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On the singularities of Dirichlet séries

by Chttji Tanaka, Tokyo

1. Introduction. Let us put
00

F(s) 2Janexp(- Xns) (s a + it, 0^XX&lt;X2&lt;- • • &lt;Xn -&gt;+oo) (1.1)

The object of this note is to establish the following theorems :

Theorem 1. Let (1.1) have the finite simple convergence-abscissa a8. Then
there existe a séquence {en} (en ± 1) such that

oo

27enanexp(— Xns)

has a a8 as the natural boundary.

Theorem 2. Let (1.1) hâve the finite simple convergence-abscissa a8. Then
00

there exists a new Dirichlet séries 2bnexj)(— Àns) having a a8 as the
natural boundary such that n==1

IU K|(n 1,2,...), lim|arg(6J -arg(an)| 0 (i)
or n-&gt;0°

arg (K) arg (an) (n 1,2,...), lim|6n/aw| 1 (ii)

Under the additional conditions limlog?i/An 0, thèse two theorems
n—&gt;oo

have been proved by O. Szasz ([1], p. 107) and the author ([2], p. 308) respec-
tively. The method of its proofs is based upon A. Ostrowski&apos;s criterion of
singularities.

2. Lemmas. To establish thèse theorems, we need some lemmas.

Lemma 1. (A. Ostrowski [3, 4], pp. 12-16.) Let (1.1) have the simple con-
vergence-abscissa aê 0. For s 0 to be the singular point of (1.1), it is

necessary and sufficient that we have

lim| Om(af (o) |1/w^ 1 (m : positive integer),
where m^x&gt;

&lt;t(&gt;0), o)(0&lt;a)&lt;l) : fixedconstante, (i)

Om(o,a&gt;)= Z an(Znealm)mexv(- ^a) (ii)
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Lemma 2. The simple convergence-abscissa a8 of (1.1) is determined by

a8= lim l/#-log| E an\

[x] : Gauss&apos;s symbol, (i)

f(x) l/m-[m(x — m)] m [x] (ii)

Proof. By T. Kojima&apos;s theorem [5], a8 is given by

a8 lim l/#-log| E an\

ÏÏ^ l/[x]-log| E an\

Hence, for any given e &gt; 0),

| E an\&lt;exv{[x](a8 + e)} for [x]&gt;K(e)

Therefore

so that

Xn&lt;a; [xJ&lt;Xn&lt;a; U]&lt;XW

&lt;2exp {[o;]((Ts + e)} for [o:

Letting e -&gt; 0

Putting
f #

we hâve easily

a* lim 1/m-

0&lt;y&lt;w

Hence, for any given
I -27

0&lt;î/&lt;&gt;»

Accordingly
1 £ an\

\

^
Z +

^ ([y] + 1) exp {

lim

m +
+ /(*

log|
m

« (&gt;

«n
+ ylm

1/a

==:

0),

l&lt;

:-log|

o*&lt;Lo8

i (m |

27
&apos;

-~ n *

exp {m (a*

+ ••

)}^mexp

a
//m

• +

(2.1)

0&lt;y&lt;t»)

n
| (m : positive integer).

5)} for ra&gt;i£*(e)

-27 |

a* + e)} for m&gt;iT*(e)
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so that
a8— lim l/#log| S an\&lt;^o* + s

Letting s -&gt; 0,
(2.2)

Combining (2.1) with (2.2), lemma 2 is completely established.

Lemma 3. Put

O(x,t) 27 MV/M)1*1 exp (- An(l + »*))

if

/or even/ -X&quot; 5^cA ^a^ [#] -\- f(x)&lt;X^x, then

\O(x,t)\^\ E an\.{l-(\t\+K(x))/[x]}
where K(x) 0(1).

