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Cohomology Operations
Derived from the Symmetric Group ?)

by N. E. STeEENROD, Princeton (N. J.)

Dedicated to H. Hopf

1. Introduction

A cohomology operation, relative to dimensions ¢,r and coefficient groups
A,B, is a function & which, for each space X, maps the cohomology group
He(X;A) into H"(X ;B) so as to commute with the homomorphisms induced
by mappings of spaces. Examples are the squaring operations

Sqf: HU(X"; Zs) - H* (X ;Z,)
and the cyclic reduced p** powers
,7;; : H(X ;Z,) — Her2 -1 (X, 7))

which I have defined elsewhere [13, 14]. Both are defined for all ¢,7=0;
p denotes a prime, and Z, denotes the integers modulo p. Cohomology opera-
tions not only yield new topological invariants, but are of vital importance in
solving extension problems, and in homotopy classification. The known opera-
tions have been used successfully in diverse situations; but there remain many
problems for which they are inadequate.

Several years ago I found a connection between the reduced powers and
another development of algebraic topology, namely, the homology theory of
groups (initiated by Horr [11]and, independently, by EILENBERG and MACLANE
[8]). Stated roughly, the operations £7% are homology classes of the cyclic group
of permutations of degree p. More generally, it was found that each homology
class of each permutation group determines a cohomology operation. This
gave a potential wealth of new operations. It soon became clear that there
were many relations of dependence among them. For example a homology
class of a permutation group of degree n gives the same operation as does its
image in the homology of the symmetric group c5(n).

This paper contains two main results. The first is an improvement in the
construction of reduced power operations based on ¢5(n). This gives more coho-

1) Work supported in part by U.S. Air Force Contract AF 18 (600) — 1494.
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mology operations than the previous construction. In particular it gives the
PONTRIAGIN squaring operation (see [18])

p:: H?*¢X;Z,,) > H*9(X;Z,,) .

The second main result asserts, roughly, that all cohomology operations
based on §(n) are generated by those based on the cyclic permutation groups
of prime orders and degrees. A precise statement is given in § 4.

In a subsequent paper by P. E. THOMAS and myself, the above result will be
refined by an analysis of cohomology operations based on permutation groups
of prime orders and degrees. These are relatively few, namely, Sq’, p,, 7 as
described above, and the generalizations of the PONTRJAGIN square to primes
p>2 which were found by THOMAS [16]. These are functions

P, H*(X;Z,,) > H*(X;Z,,) -

J. ApEMm [1, 2, 3] and H. CarTaN [5] have shown, independently, that Sqf
and 7 satisfy certain relations when iterated. These relations have yielded
useful results: This raises the problem of determining a basis for all relations
satisfied by the four types of basic operations listed above.

Serre has shown [12] that the set of all cohomology operations relative to
(¢q,7,A,B) isin 1 — 1 correspondence with the cohomology group

Ht(K(4,q);B)

where K (4,q) is the EILENBERG-MACLANE complex of the abelian group 4 in
the dimension ¢ (see [10]). Recent efforts of EmLENBERG-MACLANE and of
H. CarTAN [6] appear to be leading to successful calculations of these cohomo-
logy groups, and therefore to the determination of all cohomology operations.
The preliminary results give some hope that the four types of reduced power
operations listed above generate all cohomology operations.

2. The construction of reduced powers

Let K denote a regular cell complex. Regularity means that the closure of
any cell is a subcomplex and an acyclic one. K may be infinite, if so it has the
CW topology. Let K* denote the associated cochain complex with integer coef-
ficients, i. e. K* = Hom (K,Z) where Z = integers. If u is a g-cochain of K*
and c is a (finite) g-chain of K, then u-c ¢ Z denotes the value of % on ¢. The
coboundary operator 4 in K*, and the boundary 9 in K are related by du-c
= u-90¢ where dimc¢ = 1 4 dim «.

Let 6=0 be an integer; and let Zp denote the integers Z reduced mod 6
(as usual Z,=Z). Let %e¢HYK;Zs) be a ¢g-dimension cohomology class



Cohomology Operations Derived from the Symmetric Group 197

mod 6 of K. We wish to define a cochain representation of %. To this end define
the elementary cochain complex M = M(0,q) as follows. Its cochain groups
C'(M)=0 if r £q or ¢ + 1; C?2(M) is an infinite cyclic group with gene-
rator u; C2+1(M) is zero if 6 = 0, and otherwise is infinite cyclic with gene-
rator v. The coboundary in M is defined by du = 6v. If f: M — K* is a
cochain mapping (i.e. fé6 = df), then fu is a cocycle mod 6 and determines
a cohomology class %. Conversely, starting with u, there is an integral cochain
u, which is a cocycle mod 6 (i.e. du, = 6v,) and whose cohomology class is
% ; hence, setting fu = u,, fv = »,, defines a cochain map M — K*. Such
an f we call a cochain representation of %.

If f,, f, are two cochain representations of %, then fou ~ f,u mod 6. Stat-
ed otherwise there are cochains a,b ¢ K* such that

6a = fu — fou — 6b , andthen 6b=f,v— fov .

If weset Du =a and Dv = b, it follows that D defines a cochain homotopy
of f, into f, :
6D+.D6=f1—fo .

Conversely, it is obvious that homotopic cochain maps M — K* represent
the same %. Thus the cohomology class % may be regarded as a homotopy class
of cochain mappings M — K* any one of which is a representation of &.

Let = denote a permutation group of degree n. We shall regard = as a group
of permutations of the factors of any n-fold tensor product such as K** =
K*®...®@ K* (n factors). Let W be an acyclic complex on which x operates
freely, i. e. each zen acts as an automorphism of W, and, if « % 1, no cell
of W is mapped on itself by z. The existence of such a W is proved in the
theory of the homology groups of a group [8]; and, for any w-module 4,
H,(W®,A) is the ¢ homology group of » with coefficients in 4. We also
denote by W the chain complex it determines; its chain groups are free abelian.

