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Uber Eisenstemsche Reihen
und automorphe Formen von der Dimension —1

von HANS PETERssoN, Miinster

1. E1sEnstEINsche Reihen von der Dimension —1 sind systematisch in einiger
Allgemeinheit zum ersten Male von E. HECKE [1] untersucht worden. Durch
Anwendung neuer Methoden und Gedanken ergab sich die explizite Konstruk-
tion eines Systems ganzer Modulformen in einer komplexen Variablen mit
folgenden Eigenschaften :

1. Die Modulformen gehéren zur Dimension —1 und zur Hauptkongruenz-
gruppe ['(N) einer beliebigen Stufe N >2. Das System wird durch die
Transformationen der vollen Modulgruppe als Ganzes auf sich abgebildet.

2. Die Funktionen des Systems besitzen Fourier-Koeffizienten relativ einfacher
Bauart (Teilersummen).

3. Das System laf3t sich explizit in ein linear-dquivalentes System iiberfiihren,
das auf die Spitzen eines Fundamentalbereichs & der I'(N) wie folgt be-
zogen ist : Es enthilt zu jeder Spitze von &y eine Modulform, von der der
Imaginarteil des konstanten Gliedes in dieser Spitze den Wert 1, in jeder
anderen Spitze den Wert 0 hat.

4. Es gilt der Reduktionssatz : Zu jeder ganzen Modulform von der Dimension
— 1 und der Stufe N gibt es ein lineares Kompositum der Funktionen des
Systems derart, daB die Differenz in allen Spitzen verschwindet.

Demgegeniiber mufl man das in [1] angedeutete Verfahren, das zur Bestim-
mung des Ranges der von den Funktionen des Systems aufgespannten Schar
€ und zugleich der zwischen diesen Funktionen bestehenden Relationen dient,
als umstédndlich und undurchsichtig beurteilen. Von einer Kennzeichnung der
Schar €, durch innere Eigenschaften ist in [1] noch nicht die Rede.

Eine grundsitzliche Anderung dieser Situation entsteht nach [2] durch An-
wendung des Riemann-Rocaschen Satzes und des Prinzips der Metrisierung. Die
Auswertung der Metrisierungsintegrale fiithrte in Verbindung mit dem Reduk-
tionssatz zu der Kennzeichnung der Schar €y als der Schar der zu allen ganzen
Spitzenformen orthogonalen ganzen Modulformen von der Dimension — 1 und
der Stufe N. Diese Aussage ist nur ein Sonderfall eines allgemeinen Sachver-
halts, nach dem (schlechthin) alle irgendwo auftretenden Reihen, die man aus
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formalen Griinden als Eisensteinreihen bezeichnet hat, sich einem analogen
metrischen Zusammenhang unterordnen.

Bei analytischen automorphen Formen hat dieser Zusammenhang folgende
Struktur : Es sei I' eine Grenzkreisgruppe von erster Art, r eine reelle Zahl >0,
v ein Multiplikatorsystem zu I' und —r vom Betrage 1, € die Schar der ganzen
Formen, €+ die Schar der ganzen Spitzenformen {I', —r, v}, N die Normal-
schar von ¢, das heiflt die Schar derjenigen Formen von €, welche auf der
Schar €+ senkrecht stehen. Dann ist € die direkte Summe von €+ und RN, es
gibt also zu jeder ganzen Form {[, —r,v} eine und nur eine Form aus 9%,
welche mit jener die konstanten Glieder in den Entwicklungen nach den Orts-
variablen aller der Spitzen von I' gemein hat, in denen v unverzweigt ist. Dieser
Sachverhalt ist als eine Verschiarfung von 4. aufzufassen. Ebenso stellt ein Satz
iiber das Verhalten von 9 bei Transformation mit einer nicht in I' gelegenen
linearen Abbildung eine Verschirfung der zweiten Aussage von 1. dar.

Nach dem oben Gesagten kann man als die Analoga der Schar €, bei einem
allgemeinen ' von erster Art unbedenklich diejenigen Normalscharen N defi-
nieren, welche zu r =1 und einem » mit v> =1 gehoren; fiir gegebenes
I" existieren solche v genau dann, wenn [ keine elliptischen Fixpunkte gerader
Ordnung hat, und ihre Anzahl (also auch die Anzahl der verschiedenen Scharen
N) ist in diesem Falle eine Potenz von 2. Fiir ein beliebiges zu Fund —7r = —1
gehoriges v vom Betrage 1 bezeichne a die Anzahl derjenigen Spitzen eines
Fundamentalbereichs § von I, in denen v unverzweigt (das heit » = 0) ist,
und #(—1,v) den Rang von it = N(I", — 1, ). Dann gibt der RIEMANN-
RocHsche Satz unmittelbar

u(—1,v) +u(—1l,vY)=a ; (1.1)
im Falle v2 = 1 ist also @ = 2m gerade und
RgR(I, —1,v) =u(—1,v) =m . (1.2)

Wie aus der direkten Zerlegung € = €+ 4 9N hervorgeht, besteht eine
umkehrbar-eindeutige linear-distributive Beziehung zwischen den Funktionen
von N auf der einen und den Vektoren eines gewissen linearen Vektorgebildes
R im komplexen a-dimensionalen Vektorraum B@ auf der anderen Seite. Im
Falle v2 = 1 ist R sotrop, das heiflt das algebraische Skalarprodukt irgend
zweier Vektoren von R verschwindet ; R hat hier den Rang m. Dieser Fall wird
weiterhin ausfiihrlicher diskutiert.

Da die Struktur der Schar )t mit der von ‘R iibereinstimmt, kann die Aufgabe
gestellt werden, aus den Eigenschaften von R neue Aussagen iiber die Funk-
tionen von 9t abzuleiten, insbesondere solche, die bekannten Sitzen iiber die
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EiseEnsTEINschen Reihen entsprechen. Mit Riicksicht darauf, daB Ubertragun-
gen von 1. und 4. in viel allgemeinerem Rahmen bereits vollzogen sind, da8l
die Rangbestimmung vorliegt und daBl arithmetische Zusammenhinge vom
Typus 2. ganz unglaubwiirdig sind, wird man versuchen, zunichst die Aus-
sage 3. auf die Scharen M mit » =2 =1 zu iibertragen, das heilt die Kxistenz
eines Erzeugendensystems der Schar N mit dem genannten Verhalten in den
Spitzen zu beweisen ; sodann wird man versuchen, die Relationen aufzustellen,
die zwischen den Funktionen dieses und anderer Erzeugendensysteme be-
stehen.

Im ersten, rein algebraischen Teil der folgenden Untersuchung zeigt sich, da3
diese Aufgaben rein algebraisch und mit bescheidenem Aufwand vollstindig
gelost werden konnen. Dariiber hinaus resultiert eine abschlieBende Aussage
iiber isotrope Vektorgebilde R maximalen Ranges im komplexen B(*™ vom
Charakter einer Parameterdarstellung. Als Punkte des Parameterraumes, auf
die diese R eineindeutig bezogen sind, erscheinen die Links-Nebenklassen einer
Untergruppe symplektischer Matrizen innerhalb der reellen orthogonalen
Gruppe des B>m),

Das eigentliche Objekt dieser Uberlegungen ist eine das betreffende Gebilde
R eindeutig kennzeichnende quadratische Matrix G des Grades 2m, die sowohl
reell-orthogonal als auch schiefsymmetrisch ist. In jedem Falle, in dem die
Gruppe ' durch ein bekanntes arithmetisches Gesetz bestimmbar und ein
System von 2m Erzeugenden der Schar R explizit konstruierbar ist, gewinnt
man so eine konkrete Matrix G der angegebenen Art. Fiir die Hauptkongruenz-
gruppe I' (N) ergibt sich durch die friiher iibersehene Moglichkeit, die Nullwerte
gewisser {-Reihen mit Kongruenzbedingungen zu berechnen, eine elementare
Darstellung der zugehorigen Matrix ¢/, deren Orthogonalitéit ich nicht direkt
bestitigt habe. Identifiziert man I' mit einer gewissen Kongruenzgruppe von der
Primzahlstufe q, die durch die Eigenschaften der l-ten Potenzreste mod q erklért
ist, so gelangt man zu einer merklich einfacheren Matrix ¢,deren Orthogonali-
tit sich durch direkte Rechnung auf Grund der finiten Darstellung der DirIcH-
LETschen Funktionswerte L (1, y) bestédtigen laBt.

Andrerseits gewinnt man hier zum ersten Male die Rédnge der Normalscharen
N([, —1,v) zu Gruppen I' eines von FRICKE [5] untersuchten Typus, die nicht
Untergruppen der Modulgruppe sind, und zu Charakteren v, die nicht nur die
Werte + 1 annehmen. Diese Ergebnisse enthalten auch die ersten Andeutungen
dahin, daB man im Falle »? -4 1 iiber (1.1), also den RiIEMANN-RocCHschen
Satz hinaus keine allgemeine GesetzméBigkeit zu erwarten hat. Gewisse Be-
ziehungen dieser Gegenstinde zu Relativklassenzahlen im Bereich absolut-
abelscher Zahlkérper sind bemerkenswert, obwohl sie sich aus bekannten Zu-
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sammenhingen zwischen Modulformen und DiricHLETschen Reihen verstehen
lassen.

Nachdem die Riénge der Normalscharen in den genannten Fillen bestimmt
sind, besteht prinzipiell die Moglichkeit, etwas iiber die Ringe der Scharen der
ganzen Spitzenformen in den gleichen Klassen zu erfahren. Die genaue Rang-
bestimmung gelang hier fiir die Klassen der Dimension — 1 bisher nur in nume-
rischen Spezialfillen. An dieser Situation wird auch im folgenden nichts ge-
éndert. Man kann aber wenigstens fiir die urspriinglichen von FrickE [5] defi-
nierten (zu den Klassenpolygonen gehorigen) Gruppen ®°[q] im Falle einer
Primzahlstufe ¢ =3 mod 4 (¢>3) die Differenz der Ringe der Scharen
ganzer Spitzenformen von der Dimension — 1 berechnen, wenn die beiden zu-
gehorigen Multiplikatorsysteme gewisse explizit gegebene (konjugiert-kom-
plexe) Werte haben. Das Problem steht mit einer von HECkE [10] diskutierten
Frage iiber die Eigenwerte der 7-Operatoren in Beziehung. Wihrend sich
HrcokEe bekannter Rangzahlen bedienen konnte, besteht hier die Aufgabe ge-
rade darin, diese Rangzahlen oder wenigstens ihre Differenz zu ermitteln. Zur
Losung dieser Aufgabe erweisen sich neben dem RiEMANN-RocHschen Satz und
Frickgschen Ergebnissen vor allem die explizite Kenntnis der Multiplikatorwerte
der Deperinpschen Funktion 7(r) sowie die Tatsache als entscheidend, daB die
zur Gruppe ®°[¢q] gehoérige Modulform #%(7)y (-g—) in der oberen z-Halbebene
nicht verschwindet. Beide Phéinomene sind wesentlich transzendenter Natur.
Sie werden hier zur Berechnung einer elemeniar-arithmetisch definierten Anzahl
elliptischer Fixpunkte benutzt.

