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Uber die Riemannsche Periodenrelation auf
transzendenten hyperelliptischen Flichen

Herrn R. Nevanlinna zu seinem 60.Geburtstag in Verehrung gewidmet

von A. PFLUGER, Ziirich

Nachdem R. Nevanlinna!) durch seine Theorie der quadratisch inte-
grierbaren Differentiale auf nullberandeten Flichen ein wesentliches
Stiick der klassischen Theorie der Abelschen Integrale verallgemeinert
hatte, war es natiirlich zu fragen, ob auch die von Riemann bewiesene
bilineare Periodenrelation fiir Abelsche Integrale erster Gattung sich auf
nullberandete Fliachen (Fliachenklasse Oy) iibertragen liefe. Fiir spezielle
zweibldttrige Riemannsche Flichen unendlichen Geschlechtes ist diese
Frage von P.J. Myrberg?) und K. 1. Virtanen®) und allgemein fiir die
Flachenklasse O, von letzterem®) und von L. V. Ahifors*) untersucht
worden. Hier wird diese Frage fiir transzendente hyperelliptische Fli-
chen wieder aufgegriffen und gezeigt, daBl in Abhéngigkeit von der metri-
schen Struktur der Fliche immer ein harmonisches Schnittsystem ange-
geben werden kann, fiir welches die Riemannsche Relation noch giiltig
bleibt, wenigstens in dem Sinne, daB bei der auftretenden unendlichen
Reihe eine gewisse Teilfolge der Partialsummen zu dem verlangten Wert
konvergiert.

1. Zur Konstruktion der Riemannschen Fliache R bringen wir mit P.J.
Myrberg auf der positiven reellen Achse der komplexen z-Ebene unend-
lich viele Schlitze I, (n = 0, 1, 2, ...) an, die sich nur im Unendlichen
hdufen. Dieses Schlitzgebiet bezeichnen wir mit » und verheften zwei
Exemplare davon, =, und n_ kreuzweise lings der Schlitze I,. Diese
zweiblittrige Uberlagerungsfliche der z-Ebene ist die Riemannsche
Fliche R; sie ist von unendlichem Geschlecht und offenbar im Sinne

von R. Nevanlinna nullberandet.

1) Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit. Ann,
Acad. Sci. Fennicae, A I, Nr. 1 (1941).

2) Uber transzendente hyperelliptische Integrale erster Gattung. Ebenda, Nr. 14 (1943).

38) Uber Abelsche Integrale auf nullberandeten Riemannschen Flichen von unendlichem
Geschlecht. Ebenda, Nr. 56 (1949)..

4) Normalintegrale auf offenen Riemannschen Flichen. Ebenda, Nr. 35 (1947).
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Auf dieser Fliche betrachten wir zwei verschiedene kanonische
Schnittsysteme. Die 4- und B-Schnitte des ersten Systems, 4,, B,,
n=1, 2,3, ..., sind folgendermaBlen definiert: B, ist ein im posi-
tiven Sinne durchlaufener Kreis |z | = r des obern Blattes = _, der
zwischen den beiden Schlitzen 7, ;, und I, hindurchgeht; A4, ist der
Weg, der im obern Blatt =, auf der reellen Achse von I,_, nach I,
und von dort im untern Blatt nach I, zuriickfiihrt.

Die A- und B-Schnitte des zweiten Systems bezeichnen wir mit Aj,
Bl, n=1,2,.... Der Schlitz I, auf = +» im positiven Sinn durch-
laufen, ist B, ; ein Weg von I, in der obern Halbebene des obern Blattes
nach 7, und von dort in der untern Halbebene des untern Blattes zu-
riick nach I, liefert den Schnitt A..

