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tîber EiSENSTEmsche Reihen
und automorphe Formen von der Dimension —1

von Hans Petebsson, Munster

1. EiSENSTEmsche Reihen von der Dimension — 1 sind systematisch in einiger
Allgemeinheit zum ersten Maie von E. Hecke [1] untersucht worden. Durch
Anwendung neuer Methoden und Gedanken ergab sich die explizite Konstruk-
tion eines Systems ganzer Modulformen in einer komplexen Variablen mit
folgenden Eigenschaften :

1. Die Modulformen gehôren zur Dimension — 1 und zur Hauptkongruenz-
gruppe V(N) einer beliebigen Stufe ^&gt;2. Das System wird durch die
Transformationen der vollen Modulgruppe als Ganzes auf sich abgebildet.

2. Die Funktionen des Systems besitzen Pourier-Koeffizienten relativ einfacher
Bauart (Teilersummen).

3. Das System lâBt sich explizit in ein linear-âquivalentes System ûberfuhren,
das auf die Spitzen eines Fundamentalbereichs $N der f (N) wie folgt be-

zogen ist : Es enthàlt zu jeder Spitze von $# eine Modulform, von der der
Imaginârteil des konstanten Gliedes in dieser Spitze den Wert 1, in jeder
anderen Spitze den Wert 0 hat.

4. Es gilt der Reduktionssatz : Zu jeder ganzen Modulform von der Dimension
— 1 und der Stufe N gibt es ein lineares Kompositum der Funktionen des

Systems derart, da8 die DifiEerenz in allen Spitzen verschwindet.

Demgegeniiber muB man das in [1] angedeutete Verfahren, das zur Bestim-

mung des Ranges der von den Funktionen des Systems aufgespannten Schar
0èN und zugleich der zwischen diesen Funktionen bestehenden Relationen dient,
als umstândlich und undurchsichtig beurteilen. Von einer Kennzeichnung der
Schar (£N durch innere Eigenschaften ist in [1] noch nicht die Rede.

Eine grundsàtzliche Ânderung dieser Situation entsteht nach [2] durch
Anwendung des RiEMANN-RocHschen Satzes und des Prinzips der Metrisierung. Die
Auswertung der Metrisierungsintegrale fuhrte in Verbindung mit dem
Reduktionssatz zu der Kennzeichnung der Schar Ç£N als der Schar der zu allen ganzen
Spitzenformen orthogonalen ganzen Modulformen von der Dimension — 1 und
der Stufe N. Dièse Aussage ist nur ein Sonderfall eines allgemeinen Sachver-
halts, nach dem (schlechthin) aile irgendwo auftretenden Reihen, die man aus
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formalen Grûnden als Eisensteinreihen bezeichnet hat, sich einem analogen
metrischen Zusammenhang unterordnen.

Bei analytischen automorphen Formen hat dieser Zusammenhang folgende
Struktur : Es sei F eine Grenzkreisgruppe von erster Art, r eine réelle Zahl &gt; 0,
v ein Multiplikatorsystem zu F und — r vom Betrage 1, (£ die Schar der ganzen
Formen, (£+ die Schar der ganzen Spitzenformen {F, — r, v}, 9t die Normal-
schar von (£, das heifit die Schar derjenigen Formen von (£, welche auf der
Schar (£+ senkrecht stehen. Dann ist (£ die direkte Summe von (£+ und 9Î, es

gibt also zu jeder ganzen Form {F, — r, v} eine und nur eine Form aus 91,

welche mit jener die konstanten Glieder in den Entwicklungen nach den Orts-
variablen aller der Spitzen von F gemein hat, in denen v unverzweigt ist. Dieser
Sachverhalt ist als eine Verschârfung von 4. aufzufassen. Ebenso stellt ein Satz
ûber das Verhalten von 9t bei Transformation mit einer nicht in F gelegenen
linearen Abbildung eine Verschârfung der zweiten Aussage von 1. dar.

Nach dem oben Gesagten kann man als die Analoga der Schar (£N bei einem
allgemeinen F von erster Art unbedenklich diejenigen Normalscharen 9t defi-
nieren, welche zu r 1 und einem v mit v2 1 gehoren ; fur gegebenes
F existieren solche v genau dann, wenn F keine elliptischen Fixpunkte gerader
Ordnung hat, und ihre Anzahl (also auch die Anzahl der verschiedenen Scharen
91) ist in diesem Falle eine Potenz von 2. Fur ein beliebiges zu F und — r — 1

gehôriges v vom Betrage 1 bezeichne a die Anzahl derjenigen Spitzen eines
Fundamentalbereichs 3? von F, in denen v unverzweigt (das heifit x 0) ist,
und u{— 1, v) den Rang von 91 91 (F, — 1, v). Dann gibt der Riemann-
RocHsche Satz unmittelbar

i*(-l,t;) + tt(--l,tr-i) a ; (1.1)

im Falle v2 1 ist also a 2 m gerade und

-l,v) tt(--l,t&gt;) m (1.2)

Wie aus der direkten Zerlegung (£ £+ + 91 hervorgeht, besteht eine

umkehrbar-eindeutige linear-distributive Beziehung zwischen den Funktionen
von 91 auf der einen und den Vektoren eines gewissen linearen Vektorgebildes
9t im komplexen a-dimensionalen Vektorraum 93(a) auf der anderen Seite. Im
Falle v2 1 ist 91 isotrop, das heiBt das algebraische Skalarprodukt irgend
zweier Vektoren von 91 verschwindet ; 9t hat hier den Rang m. Dieser Fall wird
weiterhin ausfiihrlicher diskutiert.

Da die Struktur der Schar 91 mit der von 91 ubereinstimmt, kann die Aufgabe
gestellt werden, aus den Eigenschaften von 9î neue Aussagen iiber die
Funktionen von 91 abzuleiten, insbesondere solche, die bekannten Sâtzen iiber die
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EiSENSTEEsrschen Reihen entspreehen. Mit Riicksicht darauf, da8 tJbertragun-
gen von 1. und 4. in viel allgemeinerem Rahmen bereits vollzogen sind, daB
die Rangbestimmung vorliegt und da6 arithmetische Zusammenhànge vom
Typus 2. ganz unglaubwlirdig sind, wird man versuchen, zunâchst die Aus-

sage 3. auf die Scharen 9t mit r v2 1 zu ûbertragen, das heiBt die Existenz
eines Erzeugendensystems der Schar 9t mit dem genannten Verhalten in den

Spitzen zu beweisen ; sodann wird man versuchen, die Relationen aufzustellen,
die zwischen den Funktionen dièses und anderer Erzeugendensysteme be-
stehen.

Im ersten, rein algebraischen Teil der folgenden Untersuchung zeigt sioh, daB
dièse Aufgaben rein algebraisch und mit bescheidenem Aufwand vollstândig
gelôst werden konnen. Darûber hinaus resultiert eine abschlieBende Aussage
iiber isotrope Vektorgebilde 91 maximalen Ranges im komplexen 93&lt;2m) vom
Charakter einer Parameterdarstellung. Als Punkte des Parameterraumes, auf
die dièse 91 eineindeutig bezogen sind, erscheinen die Links-Nebenklassen einer
Untergruppe symplektischer Matrizen innerhalb der reellen orthogonalen
Gruppe des 33(2w).

Das eigentliehe Objekt dieser Ùberlegungen ist eine das betrefïende Gebilde
91 eindeutig kennzeichnende quadratische Matrix G des Grades 2m, die sowohl
reell&apos;Orihogonal als auch schiefsymmetrisch ist. In jedem Falle, in dem die
Gruppe f durch ein bekanntes arithmetisches Gesetz bestimmbar und ein
System von 2m Erzeugenden der Schar 91 explizit konstruierbar ist, gewinnt
man so eine konkrete Matrix G der angegebenen Art. Fur die Hauptkongruenz-
gruppe f(N) ergibt sich durch die fruher ubersehene Môglichkeit, die Nullwerte
gewisser £-Reihen mit Kongruenzbedingungen zu berechnen, eine elementare

Darstellung der zugehôrigen Matrix G, deren Orthogonalitàt ich nicht direkt
bestâtigt habe. Identifiziert man f mit einer gewissen Kongruenzgruppe von der

PrimzahUtufe q, die durch die Eigenschaften der l-ten Potenzreste mod q erklârt
ist, so gelangt man zu einer merklich einfacheren Matrix G, deren Orthogonalitàt

sich durch direkte Rechnung auf Grund der finiten Darstellung der Dirich-
LETschen Funktionswerte L(l,x) bestâtigen lâBt.

Andrerseits gewinnt man hier zum ersten Mâle die Range der Normalscharen
91 F, — 1, v) zu Gruppen f eines von Fbicke [5] untersuchten Typus, die nicht
Untergruppen der Modulgruppe sind, und zu Charakteren v, die nicht nur die
Werte ± 1 annehmen. Dièse Ergebnisse enthalten auch die ersten Andeutungen
dahin, daB man im Falle v2 =£ 1 uber (1.1), also den RiEMANN-RoCHschen
Satz hinaus keine allgemeine GesetzmâBigkeit zu erwarten hat. Gewisse Be-

ziehungen dieser Gegenstânde zu Relativklasaenzahlen im Bereich absolut-
abelscher Zahlkorper sind bemerkenswert, obwohl sie sich aus bekannten Zu-
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sammenhângen zwischen Modulformen und DmiCHLBTschen Reihen verstehen
lassen.

