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Konvexitât in der komplexen Analysis

Nicht-holomorph-konvexe Holomorphiegebiete und Ânwendangen
auf die Àbbildungstheorie *)

von Hans Gbauebt und Reinhold Remmebt, Munster (Westfalen)

Einleitung

1. Die Charakterisierung der Existenzgebiete holomorpher Funktionen uber
dem Raum Cn von n komplexen Veranderlichen durch Eigenschaften lokaler
Natur ist wahrend der letzten Jahre eines der Hauptanliegen in der Funktionen-
theorie mehrerer Veranderlichen gewesen. Man verdankt vor allem K. Oka die
Lôsung des bekannten LEVischen Problems.1) K. Oka zeigte 1942 (vgl. [24]),
daB ein Gebiet G im zweidimensionalen Zahlenraum C2 genau dann ein Holo-
morphiegebiet ist, wenn G in jedem seiner Randpunkte pseudokonvex2) (im
Sinne von H. Cartan [7]) ist, das heiBt, wenn es zu jedem Randpunkt 3 von G

eine Umgebung U($) c Cn gibt, so daB jede zusammenhangende Komponente
von Gr\ £7(3) ein Holomorphiegebiet ist. Im Jahre 1953 hat K. Oka (vgl. [25])
die Gultigkeit dièses fundamentalen Satzes fur beliebige unverzweigte Rie-
MANNsche Gebiete uber einem Zahlenraum Cn beliebiger endlicher Dimension
bewiesen und uberdies eine weitere Verallgemeinerung fur verzweigte Rie-
MANNsche Gebiete uber dem Cn angekundigt, fur Gebiete im Zahlenraum
haben 1954 H. Bremermann [6] und F. Norguet [22] ebenfalls Beweise fur den
OKAschen Satz angegeben.

Die grundlegende Bedeutung des Satzes von Oka fur die komplexe Analysis
laBt die Frage berechtigt erscheinen, ob es bei der LEVi-OKAschen Charakterisierung

der Holomorphiegebiete des Cn notwendig ist, die Pseudokonvexitat
des Gebietes G in jedem seiner Randpunkte zu fordern, oder ob es vielleicht
genùgt, die Pseudokonvexitat von G nur in einer ,,genugend dicht liegenden
Randpunktmenge von G&quot; vorauszusetzen. In der vorliegenden Arbeit wird ge-

*) Die Resultate der vorliegenden Arbeit wurden zum Teil in emer Comptes Rendus Note der
Verfasser angekundigt; vgl. [12].

*) Bereits 1910 hat E. E. Lbvi notwendige Bedingungen fur Holomorphiegebiete im C2 mit
glattem Band in Form von Differentialungleichungen angegeben, vgl [20] sowie auch [5]. Die
Frage, ob dièse Bedingungen hinreichend sind, bildet den Inhalt des sogenannten Lsvischen
Problems.

¦) Es ist eine bekannte Tatsache in der Funktionentheorie mehrerer Verânderlichen, dafi sich
Holomorphiegebiete durch Eigenschaften charaktensieren lassen, die m einer gewissen Analogie
zu der Elementarkonvexitàt stehen. Vgl hierzu etwa die ausfuhrhche Darstellung m [4]
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zeigt, daB in der Tat Aussagen in dieser Richtung gemacht werden kônnen. So

ist zum Beispiel ein Gebiet G im Cn bereits dann ein Holomorphiegebiet, wenn der
Rand von G bis auf eine diskrete Menge nicht isoliert liegender Randpunkte
pseudokonvex ist (vgl. Satz 6).

Um eine môglichst weitgehende Aussage formulieren zu kônnen, fûhren wir
den Begriff der dûnnen sowie hebbaren Randpunktmenge ein. Wir nennen in
Verallgemeinerung des BegrifEes der diinnen Menge (vgl. [14]) eine Randpunktmenge

A eines Gebietes G des Cn dûnn, wenn es zu jedem Punkt 3* eA eine

Umgebung U c Gn und eine in U&lt;^G holomorphe, nirgends identisch ver-
schwindende Funktion / gibt, so daB zu jedem Punkt 3^4^ U eine gegen 3

konvergierende Punktfolge 3,,et/^G existiert, fur die gilt : lim f(iv) 0.

Weiter heiBt ein Punkt 3 des Randes von G ein hebbarer Randpunkt, wenn
es eine zusammenhàngende Umgebung U von 3 und eine in U analytische
Menge M ^ U gibt, so daB jeder Randpunkt von G, der in U liegt, zu M
gehôrt.

Als wichtiges Résultat ergibt sich nun :

1. Ein Gebiet G im CM, welches auflerhalb einer dûnnen, nicht hebbaren
Randpunktmenge ûberall pseudokonvex ist, ist ein Holomorphiegebiet.

Der Beweis dièses Satzes stiitzt sich einerseits wesentlich auf den OKAschen

Hauptsatz ; andererseits auf einen von den Verfassern frûher bewiesenen Satz
iiber hebbare Singularitâten plurisubharmonischer Funktionen [14].

2. Fur die Untersuchung der nichtschlichten RiEMANNschen Gebiete iiber
dem Cn hat sich der PseudokonvexitàtsbegrifiE in der oben angegebenen Form
als nicht zweckmàBig erwiesen. Oka legt seinen Untersuchungen daher einen
anderen PseudokonvexitàtsbegrifiE zugrunde ; derselbe wird durch die Konti-
nuitâtssàtze motiviert (vgl. auch [3]). Bekanntlich ist eine holomorphe Funktion

gewiB dann nicht singulâr in einem Punkte 3 eCn, wenn es ein eindimen-
sionales analytisches Flàchenstuck F durch 3 und eine gegen F konvergierende
Schar Fv von ebensolchen Flâchenstûcken gibt, derart, daB / auf allen Fv und
auf dem Rande von F holomorph ist (vgl. etwa [3]). In einem schlichten
Holomorphiegebiet G kann es daher keine Folge Fv von eindimensionalen
analytischen Flâchenstûcken geben, die gegen ein analytisches Flàchenstuck F
konvergiert, welches durch einen Randpunkt von G làuft und dessen Rand aus
inneren Punkten von G besteht. Dièse Eigenschaft eines schlichten Holomor-
phiegebietes G wird die Pseudokonvexitât von G genannt ; allgemein nennt
man ein Gebiet im Cn pseudokonvex genau dann, wenn es sich gegenûber
Scharen von eindimensionalen analytischen Flâchenstûcken in derselben Weise
verhâlt wie die Holomorphiegebiete. Die Resultate von Oka lehren, daB fur
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Gebiete im Cn dieser Pseudokonvexitatsbegriff mit dem von Cartan angegebe-
nen ûbereinstimmt.

Dèr Begriff des pseudokonvexen Gebietes làBt sich auf beliebige nicht-
schlichte RiEMANNsehe Gebiete ûbertragen (vgl. Définition 8), da man auch
hier den Begriff des Randpunktes einfuhren kann. Ebenfalls kann man fur
beliebige Gebiete uber dem Cn den Begriff der dûnnen sowie hebbaren Rand-
punktmenge erklâren. Satz I behàlt dann auch fur nichtschlichte unverzweigte
RiEMANNsche Gebiete uber dem Cn seine Gultigkeit (Satz 4). Der Versuch einer
weiteren Ausdehnung dièses Satzes auf beliebige RiEMANNsche Gebiete mit
Verzweigungspunkten im Innern scheitert aber. Vielmehr zeigt sich :

Es gibt ûber dem Cn, n ^ 3, verzweigte, nicht-pseudokonvexe RiEMANNsche

Gebiete, deren Band bis auf einen nicht-hebbaren Bandpunkt Obérait pseudokonvex
ist.

Das zu diesem Zwecke konstruierte Beispiel lehrt darûber hinaus :

II. Es gibt iiber dem Cn, n^S, verzweigte (sogar zweiblâttrige) Holomorphie-
gebiete mit lavJter uniformisierbaren Punkten, die weder holomorphlconvex noch

pseudokonvex sind,
Man kann im AnschluB an dièses Beispiel weiter zeigen, daB in verzweigten

Holomorphiegebieten nicht mehr aile Aussagen gelten, die von der Funktionen-
theorie in schlichten Gebieten her bekannt sind (vgl. auch [16]).

3. Man kann Satz I benutzen, um Aussagen ûber das Entartungsverhalten
holomorpher Abbildungen von komplexen Râumen zu gewinnen. So ergibt
sich, wenn man iiberdies noch einen weiteren Satz uber hebbare Singularitâten
plurisubharmonischer Funktionen heranzieht :

III. Eine holomorphe Abbildung eines n-dimensionalen komplexen Baumes X
in eine n-dimensionale komplexe Mannigfaltigkeit Y, deren Funktionàldetermi-
nante auflerhalb der nichtuniformisierbaren Punkte K von X nirgends verschwin-
det, besitzt keine Entartungsstellen. Ist die Abbildung aufierhalb K eineindeutig,
so ist sie in ganz X eineindeutig.

Fur die Gultigkeit dièses Satzes ist wesentlich, daB Y nur aus uniformisierbaren

Punkten besteht (vgl. hierzu etwa das in [13], pp. 292-294 angegebene
Beispiel einer eigentlichen wesentlichen Modifikation). Man kann aile holo-
morphen Abbildungen von w-dimensionalen komplexen Râumen ineinander,
die in hôchstens (n — 2)-dimensionalen analytischen Mengen entartet sind,
zur Konstruktion nieht-holomorph-konvexer Holomorphiegebiete benutzen.

Der Beweis von Satz III ist so angelegt, daB man ûberdies ein Kriterium fur
die Existenz nicht-uniformisierbarer Punkte in komplexen Râumen gewinnt :

IV. Ein n-dimensionaler komplexer Raum X ist im Punkte x*X genau dann
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nicht-uniformisierbar, wenn es in keiner Umgebung U(x) n holomorphœ Funk-
tionen gibt, deren Funktionalmatrix aufterhalb einer in U(x) analytischen, hoch-

8ten8 (n — 2)-dimensionalen Menge vom Maximalrang ist.
Anwendungen dièses Kriteriums zum Nachweis, daB xeX ein nicht-uni-

formisierbarer bzw. uniformisierbarer Punkt ist, sind môglich.

§ 1. Plurisubharmoniscke Funktionen in komplexen Rftumen

1. Wir werden in dieser Arbeit einige Resultate aus der Théorie der pluri-
subharmonischen Funktionen in komplexen Ràumen benutzen. Es sei zunâchst
an den Begriff des komplexen Raumes erinnert. Zur genauen Définition vgl.
[16]: Unter einem komplexen Raum X wird ein Ha usDORFFScher Raum verstanden,
der mit einer komplex-analytischen Struktur verséhen ist. Eine komplex-analyti-
sche Struktur ist ein maximales System von komplexen Karten (Uyip) in X, die
untereinander holomorph vertràglich sind. Komplexe Râume haben also fol-
gende charakteristische Eigenschaft : Zu jedem Punkt x^X gibt es eine

Umgebung U, die sich umkehrbar holomorph auf eine endlich-blàttrige ana-
lytisch-verzweigte Ûberlagerung 3) 9î {R, 0, G) eines Gebietes G des Cn ab-
bilden lâBt.

Man kennt in der Théorie der komplexen Ràume die Begriffe : holomorphe
Funktion, holomorphe Abbildung von komplexen Râumen ineinander, analy-
tische Menge usw. Der Begriff der plurisubharmonischen Funktion in einem

komplexen Raum ist von den Verfassern in einer frûheren Arbeit eingefûhrt
worden [14]. Es wurde definiert :

Définition 1. Eine Funktion p(x) in einem komplexen Raum X keifit pluri-
subharmonisch in X, wenn folgendes gilt:

(x) Die Werte von p(x) sind réelle Zahlen oder —oo,

P) V(x) ^ in X halbstetig nach oben: lim p(x) ^ v(xo)&gt;

y) Ist r eine holomorphe Abbildung eines Gebietes W der komplexen Zahlenebene

in X, so ist por eine subharmonische Funktion in W 4).

