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On the singularities of DIRICHLET series

by CruJi Tanaka, Tokyo

1. Introduction. Let us put

F@)=2a,exp(— 4,8) =041, 0S4h<d<---<d, >+o00) . (1.1)

ne=1

The object of this note is to establish the following theorems :

Theorem 1. Let (1.1) have the finite simple convergence-abscissa o,. Then
there exists a sequence {¢,} (¢, = 4 1) such that

2e,a, exp (— 1,8)
n=1

has o = o, as the natural boundary.

Theorem 2. Let (1.1) have the finite simple convergence-abscissa o,. Then

-}

there exists a new DiricHLET series X' b, exp (— A,8) having o = o, as the
natural boundary such that n=1

bal = la, /(e =1,2,...), lim|arg®,) —arg(a)| =0 (i
or n—>» 00
arg (b,) = arg(a,) (n=1,2,...), lim|b,ja,|]=1. (ii)
n-—>00

Under the additional conditions lim logn/A, = 0, these two theorems
f—>00

have been proved by O. Szasz ([1], p. 107) and the author ([2], p. 308) respec-
tively. The method of its proofs is based upon A. OSTROWSKI’S criterion of
singularities.

2. Lemmas. To establish these theorems, we need some lemmas.

Lemma 1. (A. OSTROWSKI [3, 4], pp. 12-16.) Let (1.1) have the simple con-

vergence-abscissa o, = 0. For s = 0 to be the singular point of (1.1), it ts
necessary and sufficient that we have

lim |0,.(0,0) V™ =1 (m : positive integer),
where >0
d(>0), w(0<w<l): fixed constants, (1)

0, (0,w) = Z a,(A,ea/m)™ exp(— A,0) . (ii)

mjo-(1— w) < An <m/o-(14 w)
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Lemma 2. The simple convergence-abscissa o, of (1.1) is determined by
¢, = lim 1/z-log| P a,| ,
where z—>+ o0 [Z]+ ()< An<2z
[]: Gauvss’s symbol, (i)
f(@) = 1m-[m(z —m)], m=[x]. (i)
Proof. By T.KoJsima’s theorem [5], o, is given by
o,= lim 1/z-log| % a,]
T—>+ 0 1 An<2
= lim 1[z]-log] Z a,|.
>+ [z1<An<z
Hence, for any given ¢ (>0),
| 2 a,|<exp{[zl(o, +e)} for [e]>K(e) .
[l S in<2
Therefore
; z a,|=| 2 - z |
2]+ ()= An<z (Z]S An<e [Z]=An< 2+ f(2)
<2exp {[z](o, + &)} for [z]>K(e),
so that .
of = lim 1/x-log| Z a,| <o, + ¢ .
T—>+ o0 [Z]1+ (D)< Ap<z
Letting ¢ -0 ,
oF <o, . (2.1)
Putting

z=m+ym (m=[z], 0<y<m),
[2] + f(z) = m + [y)m ,

we have easily

o = lim 1/m-log]| 2 a,| (m : positive integer).
m—> 400 m+ [ylmSAn<m+ y/m
o<y<m
Hence, for any given ¢ (> 0),
) a,| <exp {m(sF + )} for m>K*() .
m+y)m=An<m+y/m
o<y<m
Accordingly
|2 a,l
[zl < An<z
= X 4+ X 4 ]

m<in<m+im m+im<ipn<m+2/m m+ylmSAn<m+y/m

< ([y] + 1) exp {m(d; + e)}<mexp {m(o] + ¢)} for m>K*(),
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8o that
0,= lim 1l/z.log|] X a,|<¢ +¢.

Z—>+ 00 [ZI<Ap<z
Letting ¢ — 0,
0,=a; . (2.2)

Combining (2.1) with (2.2), lemma 2 is completely established.
Lemma 3. Put
O = 2  a,(de/[z]) exp (— 4,(1 + it)) .