Als Differenz der genannten Rangzahlen ergibt sich so }(k — 1), wo &k die

Klassenzahl des imaginiir-quadratischen Zahlkorpers P(V — gq) bezeichnet.

2. Nach [2] liegt folgende Situation vor : Die Normalschar
N(r, —1,9) (I von erster Art, v2 = 1)

ist umkehrbar eindeutig und unter Ubertragung der linearen Komposition auf
ein lineares Vektorgebilde R des Ranges m = % im Raum B der siimtlichen

Vektoren mit 2m komplexen Komponenten bezogen. R ist im oben angegebe-
nen Sinne isotrop.

Im folgenden bezeichnen wir mit kleinen deutschen Buchstaben Vektoren,
mit groBen lateinischen Buchstaben quadratische Matrizen, mit j den Zeilen-,
mit k den Spaltenindex der Elemente einer Matrix ; Vektoren gelten als Matri-
zen mit nur einer Spalte ; die Elemente aller Matrizen sind komplexe Zahlen ;
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ist eine Matrix oder ein Vektor reell, so wird dies besonders hervorgehoben ;
ein oberer Index an dem Symbol einer Matrix (oder eines Vektors) bestimmt
deren Zeilenzahl ; die Einheitsmatrix wird mit I = (4;;), die Nullmatrix mit
0, der Nullvektor mit o, der k-te Einheitsvektor mit ¢, (1 <k < 2m) be-
zeichnet ; ein Punkt iiber oder rechts oben an dem Symbol einer Matrix oder
eines Vektors deutet die Transposition, ein oberer Querstrich den Ubergang zu
der Matrix mit konjugiert-komplexen Elementen an.

Ein lineares Vektorgebilde R im B*™ wird ein ssotropes Vektorgebilde ge-
nannt, wenn fiir irgend zwei Vektoren x, 1) von R stets die Relation der Ortho-

gonalitit x¥1 = 0 erfiillt ist ; die Relation ¥y = 0 wird unitéire Orthogonali-
tdt genannt. Es sei R ein isotropes Vektorgebilde im B™, m' = Rg R. Da
R im Orthogonalgebilde von R enthalten ist, gilt m' < 2m — m', also
m’ < m. Im folgenden sei m' = m.

Es sei nk eine Permutation der & = 1, 2,..., m. Die Vektoren e, e,
(1 £ k < m) spannen ein isotropes Vektorgebilde &, vom Range m auf. Die
Summe aller dieser S, besitzt die Basis e¢;—e;,..., ep1—€pir (2 Sk = m),

e, + ?¢,,,; und daher den Rang 2m — 1. Es gibt also, wenn m >1, mehr
als nur ein isotropes Vektorgebilde vom Range .

R habe die obige Bedeutung (m = Rg R). Essei ¢; = a; + ¢tb; (1 £j = m)
eine Basis von R und dabei a; = }(¢; + ¢;). Da R aufler o keinen Vektor mit
reellen oder rein imaginiren Komponenten enthilt, folgt aus einer linearen
Relation m

m
Z2Aa; +2Zu;b;=0  mitreellen 4;, u; ,
j=1 =1

dafl m m
Z (A —ip)e; =12 (— p;a; + 4; b))
=1 i=1

?

verschwindet, also 2, = p;, = 0 ist (1 <j < m). Man bestimme jetzt reelle

Xy s ﬂkv mit m m

ekzz‘xkvav"l"zﬂkvbv (1§k§2m)'
=1 v=1

Dann wird

I M3

(ﬂkv—}'io‘kv) cv=gk+iek‘m (1 gk §2m)
1

v

mit gewissen reellen Vektoren g,. Wir zeigen noch, dafl diese g, + e, das
Gebilde R aufspannen. Es gilt

2m
b, = 2 bye, mitreellend,; (1=j=m),
k=1

und hier wird o

2m
2 byi(gr +tex) = Z byyg +1b;,=¢; ,
k=1 k=1
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weil der Imaginéirteil eines Vektors aus R den Vektor eindeutig festlegt.
Also besteht zuniichst der in der Einleitung angekiindigte

Satz 1. Jedes isotrope Vektorgebilde R des Ranges m im komplexen BE™ be-
sitzt ein eindeutig bestimmtes Erzeugendensystem von der Gestalt g, -+ ie,
(1 £k < 2m) mat gewissen reellen Vektoren g, .

Die Matrix G = G*™ mit den Spalten g, (1 <k < 2m) ist mithin durch
R eindeutig bestimmt und hat die Eigenschaft

@+ily@+i)=0, dh GG=I, G=—G. (2.1)
Transformiert man G durch eine unitéire Matrix U™ in eine Diagonalmatrix
D = UGU, so erhilt man aus (2.1) sofort

D=(é,), |d|=1, D=UQU=—D,

also d; = +¢. Daher und wegen RgR = m kann

= [il Om - /21 O
D=D,=UGU = ), G+iI=T U (2.2)
0 —il om O

erreicht werden. In den Bezeichnungen von Satz 1 gilt demnach

Satz 2. Die Matriz G = G*™ mit den Spalten g,, (1 <k < 2m) st reell,
orthogonal wund schiefsymmetrisch. Jede reelle orthogonale schiefsymmetrische
Matriz G = (g1, .-+, Q2m) Oestimmt eindeutig ein isotropes Vektorgebilde
R B, R wird von den Vektoren g, + te;, (1 <k < 2m) aufgespannt, die
Erigenwerte von G sind gleich © oder — i, und der Rang von R st gleich der Viel-
fachheit des Eigenwertes -+ i von G, diese ist also hochstens gleich m.

Fir jeden Vektor 3 = (z;) ist
2m
Z 2,(gp +tex) = (G +11)3 .

k=1
3 heilt Relationenvektor der g, + ¢7¢, (1 <k < 2m), wenn (G +1l)3 =0
ist. Aus (2.1) folgt
Q@+ :DH(G—12I)=0,

und dies besagt, dafl die Vektoren g, —ie¢e, (1 =<k <2m), wenn R den
Rang m hat, das m-dimensionale lineare Vektorgebilde der sdmtlichen Rela-
tionenvektoren aufspannen. Mithin gilt in den Bezeichnungen von Satz 1

Satz 3. Das lineare Vektorgebilde der simitlichen Relationenvektoren des Er-
zeugendensystems @, + 1¢;, (1 <k < 2m) von R ist mit dem 2u R konjugrert-

komplexen Gebilde R identisch, also wieder ein isotropes Vektorgebilde des Ranges
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m. Bezeichnet C = C*™ eine umkehrbare Matriz, so bilden die 2m Spalten
von (G 4 11)C auch ein Erzeugendensystem von R, und das lineare Vektorgebilde

der simtlichen Relationenvektoren dieses Erzeugendensystems ist C—1 R, besteht also
aus den Vektoren C-'tr (reR). C-'R ist ein isotropes Vektorgebilde, wenn

CC = Al fur einen Skalar A zutrifft.

Nach diesen sehr einfachen Aussagen iiber Erzeugendensysteme und deren
Relationen untersuchen wir die isotropen Vektorgebilde des Ranges m in
B2m) genauer.

Setzt man in fester Bezeichnung

Jm) 0
Dy=1i ,
o -1

so ist nach (2.2) G = U D,U durch die unitire Matrix U eindeutig bestimmt.
Man kann aber eine solche Matrix U offenbar nicht willkiirlich vorgeben, wenn
man erreichen will, dal G reell ist und den Relationen (2.1) geniigt. In der Tat

(2.3)

erhilt man aus G = EDOU unmittelbar zwar
GG =I, G=—G, Rg@-+il)=m,
nicht aber, daB} G reell ist. Dies besagt vielmehr
D,UU + UUD, = 0

O(m) P
Q o)

Fiir spater benotigen wir einige allgemeine Sétze iiber die unitédre Diagonal-
Transformation n-reihiger quadratischer Matrizen. Zunéchst werde der folgende
bekannte Satz hervorgehoben : Dann und nur dann 1af3t sich ¥V = V™ durch

oder UU = ( ) mit unitdrem P™ @ = r.

eine unitdre Matrix auf Diagonalgestalt transformieren, wenn V mit V ver-
tauschbar ist. Unter dieser Voraussetzung ist ¥ genau dann selbst unitér, wenn
alle Eigenwerte von V den Betrag 1 haben. — Dariiber hinaus gilt

Satz 4. Dann und nur dann lift sich V = V™ durch eine reelle orthogonale

Matrix auf Diagonalgestalt transformieren, wenn V mit V vertauschbar und sym-

metrisch ist. Unter dieser Bedingung lift sich V in der Gestalt QQ darstellen
(@ = Q™). Hier kann @ dann und nur dann unitir gewdihlt werden, wenn V
selbst unitir ist.

Bewers. a) Aus

V—=RD'R, D=D®"=(d}s,), R=R™ =R, RR=1 (2.4)
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folgt o .
VV =VV , V=V. (2.5)

b) Es gelte (2.5). Da Real- und Imaginérteil von ¥ symmetrisch sind, kann
ohne Einschrinkung V = B + 1D mit

B=B"=B=RB, D=D"™=(d0é,)=D
angenommen werden, wo in der Anordnung der d; keine zwei gleichen durch

ein von ihnen verschiedenes getrennt werden. Nun besagt VV =7VV, daB
B mit D vertauschbar ist. Daher zerfillt B 4 ¢D in lings der Diagonale auf-
gereihte Teilmatrizen B} 4- id;I gewisser Grade p, (p, + pz + ... =n), die
nunmehr einzeln reell orthogonal auf Diagonalgestalt transformiert werden
konnen.

c) Es gelte (2.5) und es sei (2.4) erreicht. Man setze ¢, = Vc—lz. (1 <5 =),
D' = E?, E = (¢;0;;). Dann wird V = RE(RE)’. Ist V unitir, so auch D/,
also F, also Q = RE.

