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Uber die Einfiihrung des Kongruenzbegriffes

in der Theorie der linearen Riume

von WALTER SENFT, Ziirich

Einleitung

Wenn wir von einem linearen Raum sagen, er sei mit einer Metrik ver-
sehen, so meinen wir damit, daB dem Raum neben der linearen Grund-
struktur eine weitere Struktur aufgeprigt sei, welche zum mindesten eine
Einteilung der Raumelemente in disjunkte Klassen von Elementen
..gleicher Linge“ enthilt. Dieser Einteilung entspricht eine Aquivalenz-
relation, welche wir in Anlehnung an die Elementargeometrie Kongruenz
nennen. In der vorliegenden Arbeit soll ein Beitrag zur Analyse des
Metrikbegriffes in der Theorie der linearen Rdume gegeben werden, und
zwar eine von der erwihnten Kongruenzbeziehung ausgehende geometri-
sche Analyse unterhalb des Niveaus einer Lingenmessung durch Zahlen
(Norme).

Ein erstes Studium gilt den Hilbertschen Kongruenzaxiomen der Geo-
metrie!), deren Inhalte als mogliche Relationseigenschaften im reellen
Raum beliebiger Dimension motiviert und diskutiert werden. Die be-
kannte Tatsache, dafl die vom Kongruenzbegriff freie affine Geometrie
endlicher Dimension bereits ein monomorphes (logisch vollstindiges)
System darstellt, legt ndmlich den Standpunkt nahe, dafl die Kongruenz
nicht als neue, axiomatisch zu beschreibende Grundrelation aufgefaf3t
werden soll, sondern daB sie innerhalb des affinen Systems zu definieren
oder konstruieren sei?). Die charakteristischen Eigenschaften sind dann
als Postulate zu werten, und es stellt sich die Frage, was fiir Festlegungen
der Kongruenz die Giiltigkeit dieser Postulate gewéhrleisten.

Die weiteren Betrachtungen unserer Arbeit gelten vor allem dem Pro-
blem, jene Metriken durch einfache Kongruenzeigenschaften geometrisch
zu charakterisieren, welche sich durch eine beliebige symmetrische Bi-
linearform als sogenannte metrische Fundamentalform beschreiben oder

1) D. Hilbert, Grundlagen der Geometrie, 7. Aufl. 1930.
%) Vgl. R. Nevanlinna, Uber metrische lineare Réaume I, Ann. Acad. sci. Fenn.,
Serie A, I 108, 1952.
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definieren lassen. Wir zeigen, dall eine einfache Orthogonalstruktur im
zweidimensionalen Raum iiber einem allgemeinen Koeffizientenkérper
auf den Begriff der Fundamentalform fithrt und geben schlieBlich ein
knappes System von Postulaten, welches die erwiahnte Klasse von Kon-
gruenzen in dieser Dimension eindeutig bestimmt. Der letzte Paragraph
ist der Ubertragung der Ergebnisse auf hohere Dimensionen gewidmet,
wobei diese Erweiterung in speziellen Fillen vollstindig durchgefiihrt
wird.

Meinem verehrten Lehrer, Mitglied der Finnischen Akademie, Herrn
Professor Dr. R. Nevanlinna, mochte ich an dieser Stelle meinen herz-
lichen Dank aussprechen fiir die Anregung der Arbeit und das rege
Interesse, durch das er ihre Entstehung stets forderte.

§ 1. Die Hilbertschen Postulate der Streckenkongruenz

1. Der klassische axiomatische Aufbau der affinen Geometrie ent-
wickelt aus einem geometrischen Grundsystem (System mit Inzidenz-
und Anordnungsstruktur) eine lineare Algebra, deren Elemente, die so-
genannten Vektoren, durch Klassenbildung an Hand der Parallelver-
schiebung von gerichteten Strecken (geordneten Punktepaaren) gewon-
nen werden. Diese Operation der Parallelverschiebung stellt die natiir-
liche Streckenvergleichung der affinen Geometrie dar ; sie zu erweitern
ist die Absicht, welche der Einfiihrung des Kongruenzbegriffes zugrunde
liegt. Es ist daher verniinftig, die Parallelverschiebung dadurch in die
Kongruenzrelation einzubeziehen, daf3 diese als Relation zwischen den
Vektoren beschrieben wird. Der Ubergang zur Streckenkongruenz im
Hzlbertschen Sinne wird dadurch ermoglicht, daf3 jeder Vektor « seinem
inversen Element — x kongruent erklirt wird. Verlangt man zudem die
Giiltigkeit des transitiven Gesetzes in der Form des Hilbertschen Axioms
IT1.2, so ist der Aquivalenzcharakter der Kongruenz und damit eine
eindeutige Einteilung aller Elemente in disjunkte Kongruenzklassen ge-
geben. Wir werden die hier motivierten Eigenschaften in den Unter-
suchungen dieser Arbeit stets voraussetzen und deshalb als Grundpostu-
lat festlegen.

2. Se1 L ein linearer Raum von Elementen a,b,... diber dem Korper
der reellen Zahlen «,f,... x =y symbolisiere die Beziehung der Kon-
gruenz zwischen x und y, genauer gesagt die Tatsache, daBl das Element
x dem Element y als kongruent zugeordnet ist. Geméf3 den Bemerkungen
der Einleitung wollen wir diese Relation durch Postulate charakterisie-
ren und dann nach den zulédssigen Definitionsméglichkeiten fragen. Als
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Mindestforderung verlangen wir dabei nach Abschnitt 1 das Grund-
postulat :

Aus x~z2, y=>~z folgt x >~y und fir jedes z gilt * ~ — x. (I)

Als weitere Postulate sollen in diesem Paragraphen jene Eigenschaften
studiert werden, welche Hilbert zur axiomatischen Festlegung der
Streckenkongruenz benutzt hat, und zwar sollen sie schrittweise einge-
fibhrt und in ihrer Wirkung diskutiert werden.

3. Postulat (I) ist offenbar erfiillt, wenn wir die Kongruenz in L da-
durch definieren, dafl wir z >~y mit x = 4 y gleichsetzen. Diese der
natiirlichen Streckenvergleichung (Parallelverschiebung) in der affinen
Geometrie entsprechende Kongruenz soll als affine Kongruenz in L be-
zeichnet werden. Sie erfiillt auch folgendes weitere Postulat, welches
dem Hilbertschen Axiom III.3 der , Addierbarkeit von Strecken® ent-
spricht und welches den linearen Zusammenhang zwischen den Kon-
gruenzklassen der affinen Kongruenz als allgemeingiiltig erklart :

Fiir jeden Koeffizienten A folgt aus x >~y stets Az ~ 1y. (2)

Zusammen mit (I) liefert (2) aus * ~y fir |A| = | | stets Az ~ uy,
wie dies in Nevanlinnas Mitteilung ®) postuliert ist. Die diese Eigenschaft
erfiillenden Aquivalenzrelationen werden dort folgendermafBen um-
schrieben. Man kann von der affinen Kongruenz ausgehend die Menge
der Kongruenzklassen einschrianken, indem man unter Beriicksichtigung
von (2), sonst aber willkiirlich, gewisse elementenfremde Mengen von
Kongruenzklassen zu neuen, weiteren Kongruenzklassen zusammenfa@3t.
Es wird so offenbar, dafl die Postulate (I) und (2) noch eine uniibersicht-

liche Mannigfaltigkeit von Moglichkeiten der Kongruenzdefinition zu-
lassen?).

4. In Verallgemeinerung der affinen Strecken- bzw. Vektorvergleichung
(Parallelitdt) definieren wir zwei Elemente z und y beziiglich einer be-
stimmten Kongruenz in L als vergleichbar, in Zeichen x ~ y, wenn eine
Zahl 1 # 0 derart existiert, dafl x o~ Ay. Unter Voraussetzung von
(I) und (2) ist diese Relation der Vergleichbarkeit eine Aquivalenz. Sie
erzeugt also dann eine Einteilung der Elemente in disjunkte Vergleichs-

3) Siehe Anmerkung 2, S. 73. Diese Arbeit wird im folgenden immer kurz als Mitteilung
von Nevanlinna zitiert.

1) Man ersieht dies schon in einer Dimension. Zum Beispiel sind die Postulate im Raum
L(e), e # o, erfiillt, wenn wir mit einer beliebigen festen Zahl 6 > 0 festsetzen, daf3
xe> fe genau dann besteht, wenn |a| = 0¥ ||, wo » irgendeine ganze Zahl sein kann.
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klassen. Eine dieser Klassen besteht aus allen zu o kongruenten Ele-
menten, die iibrigen enthalten mit einem Element x auch alle von o ver-
schiedenen Elemente des von z erzeugten linearen Raumes L(x). In der
affinen Kongruenz stimmen die Vergleichsklassen bis auf die mit L (o)
identische direkt mit den um o verminderten eindimensionalen Unter-
riumen iiberein. Wir wollen diese affinen Vergleichsklassen mit V (z) be-
zeichnen, wobei in x zugleich ein Klassenelement als Erzeugendes aus-
gezeichnet sei.