21+ (D <An<z
If
I 2 a,|z]| Z a,]

[el+Hx) S An<2 [Z]+H) S Ap< X
for every X such that [z] 4 f(x)<X <z, then
10(@.0)|=] 2 a,|-{1—(|t] + K(z)/[«]} ,
[Z]+H2) S An<z
where K (x) = 0(1).
Proof. Put
x=m+ ym (m=I[z], O<y<m),
[] + f(x) = m + [y]/m .

Let us denote by {4, ,} (:=1,2,...,r) the exponents i,s contained in
m + [yl/m=i,<m 4 y/m and by f{a, ;} the coefficient corresponding to
Am, ;. Setting

8, = fam,,. (1SEk<r), f(A) = Amexp (— M1 -+ it)) ,

1=1

then by ABEL’s transformation

0(@,8) = (e/m)™ £ @y if (Ao, )

= (e/m)™-{S.f(An,r) +_Z Si(f(Am,s) — f(]‘mﬂ-l))} .
Since b=l

18 1=18;] (=1,2,....,r—1),
we have

0G0 (e/my™ 18,1 (b, )| = Z|(hn,d = [m,ic) } - (2.3

On the other hand, |f(A)] = A™exp(— A1) is monotone-decreasing for
m=<A. Hence, for m<a<f<m + 1,

) =B = H)]| — [fB] + 1B (B —)]t],
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so that 8
f(@) — f(B) < [ 2mexp (—2)-(|t] + | — m/2)dz . (2.4)
Therefore, by (2.4)
r—1 Am,r
" ™ m+([yl+1)/m
<(|t]+1)- [ 2mexp(—=z)dz .
m+[ylim

Hence, by (2.3) and [y] + 1=m

|0 (,1) |
= |8, | (e/m)™{(m + ([y] + 1)/m)™-exp (— (m + ([y] + 1)/m))
m + ([y]+1)/m
— (|t + 1)- f z™m exp (— 2)dz}
m+[ylim

> |8, [{(1 + ([y] + 1)/m*)™-exp (—(y] + )/m) — (|t| + 1)-1/m}
> |8, [{exp (— 0(1/m)) — ([t]| + 1)-1/m} = |8, |- {1 — (|t] + O(1))/m} ,
which proves lemma 3.

Lemma 4. Let (1.1) have the simple convergence-abscissa o, = 0. Then
there exists a sequence {x,} ([x,]1 +o0) independent of t (—oco<t<<-+o0)
such that

(@) [zl 4+ o)<[zr,,1](1 — w) r»=1,2,...,.0<w<]) ,
(b) lim 1/x,-log| Py a,| =0,

v—>+ [zyl+f(zy) < An<ay

(¢) lim|O(=,,t)|"""'<1 for arbitrary t(—oo<t<4oo0) .
V—>00

Proof. By lemma 2, we can find a sequence {y,} ([y,]4 -+ oo) such that
11+ 0)<[Hhull —w) (=12,..,0<o<l),

(2.5)

lim 1/y,-log| Py a,] =0.

V—> 00 yvl+ Hyv) T Ap<yy
Put

Max l b @, | = | 2 a,| ,

(yvl+fyn <z =Zyy [Z]+/(2) <z [zyl +f( @) S An<Zy

where [z,] = [y,], f(z,) = f(y,). Since
0 = lim 1/y-log| z a,|< lim 1/z-log| z a,|
V—>00 vl+ v S An<yy V—>»00 [yl +fzv) <An<zyp
< lim 1/x-log| 2 a,| =0,

T—>+ o Z} +() S An<z
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by (2.5) and (2.6), selecting a suitable subsequence, if necessary, we have
easily

[z,]1 + 0)<[z,4,](1 —w) (=1,2,...,0<w<]1),

lim 1/z,-log| z a,| =0,

V>0 [zv]+f(47v)§.7\n<-’ﬂv (2'7)
| z a,|=| 2 a,|
[Zyv]l+Hzv)SEAp<zy [Zyv]l+ (2 SAn<X

for every X such that [z,] + f(z,)<X=<=z, .
On account of (2.7) and lemma 3

[2,]1 + o)<[2,nJ1 — ) (r=12,...,0<0<]),

lim 1/z,-log| 2 a,| =0,

V—> [Zyvl+Hzy)SAn<zy

lim|O(z, ) 2lm|  E a1
V—>0o0 v—>o [Zy]+HZy)Sin<y

for arbitrary ¢t (—oo<t<+o0) ,
which is to be proved.