Die beiden Schnittsysteme beziehen sich auf zwei verschiedene Arten,
die Fliche R auszuschopfen. R, bezeichne die iiber der Kreisscheibe
|z2| =<t gelegene kompakte Teilfliche von R. Trifft die Linie |z|=t¢
den Schlitz 7,, so ist der Rand von R, zusammenhingend und die
Wege 4,, B,,t=1, 2, ..., n, sind dann die Représentanten einer
Homologiebasis der geschlossenen Wege auf R,. Geht der Kreis
| z| =t zwischen den Schlitzen I, und I,,, hindurch, so zerfillt der
Rand von R, in zwei Kreise; einer davon, und die 4}, B},i = 1,2, ...,
n, reprisentieren dann eine Basis der eindimensionalen Homologie-
gruppe auf R,.

2. Wir betrachten auf R harmonische Differentiale von endlicher
Norm. Ein Differential w = adz + bdy heilt geschlossen, wenn
a, = b, ist; es heit harmonisch, wenn es mitsamt seinem konjugierten
Differential w* = — bdx + ady geschlossen ist. Die positive Quadrat-
wurzel aus ffg(a? 4 b%) dedy ist die Norm || w||. Die Gesamtheit der
auf R harmonischen Differentiale von endlicher Norm bildet einen
Hilbertraum H mit dem innern Produkt

(wy, W) = j‘j‘R(ala2 + 0,b0,) dxdy .

Ist C ein geschlossener Weg auf R, so setzen wir [, = o (C), d.i.
die Periode des Integrals fw lings C. Wir haben die Aufgabe, die
Norm || w || bzw. das innere Produkt (w,, w;) durch die 4- und B-
Perioden von o und o* bzw. o; und o) (¢ = 1, 2) darzustellen.
Je nach der metrischen Struktur der Flache ist hiefiir das erste oder das
zweite Schnittsystem geeignet. ‘

Zur Beschreibung der in Frage stehenden Grofe betrachten wir die
Jordankurven der z-Ebene, welche einen festen Kreis |z | = r,, auf
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dessen Grofle es nicht ankommt, vom unendlich fernen Punkt trennen
und mit der positiven reellen Achse genau einen Schnittpunkt haben.
Diese Kurven zerfallen in zwei Klassen. Die Kurven der Klasse C° tref-
fen keinen der Schlitze I, und die Kurven der Klasse C! treffen genau
einen Schlitz. A, sei die Extremallinge®) der Kurvenmenge C?(: =0, 1).
Die Vereinigungsmenge C(° < (! enthidlt die Kreise |z|=r mit
r>1y; esist also A = 0 und wegen der Ungleichung von Strebel-
Hersch®) Agoon < Ago + Agi kommen Ay und Ay nicht gleichzeitig
posttiv sein. Nun gilt

Satz 1. Fir beliebige w, und w, aus H und eine zugehorige Teilfolge
n, der natiirlichen Zahlen ist -

(w1’ 602) == lim Z‘ (wl (AK) (D; (BK) - walk (AK) W (BK)) (1)
y—>00 K=1
im Falle Aga = 0 und
(0, wp) = lim 2 (o, (A;Ic) w: (B,) — wf (A;Ic) Wg (B:c)) (1')
y—> 00 K=1

tm Falle A5 = 0.

3. Die besondere Symmetrie der Fliche R gestattet Satz 1 auf ein
analoges Problem im Schlitzgebiet n zu reduzieren. Wir betrachten in
n eindeutige harmonische Funktionen % mit endlichem Dirichletintegral
D (u), welche auf den Schlitzen I, konstant sind. Die Werte von =
auf den Schlitzen bezeichnen wir mit p, und normieren die noch freie
additive Konstante so, dal p, = 0 wird. Diese harmonischen Funk-
tionen mit D (u,u’) als innerem Produkt bilden einen Hilbertraum

H,. Wir getzen A4gq, = [; du*, n=20,1,..., wo I, in bezug auf =
n—1
im positiven Sinne durchlaufen wird, ¢,=24q, und 4p, =

k=0

Pn— Pnoy> =1,2,.... Wegen q, = 4q, gilt dann

n
A9, = Gpi1 — qn > Py =2 Ap, ;
n—1 k=1 (2)
qn——qlzz_?]AqK, Ap, = Py — Pn-1>

5) vgl. L. Ahlfors und A.Beurling, Acta math. Bd. 83 (1950) sowie, fiir die hier verwen-
dete Modifikation, J.Hersch, Longueurs extrémales et théorie des fonctions. Comment. Math.
Helv. vol. 29, p. 301—337.

