8,), 25 e H*(8,), ¢ # o, (46")
das Produkt in § genommen. (46’) folgt aus (45).
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Da §(8) gleich der direkten Summe der Ringe §(S,) ist, wird S aus den
Komponenten S, so zusammengesetzt, dafl beim Aufbau von S aus den ein-
zelnen Komponenten keine neuen Zyklen entstehen: das Diagramm?®) von S
enthilt keine Zyklen. Das Diagramm von S ist ein Streckenkomplex. Jeder
Komponente 8, entspricht im Diagramm ein Eckpunkt und umgekehrt, und
zwei Eckpunkte im Diagramm werden durch eine k-fach gezihlte Kante ver-
bunden, wenn die entsprechenden Komponenten in 8 ¥ Punkte gemeinsam
haben. Wie wir soeben festgestellt haben, kénnen zwei Eckpunkte im Dia-
gramm durch héchstens eine einfach gezihlte Kante verbunden werden, und
das Diagramm enthilt keine Zyklen, es handelt sich also um einen Baum:

Satz 19. Unter den Voraussetzungen des Saizes 18 ist fiir die Modifikationen
(31,,,), (32, ,) das Diagramm von S ein Baum (HopF [24]).

Dies folgt auch direkt daraus, daB der Umgebungsrand von 8™, r > 2,
in U™ bzw. in V die Sphire 2*-1, n > 4, ist: jede geschlossene Kurve auf
S 1a8t sich innerhalb 8 auf einen Punkt zusammenziehen. Satz 19 ist richtig
unabhiingig von der Giiltigkeit von (46). Wesentlich ist die Voraussetzung
r > 2. In Anlehnung an das Diagramm nennen wir die hier betrachteten
Gebilde 8™, r > 2, o-Bdume.

b) Beweis zu Satz 18: Mit Hilfe des Pendelverfahrens.

1. J sei wie immer Z, oder K. Es sind die Ringe $(S,;J) und $H(S; J)
zu bestimmen. Es geniigt, die Modifikation (32, ,) zu betrachten. Es ist r > 2.

2. Ist 1<s<r—1, so liefert das Pendelverfahren, beginnend mit
H=2(8), H¥ (V3 J) o HE(S; J) = 0

fir ¥ £ 0 mod r und fir » — k£ 0 modr, k < n/2, genau wie im Beweis
zu Lemma 3, und dies gilt unabhingig von (46). Es wird dabei der Poincaré-
sche Dualitdtssatz in ¥ und in den einzelnen Komponenten §, benutzt. Man
erkennt: es muBl 7 < /2, und der Zusatz ist als richtig erwiesen. Insbeson-
dere folgt H(S) = 0, und damit Satz 19.

3. 20 ist die nulldimensionale Fundamentalklasse von ¥ und ebenso die-
jenige von S, fiir alle . Dann ist 2" = D 2° die n-dimensionale Fundamen-
talklasse von ¥, und 27" = Dg 2° ist die (n — r)-dimensionale Fundamen-
talklasse von S,. Wegen 1., 2., (45), (33*) bilden die ¢ Elemente 27~", z3~",
..., 27" eine Basis in H"7(8) und in H*" (V). Der Operator Dy liefert die

Elemente 27 :
¢ xf = Dpay™", sodaBl 2257 = 8y, 2". (47)

%) Bei Horr [24] als «Nerv» bezeichnet.
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Die Elemente 2}, bilden eine Basis in H" (V) und nach (33*) ebenso in Hr(S).
Wegen (45), (46), (47) liegt 2}, in H"(S,). Nun wenden wir in jeder Kompo-
nente S, den Operator DSO an:

r __ n—2r
xy = Dsqxq ,

so daBl 257* e H"?7(8,), und wegen (46') wird
xroxz—.zr = aqaxz—r,

das Produkt in S genommen. Die Elemente z7;~* bilden also eine Basis in
H"—%r(§) und damit wegen (33*) auch in H"2r(V). Jetzt kommt wieder
der Operator D, an die Reihe, welcher die Basiselemente 27" e H27(S,)
liefert (mit Hilfe von (33*), (45) und (46)), worauf von neuem die Operatoren
Dso verwendet werden, usw.

4. Damit sich das Pendelverfahren, wie es in 2. und 3. beschrieben wird, in
der Mitte schlieBt, muB8 n = Ar sein. Dies wird wie im Beweis zu Lemma 3
eingesehen.

5. Es folgt nun wie bei den Sdtzen 13 und 16, daB
HST"; J) = {20 2, (a5)3, ..., (z5)+1},

und die obige Konstruktion zeigt, daB $(S;J) gleich der direkten Summe
der Ringe $(S,;J) ist. Ist S, orientierbar und gilt »r < » — 1, so muB
r = 2¢', was wie bei (37,) gezeigt wird. Dazu geniigt, daB unter den { Kom-
ponenten S, eine einzige orientierbar ist.

Bemerkung 1. Liegen solche orientierbaren Homologiemannigfaltigkeiten
vor, fiir welche der Poincarésche Dualitétssatz mit Hilfe von (44) iiber Z gilt,
das heiBt kann man an Stelle der Operatoren Dy, D Se die durch (44) definier-

ten entsprechenden Dualitdtsoperatoren nehmen (wie dies fiir kompakte orien-
tierbare Mannigfaltigkeiten der Fall ist), so wird analog zur obigen Konstruk-
tion der Cohomologiering von 3, iiber Z gewonnen. Es mul dann fiir »r < n — 1
r = 27, und $(S,; Z) hat dieselbe Struktur wie £ (S8,; K).

Bemerkung 2. Falls der Dualitéitssatz iiber Z in V und in 8, verwendet wer-
den kann, gelten wie in § 10 e) wegen des Satzes von ApEM fiir » und fiir 1
dieselben Gleichungen wie in Satz 17.

Bemerkung 3. Ist n = 2r, so ist S, nach dem Zusatz zu Satz 18 eine
r-Homologiesphire iiber Z, bzw. K, unabhéngig von (46). Fir n = 4, r = 2
erhilt man im differenzierbaren Fall fiir S? Sphirenbéume, in welchen alle
Komponenten 8} 2-Sphiren sind, und im Falle komplexer lokaler Modifika-

17 Commentarii Mathematici Helvetici
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tion ergeben sich die von HopF in [23], [24] beschriebenen Sphirenbiume. —
Da nun (46) im allgemeinen nicht gilt, sind zur Bestimmung des gesamten
Cohomologieringes $(V;J) spezielle Betrachtungen notig. Liegt der topo-
logische Fall vor (V, S, kompakte Mannigfaltigkeiten), so handelt es sich um
die Bestimmung der Schnittzahlen in V.

c¢) Analog zur obigen Methode kénnen an Stelle der o-Bdume solche Gebilde

behandelt werden, in denen die Komponenten nicht alle dieselbe Dimension

haben. Ist weiter zugelassen, dal der Durchschnitt zweier verschiedener Kom-

ponenten in S ein héherdimensionaler Komplex ist, ist also (45) nicht mehr

erfiillt, so kann das Pendelverfahren auch in diesem Fall benutzt werden. Fiir
t

8m = 8" = U8, mg=mn — r,, r = Min (r,), folgen mit Hilfe einer zu 2.
=1

in b) analogelle Uberlegung bei Verwendung der untenstehenden Voraussetzung

(45) die Beziehungen H*(S) =0 fiir ¥ 0 mod r und Hme—%(8,) =0 fiir

k%0 modr, ¥k <n/4, und 7, < n/2 fir alle g. Satz 18 ist in dem folgen-

den Satz enthalten.

Satz 18'. Es seien in den Modifikationen (31, ,), (32, ,) die folgenden Bedin-
gungen erfullt: ;
8™ = U S§ge,

e=1
V, 8. Homologiemannigfaltigkeiten, m=n—r, me=n—ry, r=Min(ry)>1;
far 8, = 87¢n 857 = dyg-dimensionaler Komplex ist d = Max (dy,) und
ezo .
He(Sp) =0 fur 1<Ek<d; (45)
es 18t
22 =0 fiir n —r>8>r, _—
“ / (46)
zoe H*(S,), zg ' e H**(8,), 0 # 0.
Dann wird n = Aorq, und
H(S5e; Zy) = {20, zge, (xge)?, . ..., (vge) e} ;
ist Sy orientierbar, mq > 1, 0 folgt n = Agrq, 7o = 275, und
H(Spe; K) = {2° zje, (z52)? ..., (zje)'e™'} .
Zusatz: Ist n = 2r, = 2r fiir alle o, so werden alle Komponenten 8,

Homologiesphiiren iber Zy bzw. dber K, auch wenn die Bedingung (46) weg-
gelassen wird.

Der Beweis zu Satz 18’ verliuft parallel demjenigen zu Satz 18. Es gelten
die den Bemerkungen 1 und 2 in b) entsprechenden Aussagen hier ebenso.
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Falls die Bedingungen (4_5) und (E) weggelassen werden, koénnen im all-
gemeinen keine so weitgehenden Behauptungen iiber die Cohomologiestruktur
von 8 gemacht werden. Vergleiche dazu § 16 ¢). Man denke zum Beispiel an
das topologische Produkt M" =X x XZ7* X ... X 2 der ¢t Sphiren
29¢e, welches durch lokale Modifikation aus der Sphire 2", n = m; 4 my
~+ ...+ m,, erhalten wird. Dort ist 7)

¢ A
Sm= U I X 2P X ... X Zge X ... X 2P,
e=1

Weitere Beispiele liefern die Produkte M"= V" x Vi* X ... X V¥,
wo jedes Ve durch lokale Modifikation aus 2™e gewonnen wird.

§ 12. Modifikation durch Ersetzen einer Mannigfaltigkeit

a) Allgemeine Modifikation. V", W™ seien in der allgemeinen Modifikation
(1) kompakte Mannigfaltigkeiten, so daBl die Poincaréschen Dualitétsopera-
toren Dy, Dy mit Hilfe von zueinander dualen Zellteilungen erhalten werden
(siehe [28], p. 188). 8™, A4 seien Teilrdume in V bzw. in W (V, W sind Poly-
eder, S und A Teilpolyeder in V bzw. W). Es sei

m=dimS, g¢g=dmd, m>gq. (48)

Wir treiben Cohomologietheorie iiber dem Koeffizientenbereich J, J = Z,
oder J = K. Aus (29) und (48) folgt

0
i o
0 > H¥V,8) > H¥V) -0
tox  fir k>m 42, (49)
0 — H¥(W, A) > H¥(W) - 0
0
0
es gilt also
HY(V) o H¥(W), *H¥(V,8) =~ j*H*(W, 4) fir k >m + 2, (49')

wo der erste Isomorphismus in (49’) durch

g*: HE(W) > HH(P), g% = o+, (49")
gegeben wird.
(49) liefert bei Anwendung des Dualititssatzes fir ¥ und fiir W (mit Hilfe

7) Das Zeichen A~ iiber einem Symbol bedeutet hier das Weglassen des betreffenden Symbols.
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der durch duale Zellteilungen definierten Operatoren Dy, Dy)
H*(V) = H*(W), j*H*(V,S)=~j*H*(W,A) fir k<n—(m+2).  (50)

Begriindung zu (50): da ¥V — 8 mit W — 4 homd6omorph ist, identifizie-
ren wir V — 8 mit W — 4; die Isomorphismen ¢* in (49'') induzieren
dann mittels der Dualitdt in V und in W Isomorphismen von H¥*(W) auf
H¥(V) fir k<n— (m+ 2):

g*: HY(W) > HMV), k<n—(m+2),

die durch Homomorphismen C¥(W) — C*(V) gegeben werden, welche auf
V —8=W — A durch die Identitdt dargestellt werden; daher ist auch fiir
E<n— (m+ 2) j*@* = ¢*j*, wie dies fir £ >m + 2 nach (49") der
Fall ist. C*(M) ist die k-te Cokettengruppe von M. Damit gilt auch (50).
Aus (50) folgt mit Hilfe von (28), (29)

H*(S) ~ H¥(A4) fir k <n — (m + 3), (61)
denn es ist wegen (29)

H*(8) =< *H*(V) + 8H*(S)
>~ H*(V) — j*H*(V, 8) + H*\(V, 8) — j*H*(V, 8),

H*(A) > +*H*(W) + H*(4)
=~ H¥(W) — j*H¥(W, A) + H*Y(W, 4) — j*H**(W, 4),

und darin (50), (28) beriicksichtigt, ergibt (51).
Wir haben also erhalten:

Satz 19. Liegt die Modifikation
D: (V" 8™) - (Wn, A9 (1)

vor, m > q, V und W kompakte Mannigfaltigkeiten, S und A Teilrdume in
V bzw. in W, so gilt

H¥(8m; J) >~ H (A%, J) far E <n — (m 4+ 3). (51)

J = K, falls V, W orientierbar, J = Z, sonst.
Korollar 1. Ist unter den Voraussetzungen des Satzes 19 2m 4 3 < n, so
folgh H*(8™; J) ~ H*(A%; J) fir alle & . (51')

Korollar 2. Sind unter den Voraussetzungen des Satzes 19 auch S und 4
kompakte Mannigfaltigkeiten, und ist 2m + 3 <n, so ist m = ¢, und es
gilt (51’). J = K, wenn V, W, 8, A orientierbar sind, J = Z, sonst.
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Korollar 3. Sind unter den Voraussetzungen des Satzes 19 § und 4 Homo-
jogiemannigfaltigkeiten, und ist m = ¢, 3m + 6 < 2n, so gilt (51'), J wie
jn Korollar 2 gewéhlt.

b) Beziehung zu den Sphirenfaserungen, Modifikation durch Faserung des
Umgebungsrandes. Ist A¢ eine Mannigfaltigkeit und der Umgebungsrand
N™1 vyon A in W™ ebenfalls, so liefert nach Satz 4 jede Sphirenfaserung von
N mit der Basis 8™ eine Modifikation (1), worin 8 eine m-dimensionale Man-
nigfaltigkeit wird. Nun gehen wir von einer Mannigfaltigkeit N"-! aus und
setzen voraus, daB N in Sphiren X7-2-! mit der Basis A4? gefasert werden
kann. Wir haben in § 5 b) gesehen: es kann in diesem Fall N immer als Um-
gebungsrand von A in einer geschlossenen Mannigfaltigkeit W gedeutet wer-
den, und alle Sphérenfaserungen von N erzeugen nach Satz 4 Modifikationen
dieser Mannigfaltigkeit. Somit haben Satz 19 und die Korollare 2 und 3 zur
Folge : ist das Sphérenbiindel

N(49 = {N*1, 2n-e71, 49} (7)
gegeben, N kompakte Mannigfaltigkeit, und 148t sich die Mannigfaltigkeit N
auf eine weitere Art in Sphéiren fasern:
m(Sm) — {Nﬂ-—l’ Z'n—m-l, Sm} , m 2 q , (16)
so gilt (b1) fiir J = K, falls N|(S) und N(4) orientierbar sind, fir J = Z,
sonst; ist 2m + 3 <m, soist m = g und es ist (b1’) erfiillt; wird m = ¢,
3m 4+ 6 < 2n vorausgesetzt, so folgt ebenfalls (51'). Ein Biindel RN (8) heiBt
wie in § 6 b) orientierbar, wenn mit Hilfe einer Orientierung in S und einer
solchen in der Faser X eine Orientierung in N definiert werden kann, das heiBt
die Basis ist orientierbar und H(ZX'; K) als Garbe iiber S trivial.