Lemma 5. Let (1.1) have the simple convergence-abscisse o, = 0. Then, for

4
any sequence {z,} ([x,]} +o00), 2 u,(s) converges absolutely for >0, where
v=1
u,(8) = pX a, exp (— 4,8) .
[Zvl+/(Zv) S An<zy

Proof. By lemma 2

0= lim 1/z-log| Z  a,| = lim 1/[z] log]| z a,

Z—>+ o [z] +/(z) < An<z >+ oo Z] +f(z) S An<z
Hence, for any given ¢ (>0)
| Z a,|<exp(e[z]) for [z]>X(e) . (2.8)

(2] + () < An <z

Using the same notations as in lemma 3, by ABEL’s transformation

Ty
ul’(s) == zamv,fexp (— )'Mp,is)
i=1
= 8,,exp (— An,, r,9)

rv—1

+ 2 8;{exp (— }'mv,i's) — exp (— AMy,l‘-l—ls)} )

i=1
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where
z, = m, + yv/mv (mv = [xv] ’ O<yv<mv) ’

[xv] ~+ f(xv) =m, + [yv]/mv .
| exp (— as) — exp (— Bs)|=|s|/o- {exp (— ao) — exp (— o)}
for a<f, >0, by (2.8)

Since

|u,(8)| <|s|/o-exp (e[,]- {exp (— i,,+,0)
rv—1

+if—‘:16XP (— Am,,:0) — €xp (— }‘my,i-}—lo')}
<|s|/o-exp ([x,)(¢ —0)) for >0, [z,]>X(e) .
Therefore, putting ¢ = ¢/2
|, (8)| = |s|/o-exp (— ¢/2-[%,]) ,
so that ESZI,,, (8) is absolutely convergent for ¢>0. q.e.d.

v=1

Lemma 6. Let (1.1) have the simple convergence-abscissa o, = 0.
(A) Let us put -

+o0
») 6(’1%,,)’11/,,(8) = 2¢,a, exp (— An8) (2.9)
where v=1 n=1

(a) lim 1/,-log| Z  a]=0Y (x]=m1 +oo)

V—>+ o0 [Zy] + f(Zy)S n<zyp
(b) lim 1/z-log|d(x)| = 0,

Z—>+ o0
(¢) u,(s) = 23 @, exp (— 4,8)

[yl +Hzv) S dn<zy

(d){en =d(m,) for A.e{l,} (I,:[2]+f(z)=2<w)

g, =0 for A, e{l,} .
Then (2.9) has the simple convergence-abcissa o = 0.
(B) Set + o0 <+ o0
fo(s) + Z 8(m,)u,(s) = Z eqa, exp (— 1,8) , (2.10)
where v=1 n=1
© fol) = Z a,exp(— ,9)
An€{lv}
(f) 6; = (5(’)’)@,) fOT Zne{Iv} ’
g =1 for A,e{l,} .

Then (2.10) has also the simple convergence-abscissa ¢ = 0.

1) By lemma 1, there exists a sequence {z,} satisfying (a).
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Proof. (A) By lemma 2

lim 1/z-log] £ a,|=0. (2.11)

