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Sur les automorphismes intérieurs d&apos;un demi-groupe réductif

par Gabriel Thierrin, Surpierre (Fribourg)

Dans ce travail nous nous proposons d&apos;étendre à une classe très générale de

demi-groupes, les demi-groupes réductifs, certains résultats de P. Dxtbreil ([4])
et R. Croisot ([1], [2], [3]) concernant les automorphismes intérieurs des semi-

groupes.

§ 1. Demi-groupes réductifs. Un demi-groupe est un ensemble dans lequel
est définie une opération univoque associative. Un semi-groupe est un demi-

groupe vérifiant la règle de simplification des deux côtés. Un demi-groupe D
est réductif à droite ([6]) si la relation ax bx pour tout xeD entraîne
a b. Par exemple, les demi-groupes possédant un élément-unité à droite,
les semi-groupes sont des demi-groupes réductifs à droite. Tout demi-groupe D
réductif à droite est isomorphe au demi-groupe des translations à gauche de D, en
faisant correspondre à l&apos;élément a*D la translation à gauche ya définie par
ya(x) ax.

Un complexe H de D (sous-ensemble non vide de D) est réducteur à droite si
la relation ah bh pour tout heH entraîne a b. Tout complexe contenant

H est aussi réducteur à droite. En particulier, la réunion de complexes
réducteurs à droite est un complexe réducteur à droite. S&apos;il en existe, les

complexes réducteurs à droite de D formés d&apos;un seul élément sont les éléments

simplifiables à droite de D. Si H et K sont des complexes réducteurs à droite,
le produit HK (ensemble des produits hk&gt; où heH, keK) est un complexe
réducteur à droite. En effet, si ahk bhk pour tout h*H et tout keK, on
a ah bh pour tout hcH et a b. Il en résulte que l&apos;ensemble des

complexes réducteurs à droite d&apos;un demi-groupe réductif à droite est un demi-

groupe pour la multiplication des complexes. Si le produit MN des complexes
M et N est réducteur à droite, le complexe M est réducteur à droite. En effet
de am bm pour tout meM suit amn bmn pour tout n*N et a b.

Proposition 1. Si » est un automorphisme du demi-groupe D, le complexe H
est réducteur à droite si et seulement si &lt;x(H) est réducteur à droite.

Si H est réducteur à droite et si a&lt;x(h) bu (h) pour tout heH, il existe c

et d tels que l&apos;on ait a ot{c), b &lt;x(d) et &lt;x(ch) &lt;x(dh). D&apos;où ch dh

pour tout heH, c d et a b.
Inversement, si oc (H) est réducteur à droite et si ah bh pour tout

heH, ona (x(ah) =o&lt;,(a)&lt;x(h)=(x(bh) (x(b)oi(h). D&apos;où oc(a)=&lt;x(b) et a 6.
On définit d&apos;une manière symétrique un demi-groupe réductif à gauche, un

complexe réducteur à gauche.
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Un demi-groupe réductif D est un demi-groupe réductif à droite et à gauche.
Par exemple, les demi-groupes possédant un élément-unité, les semi-groupes
sont des demi-groupes réductifs. Un complexe réducteur est un complexe réducteur

à droite et à gauche. Tout complexe contenant un complexe réducteur est
aussi réducteur. S&apos;il en existe, les complexes réducteurs formés d&apos;un seul
élément sont les éléments simplifiables de D. Si le produit MN de deux complexes
est réducteur, le complexe M est réducteur à droite et le complexe N réducteur
à gauche. Le produit de deux complexes réducteurs est réducteur. Donc

Proposition 2. L&apos;ensemble des complexes réducteurs d&apos;un demi-groupe réductif
D est un demi-groupe pour la multiplication des complexes.

Dans la suite, nous désignerons par (g le demi-groupe des complexes réducteurs

de D.
Un complexe H de D est r-intérieur, s&apos;il est réducteur et si pour tout aeD

il existe b, ceD tels que l&apos;on ait ha bh et ah hc pour tout heH.
Les éléments 6 et c ainsi définis sont uniques, puisque H est réducteur. Tout
complexe r-intérieur est contenu dans l&apos;intérieur de D, c&apos;est-à-dire l&apos;ensemble

des éléments xeD tels que xD Dx. Nous désignerons par g l&apos;ensemble

des complexes r-intérieurs de D et nous l&apos;appellerons le r-intérieur de D.