Nun wollen wir dieses Resultat mit Hilfe der Gysinschen exakten Sequenz

direkt herleiten. Es sei
m=mn—r, ¢g=n—8;, 8>r>2,80dal m>gq.

Dann liefern die Gysinschen exakten Sequenzen (vgl. [7], X-9; [6], IX-8)
fiir R(4) und N(S) zusammen mit dem Homdomorphismus @: N1 — N -1
(hier ist N = N, und g ist die Identitiit):

0
1
. — H¥(8) — H¥*+r(8) — H*r(N) - Hk1(8) -> ...
P . (52)
. —> Hktr—3(4) » H*tr(4) - H¥7(N) > H¥r—2+1(4) — .,

1
0 )
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Der Koeffizientenbereich ist J = K, wenn die beiden Biindel 9t(4) und
N(S) orientierbar sind, J = Z, sonst. Fir k +7r> ¢+ 1, das heiBt
fir k>qg—r+1=m+ g+ 1 —n, folgt aus (52):

. —> Hk(8) - Hk+ (8) - H¥+r—+1(4) — H*+1(8) — ... }

firk>m+q+1—n. (52°)

(62") liefert
H*1(8) o~ HFtr—s+1(4) fiir k+r>m + 1,

und der Dualitdtssatz fiir S und fiir 4 ergibt
H*(S) ~ H*(A4) fir k <n — (m + 2). (51)
(51) entspricht dem Resultat (51), und es gilt also der folgende Satz:
Satz 20. Sind die beiden Sphdrenbiindel
N(49) = {N*-1, ZTn-a-1 49}, (7)
N(Sm) = (N1, Zo-mt, §n} , m > q, (16)
gegeben, N kompakte Mannigfaltigkest, so gult
H (8™ J) = H*(4%;J) far k <n — (m +2). (51)
J = K, falls N(A) und N(8) orientierbar sind, J = Z, sonst.

Korollar. Ist unter den Voraussetzungen des Satzes 20 2m 4+ 2 < n, so
ist m = ¢, und es gilt
H¥(Sm; J) o H%(A2; J) fiir alle k. (51)

Wird m = ¢ und 3m + 4 < 2n vorausgesetzt, so folgt ebenfalls (51’).

Bemerkung 1. Sind N(4) und N(S) iiber Z orientierbar, so sind Satz 20
und sein Korollar fiir J = Z richtig (vgl. die oben zitierten Arbeiten [6]
und [7]).

Bemerkung 2. Sind (7) und (16) «Homologiesphérenfaserungen», das heif3t
Faserungen durch Homologiesphiren iiber den Homologiemannigfaltigkeiten
A und 8, so gelten Satz 20 und sein Korollar ebenso, und Bemerkung 1 bleibt
richtig. Auch dies geht aus [6], [7] hervor.

Satz 20 impliziert Satz 19 fiir den Fall einer Modifikation mit Hilfe von
Sphirenfaserungen des Umgebungsrandes, genauer: einer Modifikation, in
welcher sowohl zu A wie zu S ein Sphirenbiindel N(4) bzw. N(S) gehort

(mit 8 >7r > 2), so daB kraft dieser Faserungen W — 4 und V — 8§ zu
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W und zu V abgeschlossen werden. Dabei steht an Stelle von (51) die stiirkere

Aussage (51), und dementsprechend gelten auch stirkere Korollare 2 und 3.
Es ist J = K und nach der Bemerkung 1 sogar J = Z, falls V, W, S, A
orientierbare Mannigfaltigkeiten sind, J = Z, sonst. Nach Satz 1 kann
Satz 20 insbesondere auf die differenzierbare Modifikation angewandt werden.
Die Beweismethode zu Satz 19 ist deshalb von Interesse, weil es a priori nicht
klar ist, daB man unter den Voraussetzungen des Satzes 19 das Resultat (51)
erhilt, ein Cohomologieresultat, das fiir die entsprechenden Homologie-
sphirenfaserungen ebenso erhalten wird.

In Satz 19 konnen S und 4 aus mehreren Komponenten bestehen. Nach

(51) ist H°(8™) ~ H°(A9) fiir r > 3, (519)

das heiflt die Anzahl der Komponenten von 8 ist gleich der Anzahl der Kom-
ponenten von A4, falls »r =n —m > 3. Handelt es sich um Modifikation
durch Faserung des Umgebungsrandes, wie dies soeben beschrieben wurde,
und besitzen § und 4 mehrere Komponenten (jede Komponente von S und
von 4 ist eine Mannigfaltigkeit), so gilt dieselbe Aussage fiir » > 2.

Wir sehen : die Isomorphismen

dH* (8™ ~ §H*(A9) fir k <n — (m 4 3)

sind eine Folge von (50). Wenn wir (5—1) hinzunehmen, erhalten wir dieselben
Isomorphismen fiir ¥ <n — (m + 2). Daraus folgt: sind die Polyeder S™,
A™ (m = q) m-Zyklen in V bzw. in W, und ist 2m 4+ 3 <n, so sind sie
entweder beide homolog null in ¥ bzw. in W oder beide nicht homolog null.
Bei Modifikation durch Faserung des Umgebungsrandes gilt diese Aussage fiir
2m 4+ 2 <n. Vgl. auch § 14 b).

Bemerkung zur Orientierbarkeit. Fiir Modifikationen durch Faserung des
Umgebungsrandes in Sphiren der Dimension >1 gilt: ist der Umgebungs-
rand N einfach zusammenhingend, so sind entweder § und 4 beide orientier-
bar oder beide nicht orientierbar; ist N einfach zusammenhéingend und orien-
tierbar, so sind § und A orientierbar. Ferner gilt fiir jede Modifikation: ist
n—m >2, m > gq, sosind entweder ¥ und W beide orientierbar oder beide
nicht orientierbar.

c) Zwei Spezialfille (1. § = 2, 2. A = 2). Als weitere Anwendungen von
(62) auf Modifikationen durch Sphirenfaserung fassen wir die Fille 8™ = Xm
und 42 = X'¢ niher ins Auge.

1. Essei 8™ die m-Homologiesphire ™ fiir m > 1 und die Homologie-
zelle fiir m = 0. Dann ist wegen (52) fir r > 2

H¥+r—241(4a) = 0 fiir k+r>q+1, k+r#m, k4 15%m, kb # —1,



264 AryrREp AEPPLY
das heilt es ist
H*(A49) =0 fir k>2¢9+2—n, k#m+qg+1—n, k#q, k#0O.
Daraus folgt : sind die beiden Homologiesphirenfaserungen
N(49) = {N=-1, Zn—a-1] A},
NE™) = (N, Zr-m-L Fm} . n—2>m>gq,

3¢g+4<2n, 2m+ q+ 2<2n, gegeben, so wird A¢ die ¢g-Homologie-
sphéire iiber J fiir ¢ > 1 bzw. die Homologiezelle iiber J fir ¢ =0 (An-
wendung des Dualitétssatzes in A4):

HO(A% J) =~ H1(A%; J) == J; H*(A%;J) =0 fir k +#0, ¢;

J = K, falls die beiden Biindel orientierbar sind, J = Z, sonst. Somit kon-
nen wir sagen :

Satz 21. Die berandete Mannigfaltigkeit W — A werde durch die Sphiiren-
faserung N(A) zur kompakten Mannigfaltigkeit W abgeschlossen, und durch die
Sphdirenfaserung N(S) zur kompakten Mannigfaltigkeit V, so daB die Modi-
fikation

®: (V" 8m) — (Wn, 49) (1)

vorliegt. 1st nun S™ die m-Sphdire Z™ fir m > 1 oder ein Punkt fir m = 0,
und st
3g+4<2n, 2m+q+3<2n, m=y,

8o wird A eine ¢-Homologiesphiire iber J fiir ¢ > 1 bzw. ein Punkt fiir q = 0;
J =K, wenn V, W, A orientierbar sind, J = Z, sonst.

Falls V, W, A orientierbar sind, kann in Satz 21 auch J = Z genommen
werden.

2. Es sei A2 die ¢g-Homologiesphire X¢ fir ¢ > 1 und die Homologie-
zelle fiir ¢ = 0. In diesem Fall ergibt (52) (es ist immer » — 2 >m > q)

Hk (8™ H*tr(8m) fiir k+r>q+2, k+r—8+#0,q, k+r—s84+1+#0,4.
Es folgt : sind die beiden Homologiesphérenbiindel
N9 = {N*1, Tr-e-l Ja},
N(I™) = (N2, Zn-m-1 gm} n—2>m>gq,
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gegeben, und ist
Im+1<2n, m4+2¢+3<2n, m+1<2gq,

go wird 8™ die m-Homologiesphire iiber J (es wird m > ¢ >1); J =K,
falls es sich um orientierbare Biindel handelt, J = Z, sonst. Dies wird ein-
gesehen mit Hilfe des Dualititssatzes in S und der Beziehung H*(S) =~ H¥**r(S)
fir m/2 <k <m — 1. Wir erhalten analog zu Satz 21:

Satz 22. Ist die Modifikation
@: (V" 8™) - (W", A9 (1)

wie wn Satz 21 durch die Spharenbindel N(A) und N(S) gegeben, ist A1 = X'¢
die q-Sphare (¢ > 1), und ist

Im+1<2n, m+2¢+3<2n, m4+1<2q, m=>g,

8o wird 8™ die m-Homologiesphiire @tber J; J = K, wenn V, W, S ortentierbar
sind, J = Z, sonst.

Wenn V, W, 8 orientierbar sind, kann in Satz 22 J = Z genommen werden.
Wie bei Satz 20 kénnen die Sitze 21 und 22 wegen Satz 1 auf die differenzier-
bare Modifikation angewandt werden.

d) Anhang: Verwendung der Homotopiesequenzen. Wenn es sich um Modi-
fikation durch Faserung des Umgebungsrandes handelt, wie wir es in b) be-
schrieben haben, so spielen neben den Gysinschen Sequenzen die exakten
Homotopiesequenzen der beiden Faserungen (7) und (16) eine Rolle (vgl. [31],
p. 90). Wir bekommen an Stelle von (52)

0
J
(8™ «— ... Wy (7)< 7 (8™) « 7 (NP 1) - 7 (27 ) < ...
~L‘79* (.
(A9 — ..o« 71 (%) < 7, (A9 «— 7 (N) « 7, (2 ) < ...

v
0

Daraus folgt
oo T (Z1) 7, (8™) « 7, (A9) « 7, (27Y) « .. O
fir 2<k<s—2,

und weiter

7, (8™) = 7w, (49) fir 2<k<r—2=mn—(m+ 2). (II)



266 ALFRED AEPPLI

Fel‘nel‘ ISt ﬂl(Aq) ~ 7‘1 (Sm) fﬁr r 2 3. (III)

(II) und (III) entsprechen (5_1). Setzt man voraus, dal 4 eine ¢g-Sphire ist,
so daB

m(A9) =0 fir 1<k <qg—1,
so folgt aus (I) .

7, (S™) >~ m,_,(2™1) fir 2 <k <Min(s —2, ¢g—1).
Ist S eine m-Sphire, so wird wegen (I)

7, (A9 =~ 7w, (X)) fir 2 <k <Min(s—2, m — 2).

II1. Kapitel. Cohomologietheorie der Modifikation mit Abbildung

In diesem Kapitel werden allgemein solche Modifikationen untersucht, bei
denen eine Modifikationsabbildung ¢ existiert. Da jede lokale Modifikation
eine Modifikationsabbildung besitzt, sind die Hauptergebnisse iiber die lokale
Modifikation in diesem Kapitel von neuem enthalten.

§ 13. Cohomologieeigenschaften der Modifikation mit Abbildung

a) Wir treiben Cohomologietheorie iiber dem Koeffizientenbereich J, J =Z,
oder J = K. Die Modifikation (1) sei eine allgemeine Modifikation und werde
durch die Abbildung ¢ in (3) induziert. ¥, W seien n-dimensionale Homologie-
mannigfaltigkeiten, und 8™, A4? seien Teilrdume in V bzw. in W mit
n—1>m >gq. Dann hat ¢ den Abbildungsgrad +1: g(¢) = +1, und
daraus folgt nach einem Satz von HopF in [21]:

0 — H*(W) > H*(V). (53)
Die Abbildung ¢ in (4) induziert die Homomorphismen
@*: Hk(A) — H*(S), (54)
und wir erhalten wegen (53), (54), (29):
0 0
8 1 7* ¥ 8 f % i*
...—> H¥(V, 8) - H*(V) - H¥(S) -> H+\(V, 8) - HY(V) —...
, tox  to* ‘W*a tox to* " . (85)
...~ HY(W, A) > He(W)=> H*(A)—~ H+\(W, 4) > He+ (W) > ..
0 t 1 ?
0 0 0 0
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Das Diagramm (55) ist kommutativ, denn die Homomorphismen @&*, ¢¥*,
¢* werden durch die Abbildung ¢ induziert. Aus (55) folgt

?'*Hk+1('V, S) o~ j*Hk+1(W, A) ,
SH¥(S) = 6 H*(4),
das heiBt * § H*(A) o 8 p* H*(A) o 6 H¥(A) ~ 8 H*(S) .

und daraus
(56)

Ferner ist wegen (55)
j*HE(V, S) >~ j*H*(W, 4) ,
so daB fir L = H*(V) — ¢*H¥(W) =~ H*(V) — H*(W)

*H (V) >~ *H*(W) + L ~ i*¢*H*(W) + L o~ ¢p*i*H¥(W) 4+ L. (57)
(57) besagt: ¢* liefert einen Isomorphismus von ¢*H%(W) in H¥(S).
Daraus folgt zusammen mit (56): ¢* liefert einen Isomorphismus von
H*(A) — v*H*(W) in H*(S), und ¢* ist ein Isomorphismus von H*(4) in
H®(S):

Lemma 4. Liegt die folgende Modifikation vor:
o: (V" 8m) —~ (W, A9, (1)

V, W Homologiemannigfaltigkeiten, S und A Teilrdaume in V bzw. in W,
n—1>m>q, und wird die Modifikation (1) durch die Abbildung

p: VP> W" (3)
induziert, 8o 18t
0 — H*(W") 2> He (V™) (53)
P
0 — H*(A9) > Hk(gm) . (58)
b) Lemma 5. Unter den Voraussetzungen von Lemma 4 gilt
HY (V") o HE(W™) + H¥(S") — H¥(49). (59)
Beweis: (55) lautet bei Beriicksichtigung von Lemma 4
0 0
3 T 7% e 8 T j* ix
> HX(V,8) > H¥(V) > HE(S) > H(V, 8) — H (V) > ...
por tgr  AFE ter o ter L ()
S ERW, 4) 5 B S BR4)S> BEA(W, 4) S HE (W) S
? 0 ) ? 0
0 0 0 0 0
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Aus (b5') folgt
H%(S) >~ +*H*(V) + 6H*(S), H*A)~*H*(W)+ dH*(4),
und j*H*Y(V, 8) o j*HY (W, 4), HY(V,S) =~ H* (W, A),
so daB
8H*(S) = H***(V,8) — j* H*(V,8) o2 H*Y(W, 4) — j* H¥ (W, 4) = 6 H*(4),

und damit
t*HE(V) — +*HE (W) =~ H*(S) — H*(4) .