Nachdem die Range der Normalscharen in den genannten Pàllen bestimmt
sind, besteht prinzipiell die Môglichkeit, etwas uber die Range der Scharen der

ganzen Spitzenformen in den gleichen Klassen zu erfahren. Die genaue Rang-
bestimmung gelang hier fur die Klassen der Dimension ¦— 1 bisher nur in nume-
rischen Spezialfallen. An dieser Situation wird auch im folgenden nichts ge-
ândert. Man kann aber wenigstens fur die ursprûnglichen von Fricke [5] defi-
nierten (zu den Klassenpolygonen gehôrigen) Gruppen O0^] im Falle einer
Primzahlstufe q 3 mod 4 (q &gt; 3) die Differenz der Range der Scharen

ganzer Spitzenformen von der Dimension — 1 berechnen, wenn die beiden zu-
gehôrigen Multiplikatorsysteme gewisse explizit gegebene (konjugiert-kom-
plexe) Werte haben. Das Problem steht mit einer von Hecke [10] diskutierten
Frage uber die Eigenwerte der T-Operatoren in Beziehung. Wâhrend sich
Hecke bekannter Rangzahlen bedienen konnte, besteht hier die Aufgabe ge-
rade darin, dièse Rangzahlen oder wenigstens ihre Differenz zu ermitteln. Zur
Lôsung dieser Aufgabe erweisen sich neben dem RiEMANN-RocHschen Satz und
FBiCKBschen Ergebnissen vor allem die explizite Kenntnis der Mvltiplikatorwerte
der DEDBKiNDSchen Funhtion rj(r) sowie die Tatsache als entscheidend, daB die

zur Gruppe O°[g] gehôrige Modulform ri(r)rj( — J in der oberen r-Halbebene

nicht verschwindet. Beide Phânomene sind wesentlich transzendenter Natur.
Sie werden hier zur Berechnung einer elementar-ariihmetisch definierten Anzahl
elliptischer Fixpunkte benutzt.

Als Differenz der genannten Rangzahlen ergibt sich so \{h — 1), wo h die

Klassenzahl des imaginâr-quadratischen Zahlkôrpers P(V— g) bezeichnet.

2. Nach [2] liegt folgende Situation vor : Die Normalschar

~ 1, v) (T vonerster Art, v2 1)

ist umkehrbar eindeutig und unter Ûbertragung der linearen Komposition auf

ein lineares Vektorgebilde 9î des Ranges m — im Raum SB(2m) der sâmtlichen

Vektoren mit 2 m komplexen Komponenten bezogen. 91 ist im oben angegebe-
nen Sinne isotrop.

Im folgenden bezeichnen wir mit kleinen deutschen Buchstaben Vektoren,
mit groBen lateinischen Buchstaben quadratische Matrizen, mit ; den Zeilen-,
mit h den Spaltenindex der Elemente einer Matrix ; Vektoren gelten als Matrizen

mit nur einer Spalte ; die Elemente aller Matrizen sind komplexe Zahlen ;
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ist eine Matrix oder ein Vektor reell, so wird dies besonders hervorgehoben ;

ein obérer Index an dem Symbol einer Matrix (oder eines Vektors) bestimmt
deren Zeilenzahl ; die Einheitsmatrix wird mit / (&lt;5ifc), die Nullmatrix mit
O, der Nullvektor mit o, der k-te Einheitsvektor mit e* (1 ^ k S 2 m) be-
zeichnet ; ein Punkt ûber oder rechts oben an dem Symbol einer Matrix oder
eines Vektors deutet die Transposition, ein obérer Querstrich den Ûbergang zu
der Matrix mit konjugiert-komplexen Elementen an.

Ein lineares Vektorgebilde 91 im 93&lt;2w) wird ein isotropes Vektorgebilde ge-
nannt, wenn fur irgend zwei Vektoren x, t) von 31 stets die Relation der Ortho-

gonalitât XX) 0 erfûllt ist ; die Relation it) 0 wird unitâre Orthogonali-
tât genannt. Es sei 5R ein isotropes Vektorgebilde im 33(2m), m* Rg 9t. Da
9Î im Orthogonalgebilde von 3t enthalten ist, gilt m&apos; &lt;&gt;2m — m&apos;, also
m! 5j m. Im folgenden sei m&apos; m.

Es sei Ttk eine Permutation der k 1,2,..., m. Die Vektoren cfc+ itm+nk
(1 fg k fg m) spannen ein isotropes Vektorgebilde Qn vom Range m auf. Die
Summe aller dieser Qn besitzt die Basis d— efc,..., em+i— em+fc (2 ^ fc &lt;£ m),
ex + iem+1 und daher den Rang 2m — 1. Es gibt also, wenn m&gt;l, mehr
als nur ein isotropes Vektorgebilde vom Range m.

31 habe die obige Bedeutung (m Rg 31). Es sei ts fy + ihs (1 ^ j ^ m)
eine Basis von 31 und dabei ai J(c, + q). Da 31 auBer 0 keinen Vektor mit
reellen oder rein imaginâren Komponenten enthâlt, folgt aus einer linearen
Relation m m

T Kj a} + S fis hj o mit reellen A,., ^^

verschwindet, also ^ ^ 0 ist (1 :g / ^ m). Man bestimme jetzt réelle

Dann wird m

i»kv) cv gfc + ie^cSl (1 ^ fc ^ 2m)

mit gewissen reellen Vektoren Qk. Wir zeigen noch, daB dièse gfc + i tk das

Gebilde 3î aufspannen. Es gilt
2m

b, 2 bkjtk mit reellen 6fc/ (1 £j &lt;Z

und hier wird
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weil der Imaginârteil eines Vektors aus 91 den Vektor eindeutig festlegt.
Also besteht zunâchst der in der Einleitung angekûndigte

Satz 1. Jedes isotrope Vektorgebilde 9t des Ranges m im komplexen 33(2m) be-

sitzt ein eindeutig bestimmtes Erzeugendensystem von der Oestalt Qk + itk
(1 ?g k fg 2m) mit gewissen reellen Vektoren gfc.

Die Matrix G #(2w) mit den Spalten gfe (l^it^2m) ist mithin durch
91 eindeutig bestimmt und hat die Eigensehaft

(Q + iI)m(G + iI) O d.h. GO /, G - G (2.1)

Transformiert man G dureh eine unitàre Matrix U{2m) in eine Diagonalmatrix

D UGU, so erhàlt man aus (2.1) sofort

D (d,d,k) | d,\ 1 D ?7&lt;?tf - D

also dj ± i. Daher und wegen Rg 91 m kann

- fil 0&lt;m)\ JLf2U 0\

erreicht werden. In den Bezeichnungen von Satz 1 gilt demnaeh

Satz 2. Die Matrix G G{2m) mit den Spalten Qk (lgi^2m) ist reell,
orthogonal und schiefsymmetrisch. Jede réelle orthogonale schiefsymmetrische
Matrix G (gx,..., g2m) bestimmt eindeutig ein isotropes Vektorgebilde
9jc93(2w). 91 wird von den Vektoren Qk + itk (1 ^ k ^2m) aufgespannt, die
Eigenwerte von G sind gleich i oder — i, und der Rang von 91 ist gleich der Viel-
fachheit des Eigenwertes + i von G, dièse ist also hochstens gleich m.

Fur jeden Vektor 3 (z}) ist

3 heiBt Relationenvektor der gfc + itk (1 ^ i &lt;J 2m), wenn (G + i/)3 0

ist. Aus (2.1) folgt

und dies besagt, dafi die Vektoren gfc — itk (1 ^ k &lt; 2m), wenn 91 den

Rang m hat, das m-dimensionale lineare Vektorgebilde der sàmtliehen Rela-
tionenvektoren aufspannen. Mithin gilt in den Bezeiehnungen von Satz 1

Satz 3. Das lineare Vektorgebilde der sàmtliehen Relationenvektoren des Er-
zeugendensystems Qk + itk (1 ^ k ^ 2 m) von 9t ist mit dem zu 9î konjugiert-

komplexen Gebïlde 91 identisch, also wieder ein isotropes Vektorgebilde des Ranges
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m. Bezeichnet G C{2m) eine umkehrbare Matrix, so bilden die 2 m Spalten
von (G-{-il)G auch ein Erzeugendensystem von 9Î, und dos lineare Vektorgebilde

der sâmtlichen Relationenvektoren dièses Erzeugendensystems ist G~x 91, besteht also

aus den Vektoren G~H (rc9l). C~1(}{ ist ein isotropes Vektorgebilde, ivenn

CC XI fur einen Skalar A zutrifft.
Nach diesen sehr einfachen Aussagen ûber Erzeugendensysteme und deren

Relationen untersuchen wir die isotropen Vektorgebilde des Ranges m in
33&lt;2w&gt; genauer.

Setzt man in fester Bezeichnung
(m) Q\

(2&apos;3)

so ist nach (2.2) G UD0U durch die unitare Matrix U eindeutig bestimmt.
Man kann aber eine solche Matrix U ofïenbar nicht willkûrlich vorgeben, wenn
man erreichen will, da6 G reell ist und den Relationen (2.1) genûgt. In der Tat

erhalt man aus G UD0U unmittelbar zwar

GG 1 G - O Rg(G + il) m

nicht aber, daB G reell ist. Dies besagt vielmehr

D0UÙ + UÙDQ O

/0&lt;w) P \oder UU 1 mit unitârem P{m\ Q P.
\ Q O(w)/

Fur spâter benôtigen wir einige allgemeine Sâtze iiber die unitare Diagonal-
Transformation w-reihiger quadratischer Matrizen. Zunàchst werde der folgende
bekannte Satz hervorgehoben : Dann und nur dann lâBt sich V V{n) durch

eine unitare Matrix auf Diagonalgestalt transformieren, wenn V mit V ver-
tauschbar ist. Unter dieser Voraussetzung ist V genau dann selbst unitâr, wenn
aile Eigenwerte von F den Betrag 1 haben. - Darûber hinaus gilt

Satz 4. Dann und nur dann lafit sich V V{n) durch eine réelle orthogonale

Matrix auf Diagonalgestalt transformieren, wenn V mit V vertauschbar und sym-
metrisch ist. Unter dieser Bedingung lafit sich V in der Gestalt QQ darstellen
(Q Q{n)). Hier kann Q dann und nur dann unitar gewdhlt werden, tvenn V
selbst unitâr ist.