2. Es sei P {pt(x), ceJ} eine Familie von in einem komplexen Raum X
reellwertigen, nach oben halbstetigen Funktionen (—oo sei als Wert zugelassen),

8) Zum Begriff der analytisch-verzweigten Ûberlagerung vgl. auch [13], [15], f 16].
*) Im komplexen Zahlenraum wurde der Begriff der plurisubharmonischen Funktion von

P. Lklong und K. Oka eingefûhrt. Grundlegende Sâtze sowie weitere Literaturhinweise finden
sich in [19]. Zur subharmonischen Funktion vgl. [5].
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die auf jeder kompakten Teilmenge von X gleichmâfiig nach oben beschrânkt
•s.

sind. Unter der oberen Einhûllenden P(x) der Menge P versteht man die

kleinste, nach oben halbstetige Funktion, fur die gilt: P(x) ^ pt(x) fur
xcX, ieJ. - Plurisubharmonisehe Funktionen haben folgende Eigenschaft :

a) Ist P {pt(x), teJ} eine Familie von in einem komplexen Raum X pluri-
subharmonischen Funktionen, die auf jeder kompakten Teilmenge von X gleich-

mâfiig nach oben beschrânkt sind, so ist die obère Einhûllende P(x) eine in X
plurisubharmonisehe Funktion.**)

Offenbar ist die Grenzfunktion einer absteigenden Folge nach oben halb-
stetiger Funktionen wieder nach oben halbstetig. Fur plurisubharmonisehe
Funktionen gilt sogar :

b) Die Grenzfunktion einer absteigenden Folge von plurisubharmonischen
Funktionen ist eine plurisubharmonisehe Funktion.

Wie die subharmonischen Funktionen genûgen auch die plurisubharmonischen

Funktionen dem Maximumprinzip :

c) Jede plurisubharmonisehe Funktion, die im zusammenhângenden komplexen
Raum X ihr Maximum annimmt, ist konstant.

Wir werden weiter den folgenden, wohl zuerst von Oka (vgl. [23], p. 123)
bewiesenen Satz uber subharmonische Funktionen benutzen :

d) Ist s(z) eine subharmonische Funktion in einem Gebiet W der Zahlenebene

und {z(t), 0 &lt; t &lt; 1} ein Weg in W, so gilt: îîm s(z(t)) s(z(l)).

3. Fiir plurisubharmonisehe Funktionen gelten zwei Fortsetzungssàtze, deren

Analoga fur holomorphe Funktionen hinreichend bekannt sind. Um dièse Sâtze
im AUgemeinfall formulieren zu konnen, fûhren wir den Begriff der diinnen
Menge ein (vgl. auch [14]) :

Définition 2. Eine abgeschlossene Teilmenge D eines n-dimensionalen
komplexen Baumes X heiflt dûnn von der Ordnung k, wenn es zu jedem Punkt xeX
eine Umgebung U(x) und eine in U(x) analytische, hôchstens (n — k)-dimen-
sionale Menge M gibt, so dafi gilt: U^D c M.

In [14] wurde bewiesen :

Satz 1. Ist D eine dilnne Menge der Ordnung 1 in einem komplexen Raum X
und ist p(x) eine in X — D plurisubharmonisehe Funktion, die in einer
Umgebung eines jeden Punktes xcD nach oben beschrânkt ist, so existiert genau eine

4*) Der Beweis ergibt sich aus [19] und [14], Satz 3. Die Aussage ist nicht, wie in [14] ange-
nommen, trivial!
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plurisubharmonische Fortsetzung p(x) von p(x) in ganz X. Die Funktion p{x)
ist in den Punkten x&apos;cD wie folgt definiert: p(x&apos;) lim p(x).

x—yxf ,%€X—D
Satz 2. Ist D eine dilnne Menge der Ordnung 2 in einem komplexen Raum X,

so ist jede in X — D plurisubharmonische Funktion eindeutig zu einer in ganz X
plurisubhurmonischen Funktion fortsetzbar.

§2. Pseudokonvexe UiEMAWsche Gebiete und plurisubharmonische Funktionen

1. Es werden in diesem Paragraphen komplexe Râume untersucht, die in
bestimmter Weise dem Cn uberlagert sind. Man nennt dièse Râume in Analogie
zu den RiEMANNsehen Flâchen auch RiEMANNsehe Gebiete.

Définition 3. Ein Paar © 0) heifit ein RiEMANNSches Gebiet ûber dem
Cn, wenn

1. G ein HAusDORFFScher Raum und 0 eine offene, stetige Abbildung von G in den
Cn ist,

2. es zu jedem Punkt xcG eine Umgebung U(x) gibt, derart, dafi

eine analytisch-verzweigte, endlich-blâttrige Vberlagerung5) von 0(U) ist.
G ist in natûrlicher Weise mit einer komplexen Struktur versehen, so daB 0

eine holomorphe Abbildung ist. Wir nennen © unverzweigt, wenn 0 lokal-topo-
logisch abbildet. Fur unsere weiteren Ùberlegungen benôtigen wir den Begrifif
des (erreichbaren) Randpunktes eines RiEMANNschen Gebietes (vgl. auch [11]).

Définition 4. Ein (erreichbarer) Randpunkt eines RiEMANNSchen Gebietes (5

ist ein Filter6) r von offenen, zusammenhângenden Mengen U c G mit folgenden
Eigenschaften :

1. Der Filter der Mengen 0(U)f Uer, konvergiert gegen einen Punkt

2. Ist V eine Umgebung von 30, so enihàlt r genau eine zusammerihàngende Kom-
ponente von 0~1(F).

3. Der Filter r hat keinen Hâufungspunkt in G.
Die Menge aller (erreichbaren) Randpunkte von © heiflt der Rand dG von ©.

8) Zura Begriff der analytisch-verzweigten Ûberlagerung vgl. auch [13], [15], [16].
•) Unter einem Filter F iiber einer Menge M verstehen wir ein nichtleeres System nichtleerer

Teilmengen von M, derart, daû zu zwei Elementen M19 M% aus F stets eine Menge JV aus F
exiatiert, fiir die gilt : N C Mt r\ M2.



158 Hans Graubbt / Reinhold Remmert •

Ist © (G, t), wo G ein Gebiet des Cn und t die Injektion bezeichnet, so
nennt man bisweilen jeden Punkt ^eCn — G, der Haufungspunkt von G ist,
einen Randpunkt von G. Dièse Définition ist im allgemeinen nicht mit Définition

4 âquivalent. Wird jedoch G von einer stûckweise glatten (2n — 1)-
dimensionalen Flâche berandet (zum Beispiel Hyperkugel oder Polyzylinder),
so kônnen offenbar aile Randpunkte von G im Sinne der Définition 4 in ein-
deutiger Weise durch konkrete Randpunkte - nâmlieh jeweils durch den Limes
des Bildfilters bezûglich i - reprâsentiert werden.

Die Abbildung 0 wird durch die Festsetzung &amp;(r) 30&gt; 0(x) &amp;(x),

redG, xeG, zu einer Abbildung 0 von G G + dG in den Cn fortgesetzt7).

Wir fûhren in G eine Topologie ein, indem wir den Randpunkten rocdG
Umgebungen zuordnen. Es sei etwa Uo eine beliebige Menge aus r0. Unter
einer Umgebung F(r0) verstehen wir die Vereinigung von Uo mit den Filtern
redG, die wenigstens eine Menge U c Uo enthalten.

OfEenbar wird G dureh dièse Topologie zu einem HAUSDOBFFschen Raum ge-

macht. 0 ist eine stetige Abbildung von G in den Cn.

Ist B irgendein Teilbereich von G, so ist S {B, 0) wieder ein Riemann-

sches Gebiet ûber dem Cn. B kann im allgemeinen nicht als Teilmenge von G

aufgefaBt werden. Jedoch lâfit sich die Injektion i: B -+G in naturlieher

Weise zu einer stetigen Abbildung Y von B in G fortsetzen. Die Abbildung 0 • ï
ist gleich der stetigen Fortsetzung der auf B beschrânkten Abbildung 0 in B.

Wir merken noch an :

ZujedemPunkt redG gibt es eine Kurve {x(t), 0 &lt; t &lt; 1}, x(l) r, inG,
die fur 0 &lt; t &lt; 1 inG verlauft.

Um ein spàteres Hauptresultat bequem formulieren zu kônnen, definieren
wir noch :

Définition 5. Ein Randpunkt redG heiflt ein hebbarer Randpunkt von ©,

wenn es eine Umgebung U(r) c G gibt, so daft ©t (U, 0) einschlichtesRie-
MANNSches Gebiet ist, in dem U^dG eine dûnne Menge 1. Ordnung ist.

Randpunkte, die den Bedingungen dieser Définition nicht genugen, heiBen
nicht-hebbare Randpunkte. - Der Begriff des hebbaren Randpunktes ist hier sehr

eingeschrânkt, damit die Menge der nicht-hebbaren Randpunkte môglichst
groB wird. Das ist fur die Anwendungen unseres Hauptsatzes (Satz 4) von
Bedeutung.

7) Man beachte, daÛ fur Gebiete G im Cn die abgeschlossene Huile G von O im allgemeinen

nicht mit O ùbereinstimmt.
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Offenbar ist die Menge der nicht-hebbaren Randpunkte eines RiEMANNschen
Gebietes stets abgeschlossen.

Der Rand dG eines RiEMANNschen Gebietes © 0) ist in einer Um-
gebung jedes hebbaren Randpunktes hôchstens (2n —¦ 2)-dimensional (im
Sinne von K. Menger [21]), da dG dort Teilmenge einer analytisehen Menge ist,
deren réelle Dimension hôchstens 2n — 2 ist. Ist der Rand dG in allen Punk-
ten (2n — l)-dimensional, so besteht er also aus lauter nichthebbaren Rand-
punkten. Wir definieren noch :

Définition 6. Eine abgeschlossene Menge D c 96? hei/it eine dilnne Menge,
wenn es zu jedem Punkt roeD eine Umgebung U(r0) und eine in U&lt;^G holo-
morphe, nicht identisch verschwindende Funktion f gibt, so dafi zu jedem Punkt
reD^U eine gegen r konvergierende Folge xveUr*G existiert, fur die gilt:
limf(xv) 0.

V-&gt;OO

2. Der Begriff der Pseudokonvexitàt kann in RiEMANNsehen Gebieten auf
mannigfache Weise eingefûhrt werden. Wir ziehen zur Définition spezielle
Scharen analytischer Mengen heran.

Définition 7. Unter einer Schar von k-dimensionalen analytisehen Mengen in
einem RiEMANNSchen Gebiet © 0) wird eine nirgends entartete holomorphe
Abbildung a{k)(w,t) der k-dimensionalen Einheitshyperkugel

K:{\m\ (w1w1+...+ wkwM)i &lt; 1}

des Ck in G verstanden, die noch stetig von einem reeïlen Parameter t, 0 ^ t ^ 1,
abhangt.

Dabei sagen wir, a{k)(vo, t), t t0, bildet K holomorph in G ab, wenn die

Abbildung 0oaik) : K -&gt;Cn in (einer Umgebung von) K holomorph ist.
Eine Schar von analytisehen Mengen a{k)(m, t) in © heifit ausgezeichnet, wenn

a{k\m,t) fur vû€K, 0 &lt;^&lt;1 und fur mtdK, O&lt;I&lt;1, inGliegt.
Wir merken sofort an : Es sei a{k){vo, t) fur 0 ^ t &lt; 1 eine Schar von

k-dimensionalen analytischen Mengen in G ; 0oaik)(m, t) sei stetig fortsetzbar in
t 1. Dann gibt es filr 0 ^ t ^ 1 eine Schar a{k)(wft) von k-dimensionalen

analytischen Mengen in G, die fiir 0 &lt; t &lt; 1 mit der Schar aik)(m, t) iiberein-
stimmt. - Der Beweis ist trivial. Es werde nun definiert :

Définition 8. Ein RisuANNSches Gebiet © (&lt;?, 0) tiber dem Cn hei/ti
psevdokonvex, wenn fur jede ausgezeichnete Schar a(1)(to, t) von l-dimensionalen
analytischen Mengen in © der Durchschnitt {cr(1)(tD, \)}&lt;^dG leer ist8).