The construction of the n#-reduced powers of a cohomology class

#ueHYK;Zy) or wueHYK;Z)

is based on the following diagram :

We MY We, K we, Kk s K+ . (2.1)

We proceed to explain its undefined terms.
If W is a chain complex, and A is a cochain complex, their tensor product
W®A is the cochain complex whose cochain groups are

CrWRA) = 3 C)(W)®CH(4) 2.2)
i=0
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and whose coboundary operator is defined by
d(w®a) =ow®a + (— 1w da (2.3)

where ¢ = dim w. In case & operates on both W and 4, we define operations
in W®A4 by
rz(w®a) = zw@Rxa , zxem. (2.4)

Then W®,A is the factor complex by the subcomplex generated by cochains
of the form z(w®a) —w®a. Although the chain groups of W and the co-
chain groups of 4 are zero in all negative dimensions, this is not the case for
W®A. For example, W®,M" has zero cochain groups in dimensions
>mn(g + 1), and usually non-zero cochain groups in all dimensions from —oco
to n(g + 1). Thus, it is not the cochain complex of any geometric complex.

The map y of 2.1 is induced by a map f: M — K* representing %, i. e.
p = 1@,/

The map £ of 2.1 is induced by a natural map ¢': K** — K**, If u,,..., u,
are cochains of K*, and o,, ..., o, are oriented cells of K, then {’ is defined by

(®...0u,)-0,X ... X0, =(4-0,)...(u,-0,)eZ . (2.5)

In case K is a finite complex, {’ is an isomorphism. In any case, 6{' = {'4.
Furthermore the action of z» in K™ yields a dual action in K™* with respect to
which ' is equivariant. Thus, finally, { = 1®,.

In contrast to v and { which are natural maps, the map ¢ requires a pre-
liminary construction. It will be defined as the dual of an equivariant chain
map called a diagonal approximation :

' WQK — K" . (2.6)

The construction of ¢’ is based on a general existence lemma which we now
state in detail. A proof can be found in [13; §§ 3.5; 5.5].

2.79. Lemma. Let A,B be complexes on which n operates, and suppose it
operates freely in A. Let C be a carrier from A to B which 18 m-equivariant and
acyclic, 1. e. for each cell o of A, C (o) is an acyclic subcomplex of B such that
C(zo) = xzC (o) for xzen, and o a face of T implies C(c)C (7). Then there
exists a chain map @' : A — B carried by C (i. e. ¢'(0) i8 a chain of C (o)) and
@' 18 equivariant (i. e. ¢'(xc) = x¢'(c)). Furthermore, if @, ¢, are two such
chain maps, then there is a chain homotopy D of @] into @ which ts carried by C
and 18 m-equivariant.

To apply the lemma, we take A to be the product complex W®K and
B = K* n permutes the factors of K in the usual way. It operatesin W® K
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by z(w®o) = (xw)®c. Since the action is free in W, it is free in WR K.
The carrier C is the so-called diagonal carrier

Cw®o) = |o|"

where |g| is the subcomplex of K consisting of ¢ and its faces. Since K is
regular, C is an acyclic carrier. It is obviously equivariant. Then the lemma
gives the map ¢’ of 2.6.

The map ¢ of 2.1 dual to ¢’ is defined by

P(wQy) 0 = (— 1)!i-12y. 9" (wQ0) (2.8)

where ¢ = dim w, y is a cochain of K**, and ¢ is an oriented cell of K with
dim ¢ = dim y — ¢. From the equivariance of ¢’, we deduce that gz = ¢
for every xzem; hence ¢ is defined on W®,K™*. It is readily checked that
90 = d¢; indeed the awkward sign in 2.8 is needed for this.

Having defined completely the terms of 2.1 we are prepared for the final
steps in the construction. Let G be an abelian group of coefficients. There is a

natural transformation
o: K*®G -~ Hom (K, G) (2.9)

given by (y®g)-0 = (y-0)g where yeK*, ge@, and ¢ is an oriented cell of
K. In case K is finitely generated in each dimension, w is an isomorphism. In
any case, dw = wd so that w induces a homomorphism

w: H(K*®G) - H' (K ;@) (2.10)

where the right side is the ordinary cohomology group of K with coefficients
in G.

Now tensor the diagram 2.1 with G and pass to the derived diagram of
cohomology groups and induced homomorphisms. The composition of the
three induced homomorphisms and the homomorphism  of 2.10 is a homo-
morphism denoted by

. H(WR,M"QG) - H"(K ;) . (2.11)

The image of @ for all dimensions r is called the set of n-reduced powers of the
cohomology class % of K.

The definition of @ is somewhat unwieldy since it is induced by the compo-
sition of four homomorphism (the three of 2.1 and w of 2.9). Two of these
are natural, namely ¢ and w. They commute with all conceivable operations,
and are isomorphisms when K is finitely generated in each dimension. We shall
suppress them by letting ¢ denote henceforth the composition ¢ { of 2.1, and
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by ignoring w. Thus, on the level of cochains, we have mappings

W M"Q6 2+ We, K*QG - K*e6

which induce cohomology homomorphism
* *

H (WQ,M*®G) —— H (WQ,K*"® @) ~— H*(K;) (2.12)

whose composition is @.

The role of the y*, p* should be emphasized. The first, p*, is induced by
the representation M — K* of %. The second, ¢*, is induced by the diagonal
approximation ¢’ of 2.6, and is independent of %. The image of y* is called
the set of external n-reduced powers of %. This is in analogy with the external
cohomology cross-product in H?+¢(K*® K*). The tnternal operations are
derived from the external by the use of the diagonal map.