Beweis. a) Aus

V^RD&apos;È, D&apos; D&apos;w (d-&lt;5,fc), R R&lt;n) R, RR I (2.4)



118 Hans Petebsson

folgt ^ ^
VV VV V=V (2.5)

b) Es gelte (2.5). Da Real- und Imaginàrteil von F symmetrisch sind, kann
ohne Einschrânkung V B + iD mit

B jscn) b B D D&lt;w&gt; (d,aA) i)
angenommen werden, wo in der Anordnung der d} keine zwei gleichen durch

ein von ihnen verschiedenes getrennt werden. Nun besagt VV VV, daB

5 mit D vertauschbar ist. Daher zerfallt B + %D in lângs der Diagonale auf-
gereihte Teilmatrizen JS* + id*I gewisser Grade pr (p± + p2 + w), die
nunmehr einzeln reell orthogonal auf Diagonalgestalt transformiert werden
kônnen.

e) Es gelte (2.5) und es sei (2.4) erreicht. Man setze e^ Vd^ (1 ^ j&apos; ^ n),
D1 E2, E (e^^). Dann wird F RE{RE)\ Ist F unitâr, so auch D&apos;,

Beispiel. Fiir w 2w, ï/r==( gilt (2.5). Die Matrizen

Tl==T°F==

sind sâmtlich unitâr, und man findet

0
Die allgemeinste unitâre Matrix Ç mit V QQ hat die Gestalt

Q^TXR, wo iî ^2w&gt;==Ê*, RR^I (2.7)

Nach Satz 4 kann man nun, wenn eine unitàre Matrix P P(m) vorgelegt
• 1° p\ist, eine unitâre Matrix U £7(2m) mit VU I I gewinnen ; dann

erweist sich G UD0U als reeU orthogonal und schiefsymmetriseh und be-

stimmt im Sinne von Satz 2 eindeutig ein isotropes Vektorgebilde 91 vom
Range m. Danach erhâlt man gemàB Satz 2 aile isotropen Vektorgebilde

91 vom Range m, indem man die verschiedenen G UD^U bildet, wo U
die unitâren Matrizen mit der Eigenschaft

• (0 P\ -C7CJ I 1, P^P^, PP^I (2.8)
\P 0)

durchlàuft. Wir nennen P, wenn (2.8) zutrifft, das Radikal von U.
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Es sei Ux Uxm) eine unitâre Matrix mit der Eigenschaft (2.8), dem

RadikalP^nd G U1D0U1. Wir setzen Ux SU, S I 1 und
sehlieBen aus ^ ^

^ ^

/j SD0S

daB a»! Sz 0 ist, #0 und #2 unitàr sind und daB Px ASf0P/S2 gilt. Dieser

ProzeB lâBt sich umkehren, das heiBt î/j / U ist unitâr, wenn $0

und /S2 es sind, hat dann das Radikal Px S0P82 und liefert das gleiche G

wie Î7. Daraus folgt, daB jedes G in der Gestalt UD0U dargestellt werden
kann, wo U unitàr ist und (2.8) mit P — I erfullt. U lâBt sich also nach
(2.7) durch U TXB mit reellem orthogonalem R Ri2m) ausdrûcken.

Um jetzt eine Parameterdarstellung aller verschiedenen G zu gewinnen, hat
man nur noch eine Bedingung dafur anzugeben, daB V TXR und

Ux SU STXR TXRX Rx R[m) Rx RXRX / (2.9)

das gleiche G bestimmen ; dabei ist als einzige Nebenbedingung P Px I
einzuhalten. Dies besagt einerseits

Z 0\ mit unitârem Z Z™ X + iY (X, F reell)
O Z)

andererseits nach (2.9)

X Y

K-7 X
/ X Y\

Die Aussage, daB Z X -f- i F unitâr sei, ist damit, daB I I

orthogonal sei, gleichbedeutend, und die Gruppe der unitâren Z(m} ist zu der

/ X F
Gruppe § der diesen Z X + i Y entsprechenden H H{*m) l

isomorph. Damit ergibt sich \ — F X

Satz 5. Jfaw erMZ&lt; die sâmtlichen isotropen Vektorgebilde des Ranges m im
nd jede8 von ihnen genau einmal, wenn man (vgl. (2.3,6))

G^UDoU, U TxR (2.10)

setzt und i?&lt;2m&gt; ein voiles System redler orthogonaler Matrizen durchlaufen idjSt,
tvelche sich nicht um einen Unken Faktor aus § unterscheiden. Gleichbedeutend
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mit (2.10) ist die DarsteUung
0 I\ R-I 0)

Die Gruppe &lt;r&gt; Jcann als die Gruppe derjenigen reellen Matrizen H Hi2m)

gekennzeichnet werden, welche sowohl in der Gestalt H darstell-
bar als auch symplektisch sind. \ Y £/

Es sei 91 ein isotropes Vektorgebilde des Ranges m. Fur A A{2m) ver-
stehen wir unter A 9t das lineare Vektorgebilde der A r, re9t. Ist AA=XI,
so ist ASR wieder ein isotropes Vektorgebilde vom Range m. Es sei A ins-

besondere reell-orthogonal, G habe die Bedeutung von Satz 2. Dann ist ^4GJl

diejenige Matrix, die in A 9t dieselbe Rolle spielt wie G in 5R.

Wir sagen von der reellen orthogonalen Matrix A, sie vermittle einen euklidi-
âchen Automorphismus von 91, wenn A9{ 91 ist. In dieser Terminologie gilt

Satz 6. Aile isotropen Vektorgebilde 91 des Ranges m im 33&lt;2m) entstehen ans
einem beliebigen von ihnen, etwa 9îo&gt; dnrch die Transformationen 91 A3{0 mit
den reellen orthogonalen Matrizen A A{2mK Fur 9ÎO kann das von den Vek-
toren it$ — tmJH (1 &lt;Lj ^ m ; i? /) aufgespannte Gebilde gewâhlt werden.

Die sdmtlichen euklidischen Antomorphismen eines beliebig gegebenen isotropen
Vektorgebildes 91, das im Sinne von Satz 5 der reellen orthogonalen Matrix R ent-

spricht, werden von den reellen orthogonalen Matrizen A ans R~X^R vermittelt.

3. Es sei AT eine naturliche Zahl, f[N] die Gruppe der Modulmatrizen
L Li2), welehe elementweise ± I mod N sind, v0 der ungerade Charak-
ter auf f[N] mit den Werten vo(L) (— Ij* fur L (—I)k modNt
k 0, 1. Da v0 nur fur N &gt; 2 einen Sinn hat, sei N &gt; 2. Modulformen
{F[JV], — r, v0} mit r 1 mod 2 kônnen als Modulformen {F(N), — r, 1}
aufgefaBt werden ; £c f(i^) bedeutet

ier[l] L + ImodN

Wir bedienen uns der HECKEschen Ergebnisse in der Darstellung [3], ersetzen

jedoch im Sinne oben getroffener Vereinbarungen das vektorielle Argument a

in den Funktionen f3] (1), (2) durch à. tîberdies wird der die Dimension — r
kennzeichnende Index r, da er stets 1 ist, unterdruckt. Nach [3] hat, wenn

i= {«!,«•}, (^,«2,^ 1, B€f[l]9 B^ib^bJ (3.1)

zutrijfft,
G*{r9 à, N) (6tr + b^&apos;1G*(Br9 àB~\ N)
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in der Spitze B~xoo von f(N) das konstante Glied

± 1 fur à ± B mod N
\ i\ + Plo(\) (3.2)

[ 0 sonst J

wo p&apos;lo(à, N) nur von ax und N abhângt und durch

(3.3)
yN(a) inN-1 I Q(l,h\ N)P(O, ha, N) (a ganz)

mit hhf 1 mod N erklârt ist.
Zur Bestimmung der hier auftretenden Werte von Q kann man die Rela-

tionen [3] (4), (21) benutzen. Sie besagen

^ ^ *P* ^ /i/t z/ iin - f fur 9 1

Es bezeichne WN w$ die Matrix I ctg —~—\ wo g und A die waeh-

N
send geordneten ganzen m mit 1 &lt;^m&lt;-1r-, (m,JV)= 1 durchlaufen und g

ù

den Zeilen-, h den Spaltenindex vertritt. Aus (3.4) folgt, wenn auch Je eines
dieser m und hhr kk&apos; 1 mod iV^ ist :

sonst

Daher gilt | WN | ^ 0. Versteht man nun unter WN h das algebraische Kom-
plement des zu h gehôrigen Eléments in der ersten Zeile (g 1) von WN, so

erhâlt man aus (3.4)

JfQ{1&gt;h&apos;&apos;N)=W7(&apos; (3-5)

Um P(0, h, N) auszurechnen, bedienen wir uns wieder der Darstellung [3]
(21), auBerdem aber der Funktionalgleichung [3] S. 110 oben. Nach [3] (24)
ist also

^ V si
Jcmo&amp;N

der Akzent am Summenzeichen verbietet das Auftreten des Gliedes mit
h 0 mod N. Da P(0, 0, #) 0 ist, kann und soll 1 g h ^ N — 1 vor-
ausgesetzt werden.
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Ersichtlich gilt

*¦&quot; kmodN jf

* mod N
&quot;

jf mod A&quot; C^ — 1

Der erste Term rechts hat den Wert — \, der zweite, wie man durch Entwick-

lung des Bruches in eine geometrische Summe sieht, den Wert 1 —^-.
Um das Ergebnis zu formulieren, verstehen wir unter gx (x) die mod 1

periodische Funktion der reellen Variablen x mit

(3.6)

dann haben wir

P(0, h,N)=- gl(~r)j (h ganz) (3.7)

undnach (3.3,5)