*) Diesem Pseudokonvexitâtsbegriff lassen sich sofort schw&amp;chere Pseudokonvexitâtsbegriffe
an die Seite stellen. So kann man etwa ein Rieinannschea Gebiet (5 (O90) iiber dem C*
pseudokonvex vom Grade q nennen (g-pseudokonvex) (1 ^q^n— 1), wenn fur jede aus-
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Es bezeichne cr^t», t) eine Schar £-dimensionaler analytischer Mengen in
ffi, bei der die Menge {0oo^}(m, t)} in einer Hyperkugel vom Radius s ent-
halten ist. Wir nennen © pseudokonvex in einem Punkte redG, wenn es zu r eine
Umgebung U(r) und ein e&gt;0 gibt, so daft keine ausgezeichnete Schar a^to, t)
eindimensionaler analytischer Mengen in © mit Urs BO einen Punkt gemeinsam
hat. - Ein Satz von K. Oka besagt [25] :

Satz A. Ein unverzweigtes RiEMANNsches Gebiet © (0,&lt;P) uber dent Cn

ist genau dann pseudokonvex, wenn — In ô^ (x) eine in G plurisubharmonische
Funktion ist.

Dabei bezeichnet ô$(x) den euklidischen Abstand des Punktes xeG zum
Rande dG. Es gilt ferner, [11] :

Satz B. Ist © 0) ein unverzweigtes RiEMANNsches Gebiet ûber dem Cn,

so ist —In 6$(x) genau dann in G plurisubharmonisch, wenn —In &lt;5&lt;g(#) in
hinreichender Nahe jedes Randpunktes redG plurisubharmonisch ist.

Auf àhnliche Weise wie Satz A zeigt man :

Satz CL Ein unverzweigtes RiEMANNsches Gebiet © ((3,0) ist genau dann
pseudokonvex in einem Randpunkt redG, wenn — lnd^a;) in einer Umgebung
U(r)rsG plurisubharmonisch ist.

Unter Verwendung von Satz A und Satz B folgt sofort :

Ein unverzweigtes RiEMANNsches Gebiet © ist genau dann pseudokonvex
schlechthint wenn es in jedem Randpunkt pseudokonvex ist. Das letztere ist sicher
dann der Fall, wenn es zu jedem Punkt r cdG eine Umgebung U(r) gibt, so daB

U (r) rs G, 0) ein pseudokonvexes RiEMANNsches Gebiet ist.

3. Wir entwickeln nun ein Verfahren, das es gestattet, pseudokonvexe Ge-
biete durch ebensolche auszuschôpfen. Zunàchst gilt :

Satz D. Es sei p(x) eine plurisubharmonische Funktion in einem Riemann-
schen Gebiet © (G, 0) ûber dem Cn ; B sei der Bereich {xeG, p(x)&lt;M}.
Das RjEMANNSche Gebiet S (B, 0) ist dann in allen Randpunkten r* pseudokonvex,

die Uber einem inneren Punkt von G liegen.

Beweis : Wàre dB in r* nicht pseudokonvex, so gàbe es zu jeder Umgebung
C7(r*) und zu jedem e&gt;0 eine ausgezeichnete Schar o^to, t) von 1-dimensio-
nalen analytischen Mengen in S, so daB o^ivo, 1)^&gt; dBr^ U nicht leer ist. Sind

gezeichnete Schar (M){m, t) von g-dimensionalen analytischen Mengen ni © der Durchschnitt
{cr(9)(tu, l)}r\dG leer ist. Ist © pseudokonvex vom Grade q, so erst recht vom Grade q&apos; &gt; q. Es
sei darauf hmgewiesen, dafî neuerdmgs W. Rothstein bei der Untersuchung von Fortsetzungs-
problemen analytischer Mengen ebenfalla einen g-Konvexitâtsbegriff emgefuhrt hat (vgl. [31],
p. 130); dièse KoTHSTEiNsche ç-Konvexitât steht in Beziehung zu der hier definierten (n — q)-
Pseudokonvexitât.
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U(r) und e&gt;0 hinreichend klein gewâhlt, so ist die Menge

in G enthalten, da r* nach Voraussetzung ïiber einem inneren Punkt von G

liegen soll. Die Funktion q(vo) poïoa^ivo, 1) ist dann subharmonisch im
Einheitskreis K. Es gilt auf dK : q(w) &lt;M ; in den Punkten

weK mit o£\m,l)€dB

aberhatman q(m) M. Daferner q(rxt)^M in ganz K ist, haben wir einen
Widerspruch zum Maximumprinzip fur subharmonische Funktionen gewon-
nen. Damit ist Satz D bewiesen.

Es ergibt sich nun sofort aus Satz A und Satz D :

Satz D7. Ist (5 (G, 0) ein unverzweigtes pseudokonvexes RiEMANNsehes

Gebiet ûber dem Cn, so ist ($K (GK, 0), GE= {xeG, ô{x) &gt;K}, Z&gt;0, eine
Schar von pseudokonvexen RiEMANNSchen Gebieten, die G avsschôpft, wenn K
gegen 0 strebt.

Dieser Satz ist in folgendem Sinne umkehrbar :

Satz D&quot;. Es sei © 0) ein RiEMANNsehes Gebiet ûber dem Cn ; es sei
£*V&gt; ^iH-i ^ @vi e^ne Ausschôpfungsfolge von G, in der jedes Gebiet ®v (Gv,0)
pseudokonvex ist. Dann ist auch (5 pseudokonvex.

Beweis : Angenommen, (5 wâre nicht pseudokonvex. Dann gibt es in © eine

ausgezeichnete Schar 8 {(r(1)(to, t)} von eindimensionalen analytischen
Mengen, bei der SrsdG nicht leer ist. Da

JV {cr(1)(c**, t), 0&lt;^&lt;l, -;7r&lt;#&lt;+:rc}^ {a(1&gt;(tD, 0)}

eine kompakte Teilmenge von G ist, folgt, da8 fur ein v0 gilt : N c Gv Man
kann nun ein grôBtes tx finden, so da6 fur 0 ^t&lt;tx&gt; meK, die Punkte
(7(1)(tD, t) aus Gv sind. Die Schar {on)(w, t), 0 &lt; i&lt;^} lâfit sich zu einer in

(5V ausgezeichneten Schar S (a{1)(xo, t), 0 &lt; ^ tx} fortsetzen. Offenbar ist

Sr^dGVo nicht leer. Das widerspricht jedoch der Voraussetzung, daB (SVq

pseudokonvex ist.

4. Der Begriff der Pseudokonvexitât ist entscheidend fur die Charakterisie-

rung der Holomorphiegebiete ûber dem Gn. Zur Définition dieser speziellen
RiEMANNschen Gebiete ist es zweckmâBig, die folgenden Redeweisen zu ver-
wenden :

Ein RiEMANNsehes Gebiet © (6r, 0) ist in einem umfassenden Riemann-

schen Gebiet © 0) enthalten, wenn es eine spurpunkttreue, stetige Abbil-

11 Commentarii Mathematici Helvetici
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dung x von G in G gibt. Eine in G holomorphe Funktion f ist eine holomorphe

Fortsetzung einer in G holomorphen Funktion /, wenn /e/ot ist.
Ein RiBMANNsches Gebiet © heiBt nun ein Holomorphiegebiet, wenn es eine

in © holomorphe Funktion / gibt, die sich in kein © umfassendes Gebiet © ^ ©

holomorph fortsetzen lâBt. Zur Charakterisierung dieser Holomorphiegebiete
hat K. Oka den folgenden fundamentalen Satz bewiesen [25] :

Satz E. Ein unverzweigtes RiEMANNSches Gebiet © (G,&amp;) ist genau dann
ein Holomorphiegebiet, wenn © pseudokonvex ist9).

Dieser Satz gibt eine weitere Môglichkeit, die Pseudokonvexitât zu defi-
nieren. Es folgt nâmlich unter Verwendung von Satz E :

Satz F. Ein unverzweigtes Riemannsches Gebiet © ((?,$} ist genau dann
pseudokonvex; wenn es zu jedem Randpunkt redG eine Umgebung U(r) gibt, so

dafi (U(r)^G,&amp;) ein Holomorphiegebiet ist.
Dièse Eigenschaft wurde von H. Cartan zut Définition der Pseudokonvexitât

verwendet (vgl. [7]).
Bereits H. Cartan und P. Thullen haben den Begriff der Holomorphiekon-

vexitât eingefûhrt [9]. Wir definieren zunâchst den Begrifï der holomorph-
konvexen Huile K einer Teilmenge K c G. K ist die Menge aller Punkte
xcG, fur die gilt : \f(x) \ &lt; sup \f(K) \, wobei / aile in G holomorphen Funk-
tionen durehlâuft.

Ein RiEMANNSches Gebiet © ((?,$) Htber dem Cn heiflt holomorphkonvex,
/s.

wenn die holomorphkonvexe Hutte K jeder relativ-kompakten Menge K c G

kompakt ist. - Ein grundlegender Satz ist [25] :

Satz G. Jedes unverzweigte Holomorphiegebiet ist holomorphkonvex.
Wir werden spàter in einem Beispiel zeigen, dafi die Aussage von Satz G fur

verzweigte RiEMANNSche Gebiete falsch ist. Es gibt (sogar zweiblâttrige)
Holomorphiegebiete, die nieht holomorphkonvex sind. Jedoch ist jedes holomorph-
konvexe RiEMANNSche Gebiet ein Holomorphiegebiet ([2] sowie [10]).

Ein bekannter Satz ûber die holomorphkonvexen Gebiete lâBt sich unter
Verwendung von Définition 7 wie folgt formulieren : Jedes holomorphkonvexe
RiEMAMNSche Gebiet © ((?,$) ûber dem Cn besitzt einen dûnnen Rand.

In der Tat! Nach H. Cabtan und P. Thullen [9] gibt es eine in G

holomorphe, nieht identiseh verschwindende Funktion /, deren Nullstellen sich

•) Aus Satz E und Satz D&quot; ergibt sich sofort ein bekannter Satz von H. Behnke und K. Stein
liber konvergente Folgen von Holomorphiegebieten: Es sei (5 (G, 0) ein unverzweigtes Rie-
MAmssches Gebiet iïber dem Cn, es sei Gv, Gv+15 Ov, eine Ausschôpfungsfolge von G, derart, dafî jeweils
%v — (Gvf0) ein Holomorphiegebiet ist. Dann ist auch © (G, 0) ein Holomorphiegebiet. Vgl.
hierzu H. Behnke und K. Stein, Konvergente Folgen von Regularitâtsbereichen und die Mero-
morphiekonvexitat, Math. Ann. 116, 204-216 (1939).
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gegen jeden Randpunkt von © hàufen. Es gibt dann zu jedem Randpunkt
redG eine gegen r konvergierende Folge von Punkten xveG, derart, daB

(a;v) f(xv) 0 ist.

5. In Anlehnung an eine klassische Définition von F. Hartogs [17] ftihren
wir in unverzweigten RiEMANNschen Gebieten den Begriff der euklidischen
Distanzfunktion bezûglich einer beliebig vorgegebenen komplexen Riehtung
ein. Es sei etwa Ek eine i-dimensionale analytische Ebene im Cn, 1 &lt; k &lt; n,
Dureh jeden Punkt ^eC11 gibt es dann genau eine i-dimensionale Ebene
Ek(§)9 die zu Ek parallel ist. Ist nun © (G, 0) ein unverzweigtes Riemann-
sches Gebiet ûber dem Cn und ist xeG ein Punkt uber 3, so gibt es in
0~1(Ek($)) eine grôBte i-dimensionale Hyperkugel H(x,Ek) um x. Ihr
Radius sei mit ô(x, Ek) bezeiehnet. Ofïenbar ist ô(x} Ek) eine nach unten
halbstetige Funktion in G. Es gilt à(x,En) ô^x), wenn En der ganze
n-dimensionale komplexe Zahlenraum ist.

Définition 9, Die Funktion â(x, Ek) hei/it die euklidische Distanzfunktion
bezûglich Ek in G.

Ist © das Existenzgebiet der holomorphen Funktion f(x), so nennen wir
6(x, Ek) auch den Holomorphieradius von f(x) in x bezûglich Ek. Es gilt nun
der folgende

Satz 3. Es sei © (G,0) ein unverzweigtes RiEMANNSches Gebiet iiber dem

Cn. Ist dann © in allen Punkten von dG — M, M 0-1(Ek(^o))i UtCn,
pseudokonvex, so ist — In ô(x, Ek) stets eine in G — M plurisubltarmonische
Funktion.