As will be seen, H(W ®,M"®G) depends only on =, 6 and G and can be
regarded as a kind of homology group of . In fact, in the special case du = 0,
M is zero in all dimensions save nq, and C"?(M") ~ Z; hence

H(W®,M"QG)

is just the system of homology groups of n with coefficients G suitable rein-
dexed. Thus an element & ¢ H(W ®,M"®G) can be interpreted as a universal
cohomology operation which can be applied to a cohomology class % mod 6
to give the external reduced power u*(£) and the internal reduced power
p* p*(§) = D (). To emphasize its dependence on % and &, we shall write
&(w) for @ (&):

: §(@) = D(§) . (2.12)

As an example, let 0 = 2, and let = be the symmetric group of degree 2,
having z as its generator. The simplest W has, as n-base, a single element e, in
each dimension ¢, and boundary relations

ae’i = (1 + x)esi__l 3 ae,,-_*_l = (x — ].)egi .

Then e,®,u® is a cocycle mod 2, and its ®D-image is Sq,#. Likewise
ee®,u? + 2¢,@,uv is a cocycle mod 4, and its P-image is the PONTRIAGIN
square of % (see [18, p. 83]).

3. General properties

The construction of reduced powers involves a number of choices at various
stages. We state now a series of “invariance theorems‘ which establish the
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degree of independence of the resulting operations. The proofs are found in sub-
sequent sections.

3.1. Theorem. Any two representations f,,f,: M — K* of the cohomology
class u induce the same homomorphism

¥ H'(WQ,M"Q®G) > H (WRQ,K*"QG) .
3.2. Theorem. The homomorphism
p*: A/ (W R, K*QG) - H"(K ;G)

18 independent of the choice of the diagonal approximation 2.6.

Now let =, ¢ be permutation groups of degree n with nmcp. Let V,W be
n-free and p-free acyclic complexes respectively. Let C(v) = W for each cell
ve V. By 2.7, there is a m-equivariant chain mapping ¥V — W which induces
a cohomology homomorphism

H (VR,M"QQG) -~ H (WQ,M"®G) . (3.3)
If & is in the left group, let & be its image on the right. Then we have

3.4. Theorem. Forany uec HI(K ;Zy), we have &(w) = & (w).

Taking = = g, we have as a corollary that the m-reduced powers do not
depend on the choice of the acyclic n-free complex W used in their construction.
In this case, 3.3 is an isomorphism since there is a reverse mapping W — V,
and, by 2.7, the two compositions W — W and V — V are equivariantly
homotopic to the respective identity maps. As a consequence, H (W Q, M"Q ()
depends only on =, G and 0, and its dimensional indexing depends on the
dimension ¢q of %.

3.56. Corollary. Letting c5(n) denote the symmetric group of degree n, we
have that each n-reduced power of % is an c5(n)-reduced power of %.

Therefore the collection of reduced powers of % associated with all groups of
degree » form a single subgroup of H(K;(#) which we may call the set of
reduced n** powers of %.

3.6. Theorem. If f: K — L 13 a continuous map, f* is the induced homo-

morphism of cohomology, weHI(L ;Ze) and EcH" (W, M*"QGQ), then
f*é@m) = &(f*w) n  H(K;Q) .

This, of course, asserts the topological invariance of the cohomology opera-
tion &.

3.7. Theorem. If ueH(K;Zs), then the non-zero reduced n* powers of
have dimensions in the range from q to n(q + 1) tnclusive. If % e H1(K ;Z), the
corresponding range 18 q to nq.
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4. Primitive operations and the main theorem

The following five types of operations on cohomology classes are called
primitive :

1. Addition in H"(K ;@).

2. The homomorphism H"(K;G) - H7(K;Q@') induced by a coefficient
homomorphism G — G'.

3. The BoCKSTEIN-WHITNEY coboundary operator of an exact coefficient
sequence 0 - 4 — B — C — 0 which is a homomorphism

6¥: H"(K;C) - HtY(K;A) .
4. The cup product which gives a pairing
H*(K;A)Q HY(K;B) - H**(K; AR B) .

5. A m-reduced power of an element of HY(K ;Zg¢) or H4(K ;Z) where & is
a cyclic group of prime order p and degree p.

If A is a set of cohomology classes, and A is a set of operations on classes, let
AA denote the set of cohomology classes each of which can be obtained by a
single application of some operation of 4 on one or more classes of 4. Define,
inductively, A*4 = A4%14. The union U ,A*4 is called the set of classes
generated by A and the operations of A. Any subset of this union is also said to
be generated by 4 and 4.

Main theorem. If wueH4(K ;Zo) or if wecH?2(K;Z), then the set of all
reduced powers of & is generated by % and the primitive operations 1 through 5.

It is easily seen that this theorem is a consequence of the following four
propositions whose proofs are given in subsequent sections. We denote the
symmetric group of degree n by c5(n); and for a prime p, <J(n,p) denotes a
p-Sylow subgroup of cJ(n).

4.1. If zccS(n), then each n-reduced power of % is an ¢5(n)-reduced power
of w.

This is a restatement of 3.5.

4.2. Each c5(n)-reduced power of % is a sum of ¢5(n,p)-reduced powers of
% for the various primes p=<n.

4.3. Ifpisaprime <n, and k is such that p*<n <p**l, then the set of
cS(n,p)-reduced powers of % is generated by the set of ¢5(p?, p)-reduced powers
of @ (1 =1,...,%k) and the primitive operations 1 through 4.

4.4, If pis a prime and ¢=2, then the set of ¢5(p*, p)-reduced powers of @
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is generated by the set of <$(pi-2,p)-reduced powers of % and the primitive
operations 1 through 5.

To see that these imply the theorem, we apply the steps in reverse order.
Since any <5(p,p)-power of % is an operation of type 5, an induction based on
4.4 shows that the main theorem holds for <5(p?, p)-powers of %. Then 4.3
implies the same for c$(n,p)-powers, then 4.2 for ¢(n)-powers, and finally 4.1
for arbitrary powers.