Prooî. Put

Ix m + t//m (m [a?], 0&lt;î/&lt;ra)

[oj] + f(x) m + [y]/m

Let us dénote by {Ami} (i l,2,...,r) the exponents A^« contained in
m + [y&quot;\jm^Xn&lt;m + y/w and by {ami} the coefficient corresponding to
Xmti. Setting

then by

Since

we hâve

\o

Abel&apos;s

O(x,t)

transformation

r

(«/«)-{«,/&lt;*-.r)

:(e/m)». |-Sr|-{|/(Am&gt; r)l~ i) - f(Xmi(+1)\} (2.3)

On the other hand, |/(A)| Awexp (— X) is monotone-decreasing for
^X. Hence, for m^a&lt;p&lt;m + 1,
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SO that
|/(a)-

Therefore, by (2.4)

187

(2.4)

J&apos;r

1=1

1 - mjz)dz

J zwexp( — z)dz

Hence, by (2.3) and [y] + 1

(-(m

J ««exp

(-([t/]
|flr|-{l - (\t\ + 0(1))/»}

which proves lemma 3.

Lemma 4. Let (1.1) fowe ^Ae simple convergence-abscissa o8 0. Then
there exists a séquence {xv} ([xv] f +oo) independent of t — oo&lt;t&lt;-}-oo)
such that

(a) |&gt;r](l + co)&lt;

(b) liml/avlog|

co)

(c) U

«ni 0

&quot;1^! forarbitrary t(—oo&lt;t&lt;+oo)

Proof. By lemma 2, we can find a séquence {yv} ([yv] f +oo) such that

,1

fliml/2/v.log|

Max

](l - co) (V=1&gt;

27 aw| 0

S an\
Put

where [xv] [t/J, f(xv) /(yv). Since

0 Kml/i/.log| 27 aJ^Bm
v—&gt;ao lVv] + Hvv)&lt;*n&lt;Vv v~&gt;oo

g lim

27 an\
[xv] +f(xv)&lt; &quot;kn&lt;Xv

27 an\ 0
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by (2.5) and (2.6), selecting a suitable subsequence, if neeessary, we hâve
easily

liml/a;v.log|
v—&gt;oo [

«nl=O

for every X such that [xv] + f(xv)&lt;X^Lxv

On account of (2.7) and lemma 3

(2.7)

E an\ 0

lim 10 (xv, t) \in&quot;v] ^ Um |

V—&gt;00

for arbitrary t — oo&lt;t&lt;+oo)

which is to be proved.

Lemma 5. Let (1.1) hâve the simple convergence-abscisse a8 0. ï%en, /or
-{-00

any séquence {xv} ([#„] t+°°)&gt; ^up(s) converges absolutely for o&gt;0, where

uv(s) E an exp (—Xns)

Prooî. By lemma 2

0= Km 1/z-logl E an\ ïîm l/[a?]-log| E an\

Hence, for any given e &gt; 0)

| E aj&lt; exp (£[&gt;]) for [x]&gt;X(e) (2.8)
[s]+/(s)&lt;:An&lt;*

Using the same notations as in lemma 3, by Abel&apos;s transformation

rv
uv(s) Eamvti exp (— Amypia)

(- Xnv-t8) - exp (- Amv&gt;t+1«)}
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where _ _,

xv mv + yv\mv (mv [xv] 0&lt;yv&lt;mv)

Since OJ + /(*&gt;) mv + [yvil^v
| exp (— «5) — exp (— /8*)|&lt;£|a|/&lt;7-{exp (— a&lt;r) — exp (— /?

for ol&lt;P, &lt;r&gt;0, by(2.8)

\uv(*) I &lt; M/cr-exp (e[a?v]. {exp (— Amv,rj;or)

rv-l
+ S exp (- Awri&lt;or) - exp (- XmvtMa)}

^|*|/or-exp([a;J(6-flf)) for cr&gt;0, [xv]&gt;X(e)

Therefore, putting s or/2

\uA*)\£\s\la-exp{- o/2.[xp])

so that Suv (s) is absolutely convergent for a &gt; 0. q. e. d.