5. Die in Abschnitt 3 gemachte Andeutung iiber die allgemeine Fest-
setzung einer die Postulate (I) und (2) erfiillenden Kongruenz kann nun
in folgender priziseren Form gegeben werden. Man teile die affinen Ver-
gleichsklassen V(x) willkiirlich in elementenfremde Mengen ein und ver-
einige sie innerhalb jeder dieser Mengen zu je einer neuen, weiteren Ver-
gleichsklasse, indem man ihre — auch willkiirlich ausgezeichneten — Er-
zeugenden je als kongruent erkldrt. In der das Nullelement enthaltenden
Vergleichsklasse ist dann die Kongruenz eindeutig festgelegt ; dasselbe
gilt fiir jede andere der neuen Klassen, sobald wir in einer der hierin ver-
einigten affinen Vergleichsklassen die Kongruenz festgelegt haben. Es
bleibt uns also noch, zu jeder neuen Vergleichsklasse, welche o nicht ent-
hélt, eine in ihr enthaltene affine Klasse auszusondern und darin nach
Belieben eine (I) und (2) erfiillende Kongruenz festzulegen 9).

6. Die oben eingefiihrte Vergleichbarkeitsrelation enthélt noch keinen
Anbhaltspunkt fiir Vergleichbarkeit im Sinne einer Gréf8enanordnung,
sofern sie auf einer Kongruenz aufgebaut ist, die lediglich durch die
Eigenschaften (I) und (2) charakterisiert wird. Will man die Kongruenz
in dieser Richtung prézisieren, das heiflt in der Richtung, daf3 die Kon-
gruenzklassen innerhalb einer Vergleichsklasse sinnvoll linear angeordnet
werden, so wird man naheliegenderweise verlangen, dafl die natiirliche
affine Vergleichbarkeit in einer Dimension erhalten bleibt, das heit daf}
die Kongruenz in jedem eindimensionalen Unterraum eine affine Kon-
gruenz induziert. Dies ist die Hilbertsche Forderung der ,,Eindeutigkeit
der Streckenabtragung“ ¢). Man kann sie auch etwas schwicher fassen,
ohne die gegebene Motivierung zu zerstéren, nimlich indem man sie nur
auf nicht zu o kongruente Elemente anwendet. Das bedeutet, dafl man
neben den eindimensionalen Unterrdumen mit affiner Kongruenz noch

%) Hier kommen noch die verschiedenen Moglichkeiten in einer Dimension zur Geltung;
vgl. Anmerkung 4, S. 75.
¢) Bei Hilbert mittels der Axiome der Winkelkongruenz indirekt eingefiihrt.
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solche mit totaler Kongruenz zuliBt, bei der alle Elemente zueinander
kongruent sind. Diese Abschwichung kann so postuliert werden :

Aus x >~ Ax folgt mit A2 4 + 1 stets z =~o. (3)

Die zuerst genannte stirkere Fassung wiirde hier x = o verlangen, was
mit folgendem Zusatzpostulat erreicht wird :

Aus x =~o folgt z =o. (4)

Durch (3) werden die Moglichkeiten der Kongruenzdefinition dahin ein-
geschrinkt, dal bei der Erzeugungsmethode von Abschnitt 5 durch die
Vereinigung affiner Vergleichsklassen V(z) zu weiteren Klassen einer-
seits und durch die Auswahl der Erzeugenden aller V (x) andererseits
schon alles eindeutig festgelegt ist. Nimmt man noch (4) dazu, so muf3
V (o) bei der Vereinigung gesondert belassen werden.

7. Sei V eine von V(o) verschiedene Vergleichsklasse der durch die
gegebenen Postulate charakterisierten Kongruenz in L, das heifit die
Menge aller mit einem Element e = o vergleichbaren x. Zu jedem sol-
chen x existiert ein 1 £ 0, so dal z >~ Ae und damit auch z ~ — Ae.
Also gibt es spezieller ein £>0 mit z o~ £e, und zwar ist dieses £ ein-
deutig bestimmt. Indem wir | x | = & setzen, haben wir in V eine Metrik
evngefithrt in dem Sinne, daf jedem x eine positive Norm | x | zugeordnet
wst. Diese Metrik spiegelt die Kongruenz dadurch wider, dal =z ~y in
Vmit || =|y| gleichwertig ist. Jede von V (0) verschiedene Klasse
V kann in dieser Weise unter Auszeichnung je eines Eichelementes e
mit einer die Kongruenz beschreibenden Metrik (Norm) versehen werden.
Setzen wir schlieSlich noch zusédtzlich |o| = 0 fest, so haben wir den
ganzen Raum L metrisiert, und zwar implizieren die zugrunde gelegten
Kongruenzeigenschaften folgende Normeigenschaften :

Fir x £0 gilt |z |>0. (a)
Fiir jedes « und jede Zahl A gilt | Az | =] 4]l z] . (b)

Der Zusammenhang mit der Kongruenz ist der, daf3 allgemein = ~y
genau dann gilt, wenn sowohl z ~y alsauch |z | =]|y| erfiillt sind,
das heiBt die Normgleichheit ist notwendig und auch hinreichend, sofern die
Elemente iberhaupt vergleichbar sind. Diese Betrachtungen lassen sich
auch auf Kongruenzen iibertragen, bei denen (4) nicht erfiillt ist. Man
hat dann aber alle x ~ 0 mit der Norm | x| = 0 auszustatten, wo-
durch (a) hinfillig wird.
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8. Wir betrachten jetzt umgekehrt eine Metrik mit den Eigenschaften
(a) und (b) im kongruenzfreien L gegeben und denken uns weiter die
affinen Vergleichsklassen V(z) irgendwie, aber unter Isolierung von
V (0), in disjunkte Mengen eingeteilt und innerhalb dieser Mengen je zu
einer Vergleichsklasse zusammengefafit. Die Kongruenz, die wir dann
dadurch definieren, dafl x =~y sowohl x ~y alsauch |z | =|y]| be-
deutet, erfiillt alle bisher gegebenen Postulate. Also ist dies wiederum
eine allgemeine Definitionsmoglichkeit der durch diese Eigenschaften
charakterisierten Kongruenz. Wird wiederum (4) nicht verlangt, so haben
wir nur das Normpostulat (b) vorauszusetzen. Weiter mufl dann aber
V (o) — statt isoliert zu bleiben — derart mit andern affinen Klassen ver-
einigt werden, dafl | x| = 0 und z ~ o stets gemeinsam auftreten.

9. Wir konnen bei obiger Erzeugung der Kongruenz durch eine Metrik
speziell auch * >~y nur mit |z | = |y | gleichsetzen, was bedeutet,
daBl wir alle von o verschiedenen Elemente als vergleichbar betrachten
wollen. Diese Forderung der vollstindigen Vergleichbarkeit entspricht der
Einfiihrung des Hilbertschen Axioms III.1 von der , Moglichkeit der
Streckenabtragung“. Wir wollen sie in folgender Abschwichung postu-
lieren, wobei die volle Form durch (4) sofort wieder gewihrleistet wird :

Ist e nicht ~ o0, so existiert zu jedem z eine Zahl &, so dall x>~ &e. (5)

Die Kongruenzen mit den Eigenschaften (I), (2), (3), (4) und (5) ent-
sprechen den Metriken mit den Eigenschaften (a) und (b) in der angege-
benen Weise eineindeutig : Wir haben Ubereinstimmung des Kongruenz-
begriffes mit demjenigen der Normgleichheit in ganz L. Bei Ausschal-
tung der Forderung (5) tritt die Moglichkeit der Unterteilung des Raumes
in mehr als zwei Vergleichsklassen hinzu, wihrend mit (4) die Norm-
eigenschaft (a) wegfillt. Diese Verallgemeinerungen werden in den spéte-
ren Untersuchungen auftreten, indem dann némlich bei andersartigen
Voraussetzungen die Eigenschaften (2) und (3) bewiesen werden, wéh-
rend die Zusitze (4) und (5) nicht erfiillt zu sein brauchen ?).

10. Ist man einmal zur Normzuordnung mit den Eigenschaften (a) und
(b) gelangt, so liegt die Frage nahe, welche zusétzliche Kongruenzeigen-
schaft der Spezialisierung zu einer Banachschen Metrik, das heiBt einer
Metrik mit Giiltigkeit der Dreiecksungleichung |z +y| <| 2|+ |y ],
entspreche. Man kann diese Forderung wie leicht ersichtlich so fassen,
daB die Eichfliche (Einheitskugel) der Metrik konvex sein muf, das heif3t

) Vgl. zum Beispiel die Abschnitte 14 und 22.
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daB mit | x| =|y| == fir jedes 4 im Intervall 0 <1 <1 gilt
| Az + (1 — A)y | < n. Diese Bedingung ist notwendig und hinreichend
fiir die Giiltigkeit der Dreiecksungleichung, und zwar auch ohne (a), also
ohne (4). Auf die Kongruenz iibertragen ergibt sich so folgendes ,,Postu-
lat fiir die Banach-Struktur® :

Gilt x >~ y undist 0 << § << 1, soexistiert eine Zahlamit 0 << o <1
derart, dafl dx 4 (1 — d)y =~ ax ist. (6)

§ 2. Zur Einfiihrung der Winkelkongruenz

11. Die Winkelkongruenz, welche bei Hilbert wiederum axiomatisch
beschrieben wird, kann bekanntlich mittels einer Definition auf der
Strecken- oder Vektorkongruenz aufgebaut werden, sofern diese mit ge-
eigneten Eigenschaften versehen ist 8). Wir wollen jetzt nach solchen
Eigenschaften fragen, und zwar ausgehend von einer Kongruenz, welche
lediglich das Grundpostulat (I) des letzten Paragraphen aufweisen soll.
Wihrend diese allgemeine Kongruenz vorher in der Richtung speziali-
siert wurde, dafl eine Vergleichbarkeit im Sinne einer Metrik zustande
kam, wird jetzt also die sinnvolle Einfiihrung der Winkelkongruenz an-
gestrebt. Entsprechend der elementargeometrischen Definition berufen
wir uns dabei auf folgenden Winkelbegriff. Wir sagen, dafl zwei von o
verschiedene Elemente x und y einen Winkel [z, y] bilden, und zwar
sollen zwei Winkel [z, y] und [2,y'] genau dann als gleich betrachtet
werden, wenn mit zwei positiven Zahlen Aund u gilt ' = Az, ¥’ = py?).
Weiter wollen wir unter Bezugnahme auf die zugrunde gelegte Kon-
gruenz zwei Winkel [x,y] und [z, y'] vergleichbar nennen, in Zeichen
[, y] >~ [«',y'], wenn sowohl z ~ z’ als auch y ~ vy’ gilt, was sinn-
voll ist, da mit [z, y] = [«', y'] sicher auch [z, y] ~ [2/, y'] richtig ist.