5. Proot of 3.12)

Let I be the chain complex of the 1-simplex [0,1]. C,(I) is generated by
two vertices e,,e;, C, has a single generator e, with de = ¢, — ¢,; and all
other chain groups are zero. Let Z denote the chain complex of a single point,
and let e: I — Z be the unique chain map (it is sometimes called the augmen-
tation map). Passing to n-fold tensor products, we have e*: I* —Z" and
Z* ~ Z. Thus €" is the augmentation map of I Let  be the kernel of e".
Since I™ is acyclic, all the homology groups of @ are zero including the 0%,
Since " is m-equivariant, ) is a m-subcomplex of 17

5.1. Lemma. If W s a n-free complex, then there exists a m-equivariant
chain mapping
g: WI > WeIr

such that g(w®e,) = wRe; and gwRe,) = wey for all charns win W.
Define amap f,: W - W®Q by

filw) =g(w®e) — g(w®e)) = wQ (e — eg) .

Define fo: W - W®Q by f,(w) = 0 for all w. Then f,,f, are m-equivariant
chain maps. Since H,(Q)=0 for all +=0, the KUNNETH relations for a prod-
uct, show that H,(W®Q@) =0 for all 1=0. Since W is n-free, we may
apply 2.7 to obtain an equivariant chain homotopy D of f, into f,. Explicitly,
D: Cy(W)—>C,,(W®Q) for =0 is such that Da = xD for zex, and

0Dw 4+ Dow = fiw — fow = fLw .
Extend g over W®I by defining
gw®e) = (— 1)'Dw , ¢=dimw

and the requirements on g are readily verified.

3) T am indebted to S. Eilenberg for the much simplified form of this proof.
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6.2. Lemma. Let M,N be cochain complexes, and let fo,f,: M — N be
cochain maps which are cochain homotopic. Let W be a n-free chain complex. Then
the cochatn mappings

1®,./", 1®,f*: W, Mr - W, N»

are cochain homotopic.

The tensor product I@ M of a chain and cochain complex is a cochain
complex (see 2.2). The cochain homotopy f,~f, is a cochain map F:
IQM — N such that F(e,®@m) = fo(m) and F (e,@m)=f,(m). The requir-
ed cochain homotopy is the composition of the three mappings

wehe, M2t weme, m s we. domy 285 we Nn .

The mapping g is given by 5.1, and u is the isomorphism obtained by shuffling
the factors of I™ and M™.

The theorem 3.1 follows immediately from 5.2 ; for, as observed in § 2, any
two cochain representations of % are homotopic.

6. Proof of 3.2

Let ¢p,¢:: WQK — K* be two m-equivariant diagonal approximations.
According to 2.7, there is a n-equivariant chain homotopy D of ¢ into ¢;. Let
I be as in § 5, and define

F: IQWRK — K*

by F'(e;Qw®0) = ¢;(w®0) for ¢ =0,1, and F'(eQwRo) = D(wRo).
Then F' is an equivariant chain map. Its dual, as defined in 2.8, is a cochain

mapping
F: IQWQ, K" —» K* ;

and F reinterprets in the obvious way as a cochain homotopy of the dual ¢, of
@, into the dual ¢, of . Therefore ¢,,p, induce the same homomorphism ¢*
of cohomology.

7. Proof of 3.4

Letg: V — W be the n-equivariant map given by 2 T.Let¢p': WQK—>K"
be a p-equivariant diagonal approximation. Then ¢, = ¢'g®1 is a m-equi-
variant diagonal approximation V® K — K». Passing to the duals ¢,¢, of
¢',¢, we obtain a commutative diagram
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V®3Mn l, V®,,K*"’ @

lg®1 lg@1 | K
W, Mn e N W Q, K*» P1

Tensoring the diagram with G and passing to cohomology, we obtain a diagram
whose commutativity yields the assertion 3.4.

8. Proof of 3.6

A map f: K — L is called proper if, for each cell ¢ of K, the least closed
subcomplex C (o) of L containing f(o) is acyclic. It is shown in [15; p. 162],
that, if K is a finite complex, then any map can be factored into the composi-
tion of three proper maps: K — K' — L' -~ L where K',L' are subdivisions
of K,L and the first and last maps are identities. In [17; p. 317], it is shown
that the required subdivisions can be found also when K,L are infinite
C W-complexes. It suffices therefore to prove 3.6 for a proper map f.

Since the minimal carrier C is acyclic, there is a chain mapping f, : K — L
carried by C (this is given by 2.7 with = = identity). Let f*: L* — K* be
the dual homomorphism of cochains. Then f* induces the homomorphism f* of
cohomology.

Let ¢',¢; be diagonal approximations W®K — K* and WQL — L»,
and let ¢,p, be their duals. Let g: M — L* be a representation of % ; then
f¥g: M— K* is a representation of f*u. Let y,=1®,9" and py=1Q,(f*g)".
We obtain then the diagram

v W, K*» 2, g+

W, M ltep+e
1 W®,,L*‘”—(p-l—>L*

If this diagram were commutative we could tensor it with ¢, pass to cohomo-
logy, and the desired result would be immediate. By its construction, the
triangle on the left is commutative. The square on the right need not be;
however to obtain commutativity of the cohomology diagram, it suffices to
prove that ¢(1®f*") and f*¢, are cochain homotopic.

Consider then the dual diagram
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!/

WeK -2 Kn

|18t, |1
qjl
W®L —» L»
For each cell wxo of Wx K, define C’'(wXo) to be the product
C(o) X...XC(e) (n factors).

This is an acyclic subcomplex of L». This carrier C' from W x K to L» is
clearly equivariant. It is obvious that it carries the two equivariant chain
mappings f%¢' and ¢(1®f,). Hence, by 2.7, it carries an equivariant
chain homotopy of f%¢' into ¢;(1®f,). As in § 5, the homotopy can be
regarded as an equivariant map

F: IQW®K — L .
Its dual, as defined in 2.8, is a map
F: IQW®,L* — K*

which reinterprets as a cochain homotopy of ¢(1®f**) into f*¢,. This
completes the proof.