Beweis : Es sei E {E1} die Menge der eindimensionalen analytischen
Ebenen, die in Ek enthalten sind. Offenbar ist

ô(x,Ek) ^i
Nun ist bekannt [5], daB aile Funktionen -—In ô(x, E1) unter unseren Vor-
aussetzungen in G — M plurisubharmonisch sind. Folglich ist — In ô(x, Ek)
obère Einhullende der plurisubharmonisehen Funktionen — In Ô(x, E1),
ExeE, und somit nach § 1.2) in G — M wieder selbst plurisubharmonisch,
w. z. b. w.

Anmerkung. Es sei betont, daB die Umkehrung von Satz 3 nicht richtig ist.
Es gibt zum Beispiel schlichte HARTOGSsche Gebiete

{5€CW, (z2,. ..,zn)€G c C^Wz, | &lt;R(z2,..., zn)} n &gt; 3
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die nicht pseudokonvex sind, obgleich

- In (5(3, E*) - In (R(z2, ...,zn)~ \zt\)
Ex= {3,z2 23=...= zn 0}

eine plurisubharmonische Funktion ist. Man braucht fur G nur ein Nichtholo-
morphiegebiet zu wâhlen.

§ 3. Yerallgemeinerung eines Satzes von K. Oka.

1. Wir wollen im folgenden zeigen, daB RiEMANNsche Gebiete oft dann schon
pseudokonvex sind, wenn sie es nur in genugend vielen Randpunkten sind. Als
Hauptresultat dièses Paragraphen werden wir erhalten :

Satz 4. Es sei © (G, 0) ein unverzweigtes BiEMANNSches Gebiet liber dem
Cn ; A c dG sei eine dûnne Menge von nicht-hebbaren Randpunkten. Ist dann ©
pseudokonvex in allen Punkten ans dG — A, so ist © pseudokonvex schlechthin.

Bevor wir diesen Satz beweisen, seien einige intéressante Folgerungen ge-
zogen. In Verbindung mit Satz E ergibt sieh sofort :

Satz 5. Es sei © (G, 0) ein unverzweigtes RiEMANNSches Gebiet ilber dem
Cn ; A c dG sei eine dûnne Menge von nicht-hebbaren Randpunkten. Gibt es dann

zu jedem Punkt rcdG — A eine Umgebung U(r) c G, so da/i (U(r)&lt;^G,0)
ein Holomorphiegebiet ist, so ist © selbst ein Holomorphiegebiet.

Fur wahr Da (U^G,0) nach Satz E pseudokonvex ist, ist © in jedem
Randpunkt redG — A pseudokonvex und damit pseudokonvex schlechthin.
Daraus folgt nach K. Oka. (Satz E), daB © ein Holomorphiegebiet ist, w. z. b. w.

Die Bedingung, daB A aus lauter nicht-hebbaren Randpunkten besteht, ist
Wesentlich, wenn dG Bestandteile von kleinerer reeller Dimension als 2n — 1

enthâlt. Ist etwa G* ein Holomorphiegebiet des zl9..., zn-Raumes und ist der

Nullpunkt 0 ein Punkt von G*, so ist auch G* — M, M {z1 0}, ein
Holomorphiegebiet. Sicherlich ist aber - wie man aus Définition 8 entnimmt -
G=G*—M^&gt;K nicht pseudokonvex, wenn KccM&lt;^G* eine (komplex) (n—1)-
dimensionale Kugel um 0 bezeichnet. Also ist G kein Holomorphiegebiet,
obgleich A dGr^M dunn und 6? in dG — A pseudokonvex ist.

Offenbar ist jede diskrete Menge A c dG eine diinne Randpunktmenge.
Dieselbe besitzt aber im allgemeinen hebbare Randpunkte, auch wenn aile
Punkte aus A nicht isoliert in dG liegen. Dennoch ergibt sich aus Satz 5 der
bereits im Spezialfall in [13], p. 287, angegebene

Satz 6. Es sei © (G, 0) ein unverzweigtes RiEMANNSches Gebiet ilber dem

Cn. Es sei A eine diskrete Menge von nichtisolierten Randpunkten. Ist dann ©

pseudokonvex in jedem Punkt rcdG — A, so ist © ein Holomorphiegebiet.
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Beweis Wenn man zeigt, da8 © in allen hebbaren Randpunkten von A
pseudokonvex ist, so ergibt sich die Behauptung direkt aus Satz 5. Sei also

rO€Â ein hebbarer Randpunkt. Es gibt dann eine Umgebung U(rQ) c G, der-

art, daB {U,&amp;) ein sehlichtes RiEMANNSches Gebiet ist. Hat man U hin-
reichend klein gewahlt, so enthalt U keine weiteren Punkte von A, und es gibt
eine rein (n — l)-dimensionale analytische Menge M in U, die dO^U ent-
lialt. M kann man wieder so klein machen, daB fur jede irreduzible Komponente
Mt c M, ici, die Menge (Mt — U M3)^dG nicht leer ist. Man braucht

dazu nur aile uberflussigen irreduziblen Komponenten aus M fortzulassen. Da
ferner nach Voraussetzung r0 nicht isoliert in dG liegt, ist auch

M%r,dG mit Mt (Mt - U Mt — r0) tel,
nicht leer. Nun ist - ebenfalls nach Voraussetzung - das RiEMANNsehe Gebiet

o

(JJt U{r^G, 0), wo Ut U — U Mi — r0, iel in allen Punkten von

U%rsdG c Jf^ C7t pseudokonvex. J7t kann als ein schlichtes Gebiet des Cn auf-
o

gefaBt werden, das Mt als irreduzible analytische Menge enthalt. Daher folgt
o o o

nach bekannten Satzen10), daB Ut= Ut — Mt, das heiBt Ut^dG Mt ist.
o

Dann gilt aber auch, weil Mt dicht in Mt liegt, M% c dGrslJ und somit
M dGr^U. Ein Rand, der eine rein (n— l)-dimensionale analytische
Menge ist, ist aber in allen Punkten pseudokonvex10). Also ist a fortiori © in
rQ pseudokonvex, q. e. d.

2. Eine weitere Folgerung aus Satz 4 ist :

Satz 7. Es sei © (G, 0) ein unverzweigtes RiEMANNSches Gebiet ilber dem

Cn $(©) (G, 0) sei die unverzweigte Holomorphiehitlle11) von ©. Es be-

zeichne r die spurpunicttreue holomorphe Abbildung von G in G. Ist dann M eine

rein {n — l)-dimensionale analytische Menge in G und bezeichnet M die in G

analytische Menge r~1(M), so ist auch (G — M90) ein Holomorphiegebiet, und

10) Es gilt bekannthch folgender Satz : Es sei O etn Qebiet im Cn und M eine m G irreduzible
(n — l)-dimensionale analytische Menge, es sei D eine nichtleere Teilmenge von M. Dann ist O — D
genau dann pseudokonvex %n allen Randpunkten reD, wenn gilt D — M. Em Beweis ergibt
sich leicht aus Satz 19 m [5], p 51

11 Ist 05 (G, 0) îrgendein unverzweigtes RiEMANNSches Gebiet, so kann man denDurch-
schnitt $((5) aller © umfassenden Holomorphiegebiete definieren, vgl [5], p 70. §(©) ist
em unverzweigtes RiEMANNSches Gebiet, welches © enthalt; mannennt i?)((5) die Holomorphie-
hulle von @. Ist $(&lt;5) endlich blattng, so folgt aus Untersuchungen von P. Thtjllen [32], daÛ

§(©) em Holomorphiegebiet ist. §(©) ist sogar stets em Holomorphiegebiet, wie sich aus den
Resultaten von K. Oka [25] ergibt
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€8 gilt: ~ ~~ *$(Q - M, 0) (G - M, 0)12)

Beweis : a) Wir zeigen zunàchst, daB (G — M,&amp;) ein Holomorphiegebiet
ist. Da (G,0) als Holomorphiehûlle ein Holomorphiegebiet ist, folgt aus
Satz E, daB (G,0) ein pseudokonvexes RiEMANNsches Gebiet ist. Daher kann
eine ausgezeichnete Schar &lt;T1(tD, t) in (G — M, 0) auf d(G — M) hôchstens
solche Punkte besitzen, die zu M gehôren. Trifft das aber zu, so ist die Sehnitt-
zahl von ^(vo, 1) mit M von null verschieden13). Das gilt dann auch noch fur
die Schnittzahl von cr^to, t0), 0 &lt; £0&lt;l mit M. Da aber a1 (m, t) eine
ausgezeichnete Schar in (G — M, 0) ist, so ist cr1(to, to)^M leer. Wider-
spruch Also ist auch (G — M,0) pseudokonvex und mithin nach Satz E ein
Holomorphiegebiet, q. e. d.

b) Wir setzen nun $(&lt;? — 31, 0) &amp; (#&apos;, 0&apos;). Da &amp; als Durchschnitt
aller das RiEMAKNsche Gebiet (G — M,0) umfassenden Holomorphiegebiete
definiert ist und (G — M, 0) in (G — M, 0) enthalten ist, folgt aus dem

unter a) Bewiesenen, daB &amp; in (G — M, 0) enthalten ist. Es bezeichne etwa

a die spurpunkttreue holomorphe Abbildung von G&apos; in G — M. Die Aussage
von Satz 7 bedeutet offenbar, daB a eine eineindeutige Abbildung von G&apos; auf
G — M ist. Um das zu beweisen, adjungieren wir zu Gr aile Randpunkte
rredGf, zu denen es eine schlichte Umgebung U(r&apos;) c Gf gibt, so daB

a{U(r&apos;)r^dG&apos;) in M enthalten ist. Wir erhalten auf dièse Weise eine Menge
G*; die Abbildung 0&apos; kann zu einer Abbildung 0* von G* in den Cn fortgesetzt
werden. Ofifenbar ist ©* ((?*, &lt;P*) ein unverzweigtes RiEMAKNsches Gebiet

ûber dem Cn ; die Abbildung a: G&apos; -&gt;G — M lâBt sich spurpunkttreu zu einer

stetigen Abbildung a* von (?* in G fortsetzen. Es gilt © c (5* c §(©).
Wâre a keine eineindeutige Abbildung von G&apos; auf G — M, so wâre ©* echt

ia) Fur Gebiete im Raum zweier komplexen Verànderlichen wurden Aussagen von âhnlichem
Typus bereits von W. Rothstbin gewonnen; vgl. [30], p. 222.

1S) Zum Begriff der Schnittzahl vgl. etwa [1], p. 410 ff. In einer orientierten Mannigfaltigkeit
ist die Schnittzahl S[Flf F2) zweier abgeschlossener orientierter Flàchen Fx und F2 von komple-
mentârer Dimension genau dann definiert, wenn gilt :

BF1 r% ^ — Ftr^ dF2 leer (Sehnittzahlbedingung).

Ist die Flâche Ft zu einer Flâche F[ vermôge einer stetigen Schar {F&apos; (t), 0 &lt;, t &lt; 1} von Flàchen
homotop und ist fur aile Flàchenpaare F&apos; (t), Ft die Sehnittzahlbedingung erfûllt, so gilt

Nach Osgood [27], p. 320 ff. folgt, daB die Schnittzahl zweier analytischer Flàchen in bezug auf
die durch die komplex-analytische Struktur induzierte Orientierung stets positiv ist, sofern
Fx r\ F% nicht leer ist; vgl. auch [18], p. 79.
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in £&gt;(©) enthalten. Da $((5) das kleinste (5 umfassende Holomorphiegebiet ist,
wâre alsdann (5* kein Holomorphiegebiet und also auch nach Satz E nicht
pseudokonvex. Unter Benutzung von Satz 4 sowie eines weiteren Satzes aus
der komplexen Analysis lâBt sich nun aber zeigen, daB (g* pseudokonvex ist.

c) Wir betrachten in G* die analytische Menge M* a*&quot;1 (M) und setzen :

A Jf*^dC?*. Offenbar ist ©* in jedem Randpunkt, der nicht zu A gehôrt,
pseudokonvex, da in der Nâhe eines solchen Punktes der Rand von (g* dieselbe
Struktur wie der Rand des Holomorphiegebietes ©&apos; hat. Um die Menge
A c dG* nàher charakterisieren zu kônnen, ziehen wir die CARTANsche Ideal-
theorie heran. Aus einem tiefliegenden Satz dieser Idealtheorie ergibt sich, daB

die im Holomorphiegebiet §(©) analytische Menge M im Nullstellengebilde
einer in G holomorphen, nicht identisch verschwindenden Funktion / enthalten

ist14). Setzen wir /* /o&lt;y*, so ist M* im Nullstellengebilde von /* enthalten.
Daraus folgt, daB A eine diinne Menge in dG* ist.