* W
N ir) {a ganz)

bewiesen. Hieraus entsteht die Matrix G der Normalschar 9l(f[JV], — l,v)
in folgender Art : Es durchlaufe d (1 ^ j ^ &lt;*(N)) eîn voiles System inâqui-
valenter Spitzen der f(N) ; man setze

f, A;loo {At*r[l] A, {a.^a,,})

Dann wird nach (3.2) und mit der Bedeutung von (3.8)

i* - %%)) (h * 1, 2,..., a(N)) (3.9)

Die Bedingung fur die Paare {an, an) (1 ^ jf ^ cr(iV)) kann auch einfacher
so beschrieben werden: Es durchlaufe p {^,02} ein voUes System von
Paaren ganzer Zahlen derart, daB stets {al9 aÈ,N) 1 und niemals fur zwei
verschiedene Paare p, p&apos; eine Kongruenz p&apos; p oder p&apos; — p mod N
zutrifft. Man numeriere die Paare irgendwie, setze in dieser Reihenfolge
p s=s ps {an,a#} (1 ^ / ^ cr(^T)) und bilde hiermit die obige Matrix. Die
schiefe Symmetrie von 0 ist nach (3.6,8) unmittelbar ersichtlich, nicht so da-
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gegen die Orthogonalitât. Beide Eigenschaften bleiben erhalten, wenn an einem
der Paare das Vorzeichen gewechselt wird.

Das Nichtverschwinden der Déterminante | WN | legt die Frage nach der
arithmetischen Natur dieser Zahl nahe. Dièse Frage lâBt sich im Falle N Prim-
zahl q&gt;2 beantworten.

Die Elemente der Matrix

sind Zahlen des Kôrpers der g-ten Einheitswurzeln, die mit j und k das
Vorzeichen weehseln. Es sei 6 ein Primitivrest mod q ; ûbt man auf die
Déterminante

_ q-X

D, |-iïF,| t&quot; * |IFt|

den Automorphismus fa exp &gt; Cj aus, so nimmt Dq bei der Rûck-

spiegelung der jb in die erste Resthalfte den Faktor —1, auBerdem aber
noch infolge der verbleibenden Zeilenpermutation einen Faktor ± 1 auf. Also

ist Dq entweder rational oder von der Gestalt rVeq mit rationalem r =fi 0

und e I j Daraus folgt bereits

| WQ | rVq mit rationalem r ^ 0 filr q 3 mod 4 (3.10)

Im Falle q 1 mod 4 muB man die verbleibende Zeilenpermutation n n&amp;her

untersuehen. Man betrachte den mit 1 beginnenden Zyklus von n. Da ein

j= ^

durch n in =jb oder — jb mod q ubergefuhrt wird, wo auch 1 &lt;£ /&apos; ^ ~r—
ù

besteht der Zyklus aus den Resten des kleinsten positiven Halbsystems mod g,
die in dieser Reihenfolge zu 1, ±6, ±62,..., ^b^^&quot;^&quot;1 mod g kongruent
sind. Daher ist n ein einziger Zyklus, hat also eine Fehlstandsumme

1—. i mod 2 und es ist mithin
ù

| ïftf | eine rationale Zahl ^0 fur q 1 mod 4 (3.11)

4. Die eingangs erwâhnten Kongruenzgruppen von Primzahlstufe sind wie
folgt erklârt : Fest gegeben seien eine natiirliche Zahl l und eine Primzahl q
mit der Eigenschaft q 21 + 1 mod 4L Es bezeichne
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*P die Menge der ganzen m ^ 0 mod q, die Z-te Potenzreste mod q sind ;

f°[l, q] die Gruppe der Modulmatrizen L I ^ J mit /?

/ — j fur occty denjenigen Wert ±1, welcher =&lt;x21 modq ist;
i

vt(L) fur £=/* JjcPp.g] dièses Symbol /—\ ;

*Pfl die multiplikative Gruppe der Restklassen mod q, die Zahlen aus ^
enthalten ;

93 ein System ganzer Zahlen, deren Restklassen ein vollstàndiges Vertreter-
system der Nebenklassen tyq in der Multiplikationsgruppe 3{q der teiler-
fremden Restklassen mod q bilden.

Allgemein bedeute ~â die Restklasse der fur q ganzen Zahl a mod g. Da8
a einer Restklasse angehôrt, die in der Nebenklasse tS$q nach der Gruppe tyQ

enthalten ist, mufite danach durch 7i€tS$q beschrieben werden. Wir schreiben
statt dessen meistens d€tS$q.

Die Gruppe f°[hq] enthàlt die Matrix — /, und vt stellt einen ungeraden
abelschen Charakter auf f° [l, q] dar. Wir untersuchen die Normalschar

51 9l(r, —r,v) fur T r°[i,g], r 1 und das obige v vt. (4.1)

Ein voiles System inâquivalenter Spitzen von r°[l,q] ergibt sich in der Ge-

stalt A~xoo mit gewissen Matrizen A~x Slt, 82it, wo f das System 95

durehlâuft. Es sei, wenn ti S$

\ (q -
mit ganzen tf, i&gt;, fur die W qv + 1 ; zum Vertreter der Gruppe ty wâhlen
wir t 1 und setzen

1 0\ /O - 1

O !/&apos; S^-T=s[1 0

Die Spitzenbreiten N dieser A^oo sind N q fur ^4 5^^ und N 1

fur «4 i8fj. r°[Z,g] hat also in der Modulgruppe den Index l(q + 1) und

besitzt die 2 Z inâquivalenten Spitzen oo, t und 0, ~ (t c 95, t ^ 1). Es ist leicht
t

zu bestatigen, daB v in allen diesen Spitzen unverzweigt ist ; 51 hat also nach
(1.2) den Rang L
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Man bildet die EiSENSTEEsrschen Reihen zur Gruppe r°[ï,g] nach dem
folgenden hetiristischen Prinzip: Zu jeder Matrix A 8^), 8%) ermittle
man die genauen Bedingungen dafur, daB das Zahlenpaar {m1,m2} die
zweite Zeile einer Matrix ans A P [l,q] sei ; eine dieser Bedingnngen ist offen-
bar (mlJm2) 1. Dann setze man die EiSENSTEiNreihen nach dem Prinzip
der transversalen Summation an, hebe aber die Summationsbedingung
(mXim2) 1 auf.

Nun besagen dièse Bedingungen auBer (ra1,ra2) 1, daB

m2€t% fur A Sl\ ; m1 €t^q, m2 0 mod q fur A S&quot;) (4.3)

zutrifft. Man hat also die EiSENSTEiNreihen mit diesen Summationsbedingungen
(4.3) anzusetzen. Zur bequemeren Sehreibweise der Multiplikatoren in den
Reihengliedern empfiehlt es sich noch, einen Charakter auf der vollen Gruppe

i _
9ta einzufûhren, der auf % mit I — J ùbereinstimmt. Dièses Symbol stellt

einen Charakter auf tyq dar, der auf der Untergruppe ^3* der (2ï)-ten Potenz-
reste mod q und nur dort zu 1 wird. Die gleiche Eigenschaft hat ein erzeugen-
der Charakter der zyklischen Charaktergruppe von 9îa/^J*. Es sei also e(m)
ein Restcharakter mod q, der auf ^}* zu 1 wird und einen erzeugenden
Charakter von 9îa/^J* definiert ; wir betrachten e im folgenden als fest gege-
ben. Die Werte von s sind (2 Q-te Einheitswurzeln.

Wir definieren jetzt die EiSENSTEiNreihen der Dimension -—1 mit konver-
genzerzeugenden Faktoren durch

(4.4)

- %

Die Darstellungen

ai,«a mod q

mod q

Ï
lassen erkennen, daB dièse Funktionen von 8 in eine voile Umgebung des

Punktes s 0 (nach [1] sogar in die ganze s-Ebene) regulâr-analytisch fort-
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setzbar und daB ihre Werte fur s 0 Modulformen von der Stufe q und der
Dimension — 1 in der Variablen t sind. Im ûbrigen kônnen die Gk t zwanglos
fur beliebige bezuglieh q ganze t erklârt werden. Sie hàngen hinsichtlich t nur
von der Nebenklasse ï^Q ab.

DaB die Nullwerte Gkft(r) Gktt(0,r) (Jb 1,2) der Normalschar
9l(r°[ï, q], — 1, vt) angehôren, folgt einerseits aus den Transformations -

gleichungen

\lmU()
Qt,t(89Lr) S(*)(yr + ô)\yr + ô\*G2&gt;t0ù(8, r)

die fur jede Modulmatrix L I \! j mit (î 0 mod q gelten, andrerseits

aus der Darstellung (4.5) und dem in 1. zitierten Résultat von [2] ûber die

Kennzeichnung der Schar (£N. DaB die Funktionen Gk t(r) die genannte
Normalschar sogar aufspannen, lâBt sich aus der Gultigkeit des Reduktions-
satzes ableiten ; dieser ergibt sich aus dem 1.3, entsprechenden Sachverhait,
der im folgenden bei der Aufstellung der Matrix G als zutreffend nachgewiesen
wird.