12. Wie bei der Kongruenz der Raumelemente soll fiir die Kongruenz
der Winkel die Vergleichbarkeit notwendige Bedingung sein. Um noch
festzusetzen, wann mit [z, y] =~ [2', y'] stirker [z,y] =~ [',y'] gilt,
lassen wir uns von der iiblichen Methode leiten, daB wir anschaulich
ausgedriickt entsprechende Winkel in Dreiecken mit paarweise kon-
gruenten Seiten als kongruent erkldren ; ndmlich mit z ~ a2', y =~ By’
(a>o0,8>0) soll [x,y]=~[z',y'] genau x —y >~ azx’ — By bedeu-

8) Ein von R.L. Moore stammendes System von Kongruenzaxiomen, welches die
Streckenkongruenz allein als Grundrelation betrachtet, findet sich in den Grundlagen der
Mathematik von Hilbert- Bernays, Bd. II, S. 38.

?) Es handelt sich also um orientierte Winkel.
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ten. Hierbei ist nun aber zu beachten, daf3 «, 8 auf Grund von (I) nicht
eindeutig bestimmt sind. Damit die gegebene Definition die Winkelkon-
gruenz eindeutig festlegt, miissen wir mindestens verlangen, daf}
x —y~ax' — Py, falls dies fiir ein Paar von positiven Groflen «,
mit ¥ >~ ax’, y =~ Py’ gilt, fiir alle solche Paare richtig ist. Insbeson-
dere bedeutet dies die Giiltigkeit des folgenden Postulates :

Aus v~ Az, y >~ puy folgt fir Au>0 stets * —y~ Az —uy. (A)

Dies liefert aber auch sofort die erwihnte allgemeinere Bedingung : Sei
o', B’ ein Zahlenpaar derselben Eigenschaften wie das oben betrachtete
Paar «, B; dann gilt o'z’ >~ a2’ und f'y’ =~ fy’ und es folgt daraus
nach (A) - mit o« = Aa', g = up’ gesetzt und auf die Elemente o'z’
und f'y’ angewandt — o'’ — 'y’ >~ ax’ — By’. Bei Giltigkeit von
(A) ist also das Kriterium « — y >~ ax’ — fy’ von der Auswahl des
Paares «, f unabhéngig.

13. Eine weitere Schwierigkeit fiir die gegebene Definition der Winkel-
kongruenz stellt die Gleichheit [Az, uy] = [, y] fiir beliebige positive
Zahlen A, u dar. Unsere Definition ist auch erst dann sinnvoll, wenn mit
[z,y] >~ [2',y'] stets [Ax, uy] == [2',y’] gilt. Insbesondere bedeutet
dies die Giiltigkeit des folgenden spezielleren Postulates, aus dem aber
wieder die allgemeine Forderung als erfiillt nachgewiesen werden kann :

Aus x>~ 2', y>~y und z —y=~a —y' folgt fiir beliebige posi-
tive Zahlen A stets Ax —y >~ Az’ — y'. (B)

Diese Eigenschaft der Vektor- bzw. Streckenkongruenz entspricht dem
Axiom, welches bei R. L. Moore'®) im wesentlichen die Hilbertschen
Axiome ITI.4 und III.5 der Winkelkongruenz ersetzt.

14. Indem wir das Nullelement bei der Erzeugung von Winkeln aus-
geschlossen haben, benotigen wir Postulat (B) bei der obigen Motivie-
rung eigentlich nur fiir von o verschiedene Elemente. Dafl wir o auch
zulassen, liefert gerade die Giiltigkeit des Postulates (2) im letzten Para-
graphen, das wir so auch wiederum anerkennen wollen. Wegen (I) laf3t
sich (B) dahin verallgemeinern, daBl aus z~2', y~y' und =z —y
~ ' — vy stets Aw — puy >~ Az’ — uy' folgt. Mit ' =y und y' ==
gesetzt zeigt sich, dall x ~ y wiederum fiir beliebige Koeffizienten «,
stets ax + fy =~ fx + ay induziert. Damit 140t sich leicht das frithere
Postulat (3) nachweisen, welches aus =~ Az mit 13 4+ 1 auf
x>~o0 schlieBt: =z~ Ax liefert nach dem gegebenen Theorem

10) Siehe Anmerkung 8, S. 79.
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(x + BA)x =~ (B + aA)x, das heilt mit a = — 4 und B #0 gewihlt
(1 — A%)x ~o0, was wegen A # + 1 auch x=~o0 bedeutet. Das
,» Winkelkongruenzpostulat“ (B) liefert also seinerseits eine Vergleichbar-
keit der Elemente, wie sie im Abschnitt 6 gefordert wurde.

15. Auf Grund von (I), (A) und (B) stellt die definierte Winkelkon-
gruenz eine eindeutig festgelegte Aquivalenzrelation zwischen den als
Winkel eingefiihrten Objekten dar. Weiter bemerkt man, dal (A) bei
Voraussetzung der Eigenschaften (3) und (4) des letzten Paragraphen
sichergestellt ist, wobei (3) nach oben aus (B) folgt. Die Postulate (I),
(B), (4) und (5) sind also mit den Hilbertschen Forderungen III.1-5
gleschwertig'') wund kénnen deshalb als System der Hilbertschen Kon-
gruenzergenschaften bezeichnet werden. Dieses System gewédhrleistet neben
der eindeutigen und vollstindigen Vergleichbarkeit im Sinne des letzten
Paragraphen die hier vorgezeichnete Einfiihrung der Winkelkongruenz,
und zwar ist es durch diese beiden Gesichtspunkte vollstindig motiviert.
Laft man die Forderung (4) fallen, so braucht (A) nicht erfiillt zu sein,
womit die Winkelkongruenz nicht in der gegebenen Weise festgelegt
werden kann. Diese Schwierigkeit wird dadurch umgangen, dal man alle
zu o kongruenten Elemente bei der Erzeugung von Winkeln ausschlieft
(verallgemeinerte Winkeldefinition) ; fiir nicht zu o kongruente z, y folgt
(A) aus (3) und damit aus (B).

§ 3. Orthogonalitiit

16. Ein Winkel [z, y] heif3t gemil der elementargeometrischen Defi-
nition recht, wenn [z, y] =~ [z, —y], also * — y >~ = + y. Die beiden
den Winkel erzeugenden Elemente werden dann orthogonal zueinander
genannt. Bei der Spezialisierung der allgemeinen Kongruenzen in Rich-
tung der Einfithrung einer Winkelkongruenz kann man auch vorerst nur
die Orthogonalitdt ins Auge fassen und eine spezielle Orthogonalstruktur
der Kongruenz verlangen. Dazu legen wir folgende von der Winkelkon-
gruenz unabhéingige Definition der Orthogonalitit zugrunde : x heif3t zu y
orthogonal, in Zeichen x | y, wenn x —y =~z + y. Damit ist diese
Relation auch unabhingig von jedem Kongruenzpostulat erklirt. Unter
Voraussetzung von (I) ist sie symmetrisch, was die Ausdrucksweise
»,orthogonal zueinander gestattet.

17. Als spezielle Orthogonalstruktur wird man naheliegenderweise und
der Winkeldefinition entsprechend die Ubertragbarkeit des Orthogona-

11) (1) entspricht I1I.2, (4) und (5) entsprechen IIIL.1, (B) ersetzt III.4 und III.5 und
liefert (3), welches III.3 entspricht.
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litatsbegriffes auf die Geraden (eindimensionalen Unterrdume) anstre-
ben in dem Sinne, daB mit = | ¥y auch L(x) | L(y) definiert werden
kann. Dazu mull wegen L(xz) = L(Azx) fiir jedes A 7% 0 mindestens ver-
langt werden, dal mit « | y auch Az | y erfiillt ist. Indem wir (I) so-
wieso als gegeben betrachten, brauchen wir 4 = 0 nicht auszuschliefen,
wodurch folgendes Postulat der Orthogonalitit gegeben ist :

Aus z | y folgt fiir beliebige Koeffizienten A stets Az | y. (I1)

Wegen der Symmetrie der Relation gilt mit x« | y sofort allgemeiner
Az | py, was fiir die oben erwiihnte Ubertragbarkeit der Orthogonalitit
auf Geraden auch hinreichend ist.