Daraus folgt unter erneuter Anwendung von (55')
H(V) =< j*H*(V, 8) + *H*(V) = j*H*(W, 4) + +*H*(V)
=~ H¥(W) — o*H*(W) + «*H*(V) = H*(W) + H*(S) — H*(4),

womit (59) bewiesen ist.

¢) Koeffizientenbereich J = Z. Es wurde in a) und in b) J = K bzw.

J = Z, vorausgesetzt. Sind V und W n-dimensionale Homologiemannigfaltig-

keiten, die iiber Z orientierbar sind (das heiflt es gilt der Poincarésche Duali-

titssatz iiber Z mit Hilfe der Operatoren (44)), so bleiben unter den Voraus-
setzungen von Lemma 4 die Beziehungen (53) und (58) iiber J = Z richtig:
g*H*(W) == H*(W), (53)

@*H*(A) ~ H*(4) . (58")

Wenn V, W Mannigfaltigkeiten sind, wird (58) bzw. (58’) (im orientierbaren
Fall iiber einem beliebigen Koefﬁzmntenberelch) auch sofort so emgesehen

man nimm¢$ offene Umgebungen 8 von § i in V und 4 in W, verdoppelt S zur

kompakten Ma.nmgfa,ltlgkelt 8 und 4 zu A @ induziert eine ModJﬁkatlons-
abbildung p: S - A die Homologlegruppe H,(8) liegt isomorph i in H, (S)

vermoge der Inklusionsabbildung ¢:S8 — S ebenso H,(A) in H, (A) dies
niitzt man dual aus und wendet (53) auf 39 an, woraus (58) folgt.

Nun gilt fiir einen beliebigen Koeffizientenbereich J : gehort zu einer stetigen
Abbildung ¢:(V,S) - (W, 4), V, W, 8, A Polyeder, das (kommutative)
Homomorphismenschema

ST, 8) 5oy S R S) S ey, 8) B mea(ry S

t o tor | tpr to to*
S HEW, A)S B o) S B a)S> B w, ) S ey S
0 ) ) 0 0

0 0 0 0 0
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so fiihrt dies zur exakten Sequenz
) ¥ ¥
..~ HE(V, 8) | @<H (W, A) > H¥(V) | g* HE(W) > H¥(S) | p* H*(4)

5 BM(T, 8) | GXHFL(W, A) > ..
Im Falle einer Modifikation mit Abbildung erhalten wir daraus mit Hilfe

von (28)
H*(V) | o*H¥(W) = H*(S) | o*H*(4), (59°)

wobei der Isomorphismus (59') durch i* vermittelt wird, und wo zu bemerken
ist, daBB (59') bei einer allgemeinen Modifikation mit Abbildung (V, W, S, 4
Polyeder) gilt, falls (53) und (58) (es geniigt (53)) erfiillt sind. (59’) gilt ins-
besondere iiber J = Z, wenn ¥V und W iiber Z orientierbare Homologie-
mannigfaltigkeiten sind. Wegen (53), (58'), (59’) kénnen wir schreiben :

H*(V) | H*(W) =~ H*(S) | H*(4) . (697)

Dabei wird H*(W) durch ¢* in H*(V) und H*(A) durch @* in H*(S) iso-
morph eingebettet. (59") stimmt fir J = K bzw. J = Z, mit der Isomor-
phie (59) iiberein.

Duale Konstruktion. Gehort zu ¢: (V,S) - (W, A) das (kommutative)
Homomorphismenschema

Ty

L HW,8) LHW) CHE) L HL7,8) LHL ) <
5 } D ; V Px ; Jr-‘;?-*a { Dy ; ¥ Px ;
e H (W, A)< H (W) < Hy(A) < Hy (W, A) < Hyy (W) <[

\ \ \ v \
0 0 0 0 0

so bekommen wir die exakte Sequenz
] 7% i -
o {H (Y, 8) | @4} < (H(V) | pi} < (H(8) | 34

F] 7x
< {Hena(V,8) | Py} < ...

wo fir y,: L - L' (L, L' Gruppen, v, Homomorphismus) die Gruppe
{L| w4} den Kern des Homomorphismus y, bedeutet. Fiir eine Modifikation
mit Abbildung bekommen wir daraus

{H (V)| @i} == {He(S) | 4} (69)
und (59,) gilt wie (59') tiber J = Z, wenn V und W iiber Z orientierbare
Homologiemannigfaltigkeiten sind.
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§ 14. Anwendungen

a) Die Voraussetzungen zu Lemma 4 und 5 kénnen auch so formuliert wer-
den: ¢ ist eine Modifikationsabbildung der Homologiemannigfaltigkeit V auf
die Homologiemannigfaltigkeit W mit der Singularititenmenge S iiber A,
oder: ¥V und W sind modifikationsiquivalent durch die Abbildung ¢ mit der
Singularitditenmenge S iiber 4. Nun formulieren wir Lemma 5 nochmals als
Satz :

Satz 23. Sind die Homologiemannigfaltigkeiten V™, W modifikationsidqui-
valent durch die Abbildung ¢ mit der Singularititenmenge S™ iber A9,
n—1>m>q¥), sogilt

H¥(V") >~ H¥(W*") + H*(S™) — H*(49), (59)
die Cohomologiegruppen itber dem Korper K genommen, wenn V und W orien-
tierbar sind, fiber dem Korper Z, andernfalls.

Bemerkung. Es ist zu betonen, dal S und 4 keine Homologiemannigfaltig-
keiten zu sein brauchen, sondern nur Teilpolyeder in V bzw. in W. Es handelt
sich um allgemeine Modifikation.

Als Korollar zu Satz 23 bekommen wir :
Korollar. Unter den Voraussetzungen des Satzes 23 ist
H*(V) ~ H*(W) + H*(S) fiir k >q+ 1 , (59)
H*(V) o~ H*(W) fir k>m -+ 1. (59)
Bei (49), (49') in §12 wurde die Isomorphie H*(V) o~ H*(W) fir k > m + 2

festgestellt fiir allgemeine Modifikationen (1) (auch ohne Abbildung) mit

m>>q. (55’) ist also eine Verschirfung von (49’) fiir den Fall einer Modifika-
tion mit Abbildung.
(569) besagt fiir £k = 0
H(S) =~ H°(4) , (599

die Anzahl der Komponenten von S ist also gleich der Anzahl der Komponen-
ten von 4. (59°) ist eine Verschirfung von (519).

Beispiel. Es sei M" = X1 x U! die n-dimensionale Kugelrinde, n > 2.
M" werde einmal durch Identifikation der Endpunkte von U und das zweite
Mal durch Identifikation der Antipodenpunkte auf den beiden Randsphiren
abgeschlossen. Dann erhalten wir die Modifikation

@: (21 x X1, 2t —» (PT, Pl x 29),

8) Vgl. die Bemerkung iiber die Dimensionen am Schlu8 von c).
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in welcher W" = P} den durch den reellen ¢-Proze lokal modifizierten
n-dimensionalen reell projektiven Raum darstellt. Hier besteht S aus einer
Komponente und 4 aus zwei, so daB weder diese Modifikation @ noch die
dazu inverse &' durch eine Abbildung erzeugt werden kann (unabhingig von
der Wahl des zu @ gehérenden Homoomorphismus (2)). Ist n = 2#' > 2, so
kann der zweite Abschlufl durch Faserung in Kreislinien (Hopfsche Faserung)
vorgenommen werden, wir bekommen die Modifikation

@: (Tl x X1, Zn-1) » (Pin’)’ Pw'-1 w 20,
welche nicht durch Abbildung erzeugt werden kann (dasselbe gilt fiir @72),
und fiir n = 4n’ > 4 liefert der AbschluB durch Faserung in 3-Sphéren in
analoger Weise eine weitere Modifikation dieser Art. Wird der zweite Abschlufl
dadurch gewonnen, daB8 die Randsphéiren von M"(n > 2) je auf einen Punkt
zusammengezogen werden, so erhalten wir die Modifikation
@ (X1 x 21, XY > (2, 29),

welche samt ihrer inversen wiederum von keiner Abbildung stammen kann.

b) Anwendung von (55’). A9, S? seien g-dimensionale Polyeder (m = g¢),
A sei ein ¢g-Zyklus in W, und 8§ ein solcher in V. Dann gilt : soll ¥ durch Modi-
fikation von W durch Ersetzen von A4 durch 8 erhalten werden, so daB diese
Modifikation durch eine Abbildung ¢: V — W induziert wird, so sind ent-
weder A und S beide nicht homolog null in W bzw. in V oder beide homolog
null. Es ist also unmoglich, einen Rand 4 in W durch einen Zyklus S zu er-
setzen, der in ¥ nicht berandet, und es kann auch nicht ein Zyklus 4, 4 ~~ 0

in W, durch einen Rand in V ersetzt werden, wenn wir uns auf Modifikation
mit Abbildung beschrinken.

Beweis: Es sei 42~ 0 in W, so daB
Hy(W)> He(d) >0,
und es sei 82~ 0 in V, so daBB
0 — Ha(8)~> He+(V, ).
Daraus folgt mit (29), angewandt an der Stelle k = ¢ + 1,

0
s T j*
0 - He(S)— H*(V,8) - H#*Y(V) -0
) & :
0> Het\(W, A) > Her (W) > 0
()
0
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b2 Heni(W) o Hort(V)  HY(S) s Ho (V) +

entgegen (59) fir m = ¢, angewandt fir ¥k = m + 1, so daB die betrach-
tete Modifikation nicht durch eine Abbildung erzeugt werden kann. Genau
gleich zeigt man im Falle 42~ 0 in W, 82~ 0 in V, da8

H¥ (V) > HH (W) + HY(A) = H*Y(W) + J ,

so daB auch jetzt die Modifikation nicht durch eine Abbildung induziert wer-
den kann.

Beispiel. Es sei die Torusfliche 7'2 in der 3-Sphire X3 eingebettet, und es
werde das Innere von 7'* ausgebohrt, so daB8 72 der Rand einer berandeten
3-dimensionalen Mannigfaltigkeit M3 wird. Nun schlieBen wir M3 auf zwei
verschiedene Arten ab: einmal benutzen wir dazu die Faserung von 7% in die
Meridiankreise, und das zweite Mal diejenige in die Parallelkreise, so da wir
aus M3 — T? durch Hinzufiigen von 8! bzw. von A! (beides Kreislinien) die
beiden geschlossenen Mannigfaltigkeiten V3= 2% und W3 =21 X 22 er-
halten. Es ergibt sich somit die Modifikation

®: (23, 21) - (I x X2, 3.

Es ist nun sofort zu erkennen, daB3 die beschriebene Modifikation sowie ihre
inverse nicht durch eine Abbildung gegeben werden kann, denn in ¥3 ist S!
homolog null, wihrend 4! in W2 nicht homolog null ist.

Bemerkung. Der hier besprochene Sachverhalt folgt auch sofort aus (56):
OH*(8) =~ 6H*(4) ,

was allgemein fir ¥ <n — (m + 3) gilt (auch ohne Abbildung, vgl. Schlufl
von § 12 b)). Wegen (29) folgt daraus:

H*(W)—> H¥(4) > 0 @)
ist dann und nur dann richtig, wenn
H¥(V) > H*(8) - 0 (b)

gilt. Falls (a) erfiillt ist fiir alle %2, nennen wir die Einlagerung 4 < W homo-
logietreu (iiber dem Koeffizientenbereich J). Damit sind bei einer Modifika-
tion mit Abbildung die Einlagerungen A c W und S cV entweder beide
homologietreu oder beide nicht homologietreu.

¢) Anwendung von (69) aut Bimodifikationen. (59) gilt auch, wenn ¥ und
W bimodifikationsiquivalent sind durch die Abbildung ¢ = (¢;; @5). Dar-
unter verstehen wir folgendes: in V besteht 8 aus den beiden zueinander
punktfremden Mengen S, und S;, und in W besteht A aus den punktfremden
Mengen A, und 4,, so daB V — 8; durch Modifikation aus W — A, erhal-
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ten wird mit Hilfe einer Modifikationsabbildung von V — 8§, auf W — A4,
mit der Singularititenmenge 8, iiber 4,, und daB desgleichen W — A4, durch
Modifikation aus ¥V — 8, erhalten wird durch eine Modifikationsabbildung
von W — A, auf ¥V — §; mit der Singularititenmenge A4, iiber S,. Wenn
wir die Abbildungen aufler Betracht lassen, so ist eine Bimodifikation eine
Modifikation, in welcher § und 4 eventuell aus mehreren Komponenten beste-
hen; jede Bimodifikation ist eine Modifikation. Wir beschreiben eine Bimodi-
fikation folgendermaBlen: gehen wir von V, = V — 8; + A, aus, das heilt
von V, modifiziert durch Ersetzen von 8, durch 4, (der Homdomorphismus ¢’
zwischen V — 8 und W — 4 kann als Identitét angenommen werden), so
wird durch eine Abbildung ¢,: ¥V, - W die Modifikation

Dy: (V1, 8y) - (W, 4,)
induziert, und mit W, =W — 4, + 8, = V; haben wir eine Abbildung
ps: Wy — V, welche die Modifikation

Dy: (Wy, 43) - (V, 8,y)

erzeugt. Wir sagen : die Bimodifikation wird durch «die Abbildung» ¢ = (¢,;
@y) erzeugh, wobei ¢ aus zwei Abbildungen ¢, und @, besteht. ¢ ist also keine
Abbildung im iiblichen Sinne, vielmehr handelt es sich hier um ein Paar
zweier Abbildungen von ¥, auf W und von W, auf V. Wenn wir von Bimodi-
fikation sprechen, so meinen wir immer eine solche Modifikation mit den
beiden Abbildungen ¢, und g,.
Wenden wir nun (59) auf die beiden Modifikationen @,, @, an, und beriick-

sichtigen wir V, = W,, so folgt

H¥(V,) =~ H*(W) + H*(8,) — H*(4,) ,

H¥(W,) =~ H*(V) + H¥*(4,) — H*(S,) ,

H¥(V) = H*(W) + H¥*(S,) + H*(S;) — H*(4,) — H*(4,)

=~ H*(W) + H*(S) — H*(4) .