(m)
Beispiel. Fir n=2m, V = (I 0) gilt (2.5). Die Matrizen

1 /I ] iIm 0 1 [(ilm [
To——~“,7§—"(__1 I)’ Fz(o 1)’ T‘ZT"F:V&:(-—U 1) (2.8)

sind simtlich unitir, und man findet

—1 0\ . .
V=1, )ﬂ:ﬂﬂ.

0 Jim)
Die allgemeinste unitére Matrix Q mit V = QQ hat die Gestalt
Q=T,R, wo R=Rew_R,  RR=1I. (2.7)

Nach Satz 4 kann man nun, wenn eine unitire Matrix P = P™ vorgelegt
. O P '
ist, eine unitire Matrix U = U®™ mit UU = (P 0) gewinnen ; dann

erweist sich @ = UD,U als reell orthogonal und schiefsymmetrisch und be-
stimmt im Sinne von Satz 2 eindeutig ein isotropes Vektorgebilde ‘R vom
Range m. Danach erhilt man gemiB Satz 2 alle isotropen Vektorgebilde

R vom Range m, indem man die verschiedenen @ = UD,U bildet, wo U
die unitiiren Matrizen mit der Eigenschaft

. O P =
UU =|{ . , P=pPm PP=1] (2.8)
P 0O

durchliéuft. Wir nennen P, wenn (2.8) zutrifft, das Radikal von U.
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Es sei U, = U™ eine unitire Matrix mit der Eigenschaft (2.8), dem

= sm 8
Radikal P, und @ = U,D,U,. Wirsetzen U, = SU, 8§ = ( ‘ 3) und
schlieBen aus 1 2

D, = U,GU, = 8SD,8 ,

daB 8, = S; = O ist, S, und S, unitéir sind und daB P, = S, PS, gilt. Dieser
S, O

ProzeB 148t sich umkehren, das heiit U, = (00 ) U ist unitir, wenn 8,
2

und S, es sind, hat dann das Radikal P, = SOPS, und liefert das gleiche G

wie U. Daraus folgt, daBl jedes G in der Gestalt UD,U dargestellt werden
kann, wo U unitér ist und (2.8) mit P = I erfiillt. U liBt sich also nach
(2.7) durch U = T,R mit reellem orthogonalem R = R(®™ gausdriicken.

Um jetzt eine Parameterdarstellung aller verschiedenen G zu gewinnen, hat
man nur noch eine Bedingung dafiir anzugeben, dal U = 7', R und

U, =8U=8T,R=T,R,, R,=R*™=R,, RRE=1 (2.9

das gleiche ¢ bestimmen ; dabei ist als einzige Nebenbedingung P = P, = [
einzuhalten. Dies besagt einerseits

Z 0
S:(O .Z_) mit unitirem Z=2" =X +1Y (X, Y reell) ,

andererseits nach (2.9)

- X Y
R,R=T,8T, = v x)°

X Y
Die Aussage, daBl Z = X + ¢ Y unitér sei, ist damit, daB ( 7 X) or-

thogonal sei, gleichbedeutend, und die Gruppe der unitiren Z™ ist zu der

X Y
Gruppe $ der diesen Z = X 4+ 7 Y entsprechenden H = H*™ = ( )
isomorph. Damit ergibt sich —Y X

Satz b. Man erhilt die similichen isotropen Vektorgebilde des Ranges m im
B ynd jedes von thnen genau einmal, wenn man (vgl. (2.3,6))

G=UDU, U=TR (2.10)

setzt und R*™ ein volles System reeller orthogonaler Matrizen durchlaufen lipt,
welche sich nicht um einen linken Faktor aus § unterscheiden. Gleichbedeutend
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mit (2.10) ist die Darstellung

. [ 0 I
G=R R
(- o)

Die Gruppe $ kann als die Gruppe derjenigen reellen Matrizen H — H®m

m) Y
gekennzeichnet werden, welche sowohl in der Gestalt H — ( > darstell-
bar als auch symplektisch sind. - Y X

Es sei R ein isotropes Vektorgebilde des Ranges m. Fir 4 = A4®™ ver-

stehen wir unter AR das lineare Vektorgebilde der 4, reR. Ist AA=iI ,
go ist AR wieder ein isotropes Vektorgebilde vom Range m. Es sei 4 ins-

besondere reell-orthogonal, G habe die Bedeutung von Satz 2. Dann ist 4 GA
diejenige Matrix, die in A R dieselbe Rolle spielt wie G in R.

Wir sagen von der reellen orthogonalen Matrix 4, sie vermittle einen euklids-
schen Automorphismus von R, wenn AR = R ist. In dieser Terminologie gilt

Satz 6. Alle isotropen Vektorgebilde R des Ranges m im B*™ entstehen aus
einem beliebigen von ithnen, etwa R,, durch die Transformationen R = AR, mit
den reellen orthogonalen Matrizen A = A, Far R, kann das von den Vek-
toren te; —e,.; (1 =9 <m;R=1I) aufgespannte Gebilde gewdihlt werden.
Dre similichen euklidischen Automorphismen eines beliebig gegebenen isotropen
Vektorgebildes R, das im Sinne von Satz 5 der reellen orthogonalen Matrix R ent-
spricht, werden von den reellen orthogonalen Matrizen A aus R-1HR vermittelt.

3. Es sei N eine natiirliche Zahl, '[N] die Gruppe der Modulmatrizen
L = L®  welche elementweise = + I mod N sind, v, der ungerade Charak-
ter auf M[N] mit den Werten v,(L) = (— 1% fir L= (—I)mod N,
k=0,1. Da v, nur fir N > 2 einen Sinn hat, sei N > 2. Modulformen
{C[N], —r,v} mit r =1mod2 konnen als Modulformen {I'(N), —r, 1}
aufgefalt werden; Lel (N) bedeutet

Lel[1], L=+ImodN .

Wir bedienen uns der HEckEschen Ergebnisse in der Darstellung [3], ersetzen
jedoch im Sinne oben getroffener Vereinbarungen das vektorielle Argument a
in den Funktionen [3] (1), (2) durch a. Uberdies wird der die Dimension —r
kennzeichnende Index r, da er stets = 1 ist, unterdriickt. Nach [3] hat, wenn

a= {ay,a,}, (a,a,, N)=1, Bel[l], _1_3= {b,, b} (3.1)

zutrifft,
G*(z, a, N) = (b,7 + b;)"'G*(Bt, aB-4, N)
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in der Spitze B-loo von ['(N) das konstante Glied
+ 1 fir dE:}:QmodN .
+ 1B, o(aB-L, N) , (3.2)

0 sonst

wo B o(a, N) nur von a, und N abhingt und durch

Lo(a, N) = —yy(a) , 5.3
yy(@) =4aN-1 I Q(L,¥,N)P(0,ha,N) (a ganz) '
wnst

mit AR’ = 1 mod N erklért ist.
Zur Bestimmung der hier auftretenden Werte von @ kann man die Rela-
tionen [3] (4), (21) benutzen. Sie besagen

ngh 2 , 1 fir g=1
P> 'ctgll%———lg—Q(l,h,N):{ ?rg N }.(3.4)
7 sy 0 fir 2=g9<-, (g, N)=1

Es bezeichne Wy = W‘lé P die Matrix (ctg —751—;,’—}1'—) , wo g und & die wach-

send geordneten ganzen m mit 1 < m< -, (m, N) =1 durchlaufen und ¢

den Zeilen-, 2 den Spaltenindex vertritt. Aus (3.4) folgt, wenn auch % eines
dieser m und Ah' = kk' = 1 mod N ist:

ngh 2n

S otg QU KK, N) = {

2<2h<N N N
&, N)=1

1 fir g==&k
0 sonst .

Daher gilt | Wy| 5% 0. Versteht man nun unter Wy , das algebraische Kom-
plement des zu 2 gehorigen Elements in der ersten Zeile (g = 1) von Wy, so

erhilt man aus (3.4)
Wy

27
——Q(1,h', N) = .

(3.5)

Um P(0, kh, N) auszurechnen, bedienen wir uns wieder der Darstellung [3]
(21), auBerdem aber der Funktionalgleichung [3] S. 110 oben. Nach [3] (24)

ist also

1 , . 27mhk nk
P(O,h,N)-—-—27V—kaOdN8m N cth ;

der Akzent am Summenzeichen verbietet das Auftreten des Gliedes mit
k=0modN. Da P(0,0,N)=0 ist, kann undsoll 1 <h <N — 1 vor-
ausgesetzt werden.
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Ersichtlich gilt
, nk 2m1
PO,h,N) = 2N Im 2 ((; — 1) etg — N (CN=8XP N ) )

e PO,h,N) = Re 2%’ (C""——l) {1
7 2N k mod N ek —1

Ckk’—l

S ] Z’ —1 R by
2N e (C )+ kmod ¥ C% —1

Der erste Term rechts hat den Wert — 4, der zweite, wie man durch Entwick-

lung des Bruches in eine geometrische Summe sieht, den Wert 1— ——l}%— .

Um das Ergebnis zu formulieren, verstehen wir unter ¢,(z) die mod 1
periodische Funktion der reellen Variablen x mit

7:000=0, g@=cr—% (O<z<l); (3.6)
dann haben wir
PO, N) = —gi(F) b gana) (3.7)
und nach (3.3,5) |
-3 "ah
ry@ =gy T Waan(G) @ gem (3.8)
Magand
(h,N)=1

bewiesen. Hieraus entsteht die Matrix ¢ der Normalschar R(I[N], —1, v)
in folgender Art: Es durchlaufe {; (1 <j < o(N)) ein volles System iniiqui-
valenter Spitzen der ' () ; man setze

G;=A7'0  (4;€T[1], 4;= {8, a,)}) -
Dann wird nach (3.2) und mit der Bedeutung von (3.8)

= (Y5 (@182 — G1n8p)) (G, k=1,2,...,0(N)) . (3.9)

Die Bedingung fiir die Paare {a;,a;,} (1 =j < o(N)) kann auch einfacher
so beschrieben werden: Es durchlaufe p = {a,,a,} ein volles System von
Paaren ganzer Zahlen derart, dal stets (a,, a,, N) = 1 und niemals fiir zwei
verschiedene Paare p,p’ eine Kongruenz p'=p oder p'= — pmod N
zutrifft. Man numeriere die Paare irgendwie, setze in dieser Reihenfolge
p=0p;={a,,83} (1 =7 < o(N)) und bilde hiermit die obige Matrix. Die
schiefe Symmetrie von G ist nach (3.6,8) unmittelbar ersichtlich, nicht so da-
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gegen die Orthogonalitit. Beide Eigenschaften bleiben erhalten, wenn an einem
der Paare das Vorzeichen gewechselt wird.