9. Proof of 3.7

Now M has zero cochain groups in dimensions >¢ + 1, and >gq if v = 0.
Thus M" is zero in dimension >n(g + 1) (ng if v = 0). If the indexing of
the groups of W®,M", as defined in 2.2, is examined, it is seen that its
cochain groups are zero in dimensions >mn(g 4+ 1) (ng if v = 0). The same
conclusion holds for the cohomology groups; and this establishes half of the

assertion 3.7.
The same reasoning shows that any non-zero element of W®,M" is a sum

of terms of the form w®z where ng<dimz=<n(q + 1). If
r =dim (w®z2) = dim z2 — dim w ,

we obtain dim w=nq — r. Let ¢ be any r-cell of K. Then ¢'(w®o) is a
chain of dimension =ngq on the carrier |o|® whose dimension is nr. Now
gq>r implies ng>nr and this implies ¢'(w®o) = 0. This implies

py(w®z2):0c =0,
and therefore ¢* y* maps H'(W®,M"®Q) into zero.
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10. The primitive operations 1 through 4

In preparation for the more elaborate constructions later, we dispose of
certain simple special cases in this section.

10.1. Lemma. Iff: M — K* represents % e HU(K ;Z), then the image of
f¥: H'(M®Q) — H"(K ;G) s generated by u and the primitive operations 2
and 3 of § 4.

Suppose first that 6 = 0. Then H'(M®QG) = 0 if r #¢; and

HU(MQQ) = 1 (MREG) ~ CUM)QE .

So each g-cocycle may be given the form ©®g. For a fixed g, definey: Z - G
by 7n(1) = g. If »* is the cohomology homomorphism induced by 7, it is clear
that f*(u®g) = n* ().

Suppose now that 6 >0. Then H'(MQG) =0 if r £q or ¢ + 1. Again
each g-cochain can be given the form #®g, and it is a cocycle if and only if
6g = 0. For a fixed such g, we set 7(l) =g and obtain a homomorphism
n: Zp —>G. And then f*(u®g) = n*(u).

In the dimension ¢ 4+ 1, v is an integral cocycle. Let v'¢ H4+1(M) be its
class, and set v = f*v'e H*1(K ;Z). Let 6* be the BoCKSTEIN-WHITNEY co-
boundary operator associated with the exact sequence 0 -~ Z — Z — Zy — 0.
Since du = fv, it follows that J*w = v. Now any (¢ + 1)-cocycle of
M ® G has the form v»®g. For a fixed g, define n; Z -G by #(l) =g.
Then f*(v®g) = n* d*(@).

10.2. Lemma. Letf: M — K* and f': M' — K* represent cohomology
class wmod 0 and @ mod 0’ respectively. Let v = fQf. Let d: K - KQK
be a chain mapping having the diagonal carrier. Then the set of tmages for all r of

the composition
*

¥ d
H (MM QQ) Y- H'(K*QK*Q® @) — Hr(K ;G)
18 generated by u,u’ and the primitive operations 1 to 4.
We shall express M QM’' as a sum P + @ of elementary subcomplexes as
follows. Let v be the G. C. D. of 6,6’ andset a = 6/r, a’ = 6'/v. Then there
are integers m,n such that ma + na’ = 1. Define cochains w,w’ by

w =av@u 4+ (— 1)’ u®v , g =dimu ,
w = (— 1)Hnv@u + muv . (10.3)

Then w,w’ form a base for the cochains of the intermediate dimension. Let P
be generated by u®u%' and w with 6(u®u') = Tw; and let @ be generated
by w' and v®@v’' with dw’ = Tv®v'. This is the required form.
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Let yp, g be the restrictions of ¢ to P and @ respectively. Now

p(u®u) = fu®f'u' ;
and therefore y,: P — K*® K* represents the external cohomology product
u®u' computed using the coefficient pairing Z, and Z,. to Z,0%Z, ~ Z .
Let d* be the cochain map dual to d. Since d*(W®%') = %' (the inter-
nal cup-product), we have that d* y,: P — K* represents #v#%'. Then,
by 10.1, d*yp*(H"(PQG)) is generated by %%’ and the primitive opera-
tions 2 and 3.

Let 7 be the cohomology class of fv. As shown in 10.1, ¥ = 6*% using the
BoCKSTEIN operator associated with 6. Then #- %' has coefficient group Z,, .
Since 7 divides 6', we have a natural coefficient homomorphism %' : Z,. — Z,.
Similarly, form #%v%' with coefficient group Ze, and the natural map 7:
Ze —>Z. Then

B = (— 1)ty @ @) 4+ my(@vv)
is generated by %,%’ and the operations 1 to 4. Comparing @' with 10.3, it is
evident that d* y,: @ — K* represents w'. By 10.1, %' generates

*y*H (QRE) ;
hence also #,u'. Since H'(MQM' ®QG) = H"(PRQF) + H'(QRG), the
proof is complete.

10.4. Lemma. If the permutation group = of degree n consists of the identity
alone, then the set of m-reduced powers of % 18 generated by % and the primitive

operations 1 to 4.
The complex W consisting of a single vertex is n-free and acyclic. Then we

have natural isomorphisms W® K ~ K, etc. Hence the diagram 2.1 reduces
to

M ¥, g ¥, gx (10.5)
The cases » = 1,2 are seen now to be covered by 10.1 and 10.2. Assume,
inductively, that the lemma is true for the integer n» — 1. Let
d: K—->KQK, ¢,: K—>Kn~1
be chain maps with the diagonal carrier. Define
¢': K—~Kr by ¢ =(1Q¢)d.
Then ¢’ has the diagonal carrier. Taking duals, 10.5 decomposes into

M M1 f_@lp} K*Q® K*n—1 1..?221 K*® K* _d_i K*



Cohomology Operations Derived from the Symmetric Group 209

where y, = fr-1, Setting &, = ¢, y,, the diagram reduces to

(2 a*
U180 kg re L kx|
Since M7 is finitely generated, it is a direct sum of elementary subcomplexes
M*»1= ¥ N,;. Hence

Hr(M"®@) ~ X,H (MQN,26) .