Mit At sei nun die Menge der hebbaren Randpunkte von dG* ^ A bezeichnet.
Wir wollen beweisen, daB (g* in jedem Punkt r*eA1 pseudokonvex ist. Nach

Définition 5 gibt es eine Umgebung U U(r*) c 6?*, so daB (U, $*) ein
schlichtes RiEMANNsches Gebiet und dG*r*U in einer in U rein (n — 1)-
dimensionalen analytischen Menge N enthalten ist. Die Menge N zerfallt, fails
U hinreichend klein gewàhlt ist, in U in endlich viele irreduzible Komponenten
^aJ a 1,..., s. Wir dûrfen annehmen, daB N so beschaffen ist, daB

(Na- Û Nv)~dG*

vpta
fur kein a leer ist. Wir behaupten nun : dG*r&gt; U ist stets eine rein (n — 1)-
dimensionale analytische Menge in U. Daraus ergibt sich dann in Verbindung
mit dem in FuBnote 10 zitierten Satz unmittelbar die Pseudokonvexitât von
©* in r*.

Wir unterscheiden zwei Fâlle :

a) Der Punkt r* liegt ûber einem inneren Punkt von G (bezuglich der Abbil-
dung cr*).

p) Der Punkt r* liegt uber einem Randpunkt redG (bezuglich der Abbil-
dung c*).

ad oc) : In diesem Falle lâBt sich, falls U hinreichend klein gewâhlt ist, die in

w) Nach [25] sind unverzweigte Holomorphiegebiete sogenannte holomorph-vollstàndige
komplexe Mannigfaltigkeiten (zu diesem Begriff vgl. etwa [10]). In solchen Mannigfaltigkeiten
der Dimension n ist aber jede analytische Menge das simultané Nullstellengebilde von hôchstens
(n -f 1) holomorphen Funktionen. Vgl. hierzu [8] sowie [11], Satz 1.
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U — dG* analytische Menge M*r*(U — dG*) zu der in U analytischen
Menge M** o*-1^)^ U fortsetzen. Die Menge U — (BG*^ M**) ist eine
offene Menge in G&apos; ; da dG*^ M** in U als Randpunktmenge von ©&apos; aufgefaBt
werden kann und ©&apos; ein Holomorphiegebiet ist, so folgt, daB U -~ (dG*^ M**)
in allen Punkten von dG*^&gt; M** pseudokonvex ist. Dann aber ergibt sich
analog wie im Beweise von Satz 6, daB Ur^(dG*^ M**) eine rein (n — 1)-
dimensionale analytische Menge in U ist. Da M** selbst in C7 eine analytische,
rein (w — l)-dimensionale Menge ist, folgt, daB dG*rs U eine rein (n — 1)-
dimensionale analytische Menge in U ist.

ad p) : In diesem Falle betrachten wir die Menge U&apos; f7^&gt; a*~1(Gr). Dièse
Menge umfaBt U — dG* und ist in allen Randpunkten, die innere Punkte von
U sind, pseudokonvex, da $(©) (G, 0) ein Holomorphiegebiet ist. Es folgt
weiter, daB U — U&apos; eine rein (n — l)-dimensionale analytische Menge in U
ist. dG*rsU umfaBt U — U&apos; und ist andererseits in der rein (n — l)-dimen-
sionalen analytischen Menge N enthalten. Sei nun N$ eine irreduzible Kompo-
nente von N in U, die nicht in U — V enthalten ist. Naeh Voraussetzung
gibt es einen Randpunkt von ©*, der zu

- Û Nv

gehôrt. Dieser Punkt liegt aber notwendig iiber einem inneren Punkt von G,
Da in oc) gezeigt wurde, daB (5* in allen diesen Punkten pseudokonvex ist,
folgt15), daB U~dG* die Menge N, umfaBt. Daher gilt Ur,dG* N, das
heiBt aber, daB 36?*^ U eine rein (n — l)-dimensionale analytische Menge in
[7 ist.

Aus dem bisher bewiesenen ergibt sich, daB das RiEMANNsche Gebiet
©* ((?*,$*) in allen Randpunkten auBer den Punkten der Menge A — Ax
pseudokonvex ist. Nun besteht aber A — Ax nach Définition von A1 aus
lauter nicht-hebbaren Randpunkten. Da iiberdies A — Ax als Teilmenge von
A eine dunne Randpunktmenge ist, folgt aus Satz 4, daB (5* pseudokonvex
schlechthin ist. - Satz 7 ist bewiesen.

3. Dem Beweise von Satz 4 schicken wir einen Hilfssatz voraus :

Hilîssatz 1. Es sei © 0) ein unverzweigtes BiEMANNSches Gebiet ilber
dem Cn, das aber einem Gebiet G* c Cn liegt (das heiftt 0(G) c (?*) ; M* sei eine

rein k-dimensionale, in (?* singularitâtenfrei liegende analytische Menge ; ferner
sei A eine Menge von nichthebbaren Randpunkten in dG mit

0(A)~G* CM*

15) Vgl. FuBnote 10.
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Ist dann reA ein Randpunkt von ©, der ûber M* liegt, und ist U eine Umgebung

vonr, so dafi (S in allen Punkten von (BG^U) — A pseudokonvex ist, so ist auch
dG in r pseudokonvex.

Beweis : Offenbar ist die Aussage des Hilfssatzes lokaler Natur. Schlagen wir

um 3 0(r) eine Hyperkugel if* ce 6?*, so brauchen wir deshalb den Hilfs-
satz nur fur das RiEMANNsche Gebiet (0~1(Jl*) ^ U, &amp;) zu beweisen. Ist if*
hinreichend klein, so ist M*&lt;^K* im Nullstellengebilde N einer in K* holo-
morphen Funktion

enthalten. Da der Begrifï der Pseudokonvexitât unabhângig von der Wahl der
Koordinaten zx,..., zn ist, darf man noch auf die zl9.. .9zn eine beliebige
Koordinatentransformation anwenden. Durch eine solche Koordinatentrans-
formation in K* kann man nun erreichen, da8 N in bezug auf die neuen
Koordinaten in if* genau die Punkte der Ebene E11*1 : {3, zx 0} ausmacht. Man
kann iC* als Gebiet des Raumes der neuen Variablen auffassen. Da wir hôch-
stens mehr beweisen, wenn wir M* und (?* vergrôBern, dûrfen wir sogar beim
Beweis unseres Hilfssatzes voraussetzen, dafi gilt : G* Cn, M* ^n~1,

G ^{K^rsU. Z* sei so klein gewàhlt, daB S-1 (K*) r,Uce U(r) und G

somit in dG — A pseudokonvex ist.
Wir beweisen nun Hilfssatz 1 in zwei Schritten. Zunâchst zeigen wir :

1. Die euklidische Distanzfunktion —In ô(x, En-1) bezûglich En-X ist pluri-
subharmonisch in G.

Aus Satz 3 folgt, daB die Besehrânkung von — In ô(x, En~1) auf G — M,
M 0-1 (E*1*1), eine plurisubharmonische Funktion p (x) ist. Offenbar ist p (x)
in der Umgebung jedes Punktes von M nach oben beschrânkt. Daher ist p(x)
nach Satz 1 eindeutig zu einer in ganz G plurisubharmonischen Funktion p(x)
fortsetzbar. Wir behaupten, daB in ganz G gilt : p(x) — In ô(x9 En~x).

Da nach Konstruktion von p(x) (vgl. Satz 1) fur jeden Punkt xr eM gilt

p{x&apos;) îïm (- In d{z, E&quot;&quot;1))

und ferner p(x) und — In ô(x, En~x) in ganz G halbstetig nach oben sind, so
ist sicher stets p(x) &lt; — In ô(x, E91&quot;1), Um einen Widerspruch zu bekommen,
werde nun angenommen, es gâbe einen Punkt

xoeM mit p(xo)&lt;m1&lt;—lnô(xo,En~1).

Dann kann man eine w-dimensionale Hyperkugel KccG um x0 finden, derart,
daB fur xeK — M gilt : — In ô(x, En&quot;1)&lt;m1. Aus diesen beiden Unglei-
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chungen folgt :

Es habe nun H(x, E&quot;-1) Hx dieselbe Bedeutung wie in § 2.4 ; daim ist
U Hx B ein Teilgebiet von G, das durch 0 eineindeutig auf ein Gebiet

X€K-M
B* c Cn abgebildet wird. Es ist £* U H&quot;*1 ($,ô(x, E&quot;-1)) ; dabei

bezeichnet Hn^1(^i ô(x, En^1)) die (n — l)-dimensionale Hyperkugel um
3 0(x) in der Ebene En-%($) mit dem Radius ô(x, En~x). Wir setzen nun

und bezeichnen dann mit B die Menge 0~-1(B*)r^ B, wobei B die abgeschlos-

sene Huile von BinG sei. Da die Kugel HXq einen Radius d &lt; e~mi hat, dagegen
aile Kugeln Hx mit x*K — M einen Radius ô(x, En~1)&gt;e~mi haben, ist B*
ein Gebiet. Ferner liegt jeder Punkt rX€dHXQ^dG auchini?.

Kônnen wir nun zeigen, daB die fortgesetzte Abbildung 0 die Menge B topo-
logisch auf JB* abbildet, so folgt offensichtlich, daB jeder Randpunkt rxedG^B
hebbar ist ; denn dann ist 93 (B, 0) ein schlichtes RiEMANNsches Gebiet

und BrsdG c ^^(E71-1) eine dûnne Menge 1. Ordnung.
Zunâchst beweist man leicht, daB jeder Punkt 3ejB* als Bildpunkt vor~

kommt. Die Abbildung ist aber auch umkehrbar. Gâbe es etwa zwei verschie-

dene Punkte xx,x2€B mit 0{xx) 0(x2) faeB*, so mûBte es nach
Définition von B und der Randpunkte von © eine zusammenhângende Umgebung
F*(3x) c JS* geben, deren Urbild F &amp;r~1(V*) in zwei Teilbereiche Vl9 F2

zerlegt werden kann, die einen nichtleeren Durchschnitt mit B haben. Da 0
das Gebiet B topologisch auf jB* abbildet, ist dann F* — En-X Vereinigung
der punktfremden offenen Mengen 0{Vxr\B) und 0(F2^ J5). Andererseits
ist F — En-% zusammenhângend. Widerspruch

Es ist also bewiesen, daB rx€dHXQrs BG ein hebbarer Randpunkt ist. NachVor-
aussetzungergibt sich daher : rxzdG—A. (5 sollindiesenPunkten aber pseudo-
konvex sein. Das ist jedoch in rx nicht der Fall. Denn ist {x(t), 0 ^ t ^ 1} mit
#(1) rl9 x(t)çH(x0, E*1-1) fur 0 &lt;^&lt; 1, eine Kurve und bezeichnet E(t)
das 1-dimensionale Ebenenstûck in B senkrecht zu H(x, En~x), X€K, so ist
E(t)&gt; O^t^l, eine ausgezeichnete Schar 1-dimensionaler analytischer
Mengen, die nicht der in Définition 8 gestellten Forderung genûgt.

Damit ist bewiesen, daB ein x0 der bezeichneten Art nicht existiert. Es gilt
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also: — ln&lt;5(#, E»-1) p{x), das heiBt — In ô(x, E71-1) ist in G plurisub-
harmonisch.

Wir betrachten nun die Folge von RiEMANNschen Gebieten (SV=(GV&gt;&amp;) mit
Gv {x*G, — In ô(x, En~1)&lt;v}. %v ist auf Grund des unter 1) bewiesenen
nach Satz D in allen Punkten 7 edGv pseudokonvex, die ûber einem inneren
Punkt von G liegen, fur die also gilt : Kîv(r)eG (iv : Gv -&gt; G bezeichne wieder
die Injektion). Wir behaupten:

2. ©v ist pseudokonvex schlechthin.

Ist das nicht der Fall, so gibt es eine ausgezeichnete Schar o\(w, t), e \e~v,

eindimensionaler analytischer Mengen in Gv, so daB T {o\{w,l)}^dGv
nicht leer ist16).