18. Nevanlinna verweist in seiner Mitteilung darauf, daB man ,,in der
Richtung der euklidischen Geometrie“ schon sehr weit kommt, wenn man
an Stelle der Forderung (B) des letzten Paragraphen das ,,bedeutend
weniger einschrinkende‘ Postulat zugrunde legt, welches in Abschnitt 14
von (B) abgeleitet wurde und aus x o~y fiir beliebige Zahlen «, f auf
ax + By =< Bz + ay schlieft1?). Hierin ist insbesondere das Postulat (2)
des ersten Paragraphen sowie nach Abschnitt 14 auch Postulat (3) enthal-
ten. Weiter 18t sich auf dieser Grundlage leicht die Giiltigkeit von (II)
nachweisen: z | y bedeutet x —y~x+y, woraus (a4 )z —(« —f) y =~
(e« + Bz + (« — )y folgt, das heilt mit A=ao+ 8, pu=a—2p
gesetzt Az | uy. Umgekehrt ist das Postulat von Nevanlinna
aber auch eine Folge von (I) und (II): =z =~y liefert }(x + y)
1 % (x — y), und daraus folgt A(x + y) L pu(r — y), wasmit a=24—u,
= A+ u gesetzt ax + By >~ fzx + ay bedeutet. Die von Nevanlinna
ins Auge gefafite Abschwichung der Forderung (B) entspricht also —
unter stindiger Voraussetzung von (I) — genau unserer Ersetzung des
,, Winkelkongruenzpostulates® durch das ,,Orthogonalitédtspostulat. Also
sind mit (I) und (II) auch (2) und (3) erfallt.

19. Die Forderungen (I) und (II) sind auch sinnvoll, wenn wir die bis-
herige Beschrinkung auf die reellen Zahlen als Koeffizientenbereich des
linearen Raumes L aufheben. In diesem Sinn wollen wir denn unseren
Betrachtungen jetzt einen weiteren Rahmen geben. Jedoch verlangen wir
stets, daB die skalaren GroBen, welche zur Multiplikation mit den Raum-
elementen zugelassen werden, einen Koeffizientenkorper K mit von 2 ver-
schiedener Charakteristik bilden. Dann 148t sich Eigenschaft (3) in der ge-
zeigten Art aus (I) und (IT) folgern, was bedeutet, daf} in einem eindimen-

. 12) Die einschrankende Wirkung von (B) gegeniiber diesem Postulat ist allerdings sehr
geringfiigig, was im folgenden gezeigt wird. Vgl. die Abschnitte 20 und 35.
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sionalen Raum die Kongruenz entweder affin oder total sein muf. Umge-
kehrt sind bei diesen beiden Definitionen — x ~y genau fiir y = 4 x
bzw. x o~ y fiir alle Elemente — die Forderungen (I) und (IT) erfiillt, und
zwar gilt dies fiir beliebige Dimensionen. Bei den hoheren Dimensionen
148t sich das Beispiel der affinen Kongruenz dahin variieren, dafl man ein
beliebiges @ s 0 auszeichnet und zusédtzlich verlangt, dafl im Unter-
raum L (a) die induzierte Kongruenz total sei. Man hat dann also z >~y
fir y = 4 x stets erfiillt und zusétzlich auch stets dann und nur noch
dann, wenn x und y in L (a) liegen. Bei dieser affinen Kongruenz mit Aus-
artung in L (a) sind die Postulate (I) und (II) wiederum erfiillt.

20. Eine Kongruenz mit den charakteristischen Eigenschaften (I) und
(II) induziert in jedem Unterraum des betrachteten Raumes L eine eben-
solche Kongruenz. Wir kénnen also zuerst die Definitionsmoglichkeiten in
Réumen kleiner Dimension studieren und daraus gewisse Schliisse auf den
allgemeinen Fall ziehen. In der Dimension 1 beschrianken sich die Defini-
tionsmoglichkeiten wie gezeigt auf die affine und die totale Kongruenz,
welche im 0-dimensionalen Fall in trivialer Weise zusammenfallen. Fiir -
einen zweidimensionalen Raum L, haben wir als weitere Moglichkeiten die
affinen Kongruenzen mit Ausartung gefunden.

Um hier zu neuen Beispielen zu kommen, mufl man annehmen, da@
zwei linear unabhéngige Elemente ¢ und b kongruent sind, daf also eine
kongruente Basis a, b des L, existiert. Jedes Element « von L, kann ein-
deutig dargestellt werden in Form « = aa 4+ fb und das Element
x' = fa + ab ist ihm dann als kongruent zugeordnet. Setzt man als
Definition fest, dal = ~ y genau dann besteht, wenn entweder y = 4 «
oder aber y = 4 2, so lassen sich die zur Diskussion stehenden zwei
Postulate wiederum verifizieren. Das trifft auch dann zu, wenn man diese
Definition dahin abéndert, daf3 man zuséitzlich in einem der beiden Unter-
riume L(a + b) — wo 2’ mit 4 2 zusammenfallt - die induzierte Kon-
gruenz als total erklirt, also zum Beispiel = ~y auBerhalb L(a — b)
mit dem Bestehen einer der Relationen y = 4+ =, y = + 2’ gleich-
setzt, in L(a — b) aber stets als richtig betrachtet. Dieses letzterwihnte
Beispiel ist insofern von besonderem Interesse, als hier zum erstenmal nur
(IT) und nicht auch (B) giiltig ist. Aus ¢ ~ b und @ — b ~ o folgt nédm-
lich bei Anwendung von (B) (A —1)a 4+ b~ 4ib, mit A =2 also
a + b ~ 2b im Widerspruch zu unseren Festsetzungen. (B) ist also tat-
siéchlich eine Einschrinkung gegeniiber (II).

21. Wollen wir die Aufzihlung der Kongruenzen mit den Eigenschaften
(I) und (II) in einem Raum L, fortsetzen, so tritt als neue Moglichkeit
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diejenige auf, bei der eine kongruente Basis @, b derart existiert, daBl es
zudem ein von - a sowie von -+ b verschiedenes Element derselben
Kongruenzklasse gibt. Mit dieser Existenzforderung schlieen wir die im
letzten Abschnitt beschriebenen singuldren Fille aus ; wir wollen sie denn
auch beim weiteren Studium im néchsten Paragraphen direkt zum Postu-
lat erheben. Es zeigt sich dann ndmlich bald, dal damit die Struktur der
Kongruenz schon wesentlich prézisiert wird in Richtung auf die Euklid-
sche Geometrie hin. Dies gilt allerdings nur fiir den zweidimensionalen
Raum, auf den die Zusatzforderung ja auch zugeschnitten ist, und es
stellt sich die Frage, wie eine entsprechende Einschrinkung in hoheren
Dimensionen vorzunehmen ist, wo die Mannigfaltigkeit der singuldren
Fille noch weit umfangreicher sein wird. Im Zusammenhang mit dieser
Frage wird es wiinschenswert sein, das erwihnte Existenzpostulat zu
einer dimensionsunabhingigen Forderung umzuformulieren derart, daf
im allgemeinen Fall fiir die in einem zweidimensionalen Unterraum indu-
zierte Kongruenz die Giiltigkeit der gegebenen Existenzaussage zutrifft.

§ 4. Analyse des Orthogonalititspostulates im L,

22. Wie in den Abschnitten 20 und 21, betrachten wir in diesem Para-
graphen einen zwetdimensionalen Raum L, iber einem allgemeinen Koeffi-
zientenkorper K mit von 2 verschiedener Charakteristik. In diesem Raum
soll eine Kongruenz mit zugehdriger Orthogonalitiit analysiert werden, welche
dre Qrundeigenschaft (I) und die Orthogonalstruktur (I1) aufweise. Um die
bereits diskutierten singulidren Fille auszuschliefen, fordern wir als fiir
den zweidimensionalen Raum zugeschnittenes Zusatzpostulat :

Es existiert eine Kongruenzbasis des L,. (I1L,)

Darunter verstehen wir die geordnete Menge (a,b,c) dreier kon-
gruenter Elemente von der Art, dal @, b eine lineare Basis des L, bil-
den und ¢ von 4+ a sowie von -+ b verschieden ist. Durch das triviale Bei-
spiel der totalen Kongruenz in L, wird die Widerspruchslosigkeit der
Forderungen (I), (II), (III,) belegt. Auf Grund unserer bisherigen
Ausfithrungen erkennt man auch, dal jede der drei Aussagen von den
iibrigen unabhéngig ist. Weiter ist das Postulat (II) gemdf3 Abschnitt 18
gleichwertig damit, dafl aus x>~y stets Ax + uy >~ uzr 4 Ay folgt;
in dieser Form, welche wir den Vertauschungssatz nennen wollen, wird
es im folgenden zumeist angewandt. SchlieBlich erinnern wir daran,
daB3 durch (I) und (II) auch die fritheren Postulate (2) und (3) impliziert
sind.
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23. Sei (a,b,c) eine ausgeartete Kongruenzbasis, was bedeute, daB3
ihre Elemente nicht paarweise linear unabhingig sind. Wegen (2) und
(3) gilt dann @ ~ b ~ o0, also auch stets Aa =~ b, und der Vertau-

Abbildung: Der Vertauschungssatz (x> y)— (Az + py 2 ux + Ay).

schungssatz liefert daraus d4a 4 fb =~ fia + 6b. Das zeigt, dal mit «ff
= pd stets aa + b=~ ya + b gilt, ein Resultat, auf das wir spéiter
zuriickgreifen. Hier schlieen wir noch die Feststellung an, dafl die mit
einem A 7% 0 gebildeten Elemente

1 1
o =a-+0b, b’zla—}——z—b, c’=7a—}—lb
nach dem Gezeigten kongruent sind. Unter Voraussetzung von 4% £ 41
sind sie auch paarweise linear unabhingig, womit gezeigt ist : Enthélt
K eine Zahl 4 A0 mit A% %= +1, so existiert stets eine nichtausge-
artete Kongruenzbasis des L,.