%) vgl. K.Strebel, Eine Ungleichung fir extremale Lingen. Ann. Acad. Sci. Fenn., A I,
Nr. 90 (1951) sowie J.Hersch, loc. citat., p. 306

100



fir » =1,2,.... Es ist ferner ¢, = du* (B,), 4q, = du* (B)) und
Ap, bzw. p, sind die Halbperioden von u entlang A, bzw. A..
Das Satz 1 entsprechende Resultat lautet:

Satz 2. Fir beliebige u, und u, aus H, und eine zugehorige Teilfolge
n, der natirlichen Zahlen ist

Ny
D(uy, ) = — lim  Z Ap®.¢®  im Falle Ag; = 0 (3)
y—>»00 K=1
und ny,
D(uy, w,) = lim X pVA¢® tm Falle Ag = 0. (3)
v—>00 K=1

Die beiden Formeln (3) und (3') verallgemeinern wohlbekannte Bezie-
hungen bei endlichvielfach zusammenhingenden Gebieten. In diesem

Falle sind die beiden Formeln identisch, was man iibrigens wegen
N-1
2 Aq, =0 beim Zusammenhangsgrad N aus (3) nachrechnen kann.
K=0
Bei unendlichem Zusammenhang aber nimmt (3') vermittels (2) die

Gestalt

ny
D(wy, uy) = — lim X Apg)(q(,f) - q(nz,),+1) (3")
V—>oo k=1

an. Es wird sich spiter ergeben, dafl im Falle 4, = 0, wo also (3')
und (3") gelten, limg{ , =0 ist. Die Glieder (¢¥ — ¢ ,)4pY

- an—(-l K
V—> 00

konvergieren also bei festem « gegen die entsprechenden Glieder
¢?Ap® in (3). Wenn man am ersten Schnittsystem festhalten will, so
scheint im Falle A, > 0 gegeniiber (3) ein Summationsverfahren, wie
es in (3") zum Ausdruck kommt, nétig zu sein’). Wiederum im Falle

Aco = 0 ist aus dem gleichen Grunde gemall (2) — ¢, =lim 2 Agq,.
v—>o00 Kk=1

4. Reduktion von Satz 1 auf Satz 2. Wir definieren auf R eine anti-
konforme Selbstabbildung s: Zwei Punkte auf verschiedenen Bléittern,
deren Grundpunkte zur reellen Achse symmetrisch sind, heilen auf R
symmetrisch; sp ist der zu p symmetrische Punkt auf R. Auf den
Schlitzen ist sp = p; sie bilden die Symmetrielinien.

Die Spiegelung s bewirkt eine Abbildung von H in sich. Ist ndmlich
w(p) = a(p)dx + b(p)dy ein Element aus H, so ist auch das vermit-
tels s verpflanzte Differential sw(p) = a(sp)dx — b(sp)dy ein Ele-
ment aus H und es gilt

|soll=loll, s(sw) = w, $(w¥) = — (sw)*.  (4)

%) L.V.Ahlfors (loc. cit.) hat die Existenz eines Summationsverfahrens fiir speziell kon-
struierte kanonische Homologiebasen auf Flachen der Klasse Og allgemein nachgewiesen.
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Setzen wir
o= 3}(w + sw), T = }(0 — sw),

8018t so = ¢ und st = — 7 und daher
w=0-+71

die Summe eines symmetrischen und antisymmetrischen Differentials
aus H. Wegen (4) ist t* symmetrisch und o* antisymmetrisch.

Auf den Schlitzen I, ist ¢ = adx und v = bdy. Es verschwindet
also 7 entlang der Schlitze und daher existiert ein Element % aus H,
mit du =7t auf xn, und in gleicher Weise ein Element » e H, mit
dv = o* oder ¢ = —dv* auf n,. Mit o, =0, + 7., 0, = — dvr,
T, = dut, k =1, 2, wird dann wegen (o, 7) = 0

(w1 Wo)g = (01, Oa)p + (71, Ta)p = 2D, (uy, uy) + 2D, (vy, v,).