T enthàlt notwendig Punkte tiber dG. Anderenfalls wâre nâmlich ©„ in
jedem Punkt von T pseudokonvex, und die in bezug auf ©„ gebildete Distanz-
funktion — In à®v{x) mùBte nach Satz C in der Nâhe von T plurisubharmo-
nisch in Gv sein. Dann aberwâre — In ô(al(w,t)) fur hinreichendgroBes t&lt;l
jeweils in einer Umgebung W der in der komplexen w-Ebene gelegenen Menge
{w, o\{w, l)edGv} subharmonisch und mùBte ûberdies fur t -&gt; 1 einmal auf
dW kleiner als in W werden. Das aber ist ein Widerspruch zum Maximum-
prinzip.

Sei etwa 7X al(w, l)edGv ein Punkt uber dG ; es gebe also ein rX€dG mit
^v(^i) ri- -Der Punkt ist durch die Kurve x(t) &lt;xl(w,t)y 0 ^.t ^1,
mit dem inneren Punkt x0 o\(w, 0)eGv verbunden. Wir legen durch die
Punkte x(t), 0^^&lt;l, jeweils die (n — l)-dimensionale Hyperkugel
H(x(t), E11-1) c G. Die Radien derselben sind sàmtlich grôBer als e~v. Bezeich-
net nun H(t) die in H(x(t), E11&apos;1) enthaltene, konzentrisch um x(t) liegende
(n — l)-dimensionale Hyperkugel vom Radius e&quot;v, so ist {H(t)} fur 0 ^ t &lt; 1

eine Schar (n — l)-dimensionaler analytischer Mengen in G, die durch eine
Schar holomorpher Abbildungen aw-1 (m, t), 0 ^ t &lt; 1, der Hyperkugel Ho :

{| to | \w2\2 H \-\wn |2)£ &lt; e~v) des w2,..., ^W-Raumes in G gegeben
werden kann. Bezeichnen z1(t),..., zn(t) die Koordinaten von &amp;ox(t), so
kann man a71&quot;1^^) insbesondere so vorgeben, daB gilt :

&lt;Z&gt;ocr-i(tt&gt;, t) (^(0, zz{t) + w2,..., zn(t) + wn)

Daraus ersieht man aber (vgl. die Bemerkung § 2, 1), daB die Schar

an-1(ro, t) stetig zu einer in G ausgezeichneten Schar ^(to, t), 0 &lt; t &lt; 1,
von (n — l)-dimensionalen analytischen Mengen fortgesetzt werden kann.

16) Vgl. die Bemerkung im AnschluB an Satz C.
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Wir benôtigen als Zwisehenresultat :

a) Die Menge {a*-1 (m, 1)} ist in dG enthalten.
Wâre das nicht der Fall, so gàbe es einen Punkt t»oeiîo, so da8 der Punkt

x0 an^1(w09 1) in G liegt und iiberdies gilt :

- In ô(x0, En-*)&gt;- In (er* -\mo\)

Andererseits gilt aber : lim — In ô(x, E*1-1) &lt; — In (e~v — 1 xoo I) &gt;

da fur aile Punkte xo(t) crM-1(tt)0, t), 0 &lt; t&lt; 1, die Ungleichung

besteht. Der folgende, weiter unten zu beweisende Hilfssatz gibt nun einen

Widerspruch :

Hilfssatz 2. Ist on-1{voit) eine Schar von singularitâtenfrei in einer n-dimen-
sionalen Icomplexen Mannigfaltigkeit X eingebetteten (n — l)-dimensionalen ana-
lytischen Mengen, und ist p(x) eine plurisubharmonische Funhtion in X, so gilt
in jedem Punkt xQe{an&apos;-1(w, 1)} die Gleichung:

lim p(x) p(xQ) wobei S {(^^(tJO, t) 0 &lt; £&lt;1}

Wir benôtigen ferner :

b) Es gibt ein t0, 0 ^ £0&lt; 1, so da/3 filr aile t, t&apos; mit t0 ^t, t1 &lt; 1 die Schnitt-
zahl 8(t,tf) von {o\{w,t)} mit {d*1&quot;1 (to, t1)} in bezug auf die natilrliche
Orientierung wohldefiniert ist.

Zum Beweise haben wir zu zeigen (vgl. FuBnote 12), daB ein t0, 0 &lt; to&lt; 1,
so gewâhlt werden kann, daB gilt :

a) Die Menge {(4(e*^, t}, — tz ^û ^n, hat keinen Punkt mit der Menge

tD,^)} gemeinsam, falls tQ &lt; t, t&apos;&lt;l.

P) Die Menge {&lt;tw&quot;~1(3^0&gt; 0} na* keinen Punkt mit der Menge
gemeinsam, falls t0 &lt; t, t1 &lt; 1.

Da al(w, t) eine ausgezeiehnete Schar ist, hat die Menge {o\(ei&amp;, t)} einen
Abstand d&gt;0 von dG. Da nach 2. die Menge an&apos;~1(vo, 1) in dG enthalten ist,
kann man tQ so grofi wâhlen, daB jeder Punkt von atl~1(tD, t1) fur t0 &lt; tf &lt; 1

von dG hôchstens den Abstand — hat. Bei Wahl dièses tQ hat dann {al(et&amp;, t)}
keinen Punkt mit {crn&quot;&quot;1(tD&gt; tf)} fur t0 ^ t, t&apos; &lt; 1 gemeinsam ; oc) ist also be-

wiesen.
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Die Behauptung fi) ergibt sich ebenso einfach. Die Kugeln {crn-1(xo, «)}
haben sâmtlich den Radius e~v. Da aber e J e-v, so ist klar, daB t0 auch
noch so gewâhlt werden kann, daB {}) erfullt ist.

Nunmehr ergibt sich leicht, daB ©„ pseudokonvex schlechthin ist. Die
Schnittzahl 8{t,tf) von {o\{w,t)} mit {&lt;rn&quot;&quot;1(rt), t&apos;)} ist nach bekann-
ten Sâtzen ûber Sehnittzahlen (vgl. FuBnote 12) fur aile t, tf mit t0 ^ t, f &lt; 1

stets dieselbe. Ist t t1 tl9 so haben {o\{wy tx)} und {crw~1(tD, t±)} den
Punkt x(tx) gemeinsam. Da sich analytische Flàchen nur positiv schneiden
kônnen (vgl. FuBnote 12), ist 8(tl9 tx) also positiv. Andererseits kônnen wir
aber bei vorgegebenen t, tQ &lt; £&lt;1, stets ein t&apos; in hinreichender Nàhe bei 1

finden, daB {on~x{m, t&apos;)} keinen Punkt mit {o\(w, t)} gemeinsam hat ; ist
nâmlich d1&gt;0 die Randdistanz von {a\{w,t)} zu dG, so braucht man t&apos; nur
so nahe bei 1 zu wâhlen, daB kein Punkt von {an~1 (ro, t1)} von dG eine grôBere
Entfernung als dj2 hat. (Das ist wegen a) môglich.) Fur die so bestimmten
Zahlen t, t&apos; ergibt sich dann : 8(t91&apos;) 0. Dieser Widerspruch zu S(t,tf)

S(tl91}) lost sich nur so, daB (5V in allen Randpunkten pseudokonvex ist.
Da die Gv das Gebiet G ausschôpfen, muB nach Satz D&quot; auch © selbst

pseudokonvex sein. Damit ist Hilfssatz 1 bewiesen.
Wir holen nun den Beweis von Hilfssatz 2 nach. Wir wâhlen eine hinreichend

kleine Umgebung U(x0) und eine in U singularitâtenfrei eingebettete Rib-
MANNsche Flâche F, die {&lt;Tw&apos;~1(tDJ 1)} nur in x0 schneidet und nicht beruhrt.
Es gibt dann ein t0, 0 &lt; £0&lt; 1, so daB aile Flàchen {a71-1 {vo, t)}, t0 &lt; t &lt; 1,
ebenfalls F in genau einem Punkt schneiden, wie man sofort einsieht, wenn
man F als Nullstellengebilde von (n — 1) holomorphen Funktionen darstellt
und dièse auf on-1(m,t) beschrânkt.

Es sei nun x(t), t0 &lt; t &lt; 1, die Kurve Fr^Gn~1{mi t). Die Beschrânkung
von p (x) auf F ist subharmonisch. Nach § 1, 2. d) gilt daher

p{x0) limp(x(t))
t—&gt;i

Daraus folgt a fortiori die Behauptung des Hilfssatzes.

4. Unter Benutzung von Hilfssatz 1 lâuft nun der Beweis von Satz 4 wie
folgt : Wir haben zu zeigen, daB © in allen Punkten aus A pseudokonvex ist.
Um einen Widerspruch zu gewinnen, werde angenommen, das sei nicht der
Fall. Die Teilmenge Ar c A derjenigen Randpunkte von ©, in denen © nicht
pseudokonvex ist, ist dann nicht leer. Sei rQeA&apos; irgendein Punkt Nach Vor-

aussetzung gibt es eine Umgebung U(r0) c G und in U(ro)r^G eine nirgends
identisch verschwindende holomorphe Funktion / mit der Eigenschaft, daB zu
jedem Punkt rtU^A1 eine Folge xveU^G mit limf(xv) 0 existiert, die

gegen r konvergiert. v-&gt; °°
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Wir betrachten nun das RiBMANNsche Gebiet U (UrsG,&amp;). (Ur^O) ist
durch die Injektion Y in G abgebildet. Y ist eine topologische Abbildung von
[7* ==Y-1(^) auf U. Offenbar ist auch A ^^(U^A&apos;) c C7* eineinbezug
auf / dûnne Menge. Bas RiEMANNsche Gebiet U ist in keinem Punkt von A
pseudokonvex, dagegen aber in allen Punkten von (d(U^G)^ £7*) — A.

Das Holomorphiegebiet (g* ((?*, 0*) der Funktion f(x) enthâlt nach
Définition das Gebiet U. Es gibt daher eine spurpunkttreue stetige Abbildung r
von Ur^O in (?*, die sich zu einer stetigen Abbildung r von (6?^ U) in G*
fortsetzen lâBt. Wir behaupten, dafi kein Punkt von A iiber einem inneren
Punkt von G* liegt.

Dazu sei die Fortsetzung f*(x) von f(x) in G* gebildet; M sei das Null-
stellengebilde von f*(x). Es gilt (t(A)&lt;^G*) c Jf. Wir bezeichnen mit J^ die
Menge der nicht gewôhnlichen Punkte von M, mit M2 die Menge der nicht
gewôhnlichen Punkte von Mx usw. Nach einem bekannten Satz ùber die Ver-
teilung der nicht gewôhnlichen Punkte in einer analytischen Menge sind aile
Mengen Mk, £ 1, •.., ft — 1, analytische Mengen, deren Dimension hôch-
stens gleich n — Je — 1 ist (vgl. hierzu auch [29], p. 286 sowie [8], Exposé

IX). Aus Hilfssatz 1 folgt sofort, daB kein Punkt von A ùber einem Punkt
von M — Mx liegen kann ; denn dort ist sicher XI pseudokonvex. Nochmalige

Anwendung desselben Hilfssatzes ergibt, daB r~1(M1 — M2)&lt;^A leer ist. So

fortfahrend folgt nach hôchstens n Schritten, daB ^^(M)^^. selbst leer ist.

Zeigen wir nun noch, daB r(A)rs M nicht leer sein kann, so ist ein Wider-

spruch gewonnen und Satz 4 bewiesen. Da U in den Punkten von A nicht
pseudokonvex ist, gibt es in U eine ausgezeichnete Schar 1-dimensionaler ana-
lytischer Mengen ^(to,^)» so daB {a1 (m, l)}^d(G^ U) nicht leer und in
Y~1(3Gf)^ U* enthalten ist. {or1(tD, 1)} enthâlt dann aber auch sicher wenig-
stens einen Punkt rX€A. Denn da U in d(Grs C7)^&apos;t-1(i7) — A pseudokonvex
ist, ist die Funktion — In ô$(x) in der Nâhe dieser Punkte plurisubharmo-
nisch (Satz C). Die Funktionen s(xo) — In 6$ (or1(tD, t)) sind dann fur hin-
reichend groBes t in einer Umgebung W der Menge S a~x(d{G^ U), 1) sub-
harmonisch. Da dieselbe aber fur t -&gt; 1 einmal auf dem Rande dW ldeinere
Werte als im Innern von W annehmen muB, steht das im Widerspruch zum
Maximumprinzip.