24. Wir betrachten jetzt eine nichtausgeartete Kongruenzbasis (a, b, c)
des L, gegeben, das heillt je zwei der kongruenten Elemente a, b, ¢ sollen
den L, aufspannen. Jedes Element x 148t sich dann eindeutig zerlegen in
die Linearkombinationen z = aa + b = f'b + y¢c = y'c + o'a. Durch
den Vertauschungssatz werden diesem allgemeinen Element x die drei
Elemente xz;, = fa + ab, z,=9yb+ f'c, z3=ao'c+ y'a als kon-
gruent zugeordnet. Speziell sind dann auch wieder jedem KElement z;
drei Elemente =z, = (z;), als kongruent zugeordnet. Definieren wir in-
duktiv «, ..., = (x;,...4,_)i,>» WObei die Indize§ t, immer Zahlen
aus der Menge 1, 2, 3 bedeuten, so gilt wegen dem Aquivalenzcharakter
der Kongruenz Xy ooy, = x. WIr haben so ein Verfahren entwickelt,
das einem beliebig vorgegebenen Element x eine Folge =z, ...;,
(m=1,2,3,...) von Elementen zuordnet, die simtliche der Kon-
gruenzklasse von x angehéren. In den Folgen @, ..., , b, ....., ¢ ...qy
haben wir insbesondere Elemente, welche alle zu denjenigen der vor-
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gegebenen Kongruenzbasis kongruent sind. Auf die Folge aller dieser
Elemente verweist Nevanlinna in seiner Mitteilung, und zwar insbeson-
dere auf die Tatsache, daB sie als Ortsvektoren in der reellen Geometrie
gedeutet Punkte auf einem Kegelschnitt mit Mittelpunkt bestimmen.
Unter Annahme, daf3 die so erhaltene Folge von Punkten auf der Kegel-
schnittkurve iiberall dicht liegt (im Sinne der affinen Topologie in L,),
legt die zusétzliche Forderung einer stetigen Eichkurve den Kegelschnitt
und damit eine quadratische Form als metrische Fundamentalform fest.
Wie wir sehen werden, ist diese Einfithrung zusitzlicher Annahmen topo-
logischer Natur iberfliissig, das heilt es 148t sich mit unseren Postulaten
allein darauf schlieBen, da alle Punkte des erwidhnten Kegelschnittes
zueinander kongruente Ortsvektoren bestimmen.

25. Sei ¢ = @a + ypb die eindeutige Darstellung des Elementes ¢ der
Kongruenzbasis (a,b,c) durch die lineare Basis a,b. Ist (a,b,c)
nichtausgeartet, so gilt ¢-y % 0, und wir kénnen der Kongruenzbasis
durch die Festsetzung 2Q¢y = 1 — ¢* — y? eindeutig eine charakte-
ristische Zahl € zuordnen. Bei der Berechnung der im letzten
Abschnitt konstruierten Elemente z; ..., als Linearkombinationen
von a und b erhdlt man dann speziell z,, = — fa 4+ (2928 + «)b
und z;, = (20Qa 4 B)a — ab.

26. Aus @, o~ 75, liefert der Vertauschungssatz Az, + ua,, o~
UZog + Ay, Fiir Q=0 ist dies trivial, da dann ., = — x,,. Wir schliefen
diesen Fall vorldufig aus und nehmen fiir einen Moment auch « % 0 an.
Dann kénnen A4 und u so gewihlt werden, dafl 2 40 und 1(2028 + «)
= pua. Beim Einsetzen der oben gegebenen Darstellungen von z,, und
%3, erhilt man dann (a2 4 B2 + 2Qaf)a =~ (o — f%)a + 28(x + 2B)b.
Dies ist aber auch fiir o« = 0 richtig, bedeutet es doch dann f2a =~ #2b,,.
Schliefllich haben wir noch den Fall Q = 0 zu erledigen, was durch An-
wendung des Vertauschungssatzes auf x ~ x,, moglich ist. Mit 2 =0
gilt 3, = fa — ab, und also bedeutet Az + pay, o>~ ux + Az,;,, wenn
wir 8 # 0 annehmen und A, y nach den Bedingungen 4 £ 0, Aa + up
= 0 wihlen, (a?+ £2)b =~ (82 — o?)a — 2afb, was auch (a? + f%)a
=~ (a? — f%)a + 2aBb nach sich zieht. In dieser letzten Beziehung darf
offenbar auch B = 0 zugelassen werden und weiter stellt sie gerade den
Fall 2 = 0 in der oben hergeleiteten Relation dar. Somit ist diese ohne
Einschrinkung giiltig, und zwar — da = = aa + b Dbeliebig gewihlt
wurde — fiir irgendwelche Koeffizienten « und §.

27. Mit PD(x, f) = o + B2 4 2Q0ap gesetzt, 1aBt sich die eben be-
wiesene Formel durch @(a, f)a =~ (o — f*a + 2f(x + 26)b wieder-
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geben. Ordnen wir weiter die hier rechtsstehende Linearkombination von
a und b dem Element x = aa + Bb als Bildelement

2(x) = (e — f%) a + 2f(x + 28)b

zu, so konnen wir kurz 2(x) >~ @(x)a schreiben, wobei fir @(«, )
noch @(x) = @(aa 4 fb) eingefithrt ist. Aus den Definitionen
von @D(x) und 2z(x) berechnen sich die Hilfsformeln @ (z(x))
= (P (x))? und z(z) + P(x)a = 2(x + 2B)x. Betrachten wir speziell
ein Element z mit @(x) = 0. Dann gilt z(x) =~ 0 und aus den Hilfs-
formeln folgt (x 4+ 2pB)x >~o0. Mit o+ 28 % 0 148t sich daraus auf
x =~ o schliefen. Dies gilt trivialerweise fir z = o0; mit x # 0 kann
o+ 28 =0 neben @(x) = 0 hochstens fir Q = +1 auftreten. Da-
mit ist gezeigt: Ist Q2 #% 41, so folgt aus P (x) = 0 stets z ~o.

28. Wenden wir uns jetzt dem Falle @(x) £ 0 zu. Hier kénnen wir
weiter durch z(z) = @(x)e(x) eine Abbildung e(x) einfithren, fiir die
sich die Eigenschaften e(z) >~ a, @ (e(x)) = 1 und e(e(z) + a) = e(x)
ergeben.

"X 23
Abb.: Konstruktion von e(z) aus @, x33 und x5 (2 # 0)

Sei y = pa + ob ein Element mit @(y) = 1. Hieraus berechnet sich
Dy +a)=2(1 + o+ Qo), darnach oP(y + a) = (0 + 1)2 — ¢% und
c@y +a)=20(p + 1 + 20). Das bedeutet z(y + a) = P(y + a)y.
Setzen wir @ (y + a) % 0 voraus, so konnen wir e(y 4+ @) bilden und
erhalten e(y + a) =y, was y ~a induziert. Ist @ (y + a) =0, so
gilt notwendigerweise @(— y + a) = 0 und es ergibt sich nach obiger
Beweisfiihrung — y =~ a, also auch wiederum y ~a. Aus P(y) =1
folgt somit stets y o~ @, allgemeiner nach den Aquivalenzgesetzen aus

D(x) = D(y) = 1 stets z =~ y. Das ist die in Abschnitt 24 aufgestellte
Behauptung.

29. Fiir die in Abschnitt 24 gegebene Folge «z,...,, ~von zu

'7'1!

&= aa-+ b kongruenten Elementen berechnet sich @ (x, ...; )= (z).
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Weiter erkennt man leicht, dal mit @(x) £ 0 diese Folge zwei Ele-

mente Z und z enthilt, so dafl (z, ,;) eine nichtausgeartete Kon-
gruenzbasis darstellt. Ist also @ (z) = @ (y) = n % 0 gegeben, so gibt
es eine nichtausgeartete Kongruenzbasis (u,v,w) mit @ (u) = @ (v)
= @P(w) = z. Ordnet man dieser Kongruenzbasis in gleicher Weise, wie

Sy =e (EX)VI . X=-y+0
/
Abbildung: Veranschaulichung des Falles 2 = — 1.

wir das fir (a,b,c) getan haben, eine Funktion @'(x) in L, zu, so
gilt ® = n®' und damit @' (x) = @' (y) = 1, was nach den Uberle-
gungen des letzten Abschnittes x ~y impliziert. In Verallgemei-
nerung des Resultates von Abschnitt 28 kénnen wir also sagen: Aus
& (x) = D(y) # 0 folgt stets = ~y.

30. Um die gewonnenen Resultate in einer iibersichtlicheren Form
auszusprechen, ordnen wir jetzt jeder Kongruenzbasis (@, b, ¢) in L, ein-
deutig eine symmetrische Bilinearform @ zu, das heillt eine Funktion
®(z,y) in L, mit Funktionswerten in K und mit folgenden charakte-
ristischen Eigenschaften: @(z,y) = ®(y,x), P (Az,y) = AD(x,y),
P(x+2,y)=D(x,y) + D(x',y). Falls (a,b,c) ausgeartet ist, soll
@ durch die Festsetzungen @(a,a) = @(b,b)=0 und D(a,b) =1
bestimmt sein; falls (a,b,c) nichtausgeartet ist durch @(a,a) =
®b,b)=1 und P(a,bdb) = 2 mit der charakteristischen Zahl Q der
Kongruenzbasis. * = aa + b, y = ya + b gesetzt, liefert im ersten
Fall &(z,y) = 1(ad + By), insbesondere @ (x, ) = aff, so dafl nach
Abschnitt 23 aus @ (z, ) = D(y, y) stets x =~y folgt. Im zweiten Fall
wird @D(x,y) =ay + 0+ 2(xd + By), insbesondere @(z,z) =
a? + f2 4 2Qap, also gleich unserer bisherigen Funktion @(zx), so daf
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hier die Resultate der Abschnitte 27 und 29 das Theorem ergeben :
Aus D(z,x) =P(y,y) #0 folgt z~y, und dasselbe gilt fiir
D(x,z) =Py,y) =0, falls d(a,db) %= +1.

