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Ûber die Einfûhrimg des Kongruenzbegriffes
in der Théorie der linearen Raume

von Walter Senft, Zurich

Einleitung

Wenn wir von einem linearen Raum sagen, er sei mit einer Metrik ver-
sehen, so meinen wir damit, daB dem Raum neben der linearen Grund-
struktur eine weitere Struktur aufgepràgt sei, welehe zum mindesten eine

Einteilung der Raumelemente in disjunkte Klassen von Elementen
.,gleicher Lange" enthàlt. Dieser Einteilung entspricht eine Âquivalenz-
relation, welehe wir in Anlehnung an die Elementargeometrie Kongruenz
nennen. In der vorliegenden Arbeit soll ein Beitrag zur Analyse des

Metrikbegriffes in der Théorie der linearen Raume gegeben werden, und
zwar eine von der erwàhnten Kongruenzbeziehung ausgehende geometri-
sche Analyse unterhalb des Niveaus einer Lângenmessung durch Zahlen
(Norme).

Ein erstes Studium gilt den Hilbertschen Kongruenzaxiomen der
Géométrie1), deren Inhalte als môgliche Relationseigenschaften im reellen
Raum beliebiger Dimension motiviert und diskutiert werden. Die be-
kannte Tatsache, daB die vom Kongruenzbegrifï freie affine Géométrie
endlicher Dimension bereits ein monomorphes (logisch vollstàndiges)
System darstellt, legt nàmlich den Standpunkt nahe, daB die Kongruenz
nicht als neue, axiomatisch zu beschreibende Grundrelation aufgefaBt
werden soll, sondern daB sie innerhalb des affinen Systems zu definieren
oder konstruieren sei2). Die charakteristischen Eigenschaften sind dann
als Postulate zu werten, und es stellt sich die Frage, was fur Festlegungen
der Kongruenz die Giiltigkeit dieser Postulate gewàhrleisten.

Die weiteren Betrachtungen unserer Arbeit gelten vor allem dem Pro-
blem, jene Metriken durch einfache Kongruenzeigenschaften geometrisch
zu charakterisieren, welehe sich durch eine beliebige symmetrische Bi-
linearform als sogenannte metrische Fundamentalform beschreiben oder

J) D. Hilbert, Grundlagen der Géométrie, 7. Aufl. 1930.
2) Vgl. jR. Nevanlinna, Ûber metrische lineare Raume I, Ann. Acad. sei. Fenn.,

Série A, I 108, 1952.
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definieren lassen. Wir zeigen, daB eine einfache Orthogonalstruktur im
zweidimensionalen Raum iiber einem allgemeinen Koeffizientenkôrper
auf den Begriff der Fundamentalform fuhrt und geben schlieBlieh ein
knappes System von Postulaten, welches die erwâhnte Klasse von Kon-
gruenzen in dieser Dimension eindeutig bestimmt. Der letzte Paragraph
ist der Ûbertragung der Ergebnisse auf hôhere Dimensionen gewidmet,
wobei dièse Erweiterung in speziellen Fâllen vollstàndig durehgefuhrt
wird.

Meinem verehrten Lehrer, Mitglied der Finnischen Akademie, Herrn
Professor Dr. R. Nevanlinna, môchte ich an dieser Stelle meinen herz-
lichen Dank aussprechen fur die Anregung der Arbeit und das rege
Interesse, durch das er ihre Entstehung stets fôrderte.

§ 1. Die Hilbertschen Postulate der Streckenkongruenz

1. Der klassische axiomatische Aufbau der affinen Géométrie ent-
wickelt aus einem geometrischen Grundsystem (System mit Inzidenz-
und Anordnungsstruktur) eine lineare Algebra, deren Elemente, die so-
genannten Vektoren, durch Klassenbildung an Hand der Parallelver-
schiebung von geriehteten Strecken (geordneten Punktepaaren) gewon-
nen werden. Dièse Opération der Parallelversehiebung stellt die natur-
liche Streckenvergleichung der affinen Géométrie dar ; sie zu erweitern
ist die Absieht, welche der Einfiïhrung des Kongruenzbegriffes zugrunde
liegt. Es ist daher vernûnftig, die Parallelversehiebung dadurch in die

Kongruenzrelation einzubeziehen, daB dièse als Relation zwischen den
Vektoren beschrieben wird. Der Ùbergang zur Streckenkongruenz im
Hilbertschen Sinne wird dadurch ermôglicht, daB jeder Vektor x seinem
inversen Elément — x kongruent erklârt wird. Verlangt man zudem die

Giiltigkeit des transitiven Gesetzes in der Form des Hilbertschen Axioms
III.2, so ist der Âquivalenzcharakter der Kongruenz und damit eine

eindeutige Einteilung aller Elemente in disjunkte Kongruenzklassen ge-
geben. Wir werden die hier motivierten Eigenschaften in den Unter-
suchungen dieser Arbeit stets voraussetzen und deshalb als Grundpostu-
lat festlegen.