Théorème 1. S&apos;il n&apos;est pas vide, le r-intérieur g du demi-groupe réductif D est

un sous-demi-groupe unitaire du demi-groupe (£ des complexes réducteurs de D.
Pour tout couple H, Keft, il existe un couple Hx, Kxe% tels que l&apos;on ait

Rappelons qu&apos;un sous-demi-groupe S d&apos;un demi-groupe T est unitaire à

droite dans T si les relations xscS, seS, xeT entraînent xeS. Un sous-
demi-groupe est unitaire dans T s&apos;il est unitaire des deux côtés.

Soient alors He$, Keft. Le complexe HK est réducteur. Si aeD, il
existe 6 et c tels que l&apos;on ait ha bh pour tout heK et hb ch pour
tout heH. D&apos;où hha hbk chh pour tout hheHK. On montre de
même qu&apos;il existe d vérifiant ah h hhd pour tout hheHK. Donc HKt^
et 3f est un sous-demi-groupe de (£.

Soit MNtft, avec JfcfcŒ, Ne%. Il existe bx et cx tels que l&apos;on ait amn
mnbx et nbx=*cxn pour tout meM, ncN. D&apos;où amn mcxn et, puisque

j^ est réducteur, am mcx pour tout meM. D&apos;autre part, il existe 62

et c2 tels que l&apos;on ait an nb2 et mnb2 c%mn pour tout meM, neN.
D&apos;où man mnb% c%mn et ma c2m pour tout meM. Donc Jfcgf
et 8f est unitaire à droite. On montre de même que g est unitaire à gauche.

Soit Hx Pensemble des éléments hx de D pour lesquels il existe heH
vérifiant hk~khx pour tout heK. On a HK?=KHX et KHX est réducteur. Donc
Hx est réducteur à gauche. Soit ahx bhx pour tout hxeHx. On a, pour tout
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kahx kbhx et il existe ar et b&apos; tels que ka a&apos;k, kb b&apos;k. D&apos;où

x b&apos;khx, a&apos; — b1, ka kb et a 6. Donc #! est réducteur. Comme

ft, Keft et H1€(£, on a fl^eg. On montre de même l&apos;existence de

i^eg tel que Ton ait HK KXH.
Si le centre Z de D (ensemble des éléments de D permutables avec chaque

élément de D) n&apos;est pas vide, l&apos;ensemble (g des complexes réducteurs contenus
dans Z est, s&apos;il n&apos;est pas vide, un sous-demi-groupe de g. L&apos;ensemble © sera
appelé le r-centre de D.

Proposition 3. Si oc est un automorphisme de D,le complexe H est r-intérieur
si et seulement si oc (H) est r-intérieur.

Si H est r-intérieur, oc (H) est réducteur d&apos;après la proposition 1 et la proposition

symétrique. Si aeD, il existe a&apos; tel que a oc (a&apos;) et b et c tels que
ha1 bh et a&apos;h hc pour tout Acjff. D&apos;où oc(har) &lt;%(A)a #(6A)

&lt;%(6)&lt;%(A), #(a&apos;A) a#(A) oc(hc) #(A)&amp;(c) pour tout oc(h)€Oc(H). Donc
&lt;%(jE?) est r-intérieur.

Inversement, si #(/?) est r-intérieur, H est réducteur. Il existe b&apos; et c&apos; tels

que oc(h)oc(a) bfoc(h) et &lt;x(a)&lt;%(A) &lt;%(ft)c&apos; pour tout AeU. Si b&apos;= oc(b)

et c&apos; &lt;x(c), on a oc(ha) #(6A) et oc(ah) a(ftc). D&apos;où ha bh et
ah hc pour tout heH et jET est r-intérieur.