In dem vorliegenden Formalismus treten die DniiCHLBTreihen

FM=1 I iW^-, W(s,t) l Z e(n){sgnn)M\n\)
(4&gt;?)

an die Stelle der Funktionen [3] (3) P(s,h,q), Q(89h,q); hier bezeichnet t

eine fur q ganze Zahl. Unter G%tt(s,r) verstehe man diejenige Reihe, welche

aus der Reihe Gkt(s9r) durch Hinzufugung der Summationsbedingung
(m1,m2) 1 hervorgeht. Dann gelten zunâchst die Gleichungen (4.5*), die

man aus (4.5) dadurch erhâlt, daB man das Symbol G dort ûberall mit einem *
versieht. In Analogie zu [3] (4), (13) findet man auBerdem

Gt,t(*,r)= 2 W(l+s,r~i)GKrt(s,T)
r€® (Je =1,2) (4.8)

&lt;?M(«, r) I V(l + s, r~i)Glrt(8, r)

(1 fur t c qj
2 Wis9r-^)V(s9rt)^{ (4.9)

\ 0 sonst

Nach der ersten Relation (4.8) und aufGrund der Darstellung der W 1 + s, r&quot;1)

als Iinear-Komposita reziproker L-Reihen lâBt sich jedes G^t(s9 r) als

Funktion von s in einer vollen Umgebung des Punktes * 0 holomorph
erklâren, und der Nullwert G*t(r) G%t{Q, x) gehôrt daher der Normalschar

(4.1) an.
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Die Bestimmung der konstanten Glieder der Funktionen Gkt{r) in den

Spitzen Si)Too (j und k 1, 2 ; r und t in 93) fûhrt auf Grund Von [3] (11),
(12b), (21) und (3.7) zu elementaren Ausdrûcken. Jedes konstante Glied ist
bis auf einen trivialen Faktor entweder mit einem der l Werte

V(l,t)=~ I e(a)ctg— (4.10)
«ï « mod q Ç

oder mit einem der l Werte

a(t)= I eWgJ—) (4.11)
a mod q \ Q J

identisch. Die explizite Bestimmung der Matrix G beruht darauf, daB G + il
als Residuenmatrix der Normalfunktionen

aufgefaBt werden kann. Die Anordnung der in [2] erklârten Residuen

j$, Ekt) (j und k 1, 2 ; r und t in 93)

geschehe nach folgendem Schéma: Das Paar (j,r) vertrete den Zeilenindex,
das Paar (k,t) den Spaltenindex ; innerhalb eines Indexpaares (j,r) oder
(k,t) dominiere der erste Index iiber den zweiten ; t durchlaufe 93 in der
gleichen Reihenfolge wie r. Dieser Vorsehrift entspricht eine Darstellung

11
12) durch die Teilmatrizen

jï, Ektt)) (r und tin 93)

Eine Rechnung, die ich hier ubergehe, ergibt

° Q&apos;l)\ mit Q=(^=rê(rt)2W(l,Q^)a(Qrt)). (4.12)

Die Eigenschaften G G — G, G G / von G bedeuten offenbar, daB

Q reell, symmetrisch und orthogonal ist. Nun folgt Q Q daraus, daB

i(£) ïF(l, £) und e(t)a(t) ersichtlich reell sind ; die Symmetrie von Q liegt zu-
tage.

Um die Orthogonalitât von Q direkt nachzuweisen, hat man sich der folgenden
Zusammenhânge zu bedienen : Zunâchst haben die Matrizen (F(l, rt~x)) und
(W(l, rt~1)) nach (4.9) das Produkt /. Bezeichnet ferner % einen Charakter
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auf 9ta, der auf S$q zu 1 wird, so gUt in der ublichen Terminologie

2 x(r)V(l,r) L(l9eX) \ (4.13)
rem

dem entspricht, wenn

(^) (4.14)

(4.15)

a mod q

gesetzt wird, die Relation

Die rechten Seiten von (4.13) und (4.15) sind miteinander nach der bekannten
Formel

^ (4.16)

verknupft, in der co (y&gt;) fur einen beliebigen Charakter y&gt; auf 5Ra durch

ù){y)) 1 V&gt;(a)£[ Ca exp (4.17)
a mod g \ q J

erklârt ist. Die Durchfûhrung des Beweises bietet, wenn man dièse Zusammen-
hânge in der Schreibweise der Matrizenrechnung ausdruckt und anwendet,
keine erheblichen Schwierigkeiten.

5. Man gewinnt eine vertiefte Einsicht in die Natur der Funktionen (4.4)
Gkt(s, t), indem man ihre linearen Komposita mit gewissen Charakterwerten
als Koeffizienten bildet und das Verhalten der so entstehenden Funktionen bei
Anwendung der Transformationen

/0 -Vq&apos;

q \ o

untersucht. Die Gruppe f° [1, q] besteht aus den Modulmatrizen L I ^ I

\/ /
mit fi 0 mod q und ist unter der Bezeichnung F0 [q], die wir hier auch
verwenden werden, bekannt.

Von den 21 Restcharakteren mod g, die sich als Charaktere der Faktor-
gruppe 9ta/^3* deuten lassen, sind genau l gerade, und dièse sind zugleich
die sâmtBchen Restcharaktere mod g, die sich als Charaktere von 9ttf/^}g
deuten lassen. Durchlâuft x dièse l geraden Charaktere, so durchlâuft %p ex
die sâmtlichen l ungeraden Charaktere von 9tff/^P*. Im folgenden sollen die
Buchstaben x un(i V s^e^s in diesem Sinne verstanden werden, e bezeichnet
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stets den gleichen ein fur allemal fest gewàhlten erzeugenden Charakter von
5Rff/^P* aus 4., und zwischen % und tp besteht stets die feste Relation y&gt; e%.

Mit den Werten dieser % bilden wir die linearen Komposita

HKi)(s,T) 2 X(r)Gk,r(s&gt;*) (k !&gt; 2) (B-1)

der Okr. Nach (4.4,5) erhâlt man fur Re s &gt; 1 zunâchst die Reihendarstellun-

gen

^ (5.2)

t 0, „ =^ ^
sodann nach (4.6) das Verhalten bei Ausûbung einer Transformation L e f°[q] :

(B 3)

schlieBlich nach (5.2) das Verhalten bei Ausûbung der Transformation Kq :

Hlyy{s,KqT) ^ HXJs,^\== t\t\s H^{s,t) (5.4)

Aus (5.2) folgt nach [1], daB jedes Hk ^(5,r) bei festem r eine ganze Funk-
tion von s darstellt ; die Nullwerte Hk^(0fr) Hk&gt;^{r) gehôren als Funk-
tionen von r nach [1], [2] der Normalschar $l(f [q], — 1, v0) an, wo v0 den zu
Beginn von 3. erklârten Charakter auf V[q] bezeichnet. Versteht man unter
Vy den durch

vAL) ip(&lt;x) fur L -

erklârten ungeraden Charakter auf der Gruppe f°[q], so ergibt (5.3) schlieB-
lich

î],-l,t;J (5.5)

Die hier auf der rechten Seite auftretenden Normalscharen môgen 51^, und
?l^ genannt werden. Nach (1.1) ist die Summe ihrer Range gleich 2, weil v^
in den beiden Spitzen oo und 0 eines Fundamentalbereichs von f°[q] unver-
zweigt ist. Andrerseits liegen H1 ^ und H2y in 91^, Ht y und H2 ^ in 5ft^.
Daher mûssen zwischen diesen vier Funktionen mindestem zwei unabhângige
lineare Relationen bestehen.

9 Commentarii Mathematici Helvetici
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Man findet dièse Relationen durch den Vergleich entweder der konstanten
Glieder von Hx^ und Htq in den beiden Spitzen oo und 0, oder der Ent-
wicklungen von Hx ^ und H2^ in einer dieser Spitzen, etwa oo. Aus (5.2)
ergibt sich nach [3], (12 b)

bolI.H^J 2L(1,V) bo(I,Hitif)) -~Z)(y),

bo(T,Huv,) - 2niD(y&gt;) bo(T,H2&lt;v,) 2L(l,y,)

Daraus folgt vermôge (4.16) die eine gesuchte Relation

^x) ; (5.6)

eine zweite erhâlt man, indem man y&gt; durch lp ersetzt. Ersichtlich ist hiermit
zugleich bewiesen, daB die sâmtlichen Scharen 31^, den Rang 1 haben. Die
FouBiBB-Entwicklung von Ht^{t) hat die Koeffizienten

n(ty)^(y&gt;) I y&gt;(d) (n-1,2,...)

Wir ziehen jetzt das Verhalten der Funktionen Oki, Hk^ bei Ausihbung der

Transformation K Kq heran. Zunâchst hat man neben (5.4) auch

woraus zu schlieBen ist, da8 die Funktionen

Ft(r)^Gltt(r)±
sich bei Anwendung von K gemàB

umsetzen. Analog ergibt sich, wenn

gesetzt wird, aus (5.4)

± iVqH^x) I X(t)Ff(r)
te S

(5

(5

(5

(5.