T—> 4 2]+ () <An<z

Taking account of (a), (b), (¢) and (d), we get

lim 1/z-log| 2 £,Q,| =—o0 ,
z—>+ oo [Z]+ /(W) =An<z
[Z1Zmy
lim 1/z-log| 2 £,a,| = lim 1/z,-log {|6(m,) |- | 2 a,l}
?;?4—«, [z]+ () < n<z v—>+ o0 my+{zy) SAn<zy
=m
$y§x<mvv+1 . — 0
- b
lim 1/z-log| X £,a,| =lim 1/z,-log {|6(m,) |- | 2 a,l},
E'c—]->+oo [Z]1+ /(@) Sin<z V—>+ 00 [y +i(zy)=In<z
Ti=m
my+Hzv)<a<zy <0 (by (2.11) ,
lim 1/z-log]| 2 £, 0, | =— 00 ,
T—>+ [z]1+/(z) S In<z
[z] =my
my=z=my+/(Zy)
go that

lim 1/z-log] X  ea,| =0,

T—>+ o0 [z]1+ f(z) SApn<z

which proves that the simple convergence-abscissa of (2.9) is ¢ = 0.
-+ o0
(B) Since fy(s) = f(8) — 2 u,(s) , by lemma 5 f,(s) is simply convergent
v=1

= + oo -+ oo
at least for 6>0. On account of (A), X d(m,)-u,(8) = Z ¢,a, exp (— 4,8)

y=1 n=1
is simply convergent exactly for o>0, so that (2.10) is simply convergent at
least for ¢>0. In other words, by lemma 2

lim 1/x-log| z &a,|<0 .

T—>+ o ]+ /(2)Shn<2

On the other hand, by (a), (b), and (f)

lim 1/z,-log] £  &ha,| =1lm Uz, log {|d(m,)]-] T  a,l|}.
V—>+ oo [Zy]l+ap) SAn<zy V—>+ 00 [Zyl+fzv)SIn<zy
=0 .
Therefore e
lim 1/z-log| z  &a,|=0,
Z—>+ o [Z]+ ()< An<2z 0

which proves that (2.10) has also the simple convergence-abscissa o = 0.
q.e. d.
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- 3. Proofs of theorems -

Proof of theorem 1. Without any loss of generality, we can assume &, = 0.
Let us denote by {x,} the sequence of lemma 4. Then, by lemma 5, we can put

+ o0
Zu,(8) = f1(8) + fa(8) + fa(8)- -+ fo(8) +-- -,

where Vel

@) u,(s8)= > a, exp (— 4,8) ,
@yl +i(zv)Sin<zy
(ii) each f,(s) (rn =1,2,...) contains infinite number of {u,(s)}.

For any given sequence {4,} (6, =-+1), set
f(s: {6,3) = fo(8) + Oifa(s) +-- -+ 6,fu(s) +- - (3.1)

+ oo
= fo(s) + 2 avuv(s) ’

v=1

+ o0
= X ¢l s, exp (— 4,98) ,

where n=1
| i) fols) = 2 a,exp(—48) (I,: [2]+f(x)=2<2,),
An€{lyp}
(i) o, =41,

(iii) & =« for A,e{l,},
g =1 for A,e{l,}.

Then, by lemma 6 (B), (3.1) has the simple convergence-abscissa ¢ = 0.

For {4,} %= {0,}(d,,0, =+1), we have

-+ o0
fs:{8,)) — f(s: {0,}) = 516::]!71(8)

+ 00
=X +2-uk(s) ; 3.2

y=1

+ o
= X £,a, exp (— 4,9) , |

where n=1 ‘

(i) ol =26,— 06, (Since {6,}=~ {9,}, there exists at least one n such that
& = +2),

i) wi(r) = b a, exp (— 1,8) ({z,}: subsequence of {z,}),

[Z'vi+ iz’ vISin<z’y
(i) & =42 for Ae{}} (I, [#]+f(x)Sw<az)
e, = 0 for A,e{l,}.
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On account of lemma 4 (b) and lemma 6 (A), (3.2) has also the simple conver-
gence-abscissa o = 0.