Aus einem bekannten Kontinuitâtssatz17) folgt nun, daB f(x) in rx holomorph
ist. Es gilt also rfoJcG*. Daher ist r{A)&lt;^G* nicht leer, q. e. d.

17) Vgl. [3], p. 357.
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§ 4. Verzweigte Holomorphiegebiete

1. Bei der Untersuchung der Existenzgebiete holomorpher Funktionen hat
man bisher die Verzweigungspunkte und allgemein die Stellen algebroiden Ver-
haltens unberùcksichtigt gelassen (vgl. [5], [2]). Dièses an sich unnattirliche
Vorgehen findet seinen Grund in dem anfangs noch unzureichenden Zustand
der Topologie, der eine Définition des verzweigten RiEMANNschen Gebietes
ausschloB. Es zeigt sich nun, daB die zu entwickelnde Funktionentheorie in
verzweigten RiEMANNschen Gebieten wesentlich von der bekannten Théorie in
unverzweigten Gebieten verschieden ist. Wie schon in § 2 angefùhrt (Satz E),
zeigte K. Oka die Âquivalenz der unverzweigten Holomorphiegebiete und der

unverzweigten holomorphkonvexen RiEMANNschen Gebiete. Wir werden jedoch
nun ein Beispiel eines verzweigten Holomorphiegebietes angeben, das weder
holomorphkonvex noch pseudokonvex ist (vgl. auch [16]).

Es seien zunâchst Cl, »= 1 ,...,&amp;, k Exemplare (&amp;&gt; 2) des 2-dimensio-
nalen komplexen Zahlenraumes der Verânderlichen zx, wx. Im kartesischen

k

Produkt C2k X Cl werde die rein (k + l)-dimensionale analytische
Menge

&apos;=1

X*+i 1 Zl — ^1- —
Zje

~ \ wx w2
~~

wk

betrachtet. Wie bereits in [13] gezeigt wurde, ist Xk+1 lokal irreduzibel ein-
gebettet und bildet somit - versehen mit der induzierten komplexen Struktur -
einen komplexen Raum. Aile Punkte von Xk+1-~ 0 (0 Nullpunkt des C2k)

sind gewôhnliche Punkte und deshalb uniformisierbar. 0 selbst besitzt keine
uniformisierbare Umgebung.

Xk+1 wird durch die &amp;-dimensionalen analytischen Ebenen der Schar

[
[ wx w2 wk

ùberdeckt, wenn s die Zahlen einer Riemannschen Zahlenkugel durchlâuft.
Zwei Ebenen E(s1), E{s2)1 st ^ s2 schneiden sich genau im Punkte 0.

2. Durch die lineare holomorphe Abbildung

*&gt;o *i H h zk »

v1 wl+ (xxzx

\ ocv ^ocM fur v ^ ii\ \(xv\ 1

Vk Wk + ^kZk » V, /« 1 fc

wird Xk+1 nirgends entartet atif den Raum Cn, n k + 1, der Verânderlichen

r0 9 vi y • • • y vk abgebildet.
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Jede Ebene E(s) wird nâmlich durch 0 eineindeutig linear auf die (n — 1)-
dimensionale analytische Ebene

k k k

tV 77(1 + axs) -«Iv i7(l + otvs) 0

im Cn bezogen. Daraus folgt, da8 jeder Punkt t) (v0, vl9 v2,..., vk)çCn in
jeder Ebene E(s) hôchstens einen Urbildpunkt besitzt. Die Parameter s der
Ebenen E(s), in denen ein soleher Urbildpunkt liegt, mussen notwendig das

Polynom k k k

P(s) voll(l + &lt;xxs) - s E v 27(1 + ocvs)
x—l x=l v=l

annullieren, oder es muB 5 =oo sein. Da P(s) nur fur t) 0 identisch ver-
schwindet und im ûbrigen hôchstens vom Grade k ist, besitzt jeder Punkt
0 zfc O hôchstens k verschiedene Urbilder in Xk+1. Ùber v 0 liegt aber

nur der Punkt OeXk+1. Somit liegen aile Urbildpunkte jedes Punktes veCn
isoliert in Xk+1, q. e. d.

Es sei nun K ein beliebiger Kreis {\s\&lt;d&lt;l} der s-Ebene. Die Menge
G {U E(s)} — O ist eine offene, zusammenhângende Teilmenge von

Xk+l— O. Da 0 eine nirgends entartete Abbildung ist, folgt aus [10], Satz 13,
daB © (&lt;?, 0) ein RiEMANNsches Gebiet uber dem Cn ist, das nur aus uni-
formisierbaren Punkten besteht. Wir notieren einige Eigenschaften von
© ({?, 0).

(1) G ist analytisch isomorph dem kartesischen Produkt Y Kx {Ck— O}.

Beweis : Die Abbildung

tz:s -J- —— —~, v* w*, vk — wk

bildet G eineindeutig auf Y ab.
Wir zeigen weiter :

(2) Es gibt einen Punkt t)0 (^0), ^0&gt;,..., v(k0)) e Cn, uber dem genau ein Nicht-
verzweigungspunkt und keine weiteren Punkte von G liegen.

Beweis : Wir wâhlen d0 so, daB v®} ^ 0, k 0,..., k und P(s) mit diesen
Werten genau eine einfache Nullstelle in einem Punkte soeK besitzt. Das ist
môglich, da bei beliebigen vx auch die Koeffizienten von P(s) beliebig sind. Zu
s0 gehôrt genau ein Punkt #0€X&amp;+1, der iiber t)0 liegt. Dieser ist in E(s0) ent-
halten. Also gilt xQcG. Die anderen Punkte uber v0, die zu einem s, P(s) 0,
s ^ sOf gehôren, liegen in einer Ebene E (s), s$K, und daher nicht in G, q. e. d.
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Wir fugen jetzt zu (5 aile erreichbaren Randpunkte r hinzu. Da G einTeilge-
biet von Xfc+1 — O mit glattem Rande ist, kann man dG auBerhalb O durch die
Hàufungsmenge von G in Xk+1— O — O repràsentieren. Die oben angegebene
Àbbildung n lâBt sich in dièse Menge fortsetzen : Zu jedem Punkt redG, der
nicht ûber O liegt, gibt es in Xk+1— O eine Umgebung U(r), die vermôge n
umkehrbar holomorph auf eine Umgebung

C7*(r*) c Cn r* 7t(r)€dKx {Ck- 0}

abgebildet ist. dG hat in der Nâhe von r die gleiche (analytische) Struktur wie
dY in der Nàhe von r*. Daraus ergibt sich :

(3) Ist f eine in Y holomorphe Funlction, die in

r* n(r)edY redG - 0^(0)
eine Singularitât hat, so làfit sich f fou nicht ûber redG hinaus holomorph
fortsetzen.

Wir beweisen ferner :

(4) Uber OeCn liegt genau ein Randpunkt rocdG.

Beweis: Es genugt zu zeigen, dafi das Urbild 0~1(U) jeder Hyperkugel
U (O) c Cn eine nichtleere zusammenhângende Menge in G ist. Das aber ist klar,
da no0~1(U) {(siVi +•—h*&apos;*:)» %(l + ^i^)&gt; • • •&gt;^fc(l + ^fc5))€(^r} immer
eine zusammenhângende Menge um KxO in Y ist.

Dem Kontinuum der Randpunkte KxO von Y entspricht also genau ein
Randpunkt von G, wâhrend die Punkte von dKx{Ck— 0} und dG — 0~1{O)
eineindeutig einander zugeordnet sind. Man kann nrx zu einer stetigen Abbil-

— w
dung n*1 von Y in G fortsetzen.

3. Wir zeigen nun :

(5) (5 ist ein Holomorphiegebiet.

Beweis : KxCk ist als Polyzylinder ein Holomorphiegebiet ([5], p. 77). Es

gibt also eine holomorphe Funktion */(s), die KxCk zum Existenzgebiet
hat. Nach (3) ist f(x) */o n(x) eine holomorphe Funktion in die in allen

Randpunkten redG — r09 ro 0~1(O), singulâr ist. r0 selbst ist aber Hâu-

fungspunkt dieser Randpunkte ; denn n&quot;&quot;1 bildet Y stetig auf G ab, wobei jede

Umgebung U C Y von KxO in eine Umgebung von r0 ûbergeht. Dièse
Umgebung enthâlt stets Bildpunkte von dKx(Ck— O). Es folgt also, da8 f(x)
auch in r0 wesentlich singulâr wird.

12 Commentarii Mathematici Helvetici
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Es sei nun ©* (&lt;?*, &lt;P*) das Existenzgebiet von f(x). © ist in ©* ent-

halten, f(x) ist in (?* hinein fortsetzbar. Die Abbildung x :G -&gt;6?* (vgl.
§ 2, 4) bildet keinen Punkt von dG in das Innere von O* ab, da /(a;) iiberall in
dG singulâr ist. Folglich ist 51 (G, r, (?*) eine unbegrenzte Ùberlagerung
von (?*. Da r auBerdem spurpunkttreu abbildet und nach (2) ùber einem ge-
wissen vQ€Cn genau ein Punkt von G liegt, muô % einblâttrig sein : r bildet
mithin G umkehrbar eindeutig auf G* ab. G und (?* sind identisch, das heiBt ©
ist selbst das Existenzgebiet von f(x) und damit ein Holomorphiegebiet.

Weiter gilt :

(6) © ist in allen Randpunkten r ^ r0 psevdokonvex, jedoch in r0 nicht, also
auch nicht pseudokonvex schlechthin.

Beweis : Zunâchst ist © pseudokonvex in jedem Randpunkt r ^ r0, da in
der Nâhe eines solchen Punktes dG die gleiche Struktur hat wie d Y in der Nàhe
von 7i(r). dY ist aber dort der Rand eines Polyzylinders.

Nun ist Ck— 0 in 0 nicht pseudokonvex. Es gibt vielmehr zu jedem e eine
in Ck— O ausgezeichnete Schar *crg(tD, t), die O enthàlt. Fiir festes ^0€^T
ist dann (s0i*ol(w,t)) eine ausgezeichnete Schar in Y Kx(Ck— O),
deren Durchschnitt mit KxO nicht leer ist. Die ausgezeichnete Schar

orJ(tD, t) TI-^Sq, *&lt;4(tD, t))

in © enthâlt dann den Punkt r0. Da ô beliebig klein wird, wenn s gegen 0 geht,
haben wir gezeigt, da6 © in r0 nicht pseudokonvex ist.

Die Holomorphiehulle von F ist KxGk ^ F. Daher ist Y sicher nicht
holomorphkonvex (vgl. [5], p. 73). Da ferner G und Y analytisch isomorph
sind und die Holomorphiekonvexitât gegenûber eineindeutigen holomorphen
Abbildungen invariant ist, folgt :

(7) G ist nicht holomorphkonvex.

Zusammenfassend ist also bewiesen :

Satz 8. Es gibt ilber dem Cn, n ^ 3, endlich-blâttrige, verzweigte Holomorphie-
gebiete, die weder holomorphkonvex noch pseudokonvex sind.

Dagegen ist natûrlich jedes Holomorphiegebiet pseudokonvex im Sinne von
H. Caetan. - Es bleibt offen, ob Satz 8 auch fur n 2 richtig ist.

4. Das konstruierte RnsMANNsche Gebiet ©==((?, 0) kann auch benutzt
werden, um zu zeigen, daB Satz 4 fur verzweigte RiEMANNsche Gebiete nicht
mehr gûltig ist. DaB r0 eine dûnne Randmenge ist, versteht sich von selbst.
Wie wir im Beweise von (5) gesehen hatten, ist r0 Hâufungspunkt von dG — r0.
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Da dO in allen Punkten dieser Menge (2n — l)-dimensional ist, folgt auch,
daB r0 ein nicht-hebbarer Randpunkt ist. - © ist also ein Gebiet ûber dem Cn,
das aufilerhalb einer dûnnen Menge nicht-hebbarer Randpunkte pseudokonvex
und doch nicht pseudokonvex schlechthin ist,

Zum. Beweise, daB r0 nicht-hebbar ist, hàtte man auch folgenden Hilfssatz
heranziehen kônnen :

Hilfssatz 3. Es sei 5R&apos; (R\ &lt;p,H&apos;) eine endlich-blâttrige, analytisch-ver-
zweigte Vberlagerung einer Hyperkugel H&apos; c Cn. H sei eine Hyperkugel, die
relativ-kompakt in H&apos; enthalten ist; 9t (R, &lt;p, H) sei die Beschrânkung der
Vberlagerung 31&apos; auf H. Ist dann n eine holomorphe Abbildung von R&apos; in den Cn,
die genau in einer dûnnen (auch leeren) Menge M&apos; c R1 der Ordnung 1 entartet
ist18), so ist © (G, &amp;), G R — M&apos;, ein RiEMANNSches Gebiet, das nur nicht-
hebbare Randpunkte besitzt. Dabei bezeichnet 0 die Beschrânkung von n auf
G R- Mf.