Lemma 6. Let (1.1) Aavc £Ae simple convergence-abscissa a8 0.
{A) Let us put +00 +00

- An5) (2.9)

(a) îïn^ l/avlog| ^ aw| 0x) ([xv] m, f +oo)

(b) lim l/x-log|«(a?)| 0
a;-&gt;-foo

(c) uv(s) 21 aw exp (— Aw«)

(d) je, «(«!„) /or ABe{/,,} (/,:[arr] + /(
(eB 0 /or ^{7,}.

(2.9) has the simple convergence-abcissa a 0.
(B) Set

+a&gt; +x
/„(«) + Z ô(mv)uv(s) 274aB exp (- Xns) (2.10)

where &quot;=1 &quot;=1

(e) /o(«) ^ anexp(— An«)

(f)jC; ^K) /or Ane{/,}

|&lt;=1 /or ^{7,}.
(2.10) has also the simple convergence-abscissa a 0.

By lemma 1, there existe a séquence {xv} satisfying (a).
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Prool. (A) By lemma 2

iîm l/#log| E an| 0. (2.11)
a;-»+00

Taking account of (a), (b), (c) and (d), we get

lim l/a.log| E enan\ —oo
n &lt; x

E enan\=YteLllxv.\og{\à(mv)\-\ E an\},
+ [x]+f(x)^Xn &lt; x

&lt;

ïîm l/*.log| 21 «.a,|=îîml/*r.log{|«(«ir)|.| Z an\},
a;-&gt;-j-oo ^X
{x]*~mv

mv+Hxv)&lt;x&lt;xv

Mm l/#-log| 21 enaw|=~oo,

so that -— » ^hm l/a?.log| 27 £nan| =0

which proves that the simple eonvergence-abseissa of (2.9) is a 0.
+ 00

(B) Since fo(s) /(s) — 27%v(6) by lemma 5 /0(«) is simply convergent
V=l +00 +OO

at least for a&gt;0. On account of (A), S ô(mv)&apos;Uv(s) S enan exp (— Àns)

is simply convergent exactly for cr&gt;0, so that (2.10) is simply convergent at
least for a &gt; 0. In other words, by lemma 2

lim l/2-log| E e^aw|^0
[x]+Hx)&lt;Xn&lt;x

On the other hand, by (a), (b), and (f)

É 27 &lt;an| îî^ 1/^-log {\ô(mv)|• | E an\)
&gt;+oo

0

Therefore 77— „ nhm l/a;.log| 27 «;«„) 0

which proves that (2.10) has also the simple convergence-abscissa a 0.

q. e. d.
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3. Proofs ol theorems

Prooî of theorem 1. Without any loss of generaKty, we can assume as 0.
Let us dénote by {xv} the séquence of lemma 4. Then, by lemma 5, we can put

+£uv(s) fx(s) + f2(s) + f3(s).. + fn(s) +..
where v~1

(i) uv(s) S anexp(- Xns)
[xv] + f(xv)&lt;^\n&lt;xv

(ii) each/n(s) (91=1,2,...) contains infinité number of {uv(s)}.

For any given séquence {ôn} (ôn ± 1), set

fis: {Ôn}) fo(s) + ô1f1(*)+---+ àjn(8) +¦¦¦ (3.1)

fo(s) + Zecvuv(s)

+ 00

re&gt;nexp(- Xns)

where w~1

(i) fo(s) Z an exp (- Xns) (Iv : [xv] + f(

(ii) «,=±1
(iii) en ocv for K^ih)

4=1 for Awë{/V}

Then, by lemma 6 (B), (3.1) has the simple convergence-abscissa a 0.

For {ôn}i={ô&apos;n}(ônX=±V, wehave

3.2

where nal

(i) ^ ôn — à&apos;n (Since {ôn} ^ {^»}&gt; there exists at least one n such that
à&quot;n^ ±2),

(ii) w*(r) £ awexp(—Ans) ({a£}: subsequence of {xv}),

(iii) Cb=±2 for

en= 0 for
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On account of lemma 4 (b) and lemma 6 (A), (3.2) has also the simple conver-
gence-abscissa a 0.