Es ist ferner (4,) = 24p,, *(B,) = —q, und daher im Falle
Aopp = 0 gemidll Satz 2

D(uy, u) = $2'7,(4,) 75 (B,)
1

und entsprechend "
D(vy, vg) = — %115'01*(44”)02(3,1)-

Daraus folgt wegen o(4,)=0 und (B,)=0 (B, und — sB,
beranden ein kompaktes Teilgebiet von R und <t(B,) ist gleich
— 7(sB,)) die Formel (1) des Satzes 1. Ganz analog wird der Fall
Ace = 0 behandelt.

8. Beweis von Satz 2 vm Falle 1,,=083). Es sei ¢, irgendeine Kurve aus
C* (Nr.2)und I,,, der Schlitz, den ¢, trifft. ¢, berandet zusammen
mit den Schlitzen I,,I,,...,I, und einem Teil des Schlitzes I,_,
ein Teilgebiet =, von x, das durch einen Schnitt entlang der positiven
reellen Achse von I, bis I, , in ein einfachzusammenhingendes Gebiet
7, verwandelt wird. Sind nun u, und wu, zwei Funktionen aus H,,
so folgt aus der Konstanz von # auf den Schlitzen und aus der Eindeu-
tigkeit von «* (konjugiert harmonische Funktion zu «) in =, zu-
sammen mit den in Nr. 3 getroffenen Bezeichnungen

n .
If grad u, - grad u, - dwdy = ZqPApY + § Uy iy - (5)

K=1

8) Dies ist eine Modifikation des von J. P. Myrberg (loc. citat.) angewandten Verfahrens.
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Die Differentiale ¢, = du, + iduf = f (z)dz, x = 1,2, sind analy-
tisch. Wir setzen

j‘(|¢1|+|¢2|):8 (6)

C:

und wollen das Integral auf der rechten Seite von (5) abschitzen. Tri-
vialerweise ist fo |du, | <e und g |duy| <e, « = 1,2. Anderseits
ist «; in () nur bis auf eine additive Konstante bestimmt; die linke
Seite und das erste Glied auf der rechten Seite von (5) sind gegeniiber
solchen additiven Konstanten unempfindlich, also muB} es auch das In-
tegral auf der rechten Seite sein, was wegen [, du, = 0 auch direkt
ersichtlich ist. Wihlen wir also die noch freie Konstante so, daB w}
in einem Punkt auf ¢, verschwindet, so ist |u; | <& auf ¢, und

ch' u’fdu1 | < é. (7)

Es kommt also darauf an, eine wachsende Folge von Gebieten =,
von der obigen Art zu bestimmen, welche =z ausschopft, so daB die
nach (6) zu den Randern ¢, gehdrigen ¢ gegen null konvergieren. Zu
dem Zwecke soll kurz an den Begriff der Extremallinge®) erinnert wer-
den. Wenn eine in = nicht-negative Funktion p(z) fiir alle ¢, e C!
die Ungleichung f, o(2)|dz| = 1 erfiillt, so heit o fiir die Kurven-

menge C! zuldssig. Setzen wir A4 (o) = [f,0?(?)dxdy, so ist Ag =

Inf A4 (p), fiir alle zuldssigen p, der reziproke Wert der Extremallinge
(e)

von C'. Wichtig ist fir uns der Fall, wo es kein zulissiges p mit
A(p) < oo gibt. Dann ist 4, = 0. Bei gegebenen wu,,u, wihlen wir
() = | £i(® | + /() | . Dann st

AQ) = 2J0.(| f 2+ | f2 [P)dady = 2D (u;) + 2D (u;) < oo.

Es kann also die GréBe ¢ in (6) nicht fiir alle ¢, e C* eine positive
Konstante 7 iibersteigen, weil sonst «,/n und wu,/n an Stelle von wu,
und wu, ein zulidssiges ¢ mit endlichem A(p) liefern wiirden. Es gilt
also in C!' eine Folge von Kurven c¢,, deren zugehorige ¢ gegen null
konvergieren.