•7)

.8)

.9)

10)t

Andrerseits findet man durch Kombination der Gleichungen (5.4,6)

(4=1,2) (5.11)
Vq Vq
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und daraus nach (5.9,10)

^î^Îtx). (5.12)

Um dièse Tatsachen zu interpretieren, betrachten wîr das (in gruppentheore-
tischer Komplex-Schreibweise) durch

O0P,î] P[ï,î] + Jr.Pp,?] (5.13)

gegebeneMatrizensystem. Aus Xr°[Z,g&apos;]iL~1 r°|7,#] folgt, daB dieMatrizen
von 0&gt;°[l,q] bei Komposition durch Multiplikation eine Gruppe bilden. Da
roP,^] in O°P,g] den Index 2 hat, ist O0^,^] eine Orenzkreisgruppe von
erster Art. Wir bestimmen die Anzahl #° der inâquivalenten Spitzen von
O°p,g]. Man beweist mit Hilfe der oben eingefiihrten Modulmatrizen Slt
zunàchst, daB die ganze Zahl t^kO modg zu —t bezuglich r°[lfq] âqui-

valent ist. Daraus folgt, daB von dem vollstândigen System oo, t, 0, ~ (£c5B,
z

t ganz, tity) inâquivalenter Spitzen von r°[ï,g] hôchstens l (etwa oo und t)
bezuglich &lt;t&gt;°[l,q] inâquivalent sind, daB also ê° ^l ist. Es kann aber nicht
&amp;° &lt; l sein, da nach allgemeinen Sâtzen [4] jede Spitze einer Grenzkreisgruppe
von erster Art beim Ûbergang zu einer Untergruppe vom Index [i in hôchstens

pt nach dieser inàquivalente Spitzen zerfâllt. Also ist ê° l, und die ge-
nannten Spitzen oo, t bilden ein vollstàndiges Vertretersystem inâquivalenter
Spitzen von O°[Z,^]. In dieser Form kann man die Behauptung direkt be-

stâtigen. Aus den zitierten Sâtzen [4] folgt hier iiberdies, daB die einer Spitze
zugeordnete parabolische Grundmatrix von O°p,g] bereits in r°p,g] liegt.
Auch dièse Aussage làBt sich direkt verifizieren : Zu jeder Spitze f von O°P,^]
existiert eine Modulmatrix A derart, daB f A^oo. Die parabolische Grundmatrix

P von £ in O°p,j] hat die Gestalt P A^
mit einem reellen N&gt;0. Da P2 in Pp,g] liegt, ist 2N ganz, also N ganz-
oder halbzahlig. Jedenfalls hat P rationale Elemente, kann folglich nicht in
^r°p,g] liegen und liegt daher in r°p,g], q. e. d. Dieser Sachverhalt hat
eine fur ailes Weitere wichtige Konsequenz : LâBt sich ein Multiplikatorsystem
v der Gruppe F°p,g] auf die Gruppe O°p,î] fortsetzen, so hat das dadurch
entstehende Multiplikatorsystem in jeder Spitze von &lt;D°p,j] den gleichen
Drehrest, wie ihn das urspriingliche v in derselben Spitze hatte, dièse jetzt als

Spitze von f°p,j] verstanden. Im ûbrigen bleiben auch die ortsuniformisie-
renden Variablen in den Spitzen beim Ûbergang von f°[l,q] zu &lt;t&gt;°[Z,?]

ungeândert.
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O°[Z,g] ist eine Untergruppe der von Fbicke [5] ausfuhrlich untersuchten
Gruppe O°[g] O°[l,g], einer Erweiterung der F°[g].

Es sei v ein abelscher Charakter auf f°[l9q]. Damit v als solcher auf die
Gruppe O°p,g] fortsetzbar sei, ist bei gegebenem v(K)

v2 (K) v (—/) v (KLK-1) v (L) fur L e P[Z, g]

eine notwendige und hinreichende Bedingung. Im Falle des ungeraden Cha-
rakters

i __/iA. \
(Lcr°[l,q])

sind dièse Relationen erfûllt, wenn vt (K) ± i gesetzt wird ; wir bezeichnen
die beiden aus vx demgemâfi entstehenden Charaktere auf 0&gt;°[l,q] mit vf.

Aus den Eigenschaften der Metrisierungsintegrale folgt nach (5.8) unmittel-
bar,daB die Funktionen (5.7) Ff (te®) der Normalschar 9l(O°[Z,g], — 1, vf)
angehôren. Wegen vf vj 1 ist die Summe der Range dieser beiden Scharen

gleieh L Die Summe der beiden Scharen ist direkt, hat also den Rang l und
wird daher von den Ff (beide Vorzeichen, te^B) aufgespannt; denn dièses

Funktionensystem ist dem der Glt, G2t linear àquivalent. Hieraus geht her-

vor, daB (nunmehr getrennt fur jedes Vorzeichen) 9ï(O°[Z,g], — 1, vf) von
den Funktionen Ff, nach (5.9) also auch von den Funktionen J^ aufgespannt
wird.

Nach Wahl einer Primitivzahl g mod q kann s durch e(g) f, exp l
bestimmt werden. Man erhàlt daim die sàmtlichen y&gt; aus ^(^r) ||m + 1

(0 &lt;£ m &lt;£ l — 1). Wird dièse Beziehung durch y y)m ausgedrûckt, so ist
ym yjl_1__m, und nach (5.12) wird nun îl(&lt;D°[î,g], — 1, vf) bereits von den

Funktionen Je 0 ^ m ^ —^— aufgespannt. Da die Summe der Range
\ l I f l \beider Scharen gleieh l ist, bUden die JE [0 ^ m ^ — — 1) fur gerades l eine

m\ z
Basis von $l(®0[l,q], —l,vf). Fur ungerades Hst q 3 mod 4, und der

Charakter y) ipm\m=^—-—1 fâllt mit dem quadratischen Restsymbol I —)

zusammen. Daher gilt in (5.12)

2 /
und es bilden die Funktionen

eine Basis voni (t) (0 ^ m ^ ^&quot;7 l
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(1 Q \

0 ^ m ^—-—1 eine Basis von ïl(0°[7, q)} — 1, vf)

Damit ist die Rangbestimmung vollzogen. Setzt man

^ &lt;Z], ~W) (5.14)
so ergibt sich

(5.15)

VÎ,q —g—&gt; /**,«= —y- fur Z lmod2.

Die Zuordnung der Vorzeichen zu den Rangzahlen bei ungeradem l beruht auf
der Vorzeichenbestimmung der GAUSSschen Summen fur ungerade quadrati-
sche Charaktere naeh Primzahlmoduln.

Zum SchluB ist noch auf einen Zusammenhang zwischen den Modulformen
H1 &gt;xp

und Klassenzahlen abelscher Zahlkôrper hinzuweisen. Bei gegebenem ip hat
die Normalschar 3l(P[g], — 1, vtf}) den Rang 1 und wird daher von der Funk-

tion CyHltif, aufgespannt (c^ ^= 0 konstant). Indem wir c^ setzen,

erreichen wir fur die entstehende Funktion H\ ^ H1/tp die Normierung

es sind dann aile bn(I, H^^) (n 1,2,...) ganze algebraische Zahlen, und
unendlich viele von ihnen sind gleich 1.

Im Sinne von Hasse [6] definieren die Gruppen ^Ja bzw. ^fj* je einen Klassen-
kôrper Ko bzw. K ûber dem Kôrper P der rationalen Zahlen. K ist in P(£a)

enthalten, total-imaginâr und quadratisch ûber seinem maximalen reellen

Teilkôrper Ko. Es sei h0 bzw. h die Klassenzahl von Ko bzw. K und es werde

(vgl. [6] S. 10, 11, 12) die Relativklassenzahl h* von K/Ko durch

h A0A*
erklârt. Dann ergibt sich

^; (5.16)

hier bedeutet w die Anzahl der Einheitswurzeln in K, Q den (in [6] erklârten)
Einheitenindex von K/Ko ; ip durchlâuft genau diejenigen Charaktere mod q9

welche in [6] mit %x bezeichnet wercjen.
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Im Faïïe l 1 ist \p{oc) —J q 3 mod 4 ; wir lassen die Indizes y&gt;

und t fort und finden nach (5.1,7 bis 12)

Hk(r) - Gk(r) J±(t) J^r) ^~(r) 0 Hx(t) i
Bezeichnet A die Klassenzahl des Kôrpers P(V—q), so ergibt sich uberein-
stimmend mit (5.16)

4 2 (4)) I (5.17)

Wegen H\(Kt) =—i-j=:H\(x) unterscheiden sich die Koeffizienten der
Vq

Entwicklungen von H\(r) in den Spitzen 0 und oo nur um einen gemein-
samen Faktor. Dem entspricht, daB H\(t) der Normalschar 9l(&lt;t&gt;°[q], — 1, vf
angehôrt. Nach (5.15) hat dièse Schar den Rang 1, die Normalschar

1, v+) den Rang 0.

6. Das Auftreten der FBiCKEschen Gruppen &lt;t&gt;°[l, q] in den obigen Zu-
sammenhàngen ist kein isoliertes Phânomen, sondern hat vielmehr seinen
Grand in einem Sachverhalt von weitester Allgemeinheit. Wir formulieren
diesen hier unter den speziellen Bedingungen seiner folgenden Anwendungen ;

seine allgemeine Bedeutung wird dabei unmittelbar ersichtlich.
Es bezeichne F(l) die voile Modulgruppe, r eine réelle Zahl, v ein Multipli-

katorsystem zu F(l) und — r, /(t) eine Modulform {f(l), —r, v} und q (vor-

ubergehend) eine beliebige natiirliche Zahl. Ftir L l ~
\ € f°[q] erhâlt man

—Lr^L*(—) mit iî=(^ iH cf(l) (6.1)^ / \qy ô ]
und daher, wie man leicht nachrechnet, in

f2jr) /(t) f(~\ eineautomorpheForm {O°[3], - 2r,v2J (6.2)

wo d&gt;°[g] wie oben zu erklaren und v%q als Multiplikatorsystem zu O°[g] und
— 2r durch

vt%q{L) v(L)v(L*) (LcPfe]) v2JK) - t^(T) (6.3)

eindeutig bestimmt ist
1° &quot;&quot;M /0-l\\
\V¥ ° / V

7
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Wir spezialisieren im folgenden auf den Fall q Primzahl 3 mod 4,
q&gt;3 und

ri(r) el~^ fi (1 - e**im*)€{r(l), -|, A} (6.4)

Fur A ergibt sich (vgl. [7] S. 32) die folgende universelle Darstellung :

Es seien j und k ganz, (/, Je) 1, k 1 mod 2 ; sgn / habe hier auBer der
ûblichen die Bedeutung sgn 0=1. Man setze

k) =(jtr) (jACOBISohes Restsymbol) ^^j
Mit S =31 € f(l) und fTO exp — fur naturliches m gilt dann

wenn c 1 mod 2

(6.5)

/*

Wir schreiben gemâB (6.2,3,4)

und erhalten nach (6.5), indem wir q% 1 mod 24 und das quadratische
Reziprozitâtsgesetz berûcksichtigen:

^ Ç J) (6.6)

AuBerdem wird A2 (X) — i.
Dièse Werte zeigen, daB ^ fûr q — 1 mod 24 mit dem oben betrachteten

Multiplikatorsystem vf (Z 1) ûbereinstimmt. Die Schar der ganzen Formen
{O°[g], — 1, vf } enthàlt also neben der Normalfunktion (5.17) H^^àO noeh
die ganze, in der oberen Halbebene nicht verschwindende Spitzenform rj2, die

im Unendlichen die Ordnung ^ri— aufweist. Daraus kann man im Falle

q — 1 mod 24 eine etwas merkwiirdige Aussage ableiten. Man bedarf hierzu
genauerer Kenntnisse ûber die FBiCKEschen Gruppen O°[gr], weshalb zunâchst
ûber dièse berichtet werden soll.