Es gilt somit der folgende Satz:

Satz 23,. Sind die Homologiemannigfaltigkeiten V™, W™ bimodifikations-
dquivalent durch die Abbildung ¢ = (¢;; @) mit den kritischen Mengen
Sm = (8,; 8;) und A7 = (4,;4,), n — 1 > Max (m, q), so gilt

H¥(V) ~ H*(W) + H*(8,) + H*(8,) — H*(4,) — H*(4,)
=~ H*(W) + H*(8) — H*(4) ,
iber J = K, wenn V und W orientierbar sind, tber J = Z, andernfalls.

(89,)

Lo

18 Commentarii Mathematici Helvetici
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Dabei ist also 8, = 87" die Singularititenmenge von ¢, iiber der Aus-
nahmemenge A4; = AJ*, und A4, = A% ist die Singularititenmenge von
@, liber der Ausnahmemenge 8, = S3*, und es ist

m; > ¢y, My < qa, m = Max (m;,m;), q= Max(qy, q).

Satz 23 ist in Satz 23, enthalten. Entsprechend dem Korollar zu Satz 23
gilt hier:

Korollar. Unter den Voraussetzungen des Satzes 23, ist
HY(V) >~ H*(W) fir k > Max (m, q) + 1. (59,)

Aus Satz 23, folgt: sind die beiden Homologiemannigfaltigkeiten V, W
homéomorph, so gelten fiir die kritischen Mengen S, A bei einer Bimodifika-
tion zwischen V und W die Isomorphismen

H*(S) ~ H*(A) fiir alle £,

die kritischen Mengen in ¥V und in W haben also dieselbe additive Homologie-
struktur iiber dem Koérper K bzw. iiber Z,. Sind zum Beispiel die homdomor-
phen Mannigfaltigkeiten V, W bimodjﬁka,tionséi,quivalent durch ¢ = (¢;; @),
so daB ¢, die Teilmenge S7"* von ¥V mit m,; > 1, b, (S;) = 1 auf einen Punkt
A} = p in W abbildet, so muB auch ¢, eine Smgulantatenmenge A?* mit
¢; > 1 besitzen, denn es ist

H*(8,) + H*(S,) =~ H*(p) + H*(4,),

so daB fiir die Bettischen Zahlen: b,(4,) > b,(S,), und daher ¢, > 1. Ist
auBerdem 8, = p’ ein Punkt in V, so erhalten wir b,(A4,) = b,(8,).

Bemerkung. Wir haben in Satz 23 bzw. 23, angenommen, dal =» — 1
>m>¢q bzw. n — 1 >m; >¢q, und n — 1 > g, > m,. Diese Bedingung
wurde nur in der Form benutzt, daB » — 1 > Min (m,q) bzw. n — 1
> Max (Min (m,, ¢,), Min (m,, ¢,)) gilt, und daraus folgt dann nach (58),
(59), daB die Ungleichungen n —1>m >q bzw. n —1>m; > qy,
n — 1 > qq > m, fiir die Homologiedimensionen richtig sind.

d) Anwendung von (55'), (59,) auf komplexe Modifikation mit Abbildung
bzw. komplexe Bimodifikation. Sind die komplexen Mannigfaltigkeiten V™,
W ™ komplex modifikationsiquivalent durch die Abbildung ¢, so daB ¢ kom-
plex analytisch ist mit der komplexen Singularititenmenge S iiber der
komplexen Ausnahmemenge A(? (8 und 4 bestehen aus endlich vielen kom-
plexen Mannigfaltigkeiten mit eventuellen Singularitéiten, es handelt sich um
allgemeine Modifikation), so muB ¢ <m < n — 1 oder fiir die reellen Dimen-
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sionen 2¢ < 2m < 2n — 2. Es folgt aus (35’), daB die (2% — 1)-te Bettische
Zahl b,,_, eine Invariante bei der Abbildung ¢ ist, fiir J den Koérper R ge-
nommen (oder den beliebigen Korper K):

b2n—1(V) = bzn—1(W) ’ (60)
und der Dualitdtssatz in ¥V und in W impliziert
b (V) = by (W). (60')

(60), (60") gelten wegen (59,) ebenso bei komplexer Bimodifikation: die erste
Bettische Zahl ist eine Invariante bei komplexer Bimodifikation. Siehe auch
Satz 33,. Zur Beziehung der komplexen Bimodifikation zu den birationalen
Transformationen in der algebraischen Geometrie vgl. § 19 a).

e) Quaternionale Modifikation. Ist die Modifikation (1) quaternional:
@: (ViR Simly s (Win, Alal)

das heiBt sind V, W quaternionale Mannigfaltigkeiten, und S, A quaternional
eingelagert in V bzw. W (evtl. mit Singularititen), so folgt aus (49’) wegen
n — 1 >m > q oder fiir die reellen Dimensionen wegen 4n — 4 > 4m > 4q
H*(V) >~ H (W) fir k > 4n — 2,
fir J = R. Handelt es sich um quaternionale Modifikation mit Abbildung
entsprechend der in d) betrachteten komplexen Modifikation mit Abbildung,
so wird wegen (59)
H%(V) ~ H¥(W) fir k > 4n — 3,

wir erhalten also analog zu (60') b,(V) = b, (W) fir k=1, 2,3. Dasselbe
gilt bei quaternionaler Bimodifikation: die Bettischen Zahlen b,, b,, b, sind
Invarianten bei quaternionaler Bimodifikation.

f) Anwendung auf die lokale Modifikation (Ersetzen eines Punktes). p sei
ein Punkt in W. Nach § 1 ¢) wird jede Modifikation (1) mit 4 = p durch

eine Abbildung ¢ induziert, so dall aus (59) bzw. (69) unter Berticksichtigung
der Bemerkung in ¢) folgt:

Satz 24. Liegt eine lokale Modifikation vor:
@: (V" 8™ - (W", p), (61)

V, W Homologiemannigfaltigkeiten, S Teilraum tn V, 8o ist S zusammenhdin-
gend, und es gilt '
HYV™) >~ H*(W") + H*(8™) fur k >1, (59,)

iber J = K, falls V und W orientierbar sind, iber J = Z, sonst.
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Satz 24 enthélt Lemma 1. Er kann angewandt werden auf die Hopfschen
o-Prozesse (reeller, komplexer und quaternionaler o-ProzeB). Daraus ist er-
sichtlich, daB eine Mannigfaltigkeit W und ihre durch einen o-Proze8 in
einem Punkt p modifizierte Mannigfaltigkeit ¥V nicht homéomorph sind. All-
gemeiner folgt aus (59,): wird die Mannigfaltigkeit W durch Ersetzen des
Punktes p durch eine kompakte Mannigfaltigkeit S zur Mannigfaltigkeit V
modifiziert, so ist ¥ nur dann homéomorph mit W, falls S mit dem Punkt p
zusammenfillt. Dieselbe Aussage bleibt richtig, wenn S zusammengesetzt ist
aus mehreren kompakten Mannigfaltigkeiten 8%¢, o =1,2,...,¢ (vgl. §11).

Bemerkung zur Torsion. Benutzt man Satz 23 in der Formulierung (59'), so
folgt fiir die Modifikation (61)

HE(V) | g*HE(W) =~ HE(S) fir k> 1, (59))
und dies gilt auch iiber J = Z, falls ¥V und W iiber Z orientierbar sind.

§ 156. Cohomologieeigenschaften im Falle, wo A und S
Homologiemannigfaltigkeiten sind

a) Wird die Modifikation (1) durch die Abbildung (3) induziert, und sind
V, W, § Homologiemannigfaltigkeiten, so konnen wir das folgende Lemma
aussprechen :

Lemma 6. Wird die Modifikation (1), in welcher V", W*, S™ Homologie-
mannigfaltigkeiten sind, durch die Abbildung (3) induziert, und st fir
r=n—m2>1

n=Ar, (62)
so gilt “ “
Hert3(8) o X Hv+4(4) — X H*"—*(A)

v=0 v=0 (63)
far 0 <s<r—1, ur-+4s<m/2,

die Cohomologiegruppen diber J = K genommen, wenn V, W, 8 orientierbar
sind, iber J = Z, andernfalls.

Beweis: Mit Hilfe des Pendelverfahrens, in welchem an die Stelle von (33)
die Isomorphie (59) tritt.

Beweisen wir zuniichst (63) fir ¢ = 0: es gilt (69°): H°(S) =~ H°(4);
(69), angewandt fiir ¥ = n — r, liefert
H™"(V) == H*"(W) + H*"(8) — H*"(4) = H*"(W) + H°(S) — H""(4)

o B (W) + Ho(4) — H™"(4) ;
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nach dem Poincaréschen Dualititssatz fiir V und fiir W ist

H' (V) =~H"(W)+ H(4)— H""(4) ;
(59), angewandt fiir k£ = r, liefert

H"(V) =~H"(W)+ H"(S)— H"(4),
so daB die beiden letzten Isomorphien zur Folge haben:

H™(8) =~H°(4)+ H"(4)— H*"(4) ;
nach dem Poincaréschen Dualitdtssatz fiir S ist

H"*(8) = H"(8) =~ H*(4) + H"(4) — H""(4);
(59), angewandt fiir k = n — 2r, liefert

Hn—-Zr(V) o~ Hn-—-zr(W) + Hn—-m'(S) - Hn-zr(A)
o H# (W) + H'(4) + H'(4) — H™(4) — H¥(4);

nach dem Poincaréschen Dualitatssatz fiir V und fiir W wird bei Anwendung
von (b9) fir k£ = 2r

H¥*(V) =~ H*(W) + H°(4) + H"(A) — H*"(4) — H**(A)
>~ H¥*(W) + H*(S) — H>(4),
so daB
H¥(S) o HO(A) + Hr(A) + H*(4) — H~(4) — H™¥(4);
usw.
Bei Beriicksichtigung von H"(4) = 0 erhalten wir in dieser Weise fort-
fahrend (63) fiir s = 0.
Ist 1<s<r—1, so liefert das obige Verfahren, beginnend mit k=mn —s,
die Isomorphien (63) fiir diesen Fall.
Wegen (62) schlieBt sich das Pendelverfahren liickenlos in der Mitte, und
damit ist das Lemma bewiesen.

b) Unter den Voraussetzungen von Lemma 6 wird die additive Cohomologie-
struktur von 8 iiber K oder iiber Z, mittels (63) durch diejenige von A be-
stimmt. Ist insbesondere A eine Homologiemannigfaltigkeit der Dimension
q = m, so impliziert (63) wegen des Dualitéitssatzes in 4

H¥*(S) o H*(A) und H*(V) ~ H¥(W) fir alle %,

und es ist sofort ersichtlich, da dies auch dann gilt, wenn (62) nicht erfiillt
ist. Ausfiihrlich:
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Satz 26. Wird die Modifikation
d: (V™ 8™) - (Wn, A™),

V, W, 8, A Homologiemannigfaltigkeiten, n — 1 > m, durch eine Abbildung
¢: V> W induziert, so ist

H%(8m; J) o~ Hk(A™; J) fur allek,
H¥(V™; J) >~ HE(W*; J) fir alle k
J =K, wenn V, W, 8, A orientierbar, J = Z, sonst.

Folgerung : sind die beiden kompakten Mannigfaltigkeiten V", W" gegeben,
und sind V*» — 8™ und W" — 4™ homéomorph, § und 4 kompakte Man-
nigfaltigkeiten mit verschiedenen additiven Cohomologiestrukturen iiber J,
J wie in Satz 25 gewéhlt, m <n — 1, so 148t sich der Homoomorphismus
¢’ zwischen ¥V — 8§ und W — A nicht fortsetzen zu einer stetigen Abbildung
von V auf W oder von W auf V. Dasselbe gilt, wenn V und W verschiedene
additive Cohomologiestrukturen iiber J besitzen.

Ferner ist unmittelbar einzusehen : unter den Voraussetzungen des Satzes 25
induziert die Abbildung ¢ eine Abbildung ¢: 8™ - 4™ vom Abbildungsgrad
g(@) = + 1, J wie oben gewihlt.

Ist @ eine differenzierbare Modifikation, so 1laBt sich Satz 25 mit Hilfe von
Satz 11 verschirfen: ¢ mufl dann unter den Voraussetzungen des Satzes 25 ein
Homoomorphismus sein.

c) Mit P} bezeichnen wir einen Raum der Dimension #n = Ar mit dem
Poincaréschen Polynom
II(Pp; &) =1+ & + &7 4 ... 4 &%,
0 fir &k 5 ur
das heillt es soll b, (Pr; J) = , w=0,1,...,4, ¢ (64)
1 fir k= ur

J = K oder J = Z,.

Unter H(M"™; J) verstehen wir die direkte Summe aller Cohomologiegrup-
pen von M iiber J : "
H(M"; J) = TH(M*"; J) .

k=0

Ist in Lemma 6 neben (62) noch ¢ = (4 — «)r erfiillt, das heilt mit

f=a—1
m—q=pr=0, (65)
so gilt:
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Lemma 6'. Wird die Modifikation (1), in welcher V*, W*, 8™, A¢ Homologie-
mannigfaltigkeiten sind, durch die Abbildung (3) induztert, und ist

n=Ar, (62)

r=mn—m2>1, ferner ¢ =(A—u«)r, sodaBmit § = — 1
m—q=pr=0, (65)
o g H(Sm; J) = H(49 x PP%;J), (63)

J =K, wenn V, W, 8, A orientierbar sind, J = Z, sonst.