31. Das Ergebnis unserer Analyse besteht also in folgendem Haupt-
satz: Ist @ die einer Kongruenzbasis (a,b,c) zugeordnete Bilinearform
und gilt P(a,b) # +1, so folgt aus D(x,x) = DP(y,y) stets x=~y.
Im Falle ®(a,b) = 4+1 gilt x >~y mit ®(x,x) = D(y,y) sicher stets
dann, wenn zusdtzlich D (x, x) # 0 erfillt ist.

Es stellt sich natiirlich sofort die Frage, ob die Sonderstellung des Falles
®(a,b) =41 hier notwendig ist. Wie wir in Abschnitt 36 sehen werden,
trifft dies tatséichlich zu. Nach den Bilinearitidtsgesetzen folgt aus
D(x,y)=0 sofort D(x+y,x+y)=P(x—y, x—y), was folgenden Zu-
satz zum genannten Ergebnis liefert : Ist @ die einer Kongruenzbasis
(a, b, c) zugeordnete Bilinearform und gilt @(a, b) # + 1, so folgt aus
P(x,y)=0 stets x | y. Im Falle @(a,b)=+1 gilt | y mit &(x,y)=0
sicher stets dann, wenn zusédtzlich @ (z, z) + @(y, y) £ 0 erfiillt ist.

§ 5. Diskussion im reellen L,

32. Wir beschrinken uns hier wieder auf den reellen Koeffizientenkorper
und betrachten vorerst neben den Postulaten (I), (II), (III,) auch die
frithere Forderung (4) erfillt, wonach x ~ o0 nur fiir « = o gilt. Dann
ist jede Kongruenzbasis (@, b, c) nichtausgeartet und die zugeordnete
Bilinearform @ notwendig nicht indefinit, was @(x, )@ (y, y) > 0 im-
pliziert. Mit @(x, z) # 0 gibt es dann ein A > 0, so dal D(y,y) =
AD(x,x) = D(Ax, Ax) und damit y =~ Az. Setzen wir noch z ~y
voraus, so folgt- x ~ Az, das heillt wegen (4) A =1. Aus P (x,x) # 0
und x>~y folgt also @(x,x) = D(y,y). Ist die Form definit
(| P(a,b)|<1), so ist x =~y demnach genau dann erfiilltl, wenn
O(z, ) = By, y).

33. Wir bezeichnen eine symmetrische Bilinearform @ von der Eigen-
schaft, dal @ (x,x) = @ (y,y) mit x ~y &dquivalent ist, als Funda-
mentalform der zugrunde gelegten Kongruenz. Ist eine solche gegeben,
so ist auch A® eine Fundamentalform, sofern A4 -40. Ist  nicht ~ o, so
existiert also eine Fundamentalform @' mit @' (v, u)=1, ndmlich gemal
D = @(u, u)®'. Wir nennen diesen Ubergang von @ zu @' die Normie-
rung der Fundamentalform @ auf die Einheit © und konnen also sagen :
Ist % nicht ~ o, so liBt sich jede Fundamentalform der Kongruenz auf
die Einheit % normieren. Damit ergibt sich leicht, da die Fundamen-
talform einer Kongruenz bis auf die Normierung eindeutig bestimmt ist.

89



34. Ist einer Kongruenzbasis (a, b, c¢) der durch (I), (II), (II1,) und
(4) charakterisierten Kongruenz eine definite Bilinearform zugeordnet,
so stellt diese nach Abschnitt 32 die bis auf die Normierung eindeutig
bestimmte Fundamentalform der Kongruenz dar. Ist die zugeordnete
Bilinearform dagegen semidefinit (| @(a,b)| = 1), so gilt die Aqui-
valenz von z ~y mit @(x, x) = @(y, y) nur aullerhalb der Geraden
L,,in der @ = 0; innerhalb L, muf} die Kongruenz wegen (4) gesondert
affin sein, das heit jedes z mit @(z,2) = 0 kann nur zu 4z kongruent
sein. Die den verschiedenen Kongruenzbasen zugeordneten Bilinear-
formen stellen auch hier eine bis auf Normierung eindeutig bestimmte
,,Fundamentalform“ dar, doch ist diese in dem erwidhnten Sinne aus-
geartet. Zusammenfassend konnen wir als Ergebnis dieser Analyse fest-
halten : Eine den Postulaten (I), (I1), (I111,) und (4) geniigende Kongruenz
tm reellen L, bestitzt entweder eine definite Fundamentalform oder eine semi-
definite ausgeartete Fundamentalform.

35. Eine Kongruenz mit definiter Fundamentalform geniigt auch dem
fritheren Postulat (5) der vollstindigen Vergleichbarkeit. Umgekehrt im-
plizieren (I), (II) und (5) die Existenzforderung (III,) und zusammen
mit (4) ergibt sich dann, dafl die Kongruenz eine definite Fundamental-
form besitzt. Damit gelten auch die Postulate (A) und (B) der Winkel-
kongruenzstruktur, das heilt es sind hier simtliche Hilbertschen Kon-
gruenzeigenschaften erfiillt. Wir haben gezeigt : Durch die Postulate (I),
(II), (4) und (5) werden die Hilbertschen Kongruenzen charakterisiert. Das
bedeutet, dafl in dem in Abschnitt 15 gegebenen System der die Hilbert-
schen Kongruenzen bestimmenden Postulate (I), (B), (4) und (5) die
Mooresche Forderung (B) durch das schwéchere Orthogonalitdtspostulat
(IT) ersetzt werden kann. Weiter konnen (4) und (5) durch folgende Ver-
schirfung von (III,) ersetzt werden :

Es existiert eine orthonormierte Basis des L,. (IIT*,)

Darunter verstehen wir eine lineare Basis nicht zu o kongruenter Ele-
mente a,b mit a >~ b und a | b. Es ist trivial, daB (III*,) in einer
Kongruenz mit definiter Fundamentalform gilt. Umgekehrt liefern (I),
(IT), (II1*,) die Giiltigkeit von (III,) sowie das Bestehen einer definiten
Fundamentalform.

36. Geben wir in einem Raum L, eine definite Bilinearform & vor und
erkliren wir sie zur Fundamentalform einer Kongruenz, das heifit defi-
nieren wir z o~y durch @(z, ) = D(y, y), so ist dadurch eine Hilbert-
sche Kongruenz in L, bestimmt. Damit ist der gewiinschte Uberblick iiber
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diese Kongruenzen gewonnen : Jede Hilbertsche Kongruenz im reellen L,
besitzt eine definite Fundamentalform, und jede definite Bilinearform in L,
bestimmt eine Hilbertsche Kongruenz, deren Fundamentalform sie ist. Wird
eine semidefinite Bilinearform im L, als ausgeartete Fundamentalform
im Sinne von Abschnitt 34 vorgegeben, so erfiillt auch die hier zugehorige
Kongruenz die Postulate (I), (II), (IIL,) und (4). Das bedeutet, daB die
Sonderstellung des Falles @(a,b) = +1 im Hauptsatz des letzten Para-
graphen wirklich notwendig ist.

37. Die Einfiihrung einer semidefiniten Bilinearform als nichtausgear-
tete Fundamentalform ergibt eine Kongruenz mit den Eigenschaften (I),
(II) und (III,) unter Wegfall von (4). Dasselbe gilt bei der Zugrunde-
legung einer indefiniten Fundamentalform. Anderseits stellt man fest,
daBl jede Kongruenz, welche den Forderungen (I), (II), (III,) gehorcht
ohne (4) zu erfiillen, eine Fundamentalform besitzen mufB3. Fiir solche
Kongruenzen folgt nach Abschnitt 32 fiir die einer Kongruenzbasis zu-
geordnete Bilinearform & aus @ (r,2)P(y,y) >0 und z =~y ent-
weder D (x,z) = DP(y,y) oder z~o0. Mit @(x,x) #0 und z=~o0
ergibt sich sofort, daB die Kongruenz total ist und damit die konstante
Fundamentalform @&* = 0 besitzt. SchlieBen wir diesen Fall aus, so ist
die Aquivalenz von @(z, 2) = D (y,y) mit x =~y fiir D(z, 2)P(y,y)=>0
gesichert. Fiir eine semidefinite Form @ ist daraus die gegebene
Behauptung ersichtlich. Es bleiben noch die indefiniten Formen @, bei
denen man die Kongruenzbasis speziell als ausgeartet annehmen kann.
Hier muf3 man noch zeigen, daBl z o~y mit @(x, )P (y, y) <0 unver-
triaglich ist. Da der Beweis hierfiir in spidteren Betrachtungen enthalten
sein wird, soll er hier nicht aufgefiihrt werden.