2. Sei L ein linearer Raum von Elementen a, b,... liber dem Kôrper
der reellen Zahlen &,/$,... x ^ y symbolisiere die Beziehung der

Kongruenz zwischen x und y, genauer gesagt die Tatsache, daB das Elément
x dem Elément y als kongruent zugeordnet ist. GemaB den Bemerkungen
der Einleitung wollen wir dièse Relation durch Postulate charakterisie-
ren und dann nach den zulâssigen Definitionsmôglichkeiten fragen. Als
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Mindestforderung verlangen wir dabei nach Abschnitt 1 das Grund-
postulat :

Aus x ^2, y^z folgt x^y und fur jedes x gilt #^ — x. (I)

Al s weitere Postulate sollen in diesem Paragraphen jene Eigenschaften
studiert werden, welche Hilbert zur axiomatischen Pestlegung der
Streckenkongruenz benutzt hat, und zwar sollen sie schrittweise einge-
fuhrt und in ihrer Wirkung diskutiert werden.

3. Postulat (I) ist offenbar erfullt, wenn wir die Kongruenz in L da-
durch definieren, da8 wir x ^ y mit x ± y gleichsetzen. Dièse der
natiirlichen Streckenvergleichung (Parallelverschiebung) in der affinen
Géométrie entsprechende Kongruenz soll als affine Kongruenz in L be-
zeichnet werden. Sie erfullt auch folgendes weitere Postulat, welches
dem Hilbertschen Axiom III.3 der ,,Addierbarkeit von Strecken" ent-
spricht und welches den linearen Zusammenhang zwischen den Kon-
gruenzklassen der affinen Kongruenz als allgemeingultig erklârt :

Fur jeden Koeffizienten X folgt aus x ^ y stets Xx ^ Xy. (2)

Zusammen mit (I) liefert (2) aus x ^ y fur | X | — | /u | stets Xx ^ /uy,
wie dies in Nevanlinnas Mitteilung3) postuliert ist. Die dièse Eigensehaft
erfullenden Âquivalenzrelationen werden dort folgendermaBen um-
schrieben. Man kann von der affinen Kongruenz ausgehend die Menge
der Kongruenzklassen einsehrânken, indem man unter Berûcksichtigung
von (2), sonst aber willkurlich, gewisse elementenfremde Mengen von
Kongruenzklassen zu neuen, weiteren Kongruenzklassen zusammenfaBt.
Es wird so ofïenbar, daB die Postulate (I) und (2) noeh eine unûbersicht-
liehe Mannigfaltigkeit von Môglichkeiten der Kongruenzdefinition zu-
lassen4).

4. In Verallgemeinerung der affinen Strecken- bzw. Vektorvergleichung
(Parallelitât) definieren wir zwei Elemente x und y bezûglich einer be-
stimmten Kongruenz in L als vergleichbar, in Zeichen x c^. y, wenn eine
Zahl X ^ 0 derart existiert, daB x ^ Xy. Unter Voraussetzung von
(I) und (2) ist dièse Relation der Vergleichbariceit eine Âquivalenz. Sie

erzeugt also dann eine Einteilung der Elemente in disjunkte Vergleichs-

3) Siehe Anmerkung 2, S. 73. Dièse Arbeit wird im folgenden immer kurz als Mitteilung
von Nevanlinna zitiert.

*) Man ersieht dies schon in einer Dimension. Zum Beispiel sind die Postulate im Raum
L(e), e ^ o, erfullt, wenn wir mit einer beliebigen festen Zahl ô > 0 festsetzen, daÛ
ae £ fie genau dann besteht, wenn | a | ôv | fi \, wo v irgendeine ganze Zahl sein kann.
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klassen. Eme dieser Klassen besteht aus allen zu o kongruenten Ele-
menten, die ubrigen enthalten mit einem Elément x auch aile von o ver-
schiedenen Elemente des von x erzeugten linearen Raumes L(x). In der
affinen Kongruenz stimmen die Vergleichsklassen bis auf die mit L{o)
identisehe direkt mit den um o verminderten eindimensionalen Unter-
raumen uberein. Wir wollen dièse affinen Vergleichsklassen mit V (x) be-
zeichnen, wobei in x zugleich ein Klassenelement als Erzeugendes aus-
gezeichnet sei.