(3.2) has o = 0 as the natural boundary. To prove this, by lemma 1, it is
sufficient to show that

lim |0,(1,w;8) "™ =1 forarbitraryt (—oco<t<+oo), (3.3))
m—>+ o

where
On(l,0;8) = b aty (Anefm)m-exp (— A,(1 + 7)) .

m(l - W)SAin<=m(l + w)

Since O,.,,(1,w;t) = +£20(=,,t) by lemma 4 (a), we have by lemma 4 (c)

Hm|0,,(1,@; ) [¥™= lim |0y (1, ; 1)

m—> o V—> 400
= lim | O (af, ) V="
V—>+ o0
= lim |O(z,,t) "™ =1,
which proves (3.3). vt e

Let us denote by E({d,}) the set of regular points on ¢ =0 of (3.1),
which is evidently an open set. Then we have

E({o )~E({8,}) =0 for {8,} {3,} . (3.4)

In fact, if s,eE({3,})~E({5,}) #0, (3.2), would be regular at s = s,,
which is impossible by (3.3). If E({é,}) 0 for all {4,}, by (3.4) the set
of all functions {f(s:{d,})} is at most enumerable, which contradicts the
power of continuum of the set of all {4,}. Hence E({3,})=0 for at least one
{6,}, which shows that f(s: {6,,}) has o =0 as the natural boundary.

(3.1) is evidently of the form Z.'e,,a exp (— 4,8) (e, =+1). q.e.d.

n=1
Proot of theorem 2. Without any loss of generality, we can assume ¢, = 0.

o, = 0. Let us denote by {x,} the sequence of lemma 4. Let us put

£(6,0,0) = fo(8) + /,(5,0,a) = fle;a,, oxp (— A4,3) , (3.5)

where

(i) fo(s) = ;2'.' a,exp(— 1,8) I,: [z]+ fz)szx<2,),
An€{ly}
+ oo

()  fi(s,0,0) = fleXP («6/[,])- %, (8) ,
uv(s) = 2 a, exp (— ﬂ.nS) ’
lﬂelv

6: areal constant, «: a parameter (= V-1 or 1),
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(i) &, = exp (xb/[z,]) for A,e{l,},

g =1 for A,¢{l,} .
Then, by lemma 6 (B), (3.5) has the simple convergence-abscissa ¢ = 0. Put
f(8,0,0) — f(s,6, ) (3.6)
= I (oxp (a6][z,]) — oxp (a0'/[,)}- v, o)

v=1

+ o0
=2Xe,a,exp(— 4,8) for 6 #£6,
n=1
where

e, =0 for A,e{l,},

€, = €Xp (ao/[xv]) — €exp (ao,/[mv])
— (0 — 0)/[5,]+ 0(1fa) for Aneil,) .

Then, by lemma 4 (b) and lemma 6 (A), (3.6) has also the simple convergence-
abscissa ¢ = 0.

(3.6) has ¢ = 0 as the natural boundary. To establish this fact, by lemma 1,
it is sufficient to show that

l_iEIOm(l,w,t)II/"‘gl for arbitrary ¢ (—oo<t<<4o0) . (3.7)
m—>co
Since

Oz (1, 0,8) = {«(6 — 0')/[2,] + O(1/a})}- O(=,,t) ,
by lemma 4 (c)

lim|0,,(1,®,8) [Y* = Lim| O, (1, ®,t) [¥©="!
m—» oo V—>

= lim| O(x,,t) |/*»
V—>00

= lim|O(=,,t) """ =1 ,
V—>o0

from which follows (3.7).
Let us denote by E(6,x) the set of regular points on ¢ =0 of (3.5),
which is an open set. Then we have

E6,0)~E(0',a)=0 for 0 £6. (3.8)

In fact, if syeB(0,a)~E(0',a) # 0 (3.6), would be regular at s = s,, which
is impossible by (3.7). If E(6,«) # 0 forall (0<6<y, y: afixed constant),
by (3.8) the set of all functions {f(s,0,x)} is at most enumerable, which
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contradicts the power of continuum of the set of 6. Hence X (6,0) = 0 for at
least one 6, which shows that f(s,0,a) has ¢ = 0 as the natural boundary.

If «a=V —1 (or =1), (i) (or (ii)) of theorem 2 is established. q. e. d.
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