By the inductive hypothesis, @, |N; represents a cohomology class %’ obtained
from % by the primitive operations 1 to 4. And, by 10.2, @ and %' generate the
image of H'(MQ®N;®@G) under d*(fQ D,)* = ¢p*y*. This completes the
proof.

10.6. Lemma. Let g be a permutation group of degree n, and
we H1(K ;Zy) .

Then the o-reduced powers of  of dimension m(q + 1) 8 generated by & and the
primitive operations 1 to 4. In case 0 = 0, the same is true of the g-reduced
powers of dimension nq.

Let g: WQM" - WQ,M" be the natural factorization. Let = consist
solely of the identity permutation of degree n. Then WQ M" = W, M",
and we may apply 3.4 to infer that &%) = &' (@) if £ H/(WQRQM*"®G) and
§ =g*ée H'(WQ,M"®G). Let ¢ be an r-cocycle of W®,M"®G. Since g
is a factorization, there is an r-cochain b of WQ M*® G such that gb = c.
Let r =n(¢g+ 1) if 6 40, and r =nqg if 6 = 0. Then r is the highest
non-zero dimension for the cochain groups of W® M». Therefore b = 0.
Then the class & of b maps onto the class & of ¢ under g*. Since £(%) is a
n-reduced power and & = 1, the conclusion follows from 10.4.

11. The transfer

Let z be a subgroup of a group g subject to the restriction that the index m
of 7 in p is finite. Let W and L be g-complexes where W is a chain and L a
cochain complex. The inclusion map mc g induces a factorization

g: W,L—>WQ,L , Jw,u) = wQ®,u .
The transfer T: WQ,L - W®,L is defined by
TwQeu) = X, 2wQ,2u , (11.1)
where the summation is taken as x ranges over a set of representatives of right

14 Commentarii Mathematici Helvetici
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cosets of 7 in p. A second set of representatives would have the form {y,z}

h . But
Where ygem. Bu Yo EWR, Y, 28U = ZWR, LU ,

8o T' does not depend on the choice of representatives. Clearly
IT (wQeu) = X,9(2w®,2u) = X ,2wQ,xu
= P, WQeU = MWRDU . (11.2)
It is easily verified that 7'¢ = 67 so that both 7' and g induce homo-
morphism of cohomology groups. By 11.2, we have

11.3. Lemma. For each (e H'(WQ,LRQ), g*T & =mé.
An obvious corollary is

11.4. Lemma. mH"(WQ,LQG)c ¢*H (WQ,LR]G).

11.5. Theorem. Let mc o be permutation groups of degree n, and let m
= index of m in 9. Then each o-reduced power &(u) is such that mé&(u) is a
n-reduced power.

By 11.3, m& = ¢g*& where & = T &. The conclusion follows from 3.4.

Taking # =1, 11.5 and 10.4 yield

11.6. Corollary. If m = order of o, then each g-reduced power & (%) is such
that m & (@) is generated by % and the primitive operations 1 to 4.

11.7. Theorem. Let g be a permutation growp of degree n, let m = order g,
and let M = M(0,9) beasin §2. If 6 # 0, then

mOH (WQ,M"QG) =0 ;
and therefore each o-reduced power of u has an order dividing m6. If 6 = 0 and
r # ng, then mH (W @, M*®G) = 0

and each g-reduced power of dimension #* nq has an order dividing m.

If 6 5£0, it is obvious that 6 H"(M)=0 for all ». By the KOUNNETH rela-
tions for products, this implies 0 H7(M") = 0. By the universal coefficient
theorem, this implies §H"(M*®G) = 0. Since W is acyclic,

H (WQMrQG) ~ H (M*QG) .

Therefore 0H"(WQM"RG) = 0. Apply 11.4 with L= M" and nn=1,
and obtain mOH"(WQ,M"QG) = 0.

If 6 =0, and therefore v =0, we have H"(M") = Cr(M") =0 if
r # ng. Reasoning as above gives H (WQM"®G) =0 if r 2#ng. Then
11.4 yields the desired result.
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Remark. The notion of transfer used above is a slight generalization of the
concept first defined by EckMANN [7].

12. Proof of 4.2

In case =0, we have by 10.5 that each ¢5(n)-reduced power of dimension
nq is a 1-reduced power, and is therefore an ¢5(n,p)-reduced power for each
prime p.

Suppose therefore that 6 % 0 or that r s£mng. Let o = ¢S(n), then
n! = order of p. By 11.7, each element of H"(W®,M"®G) has a finite order
dividing »!0. Therefore this group is the sum of its p-primary components
for all primes p dividing = !0. An element & of the group is therefore a sum
& = X &, where &, lies in the p-primary part.

For a fixed prime p, let & = c5(n,p) be a p-Sylow subgroup. Write ! =
mp* where m is prime to p. Then, in the p-primary component, division by m
is possible so that &, = m¢g,. By 11.3, we have &, = g*T &, where

Té e HH(WR,M"QG) .
Therefore, by 3.4, &,(%) is an cJ(n,p)-reduced power.

13. Proof of 4.3

The main idea behind the proofs of 4.3 and 4.4 is the known fact that the
SyLow subgroups c5(n,p) of the symmetric groups have a relatively simple
structure which can be described in detail. Briefly, ¢5(n,p) can be built from
cyclic groups of order p by the iterated use of direct products and split exten-
sions. This is not generally the case for the SyLow subgroups of a subgroup z of
cS(n); hence the necessity for the step 4.1. In this section we give the ,,direct
product‘‘ part of the decomposition.