Das Nichtverschwinden der Determinante |W | legt die Frage nach der
arithmetischen Natur dieser Zahl nahe. Diese Frage 1a8t sich im Falle N = Prim-
zahl ¢ >2 beantworten.

Die Elemente der Matrix

——iqu(——ictg-g%—lc—) (j,kzl,Z,..., q—z— 1)

sind Zahlen des Korpers der g-ten Einheitswurzeln, die mit j und & das Vor-
zeichen wechseln. Es sei & ein Primitivrest mod ¢; iibt man auf die Deter-
minante g1

-qui"“iW“:i ’ Iqu

den Automorphismus {, = exp _52_;}1 - Cg aus, so nimmt D, bei der Riick-

spiegelung der jb in die erste Resthilfte den Faktor — 1, auBerdem aber
noch infolge der verbleibenden Zeilenpermutation einen Faktor + 1 auf. Also

ist D, entweder rational oder von der Gestalt #¥eq mit rationalem 7 0
und ¢ = (:—;—1—) . Daraus folgt bereits
|W,| = rVE{ mit rationalem r # 0 fir ¢ = 3 mod 4 . (3.10)

Im Falle ¢ = 1 mod 4 mufl man die verbleibende Zeilenpermutation » niher
untersuchen. Man betrachte den mit 1 beginnenden Zyklus von . Da ein

j= +b™modg (15..?53’—:2—1, ogmgq;1~1)

durchzin j' = jb oder — jb mod ¢ iibergefiihrt wird, woauch 1<§' < ?——;:-l ,

besteht der Zyklus aus den Resten des kleinsten positiven Halbsystems mod ¢,
die in dieser Reihenfolge zu 1, +b, +52 ..., £ Y"1 mod ¢ kongruent
gsind. Daher ist n ein einziger Zyklus, hat also eine Fehlstandsumme

q —

g 1mod 2, wund es ist mithin

| W,| eine rationale Zahl #0 fir ¢ =1mod 4 . (3.11)

4. Die eingangs erwihnten Kongruenzgruppen von Primzahlstufe sind wie
folgt erklirt : Fest gegeben seien eine natiirliche Zahl ! und eine Primzahl ¢
mit der Eigenschaft ¢ = 21 + 1 mod 41. Es bezeichne
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B die Menge der ganzen m %= 0 mod ¢, die l-te Potenzreste mod ¢ sind ;
°[Z, ¢q] die Gruppe der Modulmatrizen L = (; ‘g) mit f=0mod g, xeP;
Va =

(—q—-) fir xeP denjenigen Wert +1, welcher = & 2! mod ¢ ist;

!

' Vo

v,(L) fir L = (: g)el"“[l, q] dieses Symbol (——éﬁ) .

B, die multiplikative Gruppe der Restklassen mod ¢, die Zahlen aus P
enthalten ;

B ein System ganzer Zahlen, deren Restklassen ein vollstindiges Vertreter-
system der Nebenklassen B, in der Multiplikationsgruppe R, der teiler-
fremden Restklassen mod ¢ bilden.

Allgemein bedeute @ die Restklasse der fiir ¢ ganzen Zahl ¢ mod ¢. DaB
a einer Restklasse angehort, die in der Nebenklasse ¢, nach der Gruppe P,
enthalten ist, miite danach durch @ B, beschrieben werden. Wir schreiben
statt dessen meistens a ef,.

Die Gruppe I°[l,q] enthilt die Matrix — I, und v, stellt einen ungeraden
abelschen Charakter auf I'°[l,q] dar. Wir untersuchen die Normalschar

N=NT —r,) fir T = Fo[l,'q], + = 1 und das obige v = v,. (4.1)

Ein volles System indquivalenter Spitzen von [°[l,q] ergibt sich in der Ge-
stalt A-lco mit gewissen Matrizen A-'= 8§, ,, 8, ;, wo ¢ das System B
durchlduft. Es sei, wenn ¢ ¢

t qv q —t
8y = s Ng == 4.2
1,t (1 t') 2, ¢ (t —-v) ( )

mit ganzen t', v, fiir die ##' = ¢» + 1; zum Vertreter der Gruppe P wihlen
wir ¢t = 1 und setzen

S r=("° S O
1,1—'—'01: 2,1———-—-1 O

Die Spitzenbreiten N dieser A-!co sind N =gq fir 4 =87} und N =1
fir A = 8;}. I[l,q] hat also in der Modulgruppe den Index I(g + 1) und

besitzt die 21 indquivalenten Spitzen oo, £ und 0, g (teB,t £ 1). Es ist leicht

zu bestitigen, daB v in allen diesen Spitzen unverzweigt ist ; it hat also nach
(1.2) den Rang {.
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Man bildet die Ersenxsteinschen Reihen zur Gruppe I°[l,q] nach dem
folgenden hewristischen Prinzip: Zu jeder Matrix A4 = 87}, S;} ermittle
man die genauen Bedingungen dafiir, daB das Zahlenpaar {m,,m,} die
zweite Zeile einer Matrix aus Al°[l,q] sei; eine dieser Bedingungen ist offen-
bar (m,,m;) = 1. Dann setze man die EISENSTEINTeihen nach dem Prinzip
der transversalen Summation an, hebe aber die Summationsbedingung
(m,,my) =1 auf.

Nun besagen diese Bedingungen auBler (m,,m,) = 1, daB

myetP, fir A =87;; metP,, m=0modg fir 4=29;} (4.3)

zutrifft. Man hat also die EISENSTEINTeihen mit diesen Summationsbedingungen

(4.3) anzusetzen. Zur bequemeren Schreibweise der Multiplikatoren in den

Reihengliedern empfiehlt es sich noch, einen Charakter auf der vollen Gruppe
1]

R, einzufiihren, der auf B, mit L) iibereinstimmt. Dieses Symbol stellt

einen Charakter auf B, dar, der auf der Untergruppe 5}3: der (20)-ten Potenz-
reste mod ¢ und nur dort zu 1 wird. Die gleiche Eigenschaft hat ein erzeugen-
der Charakter der zyklischen Charaktergruppe von R,/P;. Es sei also ¢(m)
ein Restcharakter mod g, der auf P} zu 1 wird und einen erzeugenden
Charakter von R,/9; definiert ; wir betrachten ¢ im folgenden als fest gege-
ben. Die Werte von ¢ sind (2 [)-te Einheitswurzeln.

Wir definieren jetzt die EisENsTEINTeihen der Dimension —1 mit konver-
genzerzeugenden Faktoren durch

_ &(my)
Gl,t(8’ T) - mfﬂy_ﬂ (mlr + mz)lmlt + m2|8 ’
2 €L
&Py (¢,g) =1, Res>1) (4.4)
_ &(my)
G,, (8, ) = _mfmz (myT + my) |myT + my|®

my €t Pg,ma=0(q)
Die Darstellungen

Gl,t(sa T) = 2 ela)G(s,7,ay,0,,49),

a1,43 mod ¢

a1 €% (4.5)
G2,t(831) = z E(GI)G(S, T’ali O’ Q)

ay m_c_;d q

a3 € t%)q
lassen erkennen, daB diese Funktionen von s in eine volle Umgebung des
Punktes s = 0 (nach [1] sogar in die ganze s-Ebene) reguldr-analytisch fort-
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setzbar und daB ihre Werte fiir s = 0 Modulformen von der Stufe ¢ und der
Dimension — 1 in der Variablen 7 sind. Im iibrigen kénnen die G, , zwanglos
fiir beliebige beziiglich ¢ ganze ¢t erklirt werden. Sie hdngen hinsichtlich ¢ nur
von der Nebenklasse B, ab.

DaB3 die Nullwerte @G, .(7) = G4, (0,7) (k=1,2) der Normalschar
N(re[l, gl, —1,v,) angehoren, folgt einerseits aus den Transformations-
gleichungen

Gy,:(8, Lt) = () (y7 + O)|yT + 8[°Gy 45(s, 7) ,

i} (4.6)
Gy, (8, Lt) = e(@)(yr + 0) |yt + 0[° Gy 14(8, T)

die fiir jede Modulmatrix L = (:: ’;) mit =0 mod g gelten, andrerseits

aus der Darstellung (4.5) und dem in 1. zitierten Resultat von [2] iiber die
Kennzeichnung der Schar €. DaB die Funktionen @, ,(r) die genannte
Normalschar sogar aufspannen, 1Bt sich aus der Giiltigkeit des Reduktions-
satzes ableiten ; dieser ergibt sich aus dem 1.3. entsprechenden Sachverhalt,
der im folgenden bei der Aufstellung der Matrix G als zutreffend nachgewiesen
wird.

In dem vorliegenden Formalismus treten die DIrICHLETreihen

Ve )=3 s Smsenn oy 5 c@Emnplin) g g
netPg |n|® net Py ln|8

an die Stelle der Funktionen [3] (3) P(s,%,q), @(s,k,q); hier bezeichnet ¢
eine fiir ¢ ganze Zahl. Unter G} ,(s,7) verstehe man diejenige Reihe, welche
aus der Reihe @, ,(s,7) durch Hinzufiigung der Summationsbedingung
(m,,my) = 1 hervorgeht. Dann gelten zunéchst die Gleichungen (4.5%), die
man aus (4.5) dadurch erhilt, daB man das Symbol G dort iiberall mit einem *
versieht. In Analogie zu [3] (4), (13) findet man auflerdem

:,,(8,1) =2 W1 + 8, r )G (3, 7)

red (k=1,2) (4.8)
Gy, (8, T) = 2 V(1 + s,r”l)G:’,.,(s, 7)
re8
1 fir tcP
S W(s,rY)V(s,rt) = . (4.9)
re®B 0 sonst

Nach der ersten Relation (4.8) und auf Grund der Darstellung der W (1+ s, r~1)
als Linear-Komposita reziproker L-Reihen laft sich jedes G:,t(s, T) als
Funktion von ¢ in einer vollen Umgebung des Punktes s = 0 holomorph
erkliren, und der Nullwert G} ,(7)= G%.(0, v) gehort daher der Normal-
schar (4.1) an.
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Die Bestimmung der konstanten Glieder der Funktionen @, ,(7) in den
Spitzen S; ,00 (jund k=1, 2; r und ¢ in B) fithrt auf Grund von [3] (11),
(12b), (21) und (3.7) zu elementaren Ausdriicken. Jedes konstante Glied ist
bis auf einen trivialen Faktor entweder mit einem der ! Werte

V(,t)=-2 3 ela)ctg”> £.10
L0 =5 = oo ctg” (4.10)
tLGl‘Bq
oder mit einem der [ Werte
o) = = a(a)gl(—a—) (4.11)
a mod ¢ q
GGZS«BQ

identisch. Die explizite Bestimmung der Matrix @ beruht darauf, daB @ - ¢/
als Residuenmatrix der Normalfunktionen

El,t("’) eSS

SV OO, B () = — S EOGL

aufgefaBBt werden kann. Die Anordnung der in [2] erklirten Residuen
e (Sy;

i,

E; ;) (Jund £ =1,2; rund{in B)

geschehe nach folgendem Schema : Das Paar (j,r) vertrete den Zeilenindex,
das Paar (k,?) den Spaltenindex ; innerhalb eines Indexpaares (j,r) oder
(k,t) dominiere der erste Index iiber den zweiten; ¢ durchlaufe B in der
gleichen Reihenfolge wie r. Dieser Vorschrift entspricht eine Darstellung

ab Q@
G2 = ( 1 12) durch die Teilmatrizen
G21 G22

G!k=G;'lL!= (o (S50 Ek e)) (rund ¢ in B) .