(3.2) has or 0 as the natural boundary. To prove this, by lemma 1, it is
sufficient to show that

ÏÏm \Om(l9(o;t)\llm^l forarbitraryt (-oo&lt;t&lt;+oo) (3.3))

where

Om(l,a&gt; ; t) E £nan(Ane/m)^.exp (- Aw(l + it))

Since Ou,v](l,ft&gt; ; t) ±20(xfv&gt;t) by lemma 4 (a), we hâve by lemma 4 (c)

ïïm \O(x&apos;v,t)\ll[x&apos;v]

^lim \O(xv,t)\ll[Xv]
which proves (3.3). v~&gt;+°°

Let us dénote by i?({&lt;5n}) the set of regular points on a 0 of (3.1),
which is evidently an open set. Then we hâve

E({dn})~E({â&apos;n}) 0 for RJ # {^} (3.4)

In faet, if sO€E({ôn})r&gt;E({ô&apos;n}) ^ 0, (3.2), would be regular at « s0,
which is impossible by (3.3). If E({ôn}) # 0 for ail {ôn}, by (3.4) the set
of ail functions {f(s:{dn})} is at most enumerable, which contradicts the
power of continuum of the set of ail {&lt;3n}. Hence E({ôn})=0 for at least one
{ôn}&gt; which shows that f(s: {ôn}) has a 0 as the natural boundary.

+ 00

(3.1) is evidently of the form Esfnan exp (— Xns) (efn ± 1). q. e. d.

Prool oî theorem 2, Without any loss of generality, we can assume a8 0.
a8 0. Let us dénote by {#„} the séquence of lemma 4. Let us put

/(M,«) fois) + fr(89e,oc) f&lt;an exp (- lns) (3.5)
where n==sl

(i) /0(«) E an exp (- Ans) (/v : [a;,] + /(xv)

(il) A(5,0,a) /exp (a0/[a:v]).^(5)

uv(s)= E anexp(- Àns)

0 : a real constant, a : a parameter l/— 1 or 1),



On the singularities of Dirichlbt séries 193

(iii) efn exp (&lt;xO/[xv]) for h€{Iv} &gt;

e&apos;n 1 for Ane{Jy}

Then, by lemma 6 (B), (3.5) has the simple convergence-abscissa a 0. Put

f(s,09a)-f(890&apos;f*) (3.6)

iT{exp M/K3) - exp (oc6&apos;/[xv])}-uv(8)

Z enan exp (— An5) for 0 ^ 0&apos;,

where

en 0 for An€{/V}

en exp M/O,]) - exp («fl&apos;/fo,])

«(0 - fl&apos;)/[xF] + 0(1/^) for An€{/V}

Then, by lemma 4 (b) and lemma 6 (A), (3.6) has also the simple convergence-
abscissa a 0.

(3.6) has a 0 as the natural boundary. To establish this fact, by lemma 1,

it is sufficient to show that

lim|Om(l,ct&gt;,0|1/wâl for arbitrary t (—oo&lt;t&lt;+oo) (3.7)

Since

by lemma 4 (c)

lim | 00,(1, o
m—&gt;oo

from which follows (3.7).
Let us dénote by E(63oc) the set of regular points on a — 0 of (3.5),

which is an open set. Then we hâve

E(d,oc)r,E(0&apos;, oc) 0 for 0 ^ 0&apos; (3.8)

In fact, if 80€E(0,a)rsE(6&apos;9a) # 0 (3.6), would be regular at s a0, which
is impossible by (3.7). If E(0, a) # 0 for ail 0 (0 &lt; 0 &lt;y, y : a fixed constant),
by (3.8) the set of ail fonctions {/(s,0,a)} is at most enumerable, which
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contradicts the power of continuum of the set of 0. Hence E(69oc) 0 for at
least one 0, wMeh shows that /(s,0,a) has or 0 as the natural boundary.

If oc \/— 1 (or =1), (i) (or (ii)) of theorem 2 is established. q. e. d.
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