Denn mit (62), (65), (63), (64) bekommen wir bei Beriicksichtigung des
Dualitdtssatzes in 4 fir H(S;J) die additive Cohomologiestruktur von
A2 x PP iiber J, J = K oder J = Z,, nach dem Satz von KUNNETH
(vgl. [3], p. 308).

d) Nun wollen wir die Bedingung (62) fallen lassen :
Satz 26. Die Modifikation
@: (V*,8m) — (W, 49) (1)

werde durch die Abbildung o V> W (3)
erzeugt. V, W, 8, A seien Homologiemannigfaltigheiten, und es sei fiir

r=n—mz21 n=Air+t, 0<t<r-—1.

Ist dann m—gq=pr>0, (65)
s0 gult H(S™; J) o H(A2 X P13 J) . (63')
Ist hingegen m — q¢ > 0 und
m—q*0 modr, (66)

80 muf A a

Z'HW’—-E(AQ; J) ~ szr+t+6(Aq; J)

v=0 v=0 (67)

foralle emit 0 <e<o—12, ao=(@r—1)2.

Es wird auch jetzt H(S™;J) mit Hilfe von H(A%; J) durch (63) bestimmi :

M
Hurss (§m; J) o 5 HH(A9; J) — 5 H-7—(49; J)

v=0 v=0

(63)

fair 0 <s<r—1, pur+48<m/2.
J=K, wenn V, W, S, A orientierbar sind, J = Z, sonst.
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Beweis: Setzen wir u* = [4/2], so wird

uXr — mf2, wenn u*r — mf2 >0
o= (r—1)/2= . (68)

(u* + 1)r — n/2, wenn u*r — m/2 <0
Das Pendelverfahren liefert die Isomorphismen (63) fiir alle k& = ur + s
< p*r, und wegen des Dualitétssatzes fiir S werden dadurch auch die Co-

homologiegruppen H*(8) fiir k¥ > m — p*r bestimmt.
Ist nun A gerade, das heit u*r — m/2 > 0, so ergibt der Dualititssatz in S
H*"=8(8) o HW*-r+i48(8) . 0<e<o—1/2,

o durch (68) gegeben. Zusammen mit (63) bekommen wir dann (67).
Ist A ungerade oder u*r — m/2 < 0, so ergibt der Dualitdtssatz in V und
in W zusammen mit (59)

Hm—y*r+£(S) Hm-—p*r—i—l-:(A) Hm-—(y*—l)r—-t E(S) _ Hm—(p*—l)r—t—s(A) ,

oder nach dem Dualitéitssatz in S
Hp*r-s(s) Hm—p*r+£(A) H(u*—l)r-l— t+8(S) Hm-—(p*—l)r—t—e(A)

fir 0 <e<o—1/2, o durch (68) gegeben. Daraus folgt (67) wegen (63).

Ist (67) erfiillt, so st68t das Pendelverfahren auf keinen Widerspruch, und
es gilt (63) fiir alle ¥ < m/2. Dadurch wird H(S) durch H(A) bestimmt,
sowohl im Falle (65) als auch im Falle (66). Gilt (65), so wird

¢=@A—F—1r+t¢,
und daher ist (67) eine direkte Folge des Dualitéitssatzes fiir 4, so daBl H(S)
durch H (A4) mittels (63) bestimmt wird. Es gilt dann (63’) wie bei Lemma 6'.

Bemerkung zur Bedingung (66). Im Falle einer differenzierbaren Modifikation
tritt (66) nie ein, sondern es gilt (65) und damit (63'); fiir r > 2, m — ¢ >0 ist
weiter r = 2¢’. Denn eine differenzierbare Modifikation mit Abbildung ist nach
Satz 11 eine Modifikation durch Verfeinerung der Sphirenfaserung, und (65)
nebst r=2¢" fiir r > 2, m — ¢ >0 folgen aus § 10 e).

e) Torsion. Sind die Homologiemannigfaltigkeiten ¥V und W iiber Z orien-
tierbar, so kann versucht werden, ein Verfahren iiber J = Z anzuwenden,
das dem in diesem Paragraphen besprochenen Pendelverfahren analog ist.
Man bekommt

H*(8) | g*H*(4) = H¥(V) | p* H¥(W) =~ H,_,(V) | Dyo*D3'H,_,(W)
= {H,_(V) | ¢} = {H, ,(S) | ‘P*} ’

wo der erste Isomorphismus (59”) darstellt, der zweite durch den Poincaré-
schen Dualititssatz in ¥V und in W (nach (44)) erzeugt wird, der dritte wegen
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o« Dy 9* Dyt = g(@)I (9(p) = Abbildungsgrad von ¢, I = Identitit) und
g(p) = +1 gilt, und der vierte nach (59,) richtig ist. Wir erhalten also

H¥(8) | g*H*(A) = {H,+(8) | x} >
und ist 8™ eine iiber Z orientierbare Homologiemannigfaltigkeit, m = n — r,
so fol — -
&t B*(S) | 3+ B*(4) = {H*(S) | 7xDs} - (63%)

Die Gruppe H*(S) ist also eine Gruppenerweiterung von ¢@*H*(A) (das
heift von H*(4)) mit der Faktorgruppe {H¥*"(S)| @«Dg}. (63*) liefert
jedoch fiir J = Z kein Verfahren zur schrittweisen Bestimmung von H (S)
bei bekanntem H (4), wie wir dies fir J = K bzw. J = Z, durchfiihren
konnten. Denn es spielt der Homomorphismus ¢, eine Rolle, und auBerdem
sind nach (63*) Gruppenerweiterungen vorzunehmen, welche fiir J = Z nicht
eindeutig bestimmt sein miissen. Man erkennt immerhin : besitzt 4 keine Tor-
sion, so trifft dasselbe auf S zu, falls ¥V, W und § iiber Z orientierbar sind.

f) Zur Orientierbarkeit. Es kann dieselbe Uberlegung gemacht werden wie
bei (37,) bzw. bei (37) im Beweis zu Satz 12. Ist ndmlich m — ¢ > 2r > 2,
und ist 7: 8 - V die Inklusionsabbildung, so existiert nach (55') bzw. (59’)
eine Cohomologieklasse z™ ¢ H™(V) mit 7*a2™ = 2™, wo z™ die m-dimen-
sionale Fundamentalklasse von S ist, und ebenso gilt fiir die durch das Pendel-
verfahren mit Hilfe von D;,, Dg aus 2™ erhaltenen Klassen af, x%r, a"-2r
i*x = £ 0 (x ist eine der Klassen z7, 2%, 2"2r, x ist die entsprechende
Klasse in S). Wir bekommen dann die Gleichung (37,):

xr xf xn—2r — xﬂ ,

wo z" die n-dimensionale Fundamentalklasse von V bezeichnet. Es folgt: ist
r ungerade und m — ¢ > 2r > 2, so ist mindestens eine der Homologie-
mannigfaltigkeiten V, W, § nicht orientierbar.

§ 16. Beispiele, Anwendungen, zusiitzliche Bemerkungen

a) Beispiel. Wir geben ein Beispiel zweier Mannigfaltigkeiten ¥ und W, die
nicht modifikationsiquivalent durch Abbildung sind, falls die kritischen Men-
gen S und A4 als Homologiemannigfaltigkeiten vorausgesetzt werden. X'¢ sei die
4-Sphire und X2 x X2 das topologische Produkt zweier 2-Sphéren. Wir be-
haupten :

1. Es gibt keine stetige Abbildung von 24 auf X2 X X2, welche eine Modi-
fikation
D: (X4, 8) > (22 x X2, A)
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erzeugt, 8§ und 4 Homologiemannigfaltigkeiten mit dim(S) <3 oder
dim (4) < 3;

2. es gibt keine stetige Abbildung von X2 x X2 auf X4, welche eine Modi-
fikation
D: (F2xX8)—> (2,4
erzeugt, S’ und A’ Homologiemannigfaltigkeiten mit dim(8’') <3 oder
dim(4') < 3.

Beweis zu 1.: Fiir die Modifikation @ miiBte (58) gelten, das heillt
0 —» Hk (X2 x X2) — HkE(XY),
und dies ist falsch fiir & = 2.
Beweis zu 2.: Fiir die Modifikation @' impliziert (59) (J = Z,)

b1(4) = b,(8"), by(A") + 2 =10,(8"), b3(d’) = b3(5),
ba(A’) = b«:(S') =0,

und daraus folgt: es ist b,(S')=0 fir £ >3 unmoglich wegen b,(S8') >2>1,
und ist die Homologiedimension von 8’ gleich 3, so kommt man zu einem
Widerspruch wegen des Dualitétssatzes fiir 4’ und fir §'.

Es sind dieselben Behauptungen 1. und 2. richtig fiir die beiden Homologie-
mannigfaltigkeiten 2" und X" x 2", wenn X* die £Z-Homologiesphire iiber
Z, bedeutet, k > 1.

b) Weitere Beispiele von Homologiemannigfaltigkeiten, die nicht modifika-
tionsidquivalent durch Abbildung sind, liefern die Paare V", W, so daBl weder
V auf W noch W auf ¥V mit dem Abbildungsgrad + 1 abgebildet werden kann.
Hier miissen S und A Teilpolyeder sein mit dim(S) <z — 1 oder
dim(4) <n — 1. Nach (58) geniigt es, zwei solche Homologiemannigfaltig-
keiten V", W™ anzugeben, fiir welche

b.(V) > b,(W) fiir ein gewisses 7,

(69)
b,(V) < b,(W) fiir ein gewisses s,

J =K oder J = Z;. Wir sehen also: ist (69) erfiillt fiir zwei Homologie-
mannigfaltigkeiten ¥ und W, so sind sie nicht modifikationsiquivalent durch
Abbildung.

Beispiele. Es sei V4 = (21)4 =21 x 21 X 21 x 21, 21 ist die Kreislinie,
und W¢= 2% = P} sei die mittels des reellen o-Prozesses fiinfmal lokal
modifizierte 4-Sphiire 2* (bzw. der viermal lokal modifizierte reell projektive
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Raum P*). Wir bekommen dann die Poincaréschen Polynome

II(V4; &) =1 + 4& 1+ 6E2 - 4E8 L g6,
IT(W4; &) = 1 + 5& + B&2 + BE® + &4,

iiber J = Z,, so daBB b, (V%) < b, (W), by(V4) > by(W4).

Dieses Beispiel 168t sich auch komplex durchfiihren: es sei V8 = (22)4
= 2% x X% x X? x X2 X%ist die 2-Sphire, und W8 = P{¥ sei der mit Hilfe
des komplexen o-Prozesses viermal lokal modifizierte komplex projektive
Raum P®., Dann erhalten wir die soeben angegebenen Poincaréschen Poly-
nome iiber J = K, wenn wir an Stelle der reellen Dimensionen die komplexen
nehmen.

Es gilt also: (214, X3 = P; bzw. (22)%, P sind nicht modifikations-
dquivalent durch Abbildung, und dasselbe ist richtig fiir die Paare (Z*)", Pj
bzw. (22" P, n > 4.

Weitere Beispiele liefern die Paare von Sphirenprodukten: 27 x X* und
2% x X* sind nicht modifikationsiquivalent durch Abbildung fiir r 4 s
=u-+v>4; r,8, u, v>1; r#*wu, rs*v. Dasselbe gilt fiir Xr x 2*
und P™ fiir » 4+ 8 = 2n, r =8 = 1 mod 2.

Bemerkung zum Begriftf der Modifikationsiquivalenz durch Abbildung. Wir
sagten in § 14 a): ¥V, W sind modifikationsiquivalent durch die Abbildung
@: V > W mit der Singularititenmenge § iiber der Ausnahmemenge A,
wenn ¢ die Modifikation @:(V,S) — (W, A) induziert. Nun wollen wir
noch hervorheben, daB dabei m = dim(S) <7 — 1= dim(¥V) —1 oder
q = dim(4) <n — 1 vorausgesetzt wird (vgl. die Bemerkung am Ende von
§ 14 ¢)). Lassen wir diese Bedingung weg, so sind zwei beliebige kompakte
Mannigfaltigkeiten V", W* modifikationsdquivalent durch Abbildung, da es
immer eine stetige Abbildung ¢ von V auf W (und eine solche von W auf V)
gibt, so daB V, W modifikationsiquivalent sind durch ¢: V — W mit
S=V und A =W (bzw. W, V modifikationsdquivalent durch ¢: W - ¥V
mit § = W und A = V). Wenn wir also sagen, dal die beiden Homologie-
mannigfaltigkeiten ¥ und W modifikationsiquivalent durch Abbildung sind,
8o bedeutet dies, daB eine stetige Abbildung von V auf W oder von W auf V
existiert, die eine allgemeine Modifikation erzeugt, in welcher entweder § oder
A eine Dimension < n — 1 hat. Es sollen die entsprechenden Dimensions-
bedingungen erfiillt sein, wenn wir von Bimodifikationsiquivalenz zwischen
V und W sprechen.

c) Jede kompakte Mannigfaltigkeit M™ ist modifikationséiquivalent durch
Abbildung mit der n-Sphire 2*. 4 = p ist ein Punkt in X", und 8™ ist die-
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jenige Menge in M, welche iibrigbleibt bei der Ausschépfung von M mittels
einer maximal ausgedehnten Zelle in M . Es handelt sich um allgemeine Modi-
fikation (S ist im allgemeinen keine Mannigfaltigkeit), und wegen (59,) in
Satz 24 wird m = dim(S) > Max(k), so daB H*(M) # 0 fir t <n — 1.
Auflerdem ist m < n — 1. Daraus folgt: es gibt zu irgend zwei kompakten
Mannigfaltigkeiten V", W™ eine allgemeine Modifikation

D: (Vr, 8m) — (W, 49)
mit n — 1 >m > Max(k), sodaBl H*(V) £0, k. <n —1,
n—12>q >Max(k), sodaB H¥*(W) 40, k<n—1.

Diese allgemeine Modifikation ist die Zusammensetzung einer lokalen Modi-
fikation und der Inversen einer lokalen Modifikation. Wir haben die beiden
Abbildungen ¢,, ¢, in folgender Anordnung:

yr _’L; Jn :’.‘_ Wn ,
zu @, gehort die Modifikation &,: (V*", 8™) — (2", p), zu @, die Modifikation
D,: (Wn, 49) - (2", p), und wenn wir die zu D, inverse Modifikation
Y. (X" p) > (W", A9 wiein § 14a) mit D, bezeichnen, so bekommen wir
fir die obige allgemeine Modifikation @ = &;'®,. V, W sind durch @ modi-
fikationstiquivalent. Wiahlen wir bei den Modifikationen @, und @, in 2" zwei
verschiedene Punkte p, und p, als Ausnahmemengen, so ergibt sich sofort, daf3
V, W bimodifikationsiquivalent sind (durch eine allgemeine Bimodifikation).