Unter den formalen Daten einer Grenzkreisgruppe P° von erster Art ver-
stehen wir die folgenden Zahlen : Erstens das Gesehleeht p° eines geschlossenen
Fundamentalbereichs 5° von f°, zweitens die Anzahlen a0 der parabolischen
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und e° der elliptischen Fixpunkte von g0, drittens die ganzen Zahlen l\ ^ 2

(1 &lt;J h &lt;g c°), deren jede einem der e° elliptischen Fixpunkte eofe von §° als
dessen Ordnung entspricht. Aus diesen Zahlen bildet man

das Verzweigungsmafi q° &lt;r° + Z 1 —«pi und den Rang q°= p° —

von f° ; q° ist stets positiv, nimmt beim Ûbergang von f° zu einer Unter-
gruppe des Index pt von f° den Faktor /u auf und hat fur die voile Modulgruppe
T(l) den Wert ^, woraus ^° fur jede mit der Modulgruppe kommensurable
Gruppe f° leicht zu berechnen ist. Dabei werde, was die AUgemeinheit nicht
beschrânkt, stets vorausgesetzt, daB die betrachtete Matrizengruppe die
Matrix — / enthâlt.

Weder bei Untergruppen der Modulgruppe, noch bei den hier betrachteten
Erweiterungen von solchen treten andere Eckenordnungen auf als l\ 2 oder
l°h 3. Wir nennen daher e\ bzw. e\ die Anzahl der elliptischen Fixpunkte
der Ordnung 2 bzw. 3 in 5°. Dann wird

Fur f° f°[g] (q Primzahl) ergibt sich, wie in 4. kurz ausgefûhrt wurde

?t±± ^o 2 (P P[g], ï Primzahl)

Ist uberdies q 3 mod 4, q &gt; 3, so findet man

e% 0 eg 1 + (~-\ (T° P[g], q Primzahl &gt;3, q 3 mod 4)
\ ô I

Um dies zu beweisen und fur q 1 mod 3 zugleich die Lage der beiden
Fixpunkte von der Ordnung 3 zu bestimmen, wâhle man

2 —

als Fundamentalbereich der fo[q], wo (g die Menge der t mit Imt&gt;0,
| t | &gt; 1, | Re r | &lt; -J, vereinigt mit der Menge der Randpunkte nicht-negativen
Realteils bezeichne.

Wir betrachten hier nur den Fall l\ 3. Als môgliche Fixpunkte der

Ordnung 3 von f°[q] in g0 (g) kommen die Punkte



Ûber EiSENSTEiNsche Reihen und automorphe Formen von der Dimension — 1 137

in Betracht. Um f ist Fixpunkt der elliptisehen Substitution mit der Matrix

(m +1 — m2 — m —

1 — m

und dièse liegt genau dann in r°[g], wenn (2m + l)2 — 3 mod q zutrifft.
Daher ist e% 0, wenn q — 1 mod 3. Fur q 1 mod 3 existiert genau

ein m dieser Art mit 2 &lt;; m ^ ^—^—, und es ist dann

2(— m — l) + l — 2m — 1 ~^~~^— ^—m— 1^ — 3.

Also besitzt ^°(q) genau zwei nach f°[q] inàquivalente Fixpunkte der Ord-

nung 3, und zwar Um$ und C/&quot;™-1!; daB dièse nach f°[q] inâquivalent
sind, erkennt man, wenn man durch eine geometrische Ûberlegung die Modul-
substitutionen bestimmt, die den einen in den anderen uberfuhren.

Indem wir die Daten der Gruppe f°[q] mit einem oberen Index 0 und als
Funktionen von q schreiben, erhalten wir damit abschlieBend die (bekannten)
Werte :

(6.7)

Wir vollziehen jetzt den Vbergang zur Gruppe 4&gt;°[q] ; die Daten dieser
Gruppe werden mit g£(î), &lt;^(?)&gt; 4*(7)» e3*(^)» V^i) bezeichnet. Man hat
zunâchst

?^. ««) i • (6.8)

Die Anzahl e%^{q) wurde von Fricke [5] bestimmt; wir reproduzieren hier
lediglich weiter unten das Ergebnis. Dagegen hat Fricke ubersehen, daB es

keineswegs uberflûssig ist, cj^ {q) 1 zu beweisen. Dies ergibt sich wie folgt :

Setzt man m2 + m + 1 qg fur den oben verwendeten Wert m, ferner

(m qg

— 1 — m — 1

so wird g ganz, 1 &lt;^ g ^ — (m + l)2 &lt; ~- also (q, g) 1 und (vgl. (6.1))
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wo I m q

also —- zu (o1 oder co2 nach f°[q] âquivalent ist. Die erste dieser Môglich-
y

keiten ergâbe Kco1^= La)x fur ein L c f°[g], es wàre also (ox elliptischer Fix-
punkt der Nebenklasse -KT°[g]c0°[g], und die Ordnung von ojx als die eines

elliptischen Fixpunktes von 0°[g] wâre durch 3 teilbar, was nach Frickb [5]
nicht môglich ist (vgl. auch die unmittelbar hier folgende Betrachtung). Daher
gilt Ktot L&lt;o% fur ein Le f°[g], woraus die Behauptung folgt.

Die unimodulare Matrix

/-Vgy -
\ V^ Vq ]

&apos;

V Xy

vermittelt genau dann eine elliptische Substitution, wenn —

das heiBt fi qy ist. Fbickb [5] zeigt, daB die diesen KL entspringenden,
nach O0[ç] paarweise inâquivalenten elliptischen Fixpunkte umkehrbar ein-
deutig den Klassen primitiver binàrer quadratischer Formen von den Diskrimi-
nanten — iq und — q entsprechen ; dabei wird der Matrix L die quadrati-
sche Fonn mit der Matrix

a — p\
I wenn nicht a ô 0 mod 2 ;

— P 9* 1&apos;

(6.10)
* ~P\

I wenn a ô 0 mod 2
— /S qô /

zugeordnet. Bezeichnet A* die Anzahl der genannten Klassen von der Diskri-

minante — 4g, so gilt bekanntlich A* 12 — (—\\ h und daher

eg* A* + h (s -(y)) * 4* =¦ *(l +(y)) (6.11)

also nach (6.8)

oder

(6.12a)
23mod24), ^ 1±A-A («=19mod24).
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Das Ergebnis, von dem oben die Rede war, besagt, daB es fur mindestens
15 Primzahlen q — 1 mod 24 auBer Null keine ganze Spitzenform
{Q&gt;°[q], — 1, t?f } gibt. Im Falle q — 1 mod 24 ist eg* 0. Da rj2 in der
oberen Halbebene nicht verschwindet, sind die sogenannten Drehreste von vf
in den elliptischen Fixpunkten sâmtlich 0, die Drehreste von v£ in diesen
Fixpunkten also sâmtlich |, und die Ordnung des Divisors einer ganzen
Spitzenform q&gt;=jk 0 aus {O°[g], — 1, vf} ist mithin nach (6.11) mindestens

gleich 1 -f- \e\^ h -f-1 • Also gilt, wenn ein solches cp existiert : ~~- ^&amp;+l.

In der folgenden Tabelle sind die 22 Primzahlen q — 1 mod 24 bis 1000

mit den zugehôrigen Werten m -^rr—, h, p° zusammengestellt.

&lt;l

m

h

K

23

1

3

0

47

2

5

0

71

3

7

0

167

7

11

2

191

8

13

2

239

10

15

3

263

11

13

5

311

13

19

4

359

15

19

6

383

16

17

8

431

18

21

8

q

m

h

K

479

20

25

8

503

21

21

11

599

25

25

13

647

27

23

16

719

30

31

15

743

31

21

21

839

35

33

19

863

36

21

26

887

37

29

23

911

38

31

23

983

41

27

28

Man sieht hieraus, daB fiir die 15 Primzahlen q &lt; 1000 mit q — 1 mod 24

und p° ^ 15 die Klassenzahl h ^ m ist, daB dann also auBer Null keine

ganze Spitzenform {O°[#], — 1, vf} existiert. Der analoge Sachverhalt be-
steht fur 8 von den 21 Primzahlen q &lt; 1000 mit q 7 mod 24. Setzt man

hier m ~r.—, so erhâlt man die Tabelle
24

m

h

P°

7

0

1

0

31

1

3

0

79

3

5

1

103

4

5

2

127

5

5

3

151

6

7

3

199

8

9

4

223

9

7

6

271

11

11

6

367

15

9

11

439

18

15

11
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m

h

*

463

19

7

16

487

20

7

17

607

25

13

19

631

26

13

20

727

30

13

24

751

31

15

24

823

34

9

30

919

38

19

29

967

40

11

35

991

41

17

33

In beiden Tabellen entstammen die Werte von h den Klassenzahltafeln [8] von
Hansbaj Gfpta.