Eine Rechnung, die ich hier iibergehe, ergibt

—-Q O

Die Eigenschaften @ = G=—@, GG =1 von G bedeuten offenbar, daB

@ reell, symmetrisch und orthogonal ist. Nun folgt @ = 6 daraus, daB
e(t) W(1,t) und e(t)o(t) ersichtlich reell sind ; die Symmetrie von @ liegt zu-
tage.

Um die Orthogonalitit von @ direkt nachzuweisen, hat man sich der folgenden
Zusammenhénge zu bedienen : Zunéchst haben die Matrizen (V (1, r¢-1)) und
(W(1, rt"1)) nach (4.9) das Produkt I. Bezeichnet ferner y einen Charakter

G::( i Q‘”) mit Q= ( Ve srt) T W1, g—l)a(grt)) (4.12)
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auf R,, der auf P, zu 1 wird, so gilt in der iiblichen Terminologie

2 xnVQ@,r)=L(x1,ey) ; (4.13)
reP
dem entspricht, wenn
D) = % @)@ () (4.14)
a mod ¢ q
gesetzt wird, die Relation
2 x(r)o(r) = D(ey) . (4.15)

red

Die rechten Seiten von (4.13) und (4.15) sind miteinander nach der bekannten
Formel

L(L,e2) = 2 w(e2) D7) (4.16)

verkniipft, in der w(y) fiir einen beliebigen Charakter y auf R, durch

o) = = v@& (L=exp) (4.17)

a mod ¢

erklart ist. Die Durchfiihrung des Beweises bietet, wenn man diese Zusammen-
hinge in der Schreibweise der Matrizenrechnung ausdriickt und anwendet,
keine erheblichen Schwierigkeiten.

6. Man gewinnt eine vertiefte Einsicht in die Natur der Funktionen (4.4)
Gy, (8, ), indem man ihre linearen Komposita mit gewissen Charakterwerten
als Koeffizienten bildet und das Verhalten der so entstehenden Funktionen bei
Anwendung der Transformationen

0 —Vgq
Lel[l,q] und K=Kq==( 1 0)

Vg

untersucht. Die Gruppe [°[1, ¢] besteht aus den Modulmatrizen L = (: ‘g)
mit f =0 mod ¢ und ist unter der Bezeichnung [°[q], die wir hier auch
verwenden werden, bekannt.

Von den 21 Restcharakteren mod ¢, die sich als Charaktere der Faktor-
gruppe R,/P; deuten lassen, sind genau ! gerade, und diese sind zugleich
die simtlichen Restcharaktere mod ¢, die sich als Charaktere von R, /P,
deuten lassen. Durchliuft y diese I geraden Charaktere, so durchlduft y = ¢y
die simtlichen ! ungeraden Charaktere von R,/9;. Im folgenden sollen die
Buchstaben y und y stets in diesem Sinne verstanden werden, ¢ bezeichnet
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stets den gleichen ein fiir allemal fest gew#hlten erzeugenden Charakter von
R, /P, aus 4., und zwischen y und yp besteht stets die feste Relation p = ey.
Mit den Werten dieser y bilden wir die linearen Komposita

Hy o(s,7) = Z x(r)Gy ,(s,7) (k=1,2) (5.1)
T€B

der G, ,. Nach (4.4,5) erhilt man fiir Re s>>1 zunichst die Reihendarstellun-
gen

H, , ’ = 2 G s Uy » Yo, = X w(mz)
1,¢ (8 T) al,azmoa(}v(az) (8 T, Ay, Qg Q) — (mlt + m2) |,'n1,r + mﬁls
(5.2)
Hyp(s,7)= 3 G(s,7,a,,0,q9) = pim) )
(0= 2 9@)6@ 76,09 = I oo N

me = 0(q)

sodann nach (4.6) das Verhalten bei Ausiibung einer Transformation L e[ °[¢]:

H, ,(s,L7) = @) (y7 + 8) |yt + 8|*H, ,(s,7) , (L___(“ ﬂ)) e
Hy ,(8,L7) = p(@)(y7 + ) |yt + 0" Hy 4(s,7) , % '

schlieBlich nach (5.2) das Verhalten bei Ausiibung der Transformation K, :
Hl,,,,(s, Kq‘l,') = Hl’«{,}(s, :‘Eg> =T ] T | 8 H2’¢(8, T) . (5.4)

Aus (5.2) folgt nach [1], daB jedes H, ,(s,7) bei festem 7 eine ganze Funk-
tion von s darstellt ; die Nullwerte H, ,,(0,7) = H; ,(7) gehoren als Funk-
tionen von 7 nach [1], [2] der Normalschar R(I' [¢], —1,v,) an, wo v, den zu
Beginn von 3. erklirten Charakter auf I'[q] bezeichnet. Versteht man unter
vy, den durch

v (L) = p(x) fir L :(;‘ ’g) e« M[q]

erklirten ungeraden Charakter auf der Gruppe [°[¢q], so ergibt (5.3) schlieB3-
lich
H, () eR(T[q], —1,v,) ,  Hy u(7)eN(M[g], —1,9,) . (5.5)

Die hier auf der rechten Seite auftretenden Normalscharen mégen 9, und

- genannt werden. Nach (1.1) ist die Summe ihrer Rénge gleich 2, weil v,
in den beiden Spitzen co und 0 eines Fundamentalbereichs von [°[q] unver-
zweigt ist. Andrerseits liegen H, ,, und H, 3 in N, H, 3 und H, , in N;.
Daher miissen zwischen diesen vier Funktionen mindestens zwer unabhdingige
lineare Relationen bestehen.

9 Commentarii Mathematici Helvetici
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Man findet diese Relationen durch den Vergleich entweder der konstanten
Glieder von H, , und H, , in den beiden Spitzen oo und 0, oder der Ent-
wicklungen von H, , und H, , in einer dieser Spitzen, etwa co. Aus (5.2)
ergibt sich nach [3], (12b)

2nt

bo(I,H,,,) = 2L(Ly) ,  bo(l,H,,) = D(y),

bo(T,Hl,w) - - 2”?:D("P) 5 bo(T,Hz’,‘p) - QL(I,QP) .

Daraus folgt vermoge (4.16) die eine gesuchte Relation

o H )= — 2 ) ; (5.6)
( v) q
eine zweite erhilt man, indem man y durch y ersetzt. Ersichtlich ist hiermit
zugleich bewiesen, daB die sdmtlichen Scharen R, den Rang 1 haben. Die
Fourigr-Entwicklung von H, ,(7) hat die Koeffizienten

H, 1,:(7) =

o) S Fd) (=1,2,...).
q d|n, d>0

Wir ziehen jetzt das Verhalten der Funktionen Gy, ,, H, ,, bei Ausibung der
Transformation K = K, heran. Zuniichst hat man neben (5.4) auch

Gl,t('s:KT) = tl T I.G2,t(8’1") ’

bn(I’ Hl,t,") =

woraus zu schlieBen ist, dal die Funktionen

in (r) = Gl,t(T) + iV—q—Gz,z(T) (5.7)
sich bei Anwendung von K gemif
. T
FE(KD) = F i=Ft @) (5.8)

umsetzen. Analog ergibt sich, wenn

J§(v) = Hy (1) + iVgH, ,(7) —tzmx(t)Fi(f) (5.9)

gesetzt wird, aus (5.4)
J5 (K1) = z———-Ji(t) (6.10)
Vq

Andrerseits findet man durch Kombination der Gleichungen (5.4,6)

Hk,,,,(Kr)=-~--%’)— L Hpz(v) (k=1,2) (5.11)
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und daraus nach (5.9,10)

£y — “fé‘ =~ . 0(y) .+
Jw(f)—:hWJ.p(T)=:F®-—V—.,q—JQP(T). (5.12)
Um diese Tatsachen zu interpretieren, betrachten wir das (in gruppentheore-
tischer Komplex-Schreibweise) durch

0L, q] = [, q] + K, T2, q] (5.13)

gegebene Matrizensystem. Aus KI°[l,q]K—1 = I'°[l,q] folgt, dal die Matrizen
von ®°[l,q] bei Komposition durch Multiplikation eine Gruppe bilden. Da
M[l,q] in ®°l,q] den Index 2 hat, ist ®°[l,q] eine Grenzkreisgruppe von
erster Art. Wir bestimmen die Anzahl #° der indquivalenten Spitzen von
®°[1,q]. Man beweist mit Hilfe der oben eingefiihrten Modulmatrizen §, ,
zunéichst, dafl die ganze Zahl ¢=£ 0 mod ¢ zu —¢ beziiglich TI'°[l,q] &qui-

valent ist. Daraus folgt, dafl von dem vollstindigen System oo, ¢, 0, % (teB,

t ganz, t¢P) indquivalenter Spitzen von [°[l,q] hoéchstens I (etwa oo und )
beziiglich ®°[l,q] indquivalent sind, dafl also ¥° < ist. Es kann aber nicht
#% <1 sein, da nach allgemeinen Sitzen [4] jede Spitze einer Grenzkreisgruppe
von erster Art beim Ubergang zu einer Untergruppe vom Index u in héchstens
u# nach dieser indquivalente Spitzen zerfillt. Also ist #° =1, und die ge-
nannten Spitzen oo, ¢ bilden ein vollstindiges Vertretersystem iniquivalenter
Spitzen von ©°l,q]. In dieser Form kann man die Behauptung direkt be-
stitigen. Aus den zitierten Sitzen [4] folgt hier iiberdies, daBl die einer Spitze
zugeordnete parabolische Grundmatrix von ®°[1,q] bereits in ?[l,q] liegt.
Auch diese Aussage li3t sich direkt verifizieren : Zu jeder Spitze { von ®°[l,q]
existiert eine Modulmatrix 4 derart, daB { = A-1co. Die parabolische Grund-
matrix P von { in ®°[l,q] hat die Gestalt P = A-1U¥A4 (UNz ((1) 11\7))
mit einem reellen N>0. Da P?in [°[l,q] liegt, ist 2N ganz, also N ganz-
oder halbzahlig. Jedenfalls hat P rationale Elemente, kann folglich nicht in
K,I'°[l,q] liegen und liegt daher in [°[/,q], q.e.d. Dieser Sachverhalt hat
eine fiir alles Weitere wichtige Konsequenz : Lt sich ein Multiplikatorsystem
v der Gruppe [[l,q] auf die Gruppe ®°[l,q] fortsetzen, so hat das dadurch
entstehende Multiplikatorsystem in jeder Spitze von ®°[l,q] den gleichen
Drehrest, wie ihn das urspriingliche v in derselben Spitze hatte, diese jetzt als
Spitze von [°[l,q] verstanden. Im iibrigen bleiben auch die ortsuniformisie-
renden Variablen in den Spitzen beim Ubergang von I'9[l,¢] zu ®°[,q]
ungeéindert.
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®o[l,q] ist eine Untergruppe der von FRICKE [5] ausfiihrlich untersuchten
Gruppe ®°[q] = ®°[1,q], einer Erweiterung der I'°[q].