Wenn wir uns auf solche allgemeine Modifikationen (1) beschrinken, in
denen § und 4 Homologiemannigfaltigkeiten sind, n — 1 > Max(m, ¢q), so
gibt es Paare von kompakten Mannigfaltigkeiten V, W, die nicht miteinander
modifikationsiquivalent sind, zu denen es keine Modifikation (1) gibt mit
n — 1 > Max(m, q).

Beispiel. Essei V = 2 x 2! die Torusfliche, und W = 22 die 2-Sphire.
Liegt eine Modifikation
D: (2t x 2, 8) > (2% 4)
oder ihre inverse vor, so folgt aus (29)
0 - HY (V) — H'(S),

so da b,(S) > 2 wird. Wegen dim S <1 kann also S keine Homologie-
mannigfaltigkeit sein (J =Z,; oder J = K). Daraus entnehmen wir:
21 x 2! und 2%sind nicht modifikationsiquivalent, wenn § und A Homologie-
mannigfaltigkeiten sein sollen und m, ¢ <1 (es geniigen hier die Bedingungen
fiir S). Dasselbe gilt fiir jedes Paar Fj, X2, g > 1, wenn F; die kompakte
orientierbare Fliche vom Geschlecht g bedeutet.
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d) Satz 26 besagt: sind in der Modifikation (1) die Raume V, W, 8, 4
Homologiemannigfaltigkeiten, und ist eine Isomorphie in (67) falsch, so kann
die betreffende Modifikation (1) nicht durch eine Abbildung (3) induziert
werden (fiir jeden zu (1) gehorigen Hom$omorphismus (2)).

l.r=2. Fir r=2, t=1, m — ¢ = 1 mod 2, bedeutet (67) x(4) =0,
und fir r =2, t=0, m — ¢ =1 mod 2, ist ¢ ungerade, also y(4) = 0.
Mit andern Worten : ist in der Modifikation

@: (Vr,8"2) > (W, 49, n—q>2,

n — q ungerade, sind V, W, §, A Homologiemannigfaltigkeiten, und ist die
Euler-Poincarésche Charakteristik von A verschieden von null, so kann diese
Modifikation nicht durch eine Abbildung erzeugt werden.

Fiir topologische Modifikationen durch Faserung des Umgebungsrandes gilt
allgemein :

Satz 27. Die Modifikation
D: (V" 8™) - (W*, 49 (1)

werde wie in Satz 21 durch die Sphirenbindel N(A) und N(S) gegeben. Ist
dann n — m gerade und m — q ungerade, so wird y(A) gleich null; ist n — q
gerade und n — m ungerade, so wird x(S) gleich null.

Nach Satz 1 gilt Satz 27 insbesondere fiir die differenzierbare Modifikation.

Beweis: Die Bezeichnungen seien dieselben wie in § 12 b). Zur Einbettung
S c V gehort die Sphirenfaserung (16), und zur Einbettung A c W die
Faserung (7). Ist n — m gerade, so folgt aus (18), angewandt auf das Biindel
(16), x(N) = 0, und ist weiter n — ¢ ungerade, so liefert (18) fiir die Fase-
rung (7) unter Beriicksichtigung des letzten Resultates y(4) = 0. Analoge
Uberlegung im Falle n» — ¢ gerade, » — m ungerade.

2. r = 4. Zur Illustration des Satzes 26 geben wir die Bedingungen (67) an
fiir den Fall r = 4. b, sei die k-te Bettische Zahl von 4 (J = Z, oder J = K).
Wir erhalten :

t=0:0=2; (67) liefert fiir ¢ =1

by 3 = Zby,,, fir n =m =0 mod 4; (a)
v v

t=1:0=3; (67) liefert e=0 und e¢=1

z b4v =X b4v+1
¢ ¥ fir n=m=1 mod4; (b)
») b4v—1 =2 b4v+2
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= 2: 0 =1; (67) liefert fiir ¢ =0

1 4 1 4

t=3: 0 =1%,; (67) liefert fiilr ¢ = 0
2b,, = 2by,, fir n=m =3 mod 4. (d)
14 1 4

Die obigen Summen sind iiber alle entsprechenden von null verschiedenen
Bettischen Zahlen erstreckt. Ist eine der Bedingungen (a), (b), (c), (d) nicht
erfiillt, so kann die betreffende Modifikation (1) nicht durch eine Abbildung

erzeugt werden.

Beispiel. M sei eine kompakte Mannigfaltigkeit der Dimension n=m,-+m,-}4
mit m; = 4dm; + 2, my=4m,, m,>1, m,>1. X* ist die k-Sphire.
Wir betten in M den durch N"1=23% x XY™ x X™ berandeten drei-
fachen Volltorus ein, bohren das Innere davon aus und identifizieren auf
dem Rand N auf zwei Arten: das eine Mal, indem in N die Faserung in 3-
Sphiren benutzt wird, das andere Mal mit Hilfe der Faserung in m,-Sphéiren.
Es entstehen durch die beiden Abschliisse zwei kompakte Mannigfaltigkeiten
V und W, und wir erhalten die Modifikation

@: (Vr, 2™ x Z™) > (Wr, 23 x Z™),

eine Modifikation durch Faserung des Umgebungsrandes N. Wir befinden uns
im Falle r = 4, t = 2, und (c) impliziert, dafl diese Modifikation nicht durch
eine Abbildung induziert werden kann, denn fiir 4 = X3 x 2™, m,= 4m,,
wird

by (4) = 2 3£ 2by, 5(4) = 0.

14 v

Im differenzierbaren Fall kann auch die Bemerkung zur Bedingung (66) in
§ 15 d) herangezogen werden.

e) (1) sei eine Modifikation mit Abbildung, wie sie in § 7 a) beschrieben
wurde, es handle sich also um eine Modifikation durch gleichm&Bige Verfeine-
rung der Sphirenfaserung (7), so dal die Faserungen (24) und (25) vorhanden
sind. Nach § 10 e) ist dann (65) erfiillt, und daher ist die additive Cohomologie-
struktur iiber J des Raumes § in der Faserung (25) geméfB (63’) diejenige des
topologischen Produktes der Basis 42 mit der Faser P™ ¢ = P;~?% Im all-
gemeinen bekommen wir fiir die multiplikative Cohomologiestruktur von 8
nicht diejenige des topologischen Produktes 42 x P;~? wie wir auch die
multiplikative Struktur fiir P*~? wihlen. Dies wird durch die folgenden Bei-
spiele gezeigt.
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Beispiele. Es sei 4 = P4t der (4t 4 1)-dimensionale reell projektive
Raum, und es sei N"~* der Raum des Tangentenbiindels von P4+l 5 — 8¢ 4 2,
so dafl wir das Tangentenbiindel

T(Poi+1) = {N8t+1 Fat pat1)

haben. T (P4*1!) kann gemiB Satz 6 als Normalenbiindel von P4%*+! in einer
geschlossenen Mannigfaltigkeit W" aufgefat werden. Nun modifizieren wir
W mittels der Antipodenabbildung in N und bekommen nach Satz 8 die

Modifikation G: (V" NB-1) > (W, Pat+1) |
N, ist gefasert in 4¢-dimensionale reell projektive Riume (Spezialfall von (25)) :
SI; (P4t+1) — {N(S)t*i-l, P4t, P4t+1} .

N, ist der Raum der Linienelemente von P4*+!, 5o daB eine Schnittfliche in
N, ein Linienelementfeld auf P4*+! ist. Wegen y(P4¥*1) = 0 existieren
Schnittflichen in Ny, und je zwei Schnittflichen schneiden sich: in N, ist der
Schnitt der Basis P4+, realisiert als Schnittfliche in N,, mit sich selbst ver-
schieden von null, das hei3t die Homologieklasse dieses Selbstschnittzyklus
in N, ist verschieden von null. Dies wird mit Hilfe der eindimensionalen Stie-
felschen charakteristischen Homologieklasse von P4%+! eingesehen. Daher ist
fir J = Z, die multiplikative Cohomologiestruktur von N, nicht diejenige
von P41 x P4% im Gegensatz zur additiven Struktur.

Das obige Beispiel 148t sich auch komplex durchfiihren. Hier nehmen wir
J = R. Man kommt dann zur Faserung

§B(P(2t+l)) — {S(4t+1), P(zt), P(2t+1)} ,

welche aus dem Tangentenbiindel I (P (2%+1) mittels Verfeinerung durch
Kreislinien hergestellt wird. In S“*+1) gibt es Schnittflichen, das heiBit es
gibt Felder komplexer Linienelemente auf P 2%+ und je zwei Schnittflichen
schneiden sich in einem Zyklus, der in 8¢+ nicht homolog null ist (vgl. [27]).

Ein weiteres Beispiel liefert die Faserung des komplex ungerad dimensio-
nalen komplex projektiven Raumes P (27+1) in komplex projektive Geraden
P® (das heilt in 2-Sphiren) mit dem quaternional projektiven Raum P
als Basis. Diese Faserung erhalten wir aus den beiden folgenden Faserungen
der Sphire X4n+3;

N(A) = NPW)  =G((PW) = {Zers, 53, Py,
N(S) = NP ) = G(PErt) = (Tanta, 1, paniny,

(quaternionale und komplexe Hopfsche Faserungen, Spezialfille von (24)),
welche die Biindel (7) und (16) darstellen: S(P(2"+1) ist eine gleichmiBige
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Verfeinerung von & (P"), und diese beiden Faserungen geben Anla8 zu einer
Modifikation mit Abbildung (vgl. § 7 a), § 12 b))

@ (Varts, P@entl)) . (Wantd Plnl)

Dazu gehort die Faserung
P(PM) = {P@r+)), P P}

welche die Faserung (25) darstellt. Es gilt wohl H (P (2r+1)) ~ H (P x P W),
die multiplikative Struktur von P27+l jgt jedoch nicht diejenige des Pro-
duktes PI® x PO, fiir J einen Korper K genommen.

Ganz analog kann der ungerad dimensionale reell projektive Raum P2+
in Kreislinien X! = P! gefasert werden, und fir J = Z, gilt H(P?2"+)
o~ H(P™ x P1), jedoch gilt keine solche multiplikative Isomorphie.

Es kann ferner der reell projektive Raum P4"+3 in 3-dimensionale reell pro-
jektive Réume P32 gefasert werden, es gehort dazu eine Modifikation
D (Varts Pants) » (W4art4, Plnl) mit Abbildung, und es gilt die additive
(aber nicht multiplikative) Isomorphie H (P4"+3; Z,) o~ H(P™ x P3; Z,).

f) Gehen wir von zwei simultanen Sphéirenfaserungen (7), (16) von N aus,
so gehort dazu eine Modifikation (1), wie wir dies in § 12 b) festgestellt haben.
Ist N kompakt differenzierbar und 8 = n — ¢ > 2, so liefert die Antipoden-
abbildung « (vgl. § 6 a)) eine Faserung

RS- = {N*1, 20, 81}, (16,)

und als zugehérige Modifikation bekommen wir eine Modifikation (19,) (Satz 8;
es ist S"1 = N3~ '), welche durch eine Abbildung erzeugt wird. Es handelt
gich um eine Modifikation durch gleichmiBige Verfeinerung der Sphéren-
faserung, und die Faserung (25) lautet hier

P(49) = {81, Pr—2-1, A%} (25,)

(Beispiel 1 in § 7 a)). Faserungen durch projektive Riaume heiflen projektive
Biindel (reell, komplex oder quaternional projektive Biindel). (25;) ist ein
reell projektives Biindel. Da im Falle der Modifikation (19;) die Isomorphie
(63') fiir »r =1, J = Z,, S = N3~ gilt, folgt: es kann nicht jedes reell pro-
jektive Biindel mit Hilfe eines Sphirenbiindels (7) und zugehériger Antipoden-
abbildung erzeugt werden (es brauchen keine Differenzierbarkeitsvoraussetzun-
gen gemacht zu werden).

Beispiel. Die Hopfsche Sphérenfaserung
(5’(13(4)) . {Eﬁc-l-l’ 21, P(q)} , q > 1,
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kann aufgefaft werden als Faserung in reell projektive Geraden P!:
S/ (PW@) = {X2e+1 Pl P@}, ‘

Fiir S(P @) ist (63') offensichtlich nicht erfiillt, &' (P(?) besitzt also kein
zugehoriges Sphéarenbiindel, so daf3 die Antipodenabbildung in diesem Biindel
die Faserung &' (P (?) induziert. Insbesondere ist &' (P®) iniquivalent dem
Biindel der tangentiellen Linienelemente an die 2-Sphire 2'2. Da8l die Fase-
rung &' (P(?) nicht von einer Kreislinienfaserung mit zugehériger Antipoden-
abbildung stammen kann, folgt auch sofort daraus, dal 222+ einfach zusam-
menhiingend ist, also nicht Basis eines zweiblittrigen Uberlagerungsraumes
sein kann.