§ 2. Automorphismes intérieurs. Soit D un demi-groupe réductif dont le
r-intérieur g n&apos;est pas vide, et soit Hcft. La correspondance a -&gt;6 définie

par ha bh pour tout AcJEf est une application biunivoque de D sur D.
C&apos;est de plus un automorphisme de Z&gt;. En effet, si a&apos;-&gt;6&apos;, on a Aa&apos;= 6&apos;A

pour tout Acff. D&apos;où haaf bha&apos; bb&apos;h pour tout hcH. Nous désignerons

par ocH cet automorphisme et nous dirons que c&apos;est un automorphisme
intérieur de première catégorie. L&apos;application inverse b -&gt;a définie par bh ha
pour tout heH est aussi un automorphisme de D que nous appellerons
automorphisme intérieur de deuxième catégorie et que nous désignerons par pH.

La notion d&apos;automorphisme intérieur de première ou deuxième catégorie
dans un demi-groupe réductif D coïncide, lorsque D est un semi-groupe, avec
la notion d&apos;automorphisme intérieur de première ou deuxième catégorie introduite

par P. Dtjbbbil ([4], chapitre II) dans cette catégorie de demi-groupes.
Lorsque D est un groupe, on retrouve la notion classique d&apos;automorphisme

intérieur.
Rappelons quelques définitions ([4], [5]) qui nous seront utiles dans la suite.

Soit T un demi-groupe quelconque. Une équivalence R de T est régulière à
droite si la relation a b(R) entraîne ax bx (R) pour tout xeT. Une
équivalence S de T est simplifiable à droite si la relation ay by(8) entraîne
a b (8). On a les définitions symétriques. Si V est un complexe quelconque
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de T, on désigne par V .&apos; a l&apos;ensemble des éléments x de T tels que axeV et
par F \ a l&apos;ensemble des éléments y de T tels que yaeV. Au complexe F on
peut associer l&apos;équivalence principale à droite Rv et l&apos;équivalence principale à

gauche VR définies respectivement par a b(Rv) +-&gt;V / a F .• 6,
a 6(Fi?)«~&gt; F *. a F \ 6. Les équivalences i2F et FJS sont respectivement
régulière à droite et régulière à gauche. Le complexe F est net à droite dans
T, si F .• a 7^0 pour tout acT. Il est net, s&apos;il est net à droite et à gauche.
Le complexe F est fort dans T, si F / a^ F .* b =£ 0 entraîne F .• a F .• b.

Il est équirésiduel dans T7 si F .&apos; a 0 entraîne F \ a 0 et inversement.
Le complexe F est réversible, si, quels que soient a, 6c F, il existe x, y, z,
teV vérifiant ax by, za tb.

Désignons par Ix l&apos;ensemble des automorphismes intérieurs de première
catégorie et par /2 l&apos;ensemble des automorphismes intérieurs de deuxième
catégorie de D.

Théorème 2. L&apos;ensemble Ix des automorphismes intérieurs de première catégorie
de D est un semi-groupe homomorphe au r-intérieur g de D. L&apos;équivalence régulière

E définie par cet homomorphisme est simplifiable et, s&apos;il n&apos;est pas vide, le
r-centre (S de D est une classe mod E.

L&apos;ensemble Ix est un sous-ensemble du groupe A des automorphismes de D.
Si &lt;xH el1 et &lt;xK€llt on a ocH(xK (xHK. Par conséquent I1 est un sous-demi-

groupe de A ; comme A est un groupe, Ix vérifie la règle de simplification, c&apos;est

donc un semi-groupe. En faisant correspondre à Heft Fautomorphisme
ocH€lx, nous voyons que Ix est homomorphe à %.

L&apos;équivalence E est simplifiable, puisque Ix est un semi-groupe. S&apos;il n&apos;est pas
vide, le r-centre © est une classe mod E, car à tout Ge © correspond l&apos;auto-

morphisme identique, et inversement tout complexe r-intérieur engendrant
Tautomorphisme identique est un élément de ©.

Théorème 3. Le semi-groupe Ix est un groupe si et seulement si Ix /2. Pour
qu&apos;il en soit ainsi, il faut et il suffit que le r-centre © soit non vide et net dans %.

L&apos;équivalence E coïncide alors avec l&apos;équivalence principale à droite R® définie
dans g et on a l&apos;isomorphisme Ix ~ 3/^© •

La première partie découle du fait que I% est l&apos;ensemble des automorphismes
inverses de ceux de It.