Beweis : Nach [10], Satz 13, ist © 0) ein RiEMANsrsches Gebiet, das

Teilgebiet des RiEMANNschen Gebietes &amp; (R1 — M&apos;, n) ist. Es sei r ein
Randpunkt von ©, der iiber einem inneren Punkt x aus R1 — M&apos; liegt. r làBt
sich auch als ein Randpunkt von (R, cp) ûber xe(Rf — Mr)^q&gt;-1(dH) auf-
fassen. Es gilt darum in der Nâhe von x : dG dR. Da aber dR rein (2n — 1)-
dimensional ist, hat auch dG in einer Umgebung von x die Dimension 2n — 1.
Dann ist r jedoch sicher kein hebbarer Randpunkt.

Sei nun r0 ein Randpunkt von ©, der iiber einem Punkt des Randes von ©&apos;

liegt. Wenn wir zeigen, daB es in beliebiger Nâhe von r0 noch Punkte rcdG
gibt, die iiber einem inneren Punkt von R! — M1 gelegen sind, so ist auch rQ

kein hebbarer Randpunkt ; denn die Menge der nicht-hebbaren Randpunkte
ist abgeschlossen.

r0 ist als Filter von offenen, zusammenhângenden Mengen in G R — Mr
definiert. Da die abgeschlossene Huile R der Menge R in R&apos; kompakt ist (zum
Beweise beachte man, daB 5R&apos; endlich-blâttrig ist), so besitzt der Pilter rQ

mindestens einen Beriihrungspunkt xQ€R. Da r0 nicht iiber einem Punkt aus
jR&apos; — M&apos; liegt, gilt sicher nicht xoeR — M. Es gilt also : xoeR^M&apos;. Ferner

ist n(x0) 0(ro) $0€Un ; die analytische Menge Jf* ^~1(30) enthàlt so-
mit x0. Weil n in der Menge M entartet ist, ist dieselbe in x0 sicher mindestens
1-dimensional. Es sei Mx die zusammenh&amp;ngende Komponente von M*19), die

18) Es braucht nur geforderfc zu werden, dafi n nicht uberall entartet ist. Nach einem in [28]
bewiesenen Satz folgt daraus, dafi dann die Entartungsmenge von n eine diinne Menge erster
Ordnung ist.

19) Eine analytische Menge ist stets lokal zusammenhângend und zerfàllt deshalb in eindeutiger
Weise in zusammenhângende Komponenten.
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x0 enthàlt. Mx ist ûberall mindestens 1-dimensional ; und man sieht unmittel-
bar, daB jeder Punkt von M1 Hâufungspunkt des Filters r0 ist. Ferner ist Mx
sicher nicht kompakt, da sonst wegen des Maximumprinzips20) fur holomorphe
Funktionen jede der Funktionen zvoq&gt;, v 1,..., n, auf Mx konstant sein

muBte und Mx dann nur uber einem Punkt des Cn lâge. Es ist also Mx ^ j? — R)
nicht leer.

Sei nun U(r0) eine beliebig kleine Umgebung von r0. Nach Définition ist
TJrsQ eine zusammenhàngende Komponente einer Menge

0-i(F) nr^Tï^R - M&apos;)

wobei F F(30) eine Umgebung von 30 &amp;(r0) ist. Es bezeichne V[ die
zusammenhàngende Komponente von n~1(V)y die U^G enthâlt. Offenbar
umschlieBt Vrx unsere Menge Mx. Ebenso enthâlt die zusammenhàngende
Komponente F1? Vxï UrsG, von V[^R die Menge M1r^R; denn MX^R
ist Hâufungsmenge von Ur^Q. Ur^G ist Komponente von Vx — M&apos;, da M&apos;

den komplexen Raum Rf nirgends zerlegt. Es folgt : U&lt;^G Vx — M&apos;. Ferner

gibt es - wie man leicht sieht - in hinreichender Nâhe der Punkte

MX^(R — R) Punkte xxeR — R — Mr und Umgebungen W(xx), so daB

Wr,R c Vx. Ist dann xx ein Punkt aus ^^(xJedR, so làBt sich, weil dG und
dR in der Nâhe von xx ûbereinstimmen, der Punkt xx auch als Randpunkt von
© auffassen. Offenbar gilt xxtTJ&apos;. Damit ist gezeigt, daB in beliebiger Nâhe
von r0 noeh Punkte xxedR — M* liegen. Unser Hilfssatz ist bewiesen.

5. Satz 4 (und Satz 2) gestatten eine weitere intéressante Anwendung auf
die Abbildungstheorie. Man kann nâmlich zeigen (vgl. auch [13], FuBnote 17) :

Satz 9. Es sei Xn ein n-dimensionaler komplexer Raum ; D sei eine in Xn
dûnne Menge 2. Ordnung ; K sei die Menge der nichtuniformisierbaren Punkte
von Xn. Ist dann n eine holomorphe Abbildung von X in den Cn, deren Funktional-
determinante auflerhalb D^&gt; K nicht verschwindet, so ist Xn eine komplexe Man-
nigfaltigkeit. Die Funktionaldeterminante von n verschwindet nirgends.

Beweis : Zunâchst sei bemerkt, daB die Funktionaldeterminante A von n
auBerhalb K nirgends verschwindet. Wâre das nâmlich nicht der Fall, so wûrde
sie eine rein {n — l)-dimensionale Nullstellenmenge in X — K besitzen.
Dièse konnte aber nicht in D enthalten sein, da D dunn von 2. Ordnung ist. In
X — K ist n also lokal-topologisch.

Es bezeichne nun M die Entartungsmenge der Abbildung n. M ist abge-

ao) Pur holomorphe Funktionen auf analytischen Mengen gilt bekanntlich das Maximumprin-
zip; vgl. etwa [30], [31], [29].
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schlossen und in K enthalten. Da K eine dûnne Menge 2. Ordnung ist (vgl.
[15]), ist auch M dûnn von 2. Ordnung.

Offenbar ist die Aussage von Satz 9 lokaler Natur. Wir dûrfen daher an-
nehmen, da8 es eine holomorphe Abbildung &lt;p von X in eine Hyperkugel H&apos;

gibt, so da6 91&apos; (X, q&gt;, H&apos;) eine endlich-blâttrige, analytisch-verzweigte
Ûberlagerung von H&apos; ist. Wir kônnen dabei voraussetzen, daB M im Null-
stellengebilde einer in X holomorphen, nicht identisch verschwindenden Funk-
tion f(x) enthalten ist. Ferner brauchen wir den Satz nur fur jeden komplexen
Raum R c c X zu beweisen, der zu einer analytisch-verzweigten Ûberlagerung
91 (R, &lt;p, H) gehôrt, die die Beschrânkung von W auf eine Hyperkugel
H ce H&apos; ist.

Aus Hilfssatz 3 folgt nun, wenn wir dort R X setzen, daB © (G, 0),
G R — M, ein RiEMANNsches Gebiet ist, welches nur nieht-hebbare Rand-
punkte besitzt. Dabei bezeichnet wieder 0 die Beschrânkung von n auf G. Wir
zeigen, daB © unverzweigt ist. Angenommen, es gâbe einen Verzweigungs-
punkt xeG Nach Définition des RiEMANNschen Gebietes ist © lokal stets eine

endlich-blâttrige, analytisch-verzweigte Ûberlagerung eines Gebietes U c Cn.

Solche Ûberlagerungen besitzen aber, wenn sie uberhaupt verzweigt sind,
stets sogenannte Windungspunkte (vgl. [15]). Dièse sind uniformisierbar.
Daher gibt es auch einen Verzweigungspunkt xoeG — K. Das aber ist un-
môglich, da in einer Umgebung von x0 die Funktionaldeterminante von 0 n
nicht verschwindet und somit die Abbildung 0 dort lokal-topologisch ist.

Es ist also © unverzweigt und mithin R — M eine komplexe Mannigfaltig-
keit. Zum Beweise von Satz 9 braucht nur noch gezeigt zu werden, daB M
leer ist.

Zunâchst ist klar, daB der Rand dR von (R, (p) pseudokonvex ist; denn
wâre ox(\n,t) eine ausgezeichnete Schar in 91 (R, cp) mit nichtleerer Menge

dRr^ {cr^tD, 1)}, so wàre q&gt;oa1(m, t) eine ausgezeichnete Schar in H, und es

kônnte dHr&gt; {epoa1^, 1)} nicht leer sein. Das aber ist unmôglich, da Hyper-
kugeln stets pseudokonvex sind. Nun kann man © als Teilgebiet des RiEMANNschen

Gebietes ©&apos; (R&apos; — M, 0) auffassen. In der Nâhe eines Randpunktes

r, der ûber einem inneren Punkt von R&apos; — M liegt, hat dG die gleiche Struktur
wie dR in der Nâhe des entsprechenden Randpunktes und ist darum dort
pseudokonvex. Die iibrigen Randpunkte r von © bilden aber eine dunne Rand-

menge ; denn ist xvcG eine Folge, die gegen r konvergiert, so strebt in R&apos; die

Folge xv gegen M, und wegen M c {x, f(x) 0} gilt lim f(xv) 0.
V—&gt;00

Da iiberdies - wie vorne gezeigt - aile Randpunkte von © nicht hebbar sind,

folgt aus Satz 4, daB © pseudokonvex schlechthin ist. Nach Satz E ist deshalb

p(x) — In Ôq(x) eine in G R — M plurisubharmonische Funktion.
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Dièse strebt bei Annâherung an den Rand von © gegen + oo. Betrachtet man
p(x) in R — M, so ist jeder Punkt xoeM^R positive Unendlichkeitsstelle
von p(x), da zu xQ ein Punkt rO€dG gehôrt. p(x) ist deshalb sicher nicht in M
hinein plurisubharmonisch fortsetzbar. Weil aber M eine dunne Menge 2. Ord-

nung ist, steht das im Widerspruch zu Satz 2. Satz 9 ist bewiesen.
Als Korollar zu Satz 9 ergibt sich :

Ist n eine holomorphe Abbildung von Xn in den Cn, die X — D eineindeutig
abbildet, so ist n eine umkehrbar holomorphe Abbildung von Xn auf ein Gebiet
des Cn.

In der Tat Nach einem Satz von W. F. Osgood (vgl. [26], p. 117, Satz 5)
verschwindet die Funktionaldeterminante von n nirgends in Xn — {D^&gt; K).
Satz 9 ergibt also, daB X eine komplexe Mannigfaltigkeit ist und daB die
Funktionaldeterminante von n in X nirgends verschwindet. Daher bildet n
lokal-topologisch ab. Gàbe es nun zwei verschiedene Punkte x^D, x^Xn
mit nix-ù n(x2) $0€Cn, so gâbe es eine Umgebung U($o) und um xx, x2

punktfremde Umgebungen Vx, F2, derart, daB n eine eineindeutige, umkehrbar
holomorphe Abbildung sowohl von Vx als auch von F2 auf U ist. Ist dann D*
die dunne Menge n {D ^ Vx)^ n (D n F2) in U, so besitzt jeder Punkt 3 e U — D*
wenigstens zwei verschiedene Urbilder in X — D. Das widerspricht der Vor-
aussetzung.

Wie in [13] gezeigt wurde, ist das Korollar zu Satz 9 in der Théorie der Modi-
fikationen von Bedeutung. Es wurde in [13] mit Hilfe dièses Korollars bewiesen,
daB eine stetige wesentliche Modifikation einer w-dimensionalen komplexen

Mannigfaltigkeit immer eine Ersetzung einer dunnen Menge durch eine rein
(n — l)-dimensionale analytische Menge ist.
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