Wir werden weiter unten sehen, daB die Drehreste von i£&quot; in den e°* Ecken
der Ordnung 2 wieder sâmtlich gleich 0, die von vf in diesen Ecken also sâmt-
lich gleich \ sind. Der im Fundamentalbereich g° von Q&gt;°[q] einzige ellipti-
sche Fixpunkt co der Ordnung 3 gehôrt als solcher zur Untergruppe f°[q], auf
der vf und v^ nur die Werte ± 1 annehmen. Bezeichnet E die Grundmatrix
von oj so liegt dièse demnach in fo[q], und es gilt wegen E3 — —I :

-l (a 0,1, 2)

was den Drehrest £a i liefert. Fur eine ganze Spitzenform
{O°[g], — 1, »i&quot;} ergibt sich die Bedingung

aus

^l + h + das heifit h + 1

die nach der zweiten Tabelle fur die 8 Primzahlen

q 7, 31, 79, 103, 127, 151, 199, 271

nicht erfullt ist ; fur dièse q existiert also auBer Null keine ganze Spitzenform

Wir bezeichnen im folgenden mit [if den Rang der Schar der ganzen Spitzen-
formen {O°[g], — 1, vf} ; dabei sei stets q Primzahl ~3mod4, #&gt;3. Fur
23 Primzahlen q &lt; 1000 verschwindet juif ; die Frage, ob ^ fur aile q ver-
schwindet, mûssen wir zunâchst offenlassen. Dagegen werden wir jetzt die Diffe-
renz fa — juf bestimmen.

Es bezeichne #2 d*e Anzahl der elliptischen Fixpunkte von O0[^] in Qf®, in
denen der Drehrest von v^ den Wert J hat. Nach dem RiEMANN-RocHschen
Satz [9] und weil auBer Null keine ganze Normalfunktion {O°[g], — 1, vf}
existiert, gilt dann
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also nach (6.12)

(())-*^-* • (6.13)

Es kommt also amschliefilich darauf an, ê2 zu bestimmen.

DaB die Matrix KL Kl \ (vgl. (6.9)) eine elliptische Substitution in-

duziert, besagt /S qy. Setzt man dies in (6.6) ein, so erscheint in der ge-
schweiften Klammer im Exponenten von f3 die durch 6 teilbare Zahl
qôy(y2 — 1) ; demgemâB wird

(|) (- 1? T1 |3(a+8)^ (.0=1+ qy*) (6.14)

Aus q 1 und y ^k 0 mod 3 folgt oc ô — 1, also a + (5 0 mod 3 ; da-
her ist der Exponent von f8 stets durch 3 teilbar, und man erhâlt zunâchst

(—\ fur q 7 mod 8, d. h. g 7 oder 23 mod 24 (6.15)

Es sei q 3 mod 8, das heifit g 11 oder 19 mod 24. Aus y 0 bzw.
1 mod 2 folgt otô 1 bzw. 0 mod 4. Auf der rechten Seite von (6.14) wird

nun der Faktor von — J genau dann — 1, wenn a und ô beide gerade
sind ; es gilt also ^ &apos;

h(L) ±(—) fur q 3 mod 8 d. h. q 11 oder 19 mod 24 (6.16)

und unter dieser Bedingung fur q

X2(L) — — I — genau dann, wenn oc ô 0 mod 2 (6.16a)

Wir haben jetzt nur noch zu beachten, daB X%(KL) — iK^(L) ist und
daB, da rj2 in der oberen Halbebene nicht verschwindet, die Werte (6.15,16,16a)
ausdrûcken, daB 7^ in allen elliptischen Fixpunkten der Ordnung 2 von O°[g]
den Drehrest Null hat. Der Vergleich mit v^ zeigt im Hinblick auf die Bedin-

gungen (6.10) :

#2 0 fur q 7 mod 8 #2 h fur q 3 mod 8 (6.17)

Daraus folgt nach (6.13) das gesuchte Ergebnis

(6.17) enthâlt auch die oben fur q 7 mod 24 angewendete Aussage ûber die
Drehreste von v% in den elliptischen Fixpunkten der Ordnung 2 von O°[?].
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Wir zeigen zum SchluB noch, da8 die Summe (X^ ~f ^ mit dent Rang iix
der Schar (£j der ganzen SpUzenformen {P[g], — 1, vt} ûbereinstimmt. Hierzu
erklâren wir, wenn /(t) eine automorphe Form der Dimension —1 und

S J eine réelle Matrix positiver Déterminante bezeichnet :

Liegt / in der Klasse {P[g], — 1, vj, so nimmt f\K bei Transformation
mit der Matrix K~XLK U aus K~* V«[q]K Pfo] gemâB

f\K\K~*LK f\LK ~ f\L\K v

den Faktor vt(L) ^(L&apos;) auf, liegt also in der gleichen Klasse wie /.
Es bezeichne &lt;Pj(r) (1 ^ ; â /&lt;i) eine Basis von ŒJ, q(r) die Spalte mit den

Komponenten ^(t) und q(T)|S (S wie oben) die Spalte mit den Kompo-
nenten 9?,-(t)|#. Dann gilt zunâchst q(r)\K Aq(r) mit einer quadrati-
schen Matrix A des Grades fix und daher

also A2 — /. Hiernach kann A W~lDW mit einer umkehrbaren
Matrix W W{fil) und einer Diagonalmatrix 2) geschrieben werden, deren
erste mx Diagonalelemente + f und deren restliche m2 /^x — mx Dia-
gonalelemente — i sind.

Die Komponenten ^(t) der Spalte p(r) TFq(r) bilden ebenfalls eine
Basis von (£J, und es gilt p (t) | K Dp (t), also

was besagt, dafî ^i(T) eîne ganze Spitzenform {O°[g], — 1, vf) darstellt, je
nachdem ob 1^)^% oder ml + 1 &lt;£ / ^ mx + m2 ist. Daraus folgt
sofort : Die Schar der ganzen Spitzenformen {O°[g&apos;], — 1, vx} ist die direkte
Summe der Scharen der ganzen Spitzenformen {O°[g], — 1, vf} und
{&lt;D°[g], -l,vf} und es gilt

m1 iul+, m2 /^, //1-+/«1+=/&lt;1, SpA=-ii(A-l) (6.19)

Die Gegenstânde dièses Abschnittes hangen mit der HECKsschen Operatoren-
theorie zusammen, wie der Vergleich mit Hecke [10] erkennen lâBt. In dieser
Théorie bedeuten dieAussagen (6.19) vermutlich folgendes : In der Schar derMo-

dulformen von der Dimension — 1, vom Teiler q und vom Charakter e (n) — J

jl. &lt;£ \ i /
besitzt der Operator Tqq nur die Eigenwerte —=¦, und zwar genau um \(h— 1

^ _j_ ^ &apos; *
Eigenwerte -y=z mehr als Eigenwerte —j=z Es darf jedoch nicht ûbersehen

Vq Vq
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werden, da8 die Operatorentheorie im Falle der Dimension — 1 eines ihrer
primitivsten Fundamente entbehrt : Man kennt hier nicht einmal den Grad
der Matrizen, die in dieser Théorie auftreten. Die Bestimmung des Grades ist
nach (6.18) mit der des Ranges pf gleichbedeutend.

Nach (5.17) und (6.18) existieren mindestens —-— linear-unabharigigeganze

Modvlformen {O°[g], — 1, t\). Ein System von T&quot; solchen Modulformen

l&amp;Bt sich nach Hbcke [11] leicht explizit bestimmen. Hierfur empfiehlt es sich,
die zu T°[g] und &amp;°[q] in der folgenden Weise konjugierten Gruppen

ro[q] T T

heranzuziehen ; wir bezeichnen die aus vf durch die entsprechende Transformation

entstehenden Multiplikatoren wieder mit vf.
Die gesuchten Modulformen werden durch den Ansatz von Hecke [11] in

der Gestalt #(t, 0, a, V—q) geliefert ; vorzuziehen ist der HscKEschen die
ubersichtlichere Schreibweise

(6.20)

wo g die ganzen Idéale der absoluten Idealklasse $t von P(V—q) durchl&amp;uft

und N die Norm bezeichnet. Aus [11] Satz 5 und 7 geht hervor, dafi dièse
&amp;(*,&amp;) ganze Modulformen {O0[g], —l,wf} darstellen. Durchlâuft R ein
vollstândiges System 33 absoluter Idealklassen, welches keine zwei einander
reziproken Klassen enthàlt, so gewinnt man in den entstehenden ê(r, R)

(Si €33) nach bekannten Sàtzen offenbar —— linear unabhângige ganze

Modulformen {&lt;J&gt;0[#]&gt; &quot;~ 1
&gt; vi) ï zur Klasse {O°[g], — 1, v^ } gehôren daher

die —-— linear unabhângigen ganzen Modulformen #( —, Si) (5lc33). Dafi
2 \q I

sich die Normalfunktion H\(x) als lineares Kompositum der Funktionen

ê(—, Si\ darstellen lâfit, besagt die Relation [11] (24)

51

in der links iiber aile Idealklassen von P (V—q) zu summieren ist. Eine Basis

der von den #(—,JU aufgespannten Schar ganzer Spitzenformen
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{^[ï] &gt; — &gt; vï) ©rhâlt man in der Gestalt

wo # ein voiles System von Nicht-Hauptcharakteren der Klassengruppe des

Kôrpers P(*—q) derart durchlâuft, da8 keine zwei dieser Charaktere zu-
einander reziprok sind.

Fur q~3 mod 8 gibt es im Fundamentalbereich ^°[q] der V°[q] nach (6.17)

2 h explizit bestimmte Punkte, in denen aile #1 — ,51) verschwinden. Dièse

Eigenschaft, die man den ê(r,Si) nicht ,,ansieht&quot;, zeigt mit wunschens-
werter Deutlichkeit, was fur Kenntnisse durch Hinzunahme der Transformation
K zur Gruppe f°[q] gewonnen werden kônnen.
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