Es sei v ein abelscher Charakter auf I°[l,q]. Damit v als solcher auf die
Gruppe ®°[l,q] fortsetzbar sei, ist bei gegebenem v (K)

v¥*(K) =v(—1) , v(KLK-Y) =v(L) fir Lel°[l,q]

eine notwendige und hinreichende Bedingung. Im Falle des ungeraden Cha-

rakters
1

.
o(L) = vy(L) = ({i) (LT, q)

sind diese Relationen erfiillt, wenn »;(K) = 4+ gesetzt wird ; wir bezeichnen
die beiden aus v, demgemil entstehenden Charaktere auf ®°[1,q9] mit »F.

Aus den Eigenschaften der Metrisierungsintegrale folgt nach (5.8) unmittel-
bar, da die Funktionen (5.7) ¥ (¢¢8) der Normalschar R(D°[l,q], —1,v7)
angehéren. Wegen v v; = 1 ist die Summe der Rénge dieser beiden Scharen
gleich I. Die Summe der beiden Scharen ist direkt, hat also den Rang ! und
wird daher von den Fi (beide Vorzeichen, ¢e®B) aufgespannt; denn dieses
Funktionensystem ist dem der @, ,, G, , linear dquivalent. Hieraus geht her-
vor, daB (nunmehr getrennt fiir jedes Vorzeichen) N (P°[l,q], —1, v]) von
den Funktionen F, nach (5.9) also auch von den Funktionen J3 aufgespannt
wird.

Nach Wahl einer Primitivzahl ¢ mod ¢ kann ¢ durch ¢(g) =&, =exp “TZ

bestimmt werden. Man erhilt dann die siimtlichen p aus wy(g9) = &™*!
( 0<m <1l—1). Wird diese Beziechung durch y = y,, ausgedruckt so ist
Ym = Yi—1—m, und nach (5.12) wird nun N(P°[l,q], —1, v7) bereits von den
Funktionen J ,?jm (0 Sm< }——2——1—) aufgespannt. Da die Summe der Rénge
beider Scharen gleich ! ist, bilden die J 1fm(O =m = —lz- — 1) fiir gerades [ eine
Basis von R(P°[l,q], —1,v]). Fiir ungeradeslist ¢ =3 mod 4, und der

—1 ) fallt mit dem quadratischen Restsymbol (;)

2
zusammen. Daher gilt in (5.12)

Charakter y =1y, (m e !

— ea)— - l1—1
o) =o@) =iVq, Jyx)= +£J5(x), Jp(r)=0 (1,,=¢m, m = “'T)
und es bilden die Funktionen

J;,L.m(r) (O =m g—l——%———l—) eine Basis von R(DP°[l,q], — 1,v;) ,
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Jy (7) (0 =m gf—;;i) eine Basis von N(d°[l, q), — 1, v7) .

Damat st die Rangbestimmung vollzogen. Setzt man

lu;t,q = Rg m(q)o[l>Q], ~1 ’ ’vli) ’ (5'14)
so ergibt sich

pzqzyzq———»—l— fir !=0mod?2,

(5.15)
L I—=1 1+1

lo=—5— M =—h— fir I=1mod2.

Die Zuordnung der Vorzeichen zu den Rangzahlen bei ungeradem ! beruht auf
der Vorzeichenbestimmung der Gaussschen Summen fiir ungerade quadrati-
sche Charaktere nach Primzahlmoduln.

Zum Schluf} ist noch auf einen Zusammenhang zwischen den Modulformen
H,, , und Klassenzahlen abelscher Zahlkirper hinzuweisen. Bei gegebenem y hat
die Normalschar R(I"°[¢], —1, v,,) den Rang 1 und wird daher von der Funk-

o @)

tion ¢,H, , aufgespannt (c, # 0 konstant). Indel(lz_ wir ¢, = P setzen,
erreichen wir fiir die entstehende Funktion Hj , = _a_)_ﬂ H, , die Normierung
g 4me b

b,(I, H(l),ip) =1;

es sind dann alle b, (I, H},) (» =1, 2,...) ganze algebraische Zahlen, und
unendlich viele von ihnen sind gleich 1.

Im Sinne von HAssE [6] definieren die Gruppen B, bzw. ‘.B;‘ je einen Klassen-
korper Ko bzw. K iiber dem Korper P der rationalen Zahlen. K ist in P((,)
enthalten, total-imagindr und quadratisch iiber seinem maximalen reellen
Teilkorper K,. Es sei &, bzw. & die Klassenzahl von Ky bzw. K und es werde
(vgl. [6] S. 10, 11, 12) die Relativklassenzahl 2* von K/K, durch

h = hoh*
erkliart. Dann ergibt sich
*
0o\ __ " .

H bo(I, HY y) = ow (5.16)
hier bedeutet w die Anzahl der Einheitswurzeln in K, @ den (in [6] erklirten)
Einheitenindex von K/K,; v durchlduft genau diejenigen Charaktere mod ¢,
welche in [6] mit y, bezeichnet werden.
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Im Falle 1 =1 ist y(x) = (%) , ¢ = 3 mod 4; wir lassen die Indizes y
und ¢ fort und finden nach (5.1,7 bis 12)
Hy(v)=G(v), JE(@)=F%(x), F()=0, H(1)=iVgHy(s).
Bezeichnet 2 die Klassenzahl des Korpers P (V:—q_), so ergibt sich iiberein-
stimmend mit (5.16)
0 h = 'd’ . T
Ho=—+rs( = (—) oxp 2min — . (5.17)

2 " a=1\din,a>0\ ¢

Wegen H!(Kt) = — i;}-_ H?(r) unterscheiden sich die Koeffizienten der
q

Entwicklungen von Hj(r) in den Spitzen 0 und oo nur um einen gemein-

samen Faktor. Dem entspricht, daB H}(z) der Normalschar R(®°[¢q], —1,7;)

angehort. Nach (5.15) hat diese Schar den Rang 1, die Normalschar
N(@°[¢), —1, ) den Rang 0.

6. Das Auftreten der Frickeschen Gruppen ®°[/,q] in den obigen Zu-
sammenhiingen ist kein isoliertes Phénomen, sondern hat vielmehr seinen
Grund in einem Sachverhalt von weitester Allgemeinheit. Wir formulieren
diesen hier unter den speziellen Bedingungen seiner folgenden Anwendungen ;
seine allgemeine Bedeutung wird dabei unmittelbar ersichtlich.

Es bezeichne I'(1) die volle Modulgruppe, r eine reelle Zahl, v ein Multipli-
katorsystem zu I' (1) und —7, f(r) eine Modulform {I (1), —7, v} und ¢ (vor-

iibergehend) eine beliebige natiirliche Zahl. Fir L = (:j g) € '[q] erhilt man

1
L peen(E) mie 2= (% 7 erq (6.1)
q ‘\q !
gy 0
und daher, wie man leicht nachrechnet, in

() = fo.s) = 10 1(-) eineautomorphe Form {0°[a), — 21,0, (6.2)

wo ®°[g] wie oben zu erkliren und v, , als Multiplikatorsystem zu ®°[¢q] und
— 27 durch

vy, (L) = v(L)v(Ly)  (Lel[ql) ,  va (K) =v¥(T) (6.3)

0 —Vg 0 —1
eindeutig bestimmt ist | K=K, =| 1 o , T'=K,= (1 0) .
Ve
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Wir spezialisieren im folgenden auf den Fall ¢ = Primzahl = 3 mod 4,
¢>3 und

(- ]

fr) =n(r) =€ = (1 —e™im)e(l (1), —4, 4} . (6.4)

m=1

Fiir A ergibt sich (vgl. [7] S. 32) die folgende universelle Darstellung :
Es seien j und k ganz, (j,k) =1, ¥k =1 mod 2; sgnj habe hier auBer der
iiblichen die Bedeutung sgn 0 = 1. Man setze

>\ % ] y ;o\ %k sgn j—1 sgn k—
(-—L) ( ! ) (JAcosisches Restsymbol) , (7 ) =(—7——) (—1) = = =5 1 .
*

k | k| k k
. ab n . - .
Mit 8 = (c d)e r(1) und ¢, =exp o fiir natiirliches m gilt dann
d %
A(S) = (7) §re Eatdye—bd(et-1 | wenn ¢ = 1mod 2 ,
(6.5)
).(S) — (_‘_ic__) éal——l—-cd 5(&+d)c-—bd(c’—l) , wenn d = 1mod 2 .
%x

Wir schreiben gemifl (6.2,3,4)
(D) = i o(1) = 1(2)n () € (O°fg), — 1, 2}

und erhalten nach (6.5), indem wir ¢* = 1mod 24 und das quadratische
Reziprozititsgesetz beriicksichtigen:

)»z(L) z(_‘;_) (___ 1) ym§{(a+8)y~56(y -y 2 fir L = (}’ ﬁ)f [o [q] . (6.6)

AuBerdem wird A4,(K) = —

Diese Werte zeigen, daB 4, fir ¢ = — 1 mod 24 mit dem oben betrachteten
Multiplikatorsystem v; (I = 1) iibereinstimmt. Die Schar der ganzen Formen
{®°[¢q], — 1, v} enthiilt also neben der Normalfunktion (5.17) H} =% 0 noch
die ganze, in der oberen Halbebene nicht verschwindende Spitzenform 7,, die

9+

aufweist. Daraus kann man im Falle

im Unendlichen die Ordnung

= — 1 mod 24 eine etwas merkwurdige Aussage ableiten. Man bedarf hierzu
genauerer Kenntnisse iiber die FrRickEschen Gruppen ®°[¢], weshalb zunichst
iiber diese berichtet werden soll.