38. Zusammengefafit hat die Diskussion dieses Paragraphen gezeigt :
Eine den Postulaten (I), (II) und (I111,) genilgende Kongruenz tm reellen
L, besitzt entweder eine Fundamentalform oder eine semidefinite ausgeartete
Fundamentalform. Umgekehrt bestimmt jede symmetrische Bilinearform in
L, eine Kongruenz mit den Eigenschaften (I), (II) und (I111,), deren Funda-
mentalform sie ist. Semidefinite Formen diirfen dabei auch als ausgeartete
Fundamentalformen angesetzt werden.

Der indefinite Fall, welcher die sogenannte Lorentzsche Metrik in L,
darstellt, kann dadurch ausgesondert werden, daBl man (III,) ersetzt
durch die Forderung :

Es existiert eine zu o kongruente lineare Basis des L,. (IIT**,)

Hierbei ist als Ausartung auch die konstante Fundamentalform zuge-
lassen.
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§ 6. Normalprojektion

39. Um den Sonderfall der Kongruenzen mit ausgearteter Fundamen-
talform im reellen L, auszuschlieBen, kann man nach einer das Postulat
(ITL,) ersetzenden Eigenschaft fragen, die bei nichtausgearteten Funda-
mentalformen gilt, im erwihnten Sonderfall aber verletzt wird. Eine Er-
setzung von (III,) ist auch wie schon frither erértert im Hinblick auf den
Ubergang zu hoheren Dimensionen wiinschenswert ; nimlich die Er-
setzung durch ein dimensionsunabhéngiges Postulat. Schlielich gestattet
eine solche Abénderung der zugrunde gelegten charakteristischen Eigen-
schaften vielleicht auch eine einfache Weiterfilhrung der Analyse des
Paragraphen 4 bei allgemeinen Koeffizientenkorpern. Eine die drei ge-
nannten Gesichtspunkte befriedigende Eigenschaft wird durch die Ein-
fiuhrung des Begriffes der Normalprojektion geliefert, wobei wir folgende
Definition zugrunde legen : Eine Darstellung x = Au + h heifle Normal-
projektion von x auf w, sofern h | w. Existiert eine solche Normalprojek-
tion, so sagen wir kurz, x 146t sich auf » normalprojizieren. Das bedeutet
also die Existenz einer Zahl A, so dal  — Au | % oder nach Definition
der Orthogonalitit = — (A 4+ 1)u >~ — (A — 1)u. Trifit dies aber
auch nur fir einen bestimmten Koeffizienten 4 zu, so reden wir von einer
eindeutigen Normalprojektion von z auf u.

40. Um zu der erwihnten Ersatzforderung fiir (I11,) zu gelangen, be-
trachten wir wieder den zweidimensionalen Raum L, iiber einem allge-
meinen Koeffizientenkoérper K und darin eine Kongruenz mit den Kigen-
schaften (I), (IT), (IIL,). In (e, b, ¢) sei eine Kongruenzbasis ausgewéhlt,
und @ sei wieder die ihr zugeordnete Bilinearform. Nehmen wir vorerst
®(a,b) # +1 an, so folgt nach dem Hauptsatz des Paragraphen 4 aus
D(x,x)=DP(y,y) stets x>~y und aus @ (x,y) = 0 stets = | y. Zuwunicht
~ o gibt es dann fiir jedes = eine Zahl §, so dafl @ (xz, u) = 0P (u, u),
und man verifiziert sofort * — du | », das heif3t jedes x 148t sich auf »
normalprojizieren. Im Falle ®(a,b) = +1 erkennt man leicht, daBl
iiberhaupt jedes Element x sich auf jedes Element % normalprojizieren
1a8t. Also kénnen wir in der in Paragraph 4 gefiihrten Analyse den Satz
aussprechen : Ist « nicht ~ o, so 148t sich jedes z auf v normalproji-
zieren.

41. Es liegt nun nahe, zu fragen, ob der obige Satz — an Stelle von
Postulat (III,) gesetzt — umgekehrt die Existenz einer Kongruenzbasis
des L, garantiert. Seien u, v zwei linear unabhéingige Elemente des L,.
Mit v ~v =~o ist (u,v,0) eine Kongruenzbasis. Wir konnen demnach
fiir das weitere » nicht ~ o voraussetzen. Dann 148t sich » auf « normal-
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projizieren, das heiflt es gibt ein 4, so daBl v — (A4 1)u~v— (A —1)u.
Dabeisind a = v — (A + 1)u und b = v — (A — 1)u wieder linear un-
abhingig. Gehoren sie zur Kongruenzklasse von o, so haben wir in
(@, b,0) eine Kongruenzbasis. Andernfalls gibt es eine Normalprojek-
tion b = yua + h vonbaufa, was b — 2pua =~ b impliziert. Mit u £ 0
stellt dann (a,b,b — 2ua) eine Kongruenzbasis dar. SchlieBlich haben
wir noch den Fall 4 = 0, das heilt a | b, zu betrachten. Hier ist
(6a — b, da 4+ b,a + 6b) eine Kongruenzbasis, sobald 6 20 und
6 # + 1. Setzen wir die Existenz einer solchen Zahl § voraus, so kann
also die eingangs dieses Abschnittes gestellte Frage in positivem Sinne
beantwortet werden.

42. Die oben gemachte Zusatzbedingung iiber K, dafl eine von 0 und
+ 1 verschiedene Zahl existiere, ist auch tatsichlich notwendig fiir die
dort bewiesene Behauptung. Sie soll fortan als erfiillt betrachtet werden,
und zwar wollen wir stirker annehmen, daf3 der Koeffizientenkorper eine
von 0 verschiedene Zahl enthalte, deren Quadrat nicht gleich + 1 ser. Dann
a8t sich (III,) also ersetzen durch das dimensionsunabhéingig formu-
lierte Postulat :

Ist w nicht ~ 0, so ldBt sich jedes Element auf v normalprojizieren. (III.)

Weiter gibt es dann nach Abschnitt 23 sogar immer eine nichtausgeartete
Kongruenzbasis.

43. Innerhalb des Systems (I), (II), (IIT) kann das Postulat (I) in fol-
gender Abschwichung genommen werden :

Aus x>z, y~z folgt v~y . (L.)

Der andere Teil, die Forderung x >~ — « fiir jedes x, wird ndmlich hier
logisch abhingig. Beweis : Ist — « nicht =~ o, so folgt durch Normalpro-
jektion (A —1)x | —x von — « auf sich 0 | —z, was gerade x>~ — z be-
deutet. Mit obigem (I) erhalten wir weiter x ~ z. Dies ist auch richtig,
falls —x ~o0, dadann — x>~ — x, damit — x | o, weiter z | o,
somit x ~ xz. Wir haben so die Reflexivitdt der Kongruenz verifiziert,
und damit folgt aus obiger Transitivitdt ihr Aquivalenzcharakter. Das
bedeutet wiederum, dafl mit x ~y stets i (z + y) L 3 (x —y) und
damit —i(x+9) L 3 (x+y), was — x =~ — y liefert. Hieraus er-
gibt sich x ~ — z auch fiir den Fall — z ~o.

44. Betrachten wir wieder speziell den reellen L, und darin eine den
Postulaten (I), (II), (III) geniigende Kongruenz. Unter Voraussetzung
einer Fundamentalform @ ist nach den Bilinearitéitsgesetzen jede Nor-
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malprojektion auf ein nicht zu o kongruentes « eindeutig bestimmt. Im
Falle einer semidefiniten Form @ haben wir mit @(u,u) = 0 und
D(x, x) #0 stets D(r—Au,u)=P(x,u)=0 und O (r—Au,x — Au)=
D(x,z) #0, also = — Au | u fir beliebiges 4, so dal3 die Normal-
projektion von z auf v dann mehrdeutig ist. Die Forderung der Eindeu-
tigkeit jeder Normalprojektion auf ein nicht zu o kongruentes » wiirde
hier also u~~o0 verlangen und somit die ausgearteten Fundamentalformen
verunmoglichen. Allgemeiner fillt mit dieser Forderung nach dem hier
gegebenen Beweis die Sonderstellung des Falles @(a,b) = + 1 im Haupt-
satz des Paragraphen 4 weg. Verlangen wir also neben (I), (II) und (IIT)
auch die Eindeutigkeit der Normalprojektion, so sind dadurch im reellen
L, genau jene Kongruenzen charakterisiert, welche sich durch eine belie-
bige Fundamentalform beschreiben lassen. Dasselbe gilt, wie wir im néch-
sten Paragraphen zeigen werden, fiir einen allgemeinen L,, das heiflt fiir
einen beliebigen Koeffizientenkorper K mit den von uns verlangten
Eigenschaften.

§ 7. Normale Kongruenzen

45. Entsprechend den Betrachtungen im vorangehenden Paragraphen
definieren wir: Eiwne Kongruenz (mait zugehoriger Orthogonalitit und
Normalprojektion) heifit normal, wenn sie folgende vier Postulate erfullt :

(I) Aus z=~z, y~z folgt v ~y.
(IT.) Aus =z | y folgt stets Az | y.
(ITI.) Ist u nicht ~ o, so 1Bt sich jedes x auf u normalprojizieren.

(IV.) Die Normalprojektion von x auf ein nicht zu o kongruentes u ist
eindeutig bestimmt.

Durch das triviale Beispiel der totalen Kongruenz wird die Widerspruchs-
losigkeit dieser Aussagen belegt, und auf Grund unserer Untersuchungen
ist auch klar, da3 die Postulate lauter voneinander unabhingige Forde-
rungen darstellen.