Diese ¢, sollten aber gegen den unendlich fernen Punkt konvergieren.
Um dies sicherzustellen, wihlen wir irgendein r > r,, bezeichnen mit
C; jene Teilmenge von (', deren Elemente mit |z | < r keinen Punkt
gemeinsam haben, und mit C* die Komplementirmenge von C? in
bezug auf C'. Nun ist A« > 0 (man kann leicht ein zuliissiges ¢ mit

%) vgl. J.Hersch, loc. citat., p. 306
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endlichen A4 (p) angeben) und auf Grund der Ungleichung von Strebel-
Hersch ist Ag' < Ao + 4. Es verschwindet also mit Ay auch 4.

Also gibt es auBlerhalb jedes Kreises |z| = r > r, eine Kurve ¢, aus
Ct, fiir welche die GroBe ¢ in (6) eine beliebig vorgegebene positive
Zahl nicht iibersteigt. Daraus folgt in Verbindung mit (5) und (7) die
Behauptung von Satz 2 im Falle A, = 0.

6. Beweis von Satz 2 im Falle Az = 0.

C? bezeichnet die Menge der Kurven aus C° (Nr. 2), die auBerhalb
des Kreises | z| < r verlaufen, C9; die Menge der Kurven aus C° im
Kreisring r <|z| < R. Wir setzen voraus, dal die Kreise |[z| =7
und | z| = R die Schlitze I, nicht treffen und bilden den Durchschnitt
7,z des Gebietes n mit dem Ring » < | 2| < R konform auf ein Kreis-
bogenschlitzgebiet ab, so daBl der innere und &dullere Kreis (|z| =17,
|z| = R) von =, in die Kreise |w| =1 und |w| =a(>1) iiber-
gehen. Die im Ring gelegenen Schlitze werden auf konzentrische Kreis-
bogenschlitze abgebildet. Es ist 2z/loga = 4 op’ d. i. die Extremallinge

der Kurvenmenge CY, die wir kiirzer mit A, bezeichnen. Die Schar
der Kurven, welche im Ringgebiet 1 < | w | < a die innere Kontur mit
der &duflern verbinden, hat die Extremallinge log a/2n. Diesen ent-
sprechen im Radialschlitzgebiet x,, die Kurven und Kurvensysteme,
die zusammen mit den Schlitzen die beiden ausgezeichneten Randkon-

turen |z| =7 und |z| = R miteinander verbinden. Es wird also
| 2| = r direkt mit |z| = R verbunden oder zuerst mit einem Schlitz
I,, und dieser Schlitz dann direkt mit | z| = R oder mit einem zwei-

n?

ten Schlitz I,, usw. Wir bezeichnen diese Kurvenmenge mit C,p;
es ist loga/2n = Ag ., d.i. die Extremallinge der Menge C,g, die

wir kurz mit 4, bezeichnen, und daher
hrtr=1. (8)

Nach Voraussetzung ist Ay, = 0; analog wie in Nr. 5 folgt, daf fiir
jedes r > r, auch 302 verschwindet. Wie am Schlul (Nr. 7) noch be-

wiesen wird, ist fiir jedes feste r > r,

lim A=A =0. (9)

R—> x

Nun wihlen wir ein %, und ein %, aus H, und setzen ¢, = du, +
iduy = f . (2)dz, k=1,2, und M(t) = Max|u,|. Zu jedem festen

lzl=t
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r>ry, gibt es wegen (9) ein B mit A,z < Min (1, M—2(r)). Dann ist
wegen (8) > Mr). Wirsetzen 0(2) =|f,(2)| + /()] in mp
und p(z) = 0 auBlerhalb. Dann ist

= 2[f(lh P+ | foP)dedy = 2D, ,(u,) + 2D, . (u,) . (10)
TrR

Aus dem Begriff der Extremallinge folgt nun sofort, dafl ein ¢, aus
C?% existiert mit

du, o
{' ’ }<feldz|<Vzam-A<g> (11)
Co
und ein ¢ aus C,, mit
fldu, | < foldz] < V22-A) (12)