Unter den formalen Daten einer Grenzkreisgruppe I® von erster Art ver-
stehen wir die folgenden Zahlen : Erstens das Geschlecht p° eines geschlossenen
Fundamentalbereichs ° von I, zweitens die Anzahlen ¢° der parabolischen
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und e° der elliptischen Fixpunkte von §°, drittens die ganzen Zahlen [}, = 2
(1 =k <%, deren jede einem der e° elliptischen Fixpunkte w, von {° als
dessen Ordnung entspricht. Aus diesen Zahlen bildet man

das Verzweigungsmaf3 q° = o® + eZ (1 — —%) und den Rang ¢°=p°—1-+41q°
k=1

von [0; o° ist stets positiv, nimmt beim Ubergang von I zu einer Unter-
gruppe des Index x4 von [® den Faktor u auf und hat fiir die volle Modulgruppe
(1) den Wert 35, woraus @° fiir jede mit der Modulgruppe kommensurable
Gruppe [ leicht zu berechnen ist. Dabei werde, was die Allgemeinheit nicht
beschrinkt, stets vorausgesetzt, dall die betrachtete Matrizengruppe die
Matrix — I enthilt.

Weder bei Untergruppen der Modulgruppe, noch bei den hier betrachteten
Erweiterungen von solchen treten andere Eckenordnungen auf als If, = 2 oder
I = 3. Wir nennen daher ¢ bzw. ¢} die Anzahl der elliptischen Fixpunkte
der Ordnung 2 bzw. 3 in §° Dann wird

0 0 0 0 0 — no o’ ez e
P =0c"+}e+ %es, Q“p—1+"§‘+7+?-

Fir N = I''[¢q] (¢ Primzahl) ergibt sich, wie in 4. kurz ausgefiihrt wurde

o911
Q'—' 12 ’

0% = 2 (F°=r°[q], q Primzahl) .
Ist iiberdies ¢ = 3 mod 4, ¢>3, so findet man
=20, e%:l-l—(%—) (Fr*=r°[q], q Primzahl >3, ¢ =3 mod4) .

Um dies zu beweisen und fiir ¢ = 1 mod 3 zugleich die Lage der beiden Fix-
punkte von der Ordnung 3 zu bestimmen, wihle man

va- 3 eere =) o)

Slsis+ 2

IA

als Fundamentalbereich der I[¢], wo & die Menge der r mit Im v>0,
Jt|>1, |Re v| <3, vereinigt mit der Menge der Randpunkte nicht-negativen
Realteils bezeichne.

Wir betrachten hier nur den Fall I} = 3. Als mogliche Fixpunkte der
Ordnung 3 von [[¢] in §°(9) kommen die Punkte

qg—1

5> m#O,——l)

/

Um§(§=§a, ——l—_flémé'{‘
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in Betracht. U™ £ ist Fixpunkt der elliptischen Substitution mit der Matrix
m+1 —m2—m— 1)

Umtippy-m =(
1 —m

und diese liegt genau dann in [°[q], wenn (2m -+ 1)2 = — 3 mod g zutrifft.

Daher ist e = 0, wenn ¢ = — 1 mod 3. Fiir ¢ = 1 mod 3 existiert genau

ein m dieser Art mit 2 <m < q ; 3 , und es ist dann

2(—m —1)+1=—2m— 1, —q;_ls_—m—-lg——3.

Also besitzt F°(¢) genau zwei nach [°[q] indquivalente Fixpunkte der Ord-
nung 3, und zwar U™& und U—"™"1{; daBl diese nach [°[¢] indquivalent
sind, erkennt man, wenn man durch eine geometrische Uberlegung die Modul-
substitutionen bestimmt, die den einen in den anderen iiberfiihren.

Indem wir die Daten der Gruppe [°[¢] mit einem oberen Index 0 und als

Funktionen von ¢ schreiben, erhalten wir damit abschlieBend die (bekannten)
Werte :

c0 =15 c@=2, d@=0, &@=1+1),
(6.7)
1
po(q) =4 E — 3 (1 +(%)) .

Wir vollziehen jetzt den Ubergang zur Gruppe ®°[q]; die Daten dieser
Gruppe werden mit g} (g), 03(2), €3(q), e (9), P,(q) bezeichnet. Man hat
zunichst

1
03(9) = g——-;i—-, oy(g)=1. (6.8)

Die Anzahl el,(q) wurde von FRICKE [5] bestimmt ; wir reproduzieren hier

lediglich weiter unten das Ergebnis. Dagegen hat FRICKE iibersehen, daBl es

keineswegs iiberfliissig ist, eg,(9) = 1 zu beweisen. Dies ergibt sich wie folgt:
Setzt man m? 4+ m + 1 = ¢qg fiir den oben verwendeten Wert m, ferner

_ m q99
wl = Umf N Wy = U_m_-lE ’ .E2= -_ U mTUm+1= y
1 —m—1

so wird g ganz, 1 <g¢g g%(m + 1)2<—%— , also (¢,9) =1 und (vgl. (6.1))

Wy W, 1 W,
ooy =—qg, Koy=-22, —~=—Ew=E*Gﬁ,
1*%V2 qg 1 g g g g Wy 2,0 g
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WO m
E;,,-—..( : )er"[q], SpEY, — — 1,

—g —m—1
also 22 zqu o, oder w, nach I°[¢g] &dquivalent ist. Die erste dieser Moglich-

keiten ergibe K w, = L, fiir ein Lel°[q], es wire also w, elliptischer Fix-
punkt der Nebenklasse KI°[q]Cc®°[¢], und die Ordnung von w, als die eines
elliptischen Fixpunktes von ®°[q] wire durch 3 teilbar, was nach FRICKE [5]
nicht moglich ist (vgl. auch die unmittelbar hier folgende Betrachtung). Daher
gilt Kw, = Lw, fiir ein Lel°[q], woraus die Behauptung folgt.

Die unimodulare Matrix

e V; y — Vé- 0
KL=| o B |<Krg] (L=("‘ 6)) (6.9)
V¢ Vg Y
vermittelt genau dann eine elliptische Substitution, wenn l —g— —y ! < ~—}2;: 3
q
das heilt g = qy ist. FrICKE [5] zeigt, daBl die diesen KL entspringenden,
nach ®°[¢] paarweise indquivalenten elliptischen Fixpunkte umkehrbar ein-
deutig den Klassen primitiver bindrer quadratischer Formen von den Diskrima-

nanten — 4q und — q entsprechen ; dabei wird der Matrix L die quadrati-
sche Form mit der Matrix

~ ——
( ﬂ), wenn nicht « = 4Jd = Omod 2;

— é
p qﬂ (6.10)
1}( * ), wenn o = 6 = O mod 2
—B8 ¢9

zugeordnet. Bezeichnet 2* die Anzahl der genannten Klassen von der Diskri-

minante — 4¢, so gilt bekanntlich A* = (2 — (—g—)) h und daher

eg*zh*+h=(3—(%))h, eg*=§(1+(i§—)), (6.11)
also nach (6.8)
o _9+1 ._1___1_( __(_?_) ___1_( '2_)) 6.12
n="5r +3-13-(7))* 61+(3, (6.12)
_¢q—T7 h-—1 . _gqg+13 —
Py = 5 T 3 (g=7mod 24), pi= o h (g=11mod 24),
(6.12a)

o_9+1 A-—-1 o_9+5 _
Py =9 3 (=23 mod 24), 7P e h (g=19mod 24) .

oder
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Das Ergebnis, von dem oben die Rede war, besagt, daB es fiir mindestens
15 Primzahlen ¢ = — 1mod 24 auBler Null keine ganze Spitzenform
{®°[q], —1, v} gibt. Im Falle ¢ = —1 mod 24 ist e}, = 0. Da #, in der
oberen Halbebene nicht verschwindet, sind die sogenannten Drehreste von v;
in den elliptischen Fixpunkten siimtlich = 0, die Drehreste von »;" in diesen
Fixpunkten also sémtlich = }, und die Ordnung des Divisors einer ganzen
Spitzenform ¢ =£0 aus {®°[g], —1, v} } ist mithin nach (6.11) mindestens

gleich 14 e}, =h 4 1. Also gilt, wenn ein solches ¢ existiert : q+1 =h+1.

In der folgenden Tabelle sind die 22 Primzahlen ¢ = — 1 mod 24 bis 1000

g+ 1
24

mit den zugehérigen Werten m = , h, P zusammengestellt.

q 23 47 71 | 167 | 191 | 239 | 263 | 311 | 359 | 383 | 431

m 1 2 3 7 8 10 11 13 156 16 18

h 3 5 7 11 13 15 13 19 19 17 | 21

| o of of 2| 2| 3| 5| 4| 6| 8| 8

479 | 503 | 599 | 647 | 719 | 743 | 839 | 863 | 887 | 911 | 983

q

m 20 21 25 27 30 31 35 36 37 38 | 41
h 25 21 25 23 31 21 33 21 29 31 | 27
pg‘ 8 11 13 16 15 21 19 26 23 23 | 28

Man sieht hieraus, daB fiir die 15 Primzahlen ¢ <1000 mit ¢ = — 1 mod 24
und »° y =15 die Klassenzahl A = m ist, daBl dann also auBler Null keine
ganze Spitzenform {®°[q), —1, %} existiert. Der analoge Sachverhalt be-
steht fiir 8 von den 21 Primzahlen ¢ <1000 mit ¢ = 7 mod 24. Setzt man

;; : , 8o erhélt man die Tabelle

7 31 79 | 103 | 127 | 1561 | 199 | 223 | 271 | 367 | 439

hier m =

q
m 0 1 3 4 5 6 8 9 11 15 18
h

11 11

o
(e
<
et
[V
w
W
'
(or}
(=]
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463 | 487 | 607 | 631 | 727 | 751 | 823 | 919 | 967 | 991

q
m 19 20 25 26 30 31 34 38 40 41
h

7 7 13 13 13 15 9 19 11 17

pi 16 17 19 20 24 24 30 29 35 33

In beiden Tabellen entstammen die Werte von % den Klassenzahltafeln [8] von
HANSRAJ GUPTA.