If n= X% ,a,p' is the p-adic expansion of n, then the integer part of
nip! is [n/p’] = X%, a,p"7. It is easily seen that the exponent of p in the

prime factorization of n!is X %_ [n/p’]. It follows that the order of a SyLow
group c5(n,p) is p raised to the power

a+asp+1)+a@p+p+ 1)+ a@r+--+p4+1) . (13.1)

Now divide the integers 0,1,...,7n — 1 into disjoint sets so that there are
precisely a, sets having p* elements (1 = 0,1, ..., k). For each such set choose
a p-SyLow subgroup of the permutation group of that set, and let it act as the
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identity in the remaining sets. Then the groups for distinct sets commute.
Hence the direct product 7 of all these groups is a subgroup of ¢5(x). The order
of <5(p*,p) is praised to the power X itp’ (this follows from 13.1 by taking
n = p*). The order of the direct product 7 is p raised to the power which is
the sum of the exponents of the factors. Since this exponent coincides with
13.1, it follows that 7 is an c5(n,p). Thus c§5(n,p) decomposes into a direct
product of the special SYLow groups <S(p%,p):

k
Stn,p) ~ 1 [Sw' I - (13.2)
In view of this decomposition, the assertion of 4.3 is a consequence of an
induction whose general step is provided by the following lemma concerning
the direct product of two groups.
Let o, o be permutation groups of sets R,S having r and s elements respec-
tively. Let 7 = pX o, and imbed 7 in the permutation group of 7' = Rv S
by the rule: if zep, yeo, acR and beS, then

(z,9)(@) = z(a) , (2,9)(b) =y () .
Thus 7 is a permutation group of degree r + s.

13.3. Theorem. If o, o and T are as described above, then any t-reduced
power of & i3 generated by the set of o and o-reduced powers of @ and the primitive
operations 1 to 4 of § 4.

Let U,V be g and o-free acyclic complexes respectively. Set W = UQYV,
and define operations of 7 in W by

(,9)(dRe) = xdQye

where zep, yeo and d®e is a generator of W. Since U and V are acyclic,
so is W. It is easily verified that W is v-free.
Now choose g and ¢-equivariant chain maps

¢: UQK —>K®, ¢,: VK —K?®
having the diagonal carriers. Let
d: K—->KQ®K
be a chain map with the diagonal carrier. We define the chain map
¢: WQK - KT — KRQK® |
to be the composition of the maps

1Qd A 7!
UaVeKk 2l ueVekeok 2 UekeVek P8P kT
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where 4 is the isomorphism interchanging the second and third factors. Ele-
mentary calculations show that ¢’ is 7-equivariant and has the diagonal
carrier.

Referring to the diagram of Fig. 1, ¢;,p,,¢ are the duals of ¢],p;,¢' as
defined in § 2; w,, y., v are induced by a representation M - K* of #.
d* is the cochain map dual to d, and A is the isomorphism interchanging V
with K*®. The upper rectangle is obviously commutative. For the lower
rectangle we have

P = d*(¢1®¢a)ﬁ .

The proof of this is omitted as it is a lengthy but mechanical computation
based on the above definition of ¢’ as a composition.

Now tensor the diagram with a coefficient group G and pass to the related
diagram of cohomology.

A
URV)Q,MT —» (URMHQ(VR,M5)

lf.v l%@'/’z
Ue)®, K 2\ (Ue, K)o (VE,E*S)
l‘P 1991@902
K* iij— K*QK*
Fig. 1

By definition, a 7-reduced power of % has the form

pyé = d* (1 Qpa) (P @ pa)* A% & (13.4)
for some

EeH(URQVR,M'QG) .

We proceed now to split A*¢& into a suitable sum. For each dimension, the
cochain groups of UQ,ME and V®,M° are free abelian groups on finite
bases ; hence both complexes may be reduced to normal form, and written as
a direct sum of elementary subcomplexes :

UQeM* ~ X,P; , VQeM® ~ X,Q; .
These yield a direct sum splitting of the cohomology
H(UQMERQVR,M RG) ~ 3, ;H (P,QQ,RG) .
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Therelore pe= 3k, EeHUP,0Q,00) . (13.5)
and the number of non-zero terms is finite.

Since P, is elementary, ¢,vy,, restricted to P,, is a map P, — K*, and
therefore is a representation of a cohomology class %, modulo some 6,. This
element lies in the cohomology image of ¢, ,: U®,ME — K* using coeffi-
cients Zy,. Hence #, is a gp-reduced r**» power of %. Similarly, the map @, - K*
obtained by restricting ¢,y, represents a o-reduced s power %; of Z. We
can now apply 10.2 to show that

a* (‘P1®(Pz)* ("Pz@ "/’2)* fz'j = d* (L1 Qs ?/)2)* 51’:‘

is generated by #,,%; and the primitive operations 1 to 4. Combining this re-
sult with 13.5 and 13.4 yields the conclusion of the theorem.

14. Proof of 4.4

Let = be the group of cyclic permutations of the integers 0,1,...,p — 1
with a generator x defined by «(k) =k 4+ 1 mod p. Let ¢ be any permuta-
tion group of the integers 0,1,...,r — 1. Let ¢? be the direct product of p
copies of ¢o. Imbed n and p” in the permutation group of the integers
0,1,...,pr — 1 asfollows. If 0<h<pr, write h = kr + I where 0=I<7;
then x(kr + 1) = z(k)r + 1, and if (y,,...,y,_1)c0” we have

(yl)) L °’yp—1)(kr + l) = ’CT + yk(l) .

These are faithful representations. It is easy to verify the commutation rule

Z(Yos v Yp1) = WUp1>Y0:Y15 4+, Yp_2) T . (14.1)

Let o be the permutation group of degree pr generated by these representa-
tions of 7 and p?. In view of 14.1, o has the order pm? where m = order of p.
Furthermore, p” is a normal subgroup of o, ¢/p? ~ =, and the inner auto-
morphisms of ¢ given by elements of & permute the factors of ¢? cyclicly.
Thus ¢ is the ,,split extension of p? by & with respect to these operations of
7 on p”.