Si Ix est un groupe, le r-centre © n&apos;est pas vide et © est la classe-unité de
l&apos;équivalence E. Donc © est net dans g. Comme E est régulière et simplifiable,
on a, d&apos;après un théorème de P. Dtjbreu, ([4], théorème 21), E Rm et

Inversement, si © n&apos;est pas vide, © est une classe mod E et un sous-demi-

groupe de 5* Donc l&apos;élément e de Ix correspondant à cette classe est idem-
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potent et par suite est élément-unité de Ix, car dans un semi-groupe un élément
idempotent est toujours élément-unité. Si de plus (5 est net dans f$f, l&apos;élément e

est net dans Ix qui est alors un groupe.

Théorème 4. Tout demi-groupe T peut être plongé dans un demi-groupe réductif

D tel que tout automorphisme de T soit induit sur T par un automorphisme
intérieur de première catégorie de D.

Associons à T le demi-groupe T7* défini de la façon suivante : si T possède un
élément-unité, T î7* ; sinon, T7* s&apos;obtient à partir de T en lui adjoignant
un élément-unité. Désignons par e l&apos;élément-unité de T*. Le demi-groupe î7*
est rédactif et isomorphe au demi-groupe 0 des translations à gauche de 21*.

Soit A le groupe des automorphismes de î1*. Les demi-groupes A et 0 sont des

sous-demi-groupes du demi-groupe P des applications de ï7* dans lui-même.
Désignons par D le sous-demi-groupe de P engendré par A et (9. Le demi-

groupe D est réductif, puisqu&apos;il contient un élément-unité, l&apos;automorphisme

identique e. Si otcA et Oe0, il existe 6&apos;€0 tel que Ton ait dot-=ocdf. En
effet, si 6 est la translation à gauche correspondant à tfcï7*, si t oc(t&apos;) et si
Qf est la translation à gauche correspondant à t&apos;&apos;, on a 6oc(x) — toc(x) oc(tf x)

Comme eeA^ 0, il résulte de ce qui précède que tout élément de D est de
la forme oc d. Dans le demi-groupe D, les éléments oc de A sont simplifiables,
donc sont des complexes réducteurs de D. Ces éléments appartiennent de plus
au r-intérieur de D. En effet, on a, si àeD

oc-ô ocôoc&quot;~l&apos;0c ô-oc oc-oc~~ldot

Identifions maintenant dans le demi-groupe D les éléments de 0 avec les

éléments correspondants de T7*. Les demi-groupes T et î7* sont plongés dans le

demi-groupe réductif D. L&apos;automorphisme oc de T* est induit sur î7* par
l&apos;automorphisme intérieur ôca de première catégorie de D défini par

Si î7* T, le théorème est démontré; si TcT*, le théorème découle du
fait que tout automorphisme de T est induit sur T par un automorphisme
de?7*.

§ 3. Relations de conjugaison et d&apos;équiconjugaison. Ces relations,
introduites dans les semi-groupes par R, Croisot ([3]) peuvent être aussi définies
dans les demi-groupes réductifs.

Nous considérons toujours un demi-groupe réductif D dont le r-intérieur 5
n&apos;est pas vide. Un complexe F de D est dit conjugué à droite d&apos;un complexe X,
s&apos;il existe lïcgf tel que l&apos;on ait ocH(X) F. Nous avons alors ffH{Y) X
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et X est dit conjugué à gauche de F. Le r-normalisateur d&apos;un complexe X est
l&apos;ensemble des éléments H de 5 tels que &lt;xH(X) X. Nous le désignerons
par îtx. Si le r-centre © n&apos;est pas vide, on a ©&lt;=9tx.

Nous appelons relation de conjugaison la relation suivante définie dans D et
notée Œ : a(£6 «»? 6 est conjugué à droite de a.

Proposition 4. La relation (E est transitive.
Soient a&amp;b et 6(£c. Il existe E, JCcg tels que ^(a) 6, &lt;x#(6) c.

D&apos;où aKH(a) &lt;%£&lt;%#(&lt;*) c.
Pour acD, on a a(£a si et seulement si 9ta=£0. C&apos;est immédiat. Donc

Proposition 6. -La relation (£ es£ wnc relation de préordre si et seulement si
9la=£0 pour tout aeD.

C&apos;est le cas en particulier lorsque le r-centre n&apos;est pas vide.