Wir werden weiter unten sehen, dal die Drehreste von v»; in den e2, Ecken
der Ordnung 2 wieder sdmtlich gleich 0, die von »;" in diesen Ecken also simt-
lich gleich } sind. Der im Fundamentalbereich ‘8’;: von @®%q] einzige ellipti-
sche Fixpunkt o der Ordnung 3 gehort als solcher zur Untergruppe [[q], auf
der v; und »; nur die Werte 4-1 annehmen. Bezeichnet £ die Grundmatrix
von o, so liegt diese demnach in M[¢], und es gilt wegen E? = —1I:

vEE)=8"=_1 (@a=0,1,2),

was den Drehrest 3a =14 liefert. Fiir eine ganze Spitzenform ¢=£0 aus
{®°[q], — 1, v;f} ergibt sich die Bedingung
q+1 7
24 24

>1+h+3}, dasheiBt h+1=<3_

die nach der zweiten Tabelle fiir die 8 Primzahlen
qg="1, 31,79, 103, 127, 151, 199, 271

nicht erfiillt ist; fiir diese ¢ existiert also auBler Null keine ganze Spitzenform
(©°[q], — 1, v ).

Wir bezeichnen im folgenden mit u; den Rang der Schar der ganzen Spitzen-
formen {®°[q], —1,v{}; dabei sei stets ¢ Primzahl = 3 mod 4, ¢>3. Fiir
23 Primzahlen ¢ <1000 verschwindet u; ; die Frage, ob u; fiir alle ¢ ver-
schwindet, miissen wir zunichst offenlassen. Dagegen werden wir jetzt die Diffe-
renz u; — pi bestimmen.

Es bezeichne &, die Anzahl der elliptischen Fixpunkte von ®°[¢] in &), in
denen der Drehrest von v den Wert 4 hat. Nach dem Rieman~-RocHschen
Satz [9] und weil auBer Null keine ganze Normalfunktion {®°[q], —1, v;'}
existiert, gilt dann

g+1 1

1
= "‘1+"§4"‘“2"92“6‘(1+(%))—p2+ L+pt
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also nach (6.12)
2 .
wr— =13 (2)r—ra-1. (6.13)

Es kommt also ausschlieflich darauf an, 9, zu bestimmen.

DaB die Matrix KL= K (;‘ g) (vgl. (6.9)) eine elliptische Substitution in-
duziert, besagt § = gy. Setzt man dies in (6.6) ein, so erscheint in der ge-
schweiften Klammer im Exponenten von & die durch 6 teilbare Zahl
qdy(y* — 1); demgemiB wird

g+1 g+1
Ay(L) = (5;—)(— W T T (wd=1+gqp?) . (6.14)
Aus ¢ =1 und y=£~0mod 3 folgt ad = — 1, also &« + 6 = 0mod 3; da-

her ist der Exponent von &; stets durch 3 teilbar, und man erhilt zunéchst

104

/12(L)=(7!—> fir ¢g=Tmod8, d.h. ¢=1T7 oder 23mod24. (6.15)

Es sei ¢ = 3 mod 8, das heilt ¢ =11 oder 19 mod 24. Aus y =0 bzw.
1mod 2 folgt x6 =1 bzw. 0mod 4. Auf der rechten Seite von (6.14) wird

nun der Faktor von (—?—‘—) genau dann = —1, wenn « und 0 beide gerade
sind ; es gilt also

(L) = i(%) fir ¢g=3mod8, d.h. ¢g=11 oder 19 mod 24 (6.16)

und unter dieser Bedingung fiir ¢

Ay(L) = — (%) genau dann, wenn « =60 = Omod 2 . (6.164a)
Wir haben jetzt nur noch zu beachten, dal A,(KL) = — ¢4,(L) ist und

daB, da 7, in der oberen Halbebene nicht verschwindet, die Werte (6.15, 16, 16a)
ausdriicken, dafl 4, in allen elliptischen Fixpunkten der Ordnung 2 von ®°[q]
den Drehrest Null hat. Der Vergleich mit v; zeigt im Hinblick auf die Bedin-
gungen (6.10):

P9 =0 fir ¢= T7Tmod8, dH=nh fir g=3mod8 . (6.17)
Daraus folgt nach (6.13) das gesuchte Ergebnis

ur— =4 —1) . (6.18)

(6.17) enthélt auch die oben fiir g = 7T mod 24 angewendete Aussage iiber die
Drehreste von »; in den elliptischen Fixpunkten der Ordnung 2 von ®°[q].
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Wir zeigen zum SchluBl noch, daBl die Summe u; + yui mit dem Rang u,
der Schar €} der ganzen Spitzenformen {I°[q], —1,v,} dibereinstimmt. Hierzu
erkliren wir, wenn f(r) eine automorphe Form der Dimension —1 und

S = (‘: 3) eine reelle Matrix positiver Determinante bezeichnet :
fI18 =H)|8 =[{(S7)(cT +d)* .

Liegt f in der Klasse {I°[¢], —1,v,}, so nimmt f|K bei Transformation
mit der Matrix K-'LK = L' aus K '[%q]K = °[¢q] gemil

fIK|K-LE = {|LK = {| L|K = v, (L){| K

den Faktor v,(L) = v,(L’) auf, liegt also in der gleichen Klasse wie f.

Es bezeichne ¢,(r) (1 <j < u,) eine Basis von @}, q(t) die Spalte mit den
Komponenten ¢,(7r) und q(r)|8S (S wie oben) die Spalte mit den Kompo-
nenten ¢,(7)|S. Dann gilt zundchst q(t)|K = Aq(r) mit einer quadrati-
schen Matrix A des Grades y, und daher

—q(7) = q(v) | K = q(7) | K| K = Aq(7) ,

also A?= — 1. Hiernach kann A = W-'DW mit einer umkehrbaren
Matrix W = W und einer Diagonalmatrix D geschrieben werden, deren
erste m; Diagonalelemente = - ¢ und deren restliche m, = u, — m, Dia-
gonalelemente = — ¢ sind.

Die Komponenten y,(t) der Spalte p(r) = Wq(z) bilden ebenfalls eine
Basis von @}, und es gilt p(r)|K = Dp(7), also

(DK =sp;(r) (1 Sj=my), w(@)|K=—iy(r)(m +1=j=p),

was besagt, daB y,(7) eine ganze Spitzenform {®°[¢], —1, v} darstellt, je
nachdem ob 1 <j<m, oder m, + 1 <j <m, + m, ist. Daraus folgt
sofort : Die Schar der ganzen Spitzenformen {®°[¢q], —1, v,} ist die direkte
Summe der Scharen der ganzen Spitzenformen {®°[¢], —1,v} wund
{®°[¢q], —1,v} , und es gilt

my=pf , my=py , py+p=pp, SpA=—i}(h—1). (6.19)

Die Gegenstéinde dieses Abschnittes hingen mit der Heckeschen Operatoren-
theorie zusammen, wie der Vergleich mit HECKE [10] erkennen 1éaf3t. In dieser
Theorie bedeuten die Aussagen (6. 19) vermutlich folgendes: In der Schar der Mo-

dulformen von der Dimension —1, vom Teiler ¢ und vom Charakter ¢(n)= (—Z’-)

14

besitzt der Operator 7't nur die Eigenwerte -———, und zwar genauum }(h—1)

— ;¥
Eigenwerte 7; mehr als Eigenwerte -_:/—-__3 . Es darf jedoch nicht iibersehen
q q
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werden, daf8 die Operatorentheorie im Falle der Dimension — 1 eines ihrer
primitivsten Fundamente entbehrt: Man kennt hier nicht einmal den Grad
der Matrizen, die in dieser Theorie auftreten. Die Bestimmung des Grades ist
nach (6.18) mit der des Ranges u;t gleichbedeutend.

Nach (5.17) und (6.18) existieren mindestens A —21_ 1

Modulformen {®°q], —1,¢;}. Ein System von L .;1

188t sich nach HEckE [11] leicht explizit bestimmen. Hierfiir empfiehlt es sich,
die zu °[g] und ®q] in der folgenden Weise konjugierten Gruppen

Folg] = TT[q] T, Dylg] = TO[q] T

i i A0
— DA D, ~De[q] D, ;D= (0 1~1)

linear-unabhingige ganze

solchen Modulformen

heranzuziehen ; wir bezeichnen die aus v durch die entsprechende Transfor-
mation entstehenden Multiplikatoren wieder mit ».

Die gesuchten Modulformen werden durch den Ansatz von HECKE [11] in
der Gestalt ¥#(r, 0, a, V:E) geliefert ; vorzuziehen ist der HEokEschen die
iibersichtlichere Schreibweise

Bz, ]) =1+ 2 I &MNOT, (6.20)

geER
wo g die ganzen Ideale der absoluten Idealklasse & von P (V' —g) durchliuft
und N die Norm bezeichnet. Aus [11] Satz 5 und 7 geht hervor, dal diese
#(r, &) ganze Modulformen {®,[q], —1,v;} darstellen. Durchliuft R ein
vollstiindiges System B absoluter Idealklassen, welches keine zwei einander
reziproken Klassen enthilt, so gewinnt man in den entstehenden ©&#(z, R)

(8 B) nach bekannten Sitzen offenbar h >

Modulformen {®,[¢], — 1,2y }; zur Klasse {®°q], —1,v;} gehoren daher
. h+1
die

linear unabhéingige ganze

linear unabhingigen ganzen Modulformen 0(-—q—- R) (ReB). DaB
sich die Normalfunktion H?(r) als lineares Kompositum der Funktionen

19(—;— 5 R) darstellen liaBt, besagt die Relation [11] (24)

z 9(z, R) = 2H](¢g7) ,
!

in der links iiber alle Idealklassen von P (V:;) zu summieren ist. Eine Basis

der von den ¢ ( —;- , S{) aufgespannten Schar ganzer Spitzenformen
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{®°[q], — 1, v;} erhalt man in der Gestalt
(=, )=z Rﬂ(—’—,ﬁ)
(q x)=2 xR g

wo y ein volles System von Nicht-Hauptcharakteren der Klassengruppe des

Korpers P( V:_q) derart durchlduft, daB keine zwei dieser Charaktere zu-
einander reziprok sind.
Fiir ¢=3 mod 8 gibt es im Fundamentalbereich {§°[q] der '°[¢] nach (6.17)

2k explizit bestimmte Punkte, in denen alle 79(—;— , R) verschwinden. Diese

Eigenschaft, die man den ¢(7, & nicht ,,ansieht*, zeigt mit wiinschens-
werter Deutlichkeit, was fiir Kenntnisse durch Hinzunahme der Transformation
K zur Gruppe I'°[q] gewonnen werden kénnen.
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