In the application to the proof of 4.4, p is a prime,

r=p-1 and o= S(P"Lp)

i8 a p-SYLOW subgroup of the symmetric group of degree pi-1. Asis well known,
the order of g is p raised to the power X iZ3p’ (the number of factors p in
p*~1!). Then ¢ is a permutation group of degree p* and its order is p raised to
the power X iZ(77. Hence ¢ = o§(p',p).
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If L is any chain or cochain complex on which g operates, we shall define the
canonical operations of o in L? = the tensor product of p copies of L. If
€®...Qe,_, is a generator of L?, set

Z(€®...Qey 1) =4 ¢, ,06Q...Q0€,_5 ,
(yo, o "yp—-l) (60®' . '®ep—l) = (y080)®‘ . '®(yp—-lep——1) .

The sign in the first line is minus when dime, ; and dim(e,®...®e¢,_;) are
both odd, otherwise it is plus. The relation 14.1 is readily verified.

Let U be a n-free acyclic complex; and let ¢ operate in U through the
natural factorization ¢ — m; hence p? operates as the identity in U. Let V
be a p-free acyclic complex. Form the product V? of p copies of ¥, and let o
operate canonically in V7. Set W = UQ®V? and let o operate in W by oper-
ating as prescribed above on each factor. As a product of acyclic complexes,
W is acyclic. Finally, W is o-free; for each element of g? operates freely in
V?, hence in W, and an element not in g” operates freely in U, hence also in W.

Let K be a complex. Let ¢ operate as the identity in K, and let ¢ operate
canonically in K?. Let

¢g: UQK —->K?, ¢: VK —Kr

be n and ¢ equivariant chain maps, respectively, having the diagonal carriers.
With respect to the canonical operations of ¢ on (V® K)? and on (K7)? the
map (g;)? is g-equivariant. We define the chain map ¢': WQ® K — K™ to be
the composition

/ /

UeeK 1 e Uek 2% merr S\ (ro Ky Y K
where 7 is the isomorphism interchanging U with V?, and { is the isomorphism
shuffling the two sets of p factors. It is to be observed that o operates on each
of the five complexes, and each chain map is o-equivariant. Hence ¢’ is g-equi-
variant. An obvious calculation shows that ¢’ has the diagonal carrier.

Let ¢,,9.,¢ be the duals of ¢],q¢;,¢’ as defined in 2.8. Referring to Fig. 2,
we note that the three mappings at the bottom of the diagram have been
defined. Let f: M — K* represent %, and set

P=1Qcf” , ¢ =1@,(1Q,f)"

The inclusions p?co and lcn induce the factorizations » and »' respecti-
vely. The maps A are isomorphisms obtained by shuffling the p factors of ¥
with the p factors of (M) and (K*")?. Commutativity holds obviously in the
two upper squares. The relation ¢ = ¢,(1Q¢%)4 likewise holds. The proof
of this is omitted as it is a lengthy but mechanical computation based on the
definition of ¢’ as a composition.
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A
(URVP)QLM™ — UR(VRM")?

h i

A
(UQ V) Qe M™) —> UQ,(V® M)

lw lw’

(U@ Vp) ®0K*rp _._%__, U®“(V®9K*r)p

l @ l 1®¢?
Ex  PAyg. ke
Fig. 2

Now tensor the diagram with a coefficient group @, and pass to the related
diagram of cohomology groups and induced homomorphisms. By definition, a
g-reduced power of % has the form

pvé=p(1QeS) y'A¢ (14.2)
for some

EcH (UQV?R, U™RG) .

We proceed now to split A& into a suitable sum. For each dimension, the
cochain group of V®,M" is a free abelian group on a finite base; hence we
may reduce the complex to normal form, and express it as a direct sum of ele-
mentary subcomplexes :

VRMr= X2, N, .

The tensor product of p copies of this complex can be written
(V®0Mr)p= 2;1 N;’"I" 2Z(n)QP, . (14.3)

The second term accounts for all cross-product terms. Here o = (ji,...,,)
is a sequence of positive integers not all equal, and P, is the tensor product of
the corresponding N’s. Z(n) denotes the group ring of z. The range of « in
the sum is a set of representatives of equivalence classes of sequences (5, . . .,j,)
under cyclic permutations. Since p is prime, each equivalence class has p ele-
ments. Thus 14.3 is a decomposition into a direct sum of m-invariant sub-
complexes.

Tensor each term of 14.3 over = with U. Using the natural identification
UR®R,Z(n) ~ U, we have

U, (VM) = X2, UQ,N; + X, UQP, . (14.4)
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Tensoring with ¢ and passing to cohomology, we obtain a corresponding direct
sum of cohomology groups. Referring to 14.2, 1 £ decomposes under this direct
sum splitting into

15 = E;f;"i‘ Eafa (14'5)

where only a finite number of terms are non-zero.
Since UQ®P, appears also as a subcomplex of UQ(VQ®,M")? and
v |UQ® P, is the identity, it follows that &, is in the image of »'. As 4 is an
isomorphism, it is in the image of »' 1 = A». So it may be written &, = Av&,.
Then
P(1Q@E) ¥ & = @yré, (14.6)

is a p?-reduced power of %. Since distinct factors of g? operate on disjoint sets
of indices, we can apply 13.3 to infer that this g?-reduced power of % is gener-
ated by p-reduced powers of % and the operations of type 1 to 4 of § 4.

Let g, be the map @,(1®,f") restricted to N,. It represents, by definition,
a g-reduced power 7, modulo some 6, of %. Also, by definition,

(p1(1®ng;',)§:i = ¢ (1®,95) v'§;

is a mw-reduced power of #,. Therefore it is a #-reduced power of a g-reduced
power of #. Thus ¢ & splits into a sum using 14.2 and 14.5, and each term
of the sum is generated by g-reduced powers of % and the primitive operations
1 to 5. This proves 4.4.
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