46. Nach unseren Abmachungen setzen wir vom Koeffizientenkorper K
voraus, daf seine Charakteristik von 2 verschieden sei und daf er eine Zahl
A #£0 mit 22 % 41 enthalte. Dann gilt das Theorem, daf} eine normale
Kongruenz in einem zweidimensionalen Raum L, eine nichtausgeartete
Kongruenzbasis im Sinne des Paragraphen 4 besitzt, und also gilt der
dortige Hauptsatz, und zwar in der Verschirfung: Ist @ die einer Kon-
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gruenzbasis des L, zugeordnete Bilinearform, so folgt aus @(z, z) =
D(y,y) stets x ~y und damit aus P (x, x) = 0 stets x | y. Diese
Schliisse lassen sich jetzt fiir nichttotale Kongruenzen auch leicht um-
kehren, so daB3 der Begriff der Fundamentalform, wie er in Paragraph 5
bei reellen Koeffizienten verwendet wurde, allgemein eingefiihrt werden
kann.

47. Sei (a, b, ¢) eine nichtausgeartete Kongruenzbasis einer normalen
Kongruenz in L, und @ die ihr zugeordnete Bilinearform. In % und z neh-
men wir zwei kongruente Elemente als gegeben an, fir die @ (u, u)
# @D(z, z). Wir behaupten, daf} die Kongruenz dann total sein mu8}, also
umgekehrt, daBl bei nichttotaler Kongruenz mit x ~y auch @(x, x)
= ®(y,y) gelten mull. Ohne Einschrinkung kann @ (u,u) =a #£ 0
vorausgesetzt werden, so daf8 nach Abschnitt 29 eine nichtausgeartete
Kongruenzbasis (v, v, w) mit @(u,u) = DP(v,v) = @(w,w) = exi-
stiert. Dieser ist die Bilinearform @' = @/n zugeordnet. (u,v,z) ist
wieder eine Kongruenzbasis mit zugeordneter Bilinearform ¥. Nehmen
wir (u, v, z) nichtausgeartet an, so gilt fiir beliebiges z :

x—D(x,w)ulu, x— ¥, uwul v,
x— D (x,v)vlv , x—¥x,v)vlv.

Unter Voraussetzung, dal « nicht ~ o ist, mufl damit sowohl @’ (z,u)=
Y(z,u) alsauch @' (x,v)="¥(x,v) gelten, woraus ¥=@' ersichtlich ist.
Insbesondere erhalten wir so @(z,2) = a¥(z,2) =n = ®(u,u) im
Widerspruch zu unseren Grundvoraussetzungen. Die Zusatzannahmen
unicht ~ o und (u, v, z) nichtausgeartet vertragen sich also nicht, was
u=>~o besagt. Also stellt (u,v,0) eine Kongruenzbasis dar, welcher die
Bilinearform y zugeordnet sei. Zu einem nicht zu o kongruenten r 143t
sich dann ein s finden, so dal y(r,7) = x(s,s), also r=~s, aber
D(r,r) # D(s,s). Nach dem SchluBl von oben folgt dann der Wider-
spruch r ~ 0. Also gibt es kein solches 7: die Kongruenz ist total.

48. Das gewonnene Ergebnis 143t sich so deuten, daf3 eine bis auf Nor-
mierung eindeutig bestimmte Fundamentalform existiert. Umgekehrt
bestimmt auch im allgemeinen L, jede symmetrische Bilinearform @
durch die Definition von x o~y mittels @(x, z) = @ (y,y) eine nor-
male Kongruenz, so dafl wir folgenden Hauptsatz fiir zweidimensionale
Rdwme aussprechen konnen : Jede normale Kongruenz im (allgemeinen)
L, besitzt eine Fundamentalform, wnd umgekehrt bestimmit jede symmetri-
sche Bilinearform in L, eine normale Kongruenz, deren Fundamentalform
ste tst. Unsere normalen Kongruenzen stimmen also hier iiberein mit dem
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allgemeinen Metrikbegriff, wie er in der Theorie der linearen R#dume
mittels einer symmetrischen Bilinearform @ analytisch eingefiihrt wird
durch die Erklirung des skalaren Produktes zy = @(«, y). Sie stellen
gewissermalflen eine geometrische Motivierung dieser analytischen Defi-
nition dar, eine Motivierung, wie sie Nevanlinna in seiner Mitteilung an-
geregt hat.

49. Der obige Hauptsatz gilt auch fiir die Dimensionen 0 und 1. Ande-
rerseits induziert eine normale Kongruenz in einem L beliebiger Dimen-
sion in jedem Unterraum wieder eine normale Kongruenz. Fiir den Uber-
gang zu hoheren Dimensionen kénnen wir also sagen: Eine normale
Kongruenz im (allgemeinen) L lifit sich in jedem Unterraum L' mit
dim (L') £ 2 durch eine bis auf Normierung eindeutig bestimmte (,,lokale®)
Fundamentalform beschreiben. Es stellt sich dann im Falle dim (L)>2
die Frage, ob auch eine (,,globale”) Fundamentalform fiir den ganzen
Raum L gefunden werden kann. Sicher erfiillt auch hier eine durch Vor-
gabe einer symmetrischen Bilinearform als Fundamentalform in L er-
zeugte Kongruenz die Postulate (I), (IT), (III) und (IV), denn diese sind
ja rein zweidimensionaler Natur.

§ 8. Vollstindige normale Kongruenzen

50. Der Ubergang zu hoheren Dimensionen soll hier noch kurz fiir eine
spezielle Klasse von normalen Kongruenzen weiterdiskutiert werden ;
namlich fiir die vollstindigen Kongruenzen, welche durch die Zusatzforde-
rung (5) ausgezeichnet werden, daf} alle nicht zu o kongruenten Elemente
miteinander vergleichbar sind. Mit % nicht ~ o gibt es dann zu jedem «
ein A, sodafl x>~Au. Ist weiter y~uwu, so besteht x=~y genau dann,
wenn A% = u? Wir zeigen, dal hier die ,lokalen Fundamentalformen*
mit geeigneter Normierung zu einer ,,globalen Fundamentalform“ zu-
sammengesetzt werden konnen. Da der Fall der totalen Kongruenz evi-
dent ist, denken wir uns eine nichttotale, vollstindige normale Kongruenz
in L gegeben. u sei ein fest ausgezeichnetes, nicht zu o kongruentes Ele-
ment und L(u, ) der durch 4 und z aufgespannte Unterraum, in dem
die Kongruenz sich durch eine Fundamentalform @, mit @, (u,u) =1
beschreiben lift. Die Funktion ¢(x) = @,(x, ) in L besitzt dann die
Eigenschaft ¢(Az) = A%2¢(x) und gemiB ¢(x) = @(Au) = A% fir
x>~ Au ist ¢@(x) = @(y) édquivalent mit x ~y; und zwar stimmt
dann die Funktion @(x,y) = } {p(x + y) — ¢(x) — ¢(y)} in jedem
zweidimensionalen Unterraum notwendig mit der dort gegebenen und
geeignet normierten Fundamentalform iiberein. @ ist also in jedem zwei-
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dimensionalen Unterraum bilinear und damit besitzt ¢ die weiteren
Eigenschaften ¢(z) + ¢(y) = § {p(z + y) + ¢(z — y)} und

(x4 2y) — oz — 2y) = 2 {p(x + ) — p(x — y)}.

Diese implizieren fiir @ das noch offene Bilinearitéatsgesetz

(p(x + 2, y) = ¢(x’ y) - ¢(.’E’, y)a

namlich gemall der Berechnung

4 {(D(.’E + xlﬂ y) - ¢(xa y)} =
px+ 2 +y) +olx—y) —{p@+2 —y) +olx+y}=
3 {p@’ 4+ 2y) — (@' — 2y)} = @@’ + y) — @2’ —y) = 4D (2, y) .

@ ist also Fundamentalform der Kongruenz in L, das heillt es ist gezeigt :
Jede vollstindige normale Kongruenz in einem (allgemeinen) linearen Raum
L besitzt exne Fundamentalform.

51. Fiir die Giiltigkeit der Vollstdndigkeitseigenschaft kommt dem
zugrunde gelegten Koeffizientenkorper K wesentliche Bedeutung zu. Bei
den reellen Zahlen ist sie genau dann erfiillt, wenn alle zweidimensionalen
Fundamentalformen nicht indefinit sind. Speziell gilt sie hier fiir die
Hqilbertschen Kongruenzen, welche unter den normalen Kongruenzen
durch die Zusatzforderung (4) ausgezeichnet sind, dal z =~ o0 nur fir
x = o. Dieser Forderung ist die Verschirfung der Postulate (III) und
(IV) gleichwertig, daf} sich jedes Element auf ein % o eindeutig nor-
malprojizieren 1a(t. Hier haben wir das Endergebnis : Jede Hilbertsche
Kongruenz in einem reellen Raum L besitzt exne definite Fundamentalform,
und wmgekehrt bestimmt jede definite Bilinearform in L eine Hilbertsche
Kongruenz, deren Fundamentalform sie ist. Die Einfithrung einer Hilbert-
schen Kongruenz in unserem Sinne ist also mit der iblichen Metrik-
einfithrung in der Theorie der reellen Hilbertschen Rdume beliebiger (end-
licher oder unendlicher) Dimension gleichwertig. Diese kann geometrisch
motiviert und charakterisiert werden durch unsere Postulate, welche hier
nochmals zusammengestellt seien :

(I) Aus z~=z, y~=z folgt x ~y.
(II) Aus =z | y folgt stets Az | y.

(II1*) Ist u # o, so laBt sich jedes z eindeutig auf » normalproji-
zieren.

(Eingegangen den 29. Juli 1954.)
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