Théorème 5. Pour que (£ soit une relation d&apos;équivalence, il faut et il suffit que
le r-normalisateur 3la de a soit non vide et net à gauche dans g pour tout aeD.

Si £ est une relation d&apos;équivalence, £ est réflexive et on a 9ta ^ 0 pour
tout aeD. Si Jïcg et si 6 ==&lt;xH(a), on a a&amp;b et 6(£a. Il existe i^cg tel
que a ^(6). D&apos;où &amp;KII(a) &amp;K(xH(a) &lt;x#(6) a. Donc KH€yia qui
est net à gauche.

Inversement, soit 3la ^ 0 et net à gauche pour tout aeD. D&apos;après la
proposition 5, la relation Œ est réflexive et transitive. Il faut montrer qu&apos;elle est
symétrique. Soit a(£b ; il existe H, Keft tels que &lt;xH(a) 6, c&apos;est-à-dire

ha bh pour tout hcH, et KH€9la, c&apos;est-à-dire kha akh pour tout
et feciT. D&apos;où kbh akh et kb ak pour tout ieif. Donc

a et 6Œa.
La relation £ est une équivalence en particulier lorsque le r-centre © n&apos;est

pas vide et est net à gauche dans g.
La relation qx d&apos;équiconjugaison à droite du complexe I de D est définie

dans le r-intérieur g par
HqxK*-&gt;ocs(X) &lt;xK(X)

Cette relation qx est évidemment une équivalence.

Théorème 6. Uéquivalence qx est régulière à gauche et simplifiable à gauche.
Les classes de % mod qx correspondent biunivoquement aux différents complexes

conjugués à droite de X.
Si H K(qx), on a &lt;xH(X) &lt;xK(X). Si Jfcg, on a alors &lt;xMocH(X)

ocMH(X) ocMaK{X) ocMK(X) et ME MK(Qx).
Si ME MK{qx), on a »um{X) (xMK(X). D&apos;où ^^(X) ^*B(X)=*K(X) et E=eK(qx).
Au complexe F conjugué à droite de X faisons correspondre la classe de
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mod qx constituée des éléments H de g tels que &lt;xH (X) Y. Nous définissons

ainsi une application biunivoque.

Théorème 7. S&apos;il n&apos;est pas vide, le r-normalisateur 9tx du complexe X est un
sous-demi-groupe unitaire et réversible de g et de (£. De plus, 3lx est fort et équi-
résiduel dans g ; c&apos;est une classe mod qx et Von a

où nxR est Véquivalence principale à gauche associée à 9lx. Si en outre 9lx est net
à gauche dans %, on a

Qx *xs -

Soient H, K€9lx. De txH(X) X et &lt;xK(X) X suit ocHK(X) aH&lt;xK(X)

«^(-X&quot;) X. Donc HKt&apos;Slx et 5RZ est un sous-demi-groupe de g.
Si TH*yix avec Tcg, on a &lt;xTH{X) X &lt;xT&lt;%H(X) *T(Z). Dono

T€9lz. Si HVeyix avec Fcg, on a &lt;xHV(X) X &lt;xHcxv(X), ce qui exige
&lt;xv(X) - J et ^€^x- Par conséquent, 9lx est unitaire dans JÇ&gt; et aussi dans
(£, puisque g est unitaire dans (£5 (théorème 1).

D&apos;après le théorème 1, il existe Hl9 K1€% tels que HK Z^ i^!^.
Mais KHX — K1H€yix, D&apos;où, puisque 9îx est unitaire dans g, H1€3tXi
K1€&lt;3lx et 5RX est réversible.

Soit 3lx.T 0 avec Tcg. Si Fcîl^-.T, on a FT€5RX. Il existe
Fl€g tel que Fî7 TFxc^ et F^îl^ .• T, ce qui est impossible. Donc
91^ •. T 0. On démontre de même l&apos;inverse. Par conséquent, 9lx est équi-
résiduel dans Ç.

Le r-normaKsateur *Jlx est évidemment une classe mod qx Comme qx est
régulière à gauche et simplifiable à gauche, on a, d&apos;après un théorème de
P. Dubrbil ([4], théorème 21), qxQ*ixR et 31^ est fort dans g. Si 91^ est
net à gauche, l&apos;égalité qx si^JS découle du même théorème.
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