Bemerkung. Da nach-[6], IX-5, Théoréme 5 und Théoréme 6, fiir jedes
kompakte projektive Biindel

§B(Aq) = {Sms P:n—-q, Aq} ’

P7~? komplex oder quaternional projektiver Raum (r = 2 oder r = 4), die
Isomorphie (63') gilt, wenn fiir J ein Korper der Charakteristik 0 gewihlt
wird, sind Beispiele analog dem obigen fiir komplex oder quaternional projek-
tive Biindel hochstens iiber einem Kérper mit von null verschiedener Charak-
teristik moglich.

g) Regulire projektive Biindel. Es liege ein reell projektives Biindel (25,)
vor, in welchem als Strukturgruppe die orthogonale Gruppe wirkt, das heilt
nach Wahl eines Koordinatensystems in P"—2-1, bestehend aus n — g reellen
homogenen Koordinaten ¢,,¢,,...,%,_,;, die Gruppe der orthogonalen
Transformationen in den Variablen ¢,,...,¢, ,_;. Ein solches Biindel heifit
reguliires reell projektives Biindel, und entsprechend werden die reguliren
komplex und quaternional projektiven Biindel definiert. Zu einem reguliiren
reell projektiven Biindel gehért dann in natiirlicher Weise ein Biindel mit
dem Euklidischen Raum E"-7 als Faser, und daraus ergibt sich ein zugehdriges
Sphirenbiindel mit Antipodenabbildung. Es folgt also : ein reguléres reell pro-
jektives Biindel (25,) kann immer dadurch erzeugt werden, da in einem
Sphirenbiindel (7) die Antipodenpunkte in jeder Faser identifiziert werden
(Identifikation vermége der Faserung (16,)). Dazu gehort dann eine Modi-
fikation (19,) mit Abbildung, und es folgt: fiir ein regulires reell projektives
Biindel (25,) gilt (63') fir r =1, J = Z,, 8 = N;~'. Damit ergibt sich, daB
zum Beispiel die oben betrachtete Faserung &' (P (?) kein reguliires reell pro-
jektives Biindel liefert. — Die analogen Konstruktionen im komplexen und im
quaternionalen Fall ergeben: jedes regulire komplex bzw. quaternional pro-
jektive Biindel (25,) bzw. (25,) 1aBt sich durch gleichmiBige Verfeinerung

19 Commentarii Mathematici Helvetici
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einer Sphiérenfaserung (7) mittels Kreislinien bzw. 3-Sphiren erzeugen. (7)
ist dann eine Faserung in (2k + 1)- bzw. in (4% + 3)-Sphiren. Weiter erhal-
ten wir dazu eine quasikomplexe bzw. eine quasiquaternionale Modifikation
(19;) bzw. (19,) mit Abbildung, und es gilt (63') fir r =2 bzw. r =4,
J = K oder J = Z,, je nachdem die Basis 4 in (25,) bzw. (25,) orientierbar
ist oder nicht. Zusammengefaf3t :

-~ Satz 28. S"* ser etne kompakte M anmgfaltzglcezt Zu jedem reguliren pro-
. P(4) = (S, Pre, Ad}, (25,)

r=1, 2, 4 im reellen bzw. komplexen bzw. quaternionalen Fall, n — q — r
= fr > 1, gehort ein Sphirenbindel

N(49) = {N*-1, Zn-e1, 49} (7)
und eine glesichmdifige Verfeinerung von (7):
‘R( Sn—r) — {Nn—l’ ):r—l, Sn—r} , (16r)

80 daf aus der Faserung (7) mittels Identifikation jeder Faser XT! in der
Faserung (16,) zu einem Punkt das projektive Biindel (25,) entsteht. Die Fase-
rungen (7) und (16,) induzieren eine Modifikation

D: (V™ 8*) - (W", A9 (19,)
mat Abbildung, und es gilt
H(8";J) = H (A2 x P}=0; J) (63')

itber J = K fiir r = 2, 4 bet orientierbarem A, tiber J = Z, sonst.

Bemerkung. An Stelle der Regularitit des Biindels (25,) kann in Satz 28
direkt gefordert werden, da (25,) in der oben beschriebenen Weise von einem
Sphiirenbiindel (7) stammt. In (63’) ist dann J = K, wenn r = 2,4 und N,
S, A orientierbar sind, J = Z, sonst.

Zur Behauptung (63') in Satz 28 vergleiche man [6], IX—-5 Th. 5 und 6,
ferner [10], Th. 2.

h) Anwendung von (69), (63') aut den o™ ?-ProzeB. Liegt der komplexe
o™%-ProzeB (19(,) vor, so ergeben (59), (63') sofort

H(V™) ~H(W™) + H(A® x Pn—a-1) _ H(4@)

iiber J = K. Dieses Resultat ist in [11] enthalten. Entsprechende Isomor-
phien gelten fiir den reellen und fiir den quaternionalen o™'?-Prozel (19,) bzw.
(19yy;), sowie fiir den quasikomplexen und fiir den quasiquaternionalen o™'?-
ProzeB (19;) bzw. (19,), in gewissen Fillen nur fir J = Z,.
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i) Modiflkation mit homologietreuen Einlagerungen. Sind in der Modifika-
tion (1) die Einlagerungen 8 ¢ V und 4 ¢ W homologietreu (siche die Be-
merkung in § 14 b)), so heit die Modifikation (1) eine Modifikation mit homo-
logietreuen Einlagerungen (iiber dem Koeffizientenbereich J). Insbesondere
miissen dann 4 und 8§ zusammenhingend sein (bei zusammenhingendem V
und W), wegen (a) und (b) in § 14 b) fiir £ = 0. Aus (29) folgt fiir eine
Modifikation mit homologietreuen Einlagerungen sofort (59). Dies ist richtig
fiir allgemeine Modifikation (V, W, 8, 4 Polyeder). Wir sehen: die Siitze
25 und 26 gelten auch dann, wenn die Voraussetzung «Modifikation mit
Abbildung» ersetzt wird durch die Voraussetzung «Modifikatien mit homo-
logietreuen Einlagerungen iiber J», denn das Pendelverfahren kann nun
ebenso angewandt werden. Die Hauptergebnisse dieses Kapitels gelten also
auch im Falle der Modifikation mit homologietreuen Einlagerungen.

IV. Kapitel. Kihlersche Modifikation mit Abbildung

In Kapitel II und III wurde die Mannigfaltigkeitsvoraussetzung nach Még-
lichkeit abgeschwicht, es wurden allgemeine Modifikationen untersucht. Nun
wollen wir wieder spezielle (sogar komplexe) Modifikationen betrachten
(speziell im Sinne von §1a)). Es werden in diesem Kapitel hauptsichlich
Cohomologieeigenschaften der Kiahlerschen Modifikation, wie sie unten de-
finiert wird, behandelt.

§ 17. Exakte Sequenzen fiir Kihlersche Mannigfaltigkeiten

a) Kihlersche Modifikation mit Abbildung. Unter einer Kihlerschen Modi-
fikation mit Abbildung verstehen wir folgendes: es handelt sich um eine
Modifikation (1) mit Abbildung (3), V=V® und W = W® sind kom-
pakte Kihlersche Mannigfaltigkeiten, das heilt kompakte komplexe Mannig-
faltigkeiten mit Kihlerscher Metrik (vgl. EckMANN und GUGGENHEIMER
[15]), und die Abbildung ¢ in (3) ist komplex analytisch mit der komplexen
Singularitétenmannigfaltigkeit S iiber der komplexen Ausnahmemannig-
faltigkeit A@. S ist singularitdtenfrei komplex analytisch eingelagert in V
und desgleichen 4 in W. 8 und 4 sind dann Kéhlersch, undesist m =n — 1,
da S als Singularititenmannigfaltigkeit der komplex analytischen Abbildung
¢ mit der Nullstellenmannigfaltigkeit der Funktionaldeterminante D(p) zu-
sammenfillt.

b) Harmonische Formen. Die im folgenden auftretenden Gruppen sind
C-Moduln, das heilt Vektorrdume iiber C, wo C der Korper der komplexen
Zahlen ist. Ist M. eine kompakte Kéhlersche Mannigfaltigkeit, so wird die
Gruppe H%(M) der harmonischen k-Formen auf M unterteilt in die Gruppen
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HY*(M) der reinen harmonischen Formen vom Typus (s,t), 8 +¢ =k (vgl

[15]):

Hi(M)~ X Hy (M), | (70)

s+t=k

und der de Rham-Hodgesche Satz besagt
H*(M; C) ~ H:(M) . (71)

Neben dem &uBeren Differentiationsoperator d und dem verallgemeinerten
Laplaceschen Operator 4 = dd + dd sind die Operatoren d’ und d” zu be-

trachten (vgl. [8], [20]; bei HopeEk [20] mit d, i*dC bezeichnet), und weiter
der Operator V =d'd" = — d"d’.

Ist F*:* die Gruppe der reinen (s, t)-Formen auf M, das heiBt die Gruppe
der komplexen Cartanschen (s + t)-Formen vom Typus (s,?) auf M, so
werden die Gruppen Z%.*, Z%/, Z%/' ;» wie folgt definiert:

Z% = {f|feF*, df=0},
Zy' = f|fe B, a'f=0},
Zyty = {fIf e, &' f=d"f=0}.
Dann gelten die Hodgeschen Isomorphismen ([20]):
Hy (M)  =2Z3Y(M)|dF~0Y M) ~HY (M),
Hy (M) =Zy(M)|d"Fo (M) = HYM), (72)
HYE g (M) = Z%} 00(M) | VP50 (M) = HY (M) .

c) Exakte Sequenzen. Ist ¥ eine kompakte Kihlersche Mannigfaltigkeit und
S darin komplex analytisch singularitdtenfrei eingelagert, so werden die rela-
tiven Gruppen H%.Y(V,S), Hy'(V,8), Hy' 4w (V,S) analog den absoluten
definiert (vgl. [2]). Mit Hilfe von (72) erhalten wir die exakten Sequenzen

i* s —~1,1¢ a@’ s, L J* s, t * 8,8t o
Lo HYLYS) S HYHV,S) > HYUV)—> HYES) > ...,
SEy-vg) Smwos) SEymSEreS... (73)
LS NS S By g (7, 8) 5 BV S HY (S > .

Der Beweis der Exaktheit der Sequenzen (73) verlduft nach den iiblichen
Methoden unter Verwendung von (72) (vgl. [2]). (73) tritt nun an die Stelle
der gewohnlichen exakten Sequenzen, wie wir sie in Kapitel IT und III ver-
wendet haben. Wir werden im folgenden nur von der ersten exakten Sequenz
in (73) Gebrauch machen; die beiden andern wurden der Vollstéindigkeit halber
angefiihrt und kénnten ebenso benutzt werden.
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§ 18. Cohomologietheorie der Kiihlerschen Modifikation mit Abbildung
a) Verfeinerung von Lemma 4 und 5. Liegt die Kihlersche Modifikation
@: (Vm, Sin-1)) s (W™ 4@)

mit der Abbildung ¢ vor, so gelten (53) und (58) in Lemma 4. Mit (70), (71)
folgen dann wegen der komplexen Analytizitit von ¢ die Beziehungen

0 > HYH(W) S HY (V) (53,,)
0 — HYt(4) > HYH(S) . (58,,,)

Fir H:(V,8)= X H%Y(V,8) gilt das kommutative Diagramm
8+t=k

4

LS HEV S S HE (7,85 HE (V) S HE(9) S ..

} $ $ hS (74)

S EEYS) S HE,8) D () S HE ) S ..

in welchem die Doppelpfeile Isomorphismen auf bedeuten. Die obere Sequenz
in (74) ergibt sich durch Summation aus der ersten in (73), die untere entsteht
aus der iiblichen Sequenz fiir die de Rhamschen Gruppen. H%(V, 8) ist die
k-te de Rhamsche relative Cohomologiegruppe, und es ist

HY(V,8) = H¥(V, 8), (75)

was mit Hilfe des de Rhamschen Satzes fiir V und fiir § sowie der exakten
Sequenzen des Paares (V, 8) fiir die de Rhamschen und fiir die gew6hnlichen
Cohomologiegruppen bewiesen wird. (74) und (75) implizieren

HE(V, 8) = HY(V, 8) = H*(V, 8) . (76)

Da der Isomorphismus @* in (28) durch ¢ induziert wird, und da ¢ komplex
analytisch ist, erhalten wir wegen (76) die Isomorphismen

0 —> H%H (W, 4) % Hyp'(V,8) —»0. (28,,,)

Wegen (28, ,), (63, ;), (58, ,) bekommen wir mit Hilfe der ersten Sequenz
in (73) ein zu (55’) analoges Diagramm :
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0 \
1
LS ETRNS) S g7, 8) S YY) S Hy ) S
z’*. T‘P a’ ,r¢* j* 1\99 i T?7 ’
o= Hy U A)—> HYH W, A)~ HyH(W)—> HyHA)~ ...
1 1 1 t
0 0 0 0

Daraus folgt wie bei (55’) analog zu (59)
H%Y (V) >~ HYY (W) + HYH(S) — Hy'(4) . (59, o)
Es gilt also der folgende Satz:

Satz 29. Sind die beiden kompakten Kdihlerschen Mannigfaltigkeiten V™),
W ™) modifikationsiquivalent durch die komplex analytische Abbildung ¢ mat
der Singularititenmannigfaltigkeit S™-1) diber der Ausnahmemannigfaltigkert
A (die Einlagerungen S cV und A c W sind komplex analytisch singu-
larititenfrer), so gilt

0 > HY (W) S 5G4(V) (53,,,)
0 > HY'(4) > HY(S) | (58, ,)
HYY V) =~ ~ HY Y(W) + H%'(S) — H%'(A) . (59,,,)

b) Verfeinerung von Lemma 6’. Invarianz des Geschlechtes g,. Sind die
Voraussetzungen des Satzes 29 erfiillt, so befinden wir uns im Falle von
Lemma 6’ mit r = 2, J = C. Fiir P2 nehmen wir den komplex projektiven
Raum P™, (63') gilt dann verfeinert fiir die einzelnen Gruppen der reinen
harmonischen Formen, wenn

HYyY (P~ C fiir 0<s=t<m,

H%*(P™) =0 sonst, S
beriicksichtigt wird :
Satz 30. Unter den Voraussetzungen des Satzes 29 gilt
HY*(3"-1) o Hy* (4@ x P-a-b). (63,,)

Zum Beweis von (68, ;) benutzt man das Pendelverfahren mit Beriicksich-
tigung der Typen der Differentialformen (Verfeinerung des Pendelverfahrens



Modifikation von reellen und komplexen Mannigfaltigkeiten 295

von §15). Dabei werden (59, ,), H}'(S) = (H}'(4) =0, und der Poincaré-
sche Dualitidtssatz in -der Form

Ha t(M) Hn—tn ’(M),

wie er durch den de Rham-Hodgeschen Operator * induziert wird, angewandt
(M ist eine komplex n-dimensionale kompakte Kihlersche Mannigfaltigkeit).
Aus (59, ,), (63, ), (77) folgt

H (V) = HY* (W), HyY(V) =~ H“(W), (78)

die Bettischen Zahlen b, ,, b, , sind also invariant bei Kéhlerscher Modifika-
tion mit Abbildung. Es bedeutet b, ,=2b, ,(M) den Rang der Gruppe
H%*(M), und die Zahl b, , = b,, = g, heiit das «Geschlecht» der Dimension
8 von M. Damit haben wir den folgenden Satz :

Satz 31. Ist wie in Satz 29 eine Kahlersche Modifikation mit Abbildung ge-
geben, so gilt
9,(V) = g,(W), (78')

das heift das Geschlecht g,ist invariant bei Kdhlerscher Modifikation mit Abbildung.