Diese ¢, und ¢ haben sicher einen Schnittpunkt z'. Wegen (12) ist
dort

(@) [ < M)+ V2hpale) < Vim0 + V2400)
und aus (12) folgt dann

— A s —
lun | < Vig (14 V24(0) + V220 400)
auf ¢,. In Verbindung mit (11) folgt weiter

| fogtr duy | < e, |y | | duy |
< [M% (14 (24(0))%) + (24,54 (0))#] (24,5-A (0))*
<(24()% (1 + (24(0))*) + 2A4(0).

Nun ergibt sich aus (10), dal A(¢) mit unbegrenzt wachsendem 7~
beliebig klein wird und deshalb existiert aullerhalb jedes Kreises |z|=r
eine Kurve ¢, aus C° fiir welche | [, u, duy | eine beliebig vorgege-
bene positive Zahl nicht iibersteigt. Mit den in Nr. 3 getroffenen Be-
zeichnungen ist aber

” grad u, -grad u, dedy = b5 PP A¢?D + ful duy

k=1

wenn m, das von ¢, in & berandete Gebiet bezeichnet und genau die
Schlitze I,, I,, ..., I, enthilt. Dies ergibt mit dem oben erhaltenen
Resultat die Behauptung von Satz 2 im Falle 4, = 0.
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Gleichzeitig liefert (11) die im Anschlufl an Satz 2 gegebene Behaup-
tung lim ¢¥_ , = 0.
y—> 0 v
7. Es verbleibt noch die Gleichung (9) zu beweisen. Wegen der Mono-
tonieeigenschaft der Extremallinge ist A, mit wachsendem R mono-

ton abnehmend. Wir setzen lim 4, = A4 und zeigen: Unter der An-
R0

nahme 4> 0 gilt A4 =14,. Dies fihrt dann wegen 1, =0 zum
Widerspruch. ’ !

Es liefere w(z) die zu Beginn von Nr. 6 betrachtete konforme Ab-
bildung des Gebietes =,z auf ein Kreisbogenschlitzgebiet mit den aus-
gezeichneten Randkonturen |w| =1 und |w| =a. Die in =, har-
monische Funktion % = log | w(z) | ist auf den Randkomponenten kon-
stant und fiir alle ¢ ¢ C?; gilt f,du* = 2x. Also ist

A,p = (27)* [ D (u) (13)

und # hat folgende Extremaleigenschaft: Unter allen in =, har-
monischen Funktionen 2 mit f,dh* = 27, ¢ e C?%, hat u das kleinste
Dirichletintegral. Denn es ist | . du* = | 5] dh* = 0 fir alle in =,p

gelegenen Schlitze und daher D(u,u — k) = 0.

Nun wiéhlen wir eine gegen o strebende Folge R, und betrachten
die zu den Gebieten m,p = m, gehorigen Extremalen u, = log|w,(2)].
Wegen (13) ist lim D (u,)=(2%)*/ A < co. Ferner gilt D, (u,, u,,—u,)=0

N—3 00
fir m > n, weil u,, in =, Konkurrenzfunktion ist zu «,; daher ist

D, (w,—w,)<D, (w,) —D, (%, und somit lim D, (v, —u,)=0.
m, n—> 0o
m>n

Daraus folgt die lokal gleichméBige Konvergenz der u, gegen eine har-
monische Grenzfunktion # (denn die u, verschwinden alle auf |z|=7)
und schlieBlich D(u) = lim D(u,) = (27)*/A4 und [ du* = 2= fir
N—> 0
alle ceC?. o= 5o | grad u | liefert also fiir die Kurvenmenge C? ein
zuldssiges ¢ mit A (g) = 1/4; daherist 1, = 4, anderseits (wegen der
r

Monotonie der Extremallinge) 4, < 4 und somit 1, = 4.
r r

Eingegangen den 18. Marz 1955.
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