¢) Kihlersche Bimodifikation. Eine Kihlersche Bimodifikation ist eine Bi-
modifikation (vgl. § 14 ¢)), in welcher ¥V und W kompakte Kihlersche Man-
nigfaltigkeiten sind, die Abbildungen ¢, und ¢, komplex analytisch sind, und
die kritischen Mengen S;, S;, 4,, 4, sich zusammensetzen aus endlich vielen
Komponenten, bestehend aus in ¥V bzw. in W komplex analytisch singularité-
tenfrei eingelagerten Mannigfaltigkeiten. Es ist sofort ersichtlich: (59, ,), (78)
bzw. (78') sind auch im Falle Kéhlerscher Bimodifikation richtig, wobei in (59, ,)
S=8,US8,;,, A=A, UA, zu setzen ist (wie in (59,)). Wir bekommen also:

Satz 29,. Bei Kihlerscher Bimodifikation gilt
HY (V) < HYY(W) + H(8y) + Hy'(8s) — Hy'(4,) — Hy'(4,)
o~ HY (W) + Hy*(S) — Hy'(4) .

Satz 31,. Das Geschlecht g, ist invariant bei Kihlerscher Bimodifikation.

d) Weitere Untersuchung des Geschlechtes g,. g, = g,(M) ist der Rang des
Moduls der holomorphen s-Formen auf M, und diese Definition bleibt bestehen
fiir eine beliebige kompakte komplexe Mannigfaltigkeit. M sei also eine kom-
pakte komplexe Mannigfaltigkeit. g,(M) ist dann endlich (vgl.[9]). Eine
allgemeine komplexe Modifikation ist eine Modifikation (1), in welcher

V, W kompakte komplexe Mannigfaltigkeiten sind, § und A4 «komplexe
Mengen», das heit aufgebaut aus endlich vielen in V bzw. in W komplex
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analytisch eingebetteten Mannigfaltigkeiten mit eventuellen Singularititen,
und in welcher der HomGomorphismus ¢’ in (2) komplex analytisch ist. Fiir
solche Modifikationen gilt der folgende Satz :

Satz 32. Liegt die allgemeine komplexe Modifikation

D (Vm, §im) 5 (W™, A@) (1)
vor, und ist n — 2 > q, so gilt
9:.(V) < g,(W); (79,)
it m — 2 > m, so gilt
9:(V) = g,(W); (79,)
ist » — 2 > Max(m, q), so gilt
9:(V) = g,(W). (78")

Beweis: Jede holomorphe Form in V 148t sich mittels des komplexen Ho-
mdomorphismus ¢’ von ¥V — 8 auf W — 4 iibertragen. Ist » — 2 > ¢, so
laBt sie sich mit Hilfe des Kontinuitétssatzes (vgl. [5], pp. 49-51) in ganz W
eindeutig analytisch fortsetzen. Nimmt man noch das Prinzip der Permanenz
der Funktionalgleichung hinzu, so folgt: linear unabhiéngige Formen in V
induzieren linear unabhiingige Formen in W, und damit ergibt sich die Un-
gleichung (79;). Ist » — 2 > m, so kommt man analog zur Ungleichung
(79;), ausgehend von den holomorphen Formen in W. Ist n — 2 > Max(m, q),
so folgt (78') aus (79;) und (79,).

Bemerkung. Die Ungleichung (79,) ist schon richtig fiir eine Modifikation
(1), in welcher ¥V und W kompakte komplexe Mannigfaltigkeiten sind, S und
A Teilmengen in ¥V bzw. in W mit dim(4) < 2n — 3. Der Beweis ist der-
selbe wie oben. Entsprechend gilt (79,), wenn dim(S) <2» — 3, und fiir
2n — 3 > Max (dim(S), dim(4)) bekommt man (78').

Handelt es sich um eine allgemeine komplexe Modifikation mit Abbildung,
das heit wird die allgemeine komplexe Modifikation (1) durch eine komplex
analytische Abbildung ¢ induziert, so ist m = n — 1, da S mit der Null-
stellenmenge der Funktionaldeterminante D(¢) zusammenfillt, und es ist
n — 2 > ¢, denn ist fiir eine Komponente von 4 die komplexe Dimension
gleich » — 1, so kann der komplex (n — 1)-dimensionale Teil dieser Kom-
ponente als Teil der Ausnahmemenge weggelassen werden (vgl. [26]). Somit
gilt nach Satz 32 die Ungleichung (79,). Da die komplexe Modifikation (1)
durch die komplex analytische Abbildung ¢ induziert werden soll, ist auch
(79,) richtig, denn ¢ gibt Anla zu einem Isomorphismus ¢* von Fj (W) in

2 (V) (Fy(M) bezeichnet den Modul der holomorphen s-Formen auf der
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komplexen Mannigfaltigkeit M): zu ¢: V — W gehort der Homomorphis-
mus ¢*: F¥(W) — F*(V) (F¥(M) ist der Modul der k-Formen auf M), ¢*
transformiert holomorphe Formen in holomorphe (allgemeiner : ¢* erhilt den
Typus einer reinen Form), und ¢* ist auf F4 (W) ein Isomorphismus in F4 (V)
wegen dem Prinzip der Permanenz der Funktionalgleichung (linear unabhin-
gige holomorphe Formen werden durch ¢* in linear unabhingige abgebildet).
Wir bekommen also :

Satz 33. Wird die allgemeine komplexe Modifikation

@: (Vm, §r-1) » (W™, 4(@) (1)
durch die komplex analytische Abbildung ¢: V — W induziert, so ist
9,(V) = g,(W) . (78)

Mit andern Worten: das Geschlecht g, ist invariant bei einer fast iiberall
schlichten komplex analytischen Abbildung (zum Begriff «fast iiberall schlicht »
siehe Einleitung a)). Man erkennt sofort : versteht man unter einer allgemeinen
komplexen Bimodifikation eine Bimodifikation, in welcher ¥V und W kom-
pakte komplexe Mannigfaltigkeiten sind, die Abbildungen ¢; und ¢, komplex
analytisch, und die kritischen Mengen § und 4 komplexe Mengen, so gilt:

Satz 33,. Das Geschlecht g, ist invariant ber allgemerner komplexer Bimodi-
fikation.

Bemerkung. Der Beweis zu Satz 33 bzw. 33, liBt sich iibertragen auf die
Moduln F%,(V) und F% (W) der meromorphen s-Formen auf V und W, so daB
bei einer allgemeinen komplexen Modifikation mit Abbildung bzw. Bimodi-
fikation die Isomorphie F% (V)= F; (W) gilt. Insbesondere ist Fp, (V) =
FY (W), das heifit der Korper der meromorphen Funktionen auf V ist iso-
morph demjenigen auf W (additiv und multiplikativ; vgl. auch [17]).

Die Sitze 33 und 33, gelten insbesondere fiir allgemeine Kéhlersche Modi-
fikation mit Abbildung und fiir allgemeine Kihlersche Bimodifikation, das
heiBt fiir allgemeine komplexe Modifikation mit Abbildung bzw. Bimodifika-
tion mit Kghlerschem ¥V und W. Dabei folgt die Ungleichung (79,) im Kihler-
schen Falle auch direkt aus (53, ).

§ 19. Zusitzliche Bemerkungen iiber die komplexe Modifikation

a) Beziehung zu den birationalen Transformationen. Nachdem in der Be-
merkung zu Satz 33, festgestellt wurde, dal bei allgemeiner komplexer Bi-
modifikation der Kérper Fp, (V) der meromorphen Funktionen erhalten bleibt,
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ist damit auch gesagt, daB im Falle algebraischer Mannigfaltigkeiten V, W
eine allgemeine komplexe Bimodifikation zwischen ¥V und W eine birationale
Transformation darstellt. Umgekehrt ist zu vermuten : jede birationale Trans-
formation zwischen singularititenfreien algebraischen Mannigfaltigkeiten V,
W 148t sich durch Zusammensetzen endlich vieler Kihlerscher Bimodifika-
tionen (im Sinne von § 18 c)) erzeugen. Vgl. dazu [32]. Daraus wiirde die
birationale Invarianz des Geschlechtes g, fiir singularititenfreie algebraische
Mannigfaltigkeiten folgen ?).

Definieren wir analog zu § 18 ¢) die komplexe Bimodifikation: ¥V, W kom-
pakte komplexe Mannigfaltigkeiten, ¢, und ¢, komplex analytische Abbil-
dungen, §,, S;, 4,, 4, wie in § 18 ¢), so kann die folgende Frage gestellt
werden : 1Bt sich jede allgemeine komplexe Bimodifikation durch Zusammen-
setzen endlich vieler komplexer Bimodifikationen erzeugen? Wir konnen noch
weiter gehen. Betrachten wir solche allgemeine komplexe Modifikationen 9,
bei welchen § =8, US,, 4 =A4,UA4,, und ¢’ eine komplex analytische
Abbildung @1 von V — 8, auf (W — 4,) UA; und eine solche @2 von
W — A, auf (V — 8,) US, induziert. 8,, S,, 4,, 4, sind komplexe Men-
gen; im allgemeinen ist §,NS; 20, 4,N A, 0. LBt sich nun jede solche
komplexe Modifikation durch Zusammensetzen endlich vieler komplexer Bimo-
difikationen erzeugen? Man kommt unter anderem zur Aufgabe, S; von §; und
A, von 4, durch Zusammensetzen komplexer Bimodifikationen zu trennen. Die
hier gestellten Fragen sind verwandt mit der Frage nach der Auflosbarkeit
der Singularititen einer algebraischen Vielfiltigkeit durch birationale (oder
durch monoidale) Transformationen.

b) Kéhlersche Modifikation mit stark reguliiren Einlagerungen. Wir betrachten
nun eine komplexe Modifikation (1) mit kompakten Ké&hlerschen Mannig-
faltigkeiten V, W, S, A, die nicht durch eine Abbildung erzeugt sei.
Um verfeinerte Cohomologieaussagen iiber diese Kihlersche Modifikation
zu machen, wird man versuchen, die Isomorphie (28, ,) zu beweisen. Ob dies
ohne weitere Voraussetzungen geht, ist fraglich. Es ist jedoch einzusehen, dal3
(28,,,) richtig ist, falls die Einlagerungen S ¢V und 4 ¢ W «tark regulirm
sind, das heiBt falls es sich um Kéhlersche Modifikation mit stark reguléren
Einlagerungen handelt (vgl. [2]). Dabei heit die Einlagerung 8 ¢ V stark
regulidr, wenn eine Umgebung U (8) = S existiert, die in Zellen U"—™ mit
der komplex linearen Gruppe als Strukturgruppe komplex gefasert wird :

€ = {8, yin-m gm}

?) Wegen Satz 33p. Die birationale Invarianz von g, laBt sich jedoch ohne diese Vermutung
iiber die Zerlegbarkeit einer birationalen Transformation #hnlich wie Satz 33p mit Hilfe des
Kontinuitatssatzes direkt herleiten. Vgl. auch [36].
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so dal § eine komplex analytische Schnittfliche in € wird. Es gibt dann eine

komplex analytische Projektionsabbildung = : § =8, so daB die folgenden
Beziehungen gelten'

HYH(S) = HYHS) = 0, HiplyoS) = HY'(S) = 0.

Dann kann auch dle Betrachtung von § 12 a) mit Hilfe der exakten Sequen-
zen (73) und des Poincaréschen Dualitéitssatzes mit Beriicksichtigung der
Typen der Differentialformen durchgefiihrt werden. Ist also

@: (V™ §m) 5 (W™, A@)

eine Kahlersche Modifikation mit stark reguliren Einlagerungen, n — 1 > m
> ¢, so gilt

H%Y(S) >~ HY(A) fir s+t <2n—(2m + 3). (51,,,)

Handelt es sich weiter um eine Ki#hlersche Modifikation mit homologie-
treuen Einlagerungen (iiber J = C), so gelten die Beziehungen (a) und (b)
in der Bemerkung in § 14 b) fiir die Gruppen der harmonischen Formen nach
den verschiedenen Typen aufgeteilt. Daher 1a8t sich eine zu § 16 i) analoge
Aussage machen: es gilt (59, ,) fiir Kéhlersche Modifikation mit homologie-
treuen stark reguliren Einlagerungen (bei homologietreuen Einlagerungen
wird kein Gebrauch gemacht von der Eigenschaft, daB die Strukturgruppe
von € die komplex lineare Gruppe sein soll, vgl. [2]). Die in Satz 26 gemachten
Aussagen lassen sich ebenfalls iibertragen, insbesondere gilt fir m — ¢ = Br,

r=nomh Ey(gm) o~ BYHAD X PED), (637,
wenn wir symbolisch setzen :
HYy'(PP) =C fir 0<s=t=pr<n, n=Air,
HY'(P{)) = 0 sonst .

Es bleibt auch Satz 31 richtig, wenn wir an Stelle Kéhlerscher Modifikation
mit Abbildung Kihlersche Modifikation mit homologietreuen stark reguldren
Einlagerungen betrachten. — Es ist mir allerdings nicht bekannt, ob aufBler
naheliegenden ganz trivialen Fillen derartige Modifikationen existieren.

c) Komplexe Modifikation mit Abbildung. Die komplexe Modifikation mit
Abbildung wird wie die Kéhlerschein § 17 a) definiert, nur daB es sich nicht um
Kihlersche, sondern nur um komplexe Mannigfaltigkeiten handelt. Beispiele
komplexer Modifikationen mit Abbildung werden gegeben durch denin § 7 ¢) be-
schriebenen o™ ?-Prozef} (19;)). Im Kiéhlerschen Fall kénnen dann auf (19,)) die
verfeinerten Cohomologiebeziehungen (59, ,), (63, ,) angewandt werden, es gilt
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eine zu § 16 h) analoge verfeinerte Bemerkung. Nun gilt ein Satz, der das
Ergebnis (63') in Satz 26 im Falle komplexer Modifikation mit Abbildung
wesentlich verschirft, welcher besagt, daB es auBler den o™?Prozessen keine
anderen nicht trivialen %) komplexen Modifikationen mit Abbildung gibt: jede
nicht triviale komplexe Modifikation mit Abbildung ist dquivalent einem ¢"?-
ProzeB (Einzigkeitssatz fiir komplexe Modifikation mit Abbildung). Daraus
folgt (63') von neuem unter Benutzung der Spektralfolge fiir die zum ¢™°?¢-Pro-
zeB (19(,) gehorige komplex projektive Faserung (25;), und im Kéahlerschen
Fall gelangt man in #hnlicher Weise zu (63, ,) unter Beriicksichtigung der kom-
plexen Analytizitdt der Faserung (25,)) und der Typeneinteilung der Differen-
tialformen. Ferner konnen die Cohomologiebeziehungen in den Satzen 29 und
30 unter allgemeineren Voraussetzungen fiir die Dolbeaultschen Gruppen
(vgl. [12]) bewiesen werden, wieder unter Benutzung des obigen Einzigkeits-
satzes. Uber diese hier angedeuteten Ergebnisse ist eine Arbeit in Vorbereitung.
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