5. Die in Abschnitt 3 gemachte Andeutung uber die allgememe Fest-
setzung einer die Postulate (I) und (2) erfullenden Kongruenz kann nun
in folgender praziseren Form gegeben werden. Man teile die affinen
Vergleichsklassen V(x) willkurlich in elementenfremde Mengen ein und ver-
einige sie innerhalb jeder dieser Mengen zu je emer neuen, weiteren
Vergleichsklasse, indem man ihre - auch willkurlich ausgezeichneten - Er-
zeugenden je als kongruent erklart. In der das Nullelement enthaltenden
Vergleichsklasse ist dann die Kongruenz eindeutig festgelegt, dasselbe

gilt fur jede andere der neuen Klassen, sobald wir in einer der hierin ver-
einigten affinen Vergleichsklassen die Kongruenz festgelegt haben. Es
bleibt uns also noch, zu jeder neuen Vergleichsklasse, welche o nicht ent-
hâlt, eine in ihr enthaltene affine Klasse auszusondern und dann nach
Belieben eine (I) und (2) erfullende Kongruenz festzulegen 5).

6. Die oben eingefuhrte Vergleichbarkeitsrelation enthalt noch kemen
Anhaltspunkt fur Vergleichbarkeit im Sinne einer GroBenanordnung,
sofern sie auf einer Kongruenz aufgebaut ist, die lediglich durch die
Eigenschaften (I) und (2) charakterisiert wird. Will man die Kongruenz
in dieser Richtung prazisieren, das heiBt in der Richtung, daB die Kon-
gruenzklassen innerhalb emer Vergleichsklasse sinnvoll linear angeordnet
werden, so wird man naheliegenderweise verlangen, daB die naturliche
affine Vergleichbarkeit in einer Dimension erhalten bleibt, das heiBt daB
die Kongruenz in jedem eindimensionalen Unterraum eine affine
Kongruenz induziert. Dies ist die Hilbertsche Forderung der ,,Eindeutigkeit
der Streckenabtragung" 6). Man kann sie auch etwas schwacher fassen,
ohne die gegebene Motivierung zu zerstoren, namlich indem man sie nur
auf nicht zu o kongruente Elemente anwendet. Das bedeutet, daB man
neben den eindimensionalen Unterrâumen mit affiner Kongruenz noch

5) Hier kommen noch die verschiedenen Moglichkeiten in einer Dimension zur Geltung;
vgl. Anmerkung 4, S. 75.

6) Bei Hilbert mittels der Axiome der Wmkelkongruenz mdirekt emgefuhrt.
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solche mit totaler Kongruenz zulâBt, bei der aile Elemente zueinander
kongruent sind. Dièse Abschwâchung kann so postuliert werden :

Aus x ^ Xx folgt mit 1^ ±1 stets x ^ o. (3)

Die zuerst genannte stârkere Fassung wiïrde hier x o verlangen, was
mit folgendem Zusatzpostulat erreicht wird :

Aus x ^ o folgt x o. (4)

Durch (3) werden die Môglichkeiten der Kongruenzdefinition dahin ein-
geschrànkt, daB bei der Erzeugungsmethode von Abschnitt 5 durch die
Vereinigung affiner Vergleichsklassen V(x) zu weiteren Klassen einer-
seits und durch die Auswahl der Erzeugenden aller V(x) andererseits
schon ailes eindeutig festgelegt ist. Nimmt man noch (4) dazu, so muB
V(o) bei der Vereinigung gesondert belassen werden.

7. Sei F eine von V (o) verschiedene Vergleichsklasse der durch die
gegebenen Postulate charakterisierten Kongruenz in L, das heiBt die
Menge aller mit einem Elément e^o vergleichbaren x. Zu jedem sol-
chen x existiert ein X ^ 0, so daB x ^ Xe und damit auch x ^ — Xe.
Also gibt es spezieller ein f>0 mit x^.Çe, und zwar ist dièses |
eindeutig bestimmt. Indem wir \ x \ f setzen, haben wir in V eine Metrih
eingefûhrt in dem Sinne, dafl jedem x eine positive Norm \ x \ zugeordnet
ist. Dièse Metrik spiegelt die Kongruenz dadurch wider, daB x ^ y in
F mit | x | | y \ gleichwertig ist. Jede von V(o) verschiedene Klasse
F kann in dieser Weise unter Auszeichnung je eines Eichelementes c

mit einer die Kongruenz beschreibenden Metrik (Norm) versehen werden.
Setzen wir schlieBlich noch zusàtzlich | o \ 0 fest, so haben wir den

ganzen Raum L metrisiert, und zwar implizieren die zugrunde gelegten
Kongruenzeigenschaften folgende Normeigenschaften :

Fur x ^ o gilt | x | > 0. (a)

Fur jedes x und jede Zahl X gilt |A«| |A||x|. (b)

Der Zusammenhang mit der Kongruenz ist der, daB allgemein x ^ y
genau dann gilt, wenn sowohl x ~y als auch | x | | y \ erfullt sind,
das heiBt die Normgleichheit ist notwendig und auch hinreichend, sofern die
Elemente ûberhaupt vergleichbar sind. Dièse Betrachtungen lassen sich
auch auf Kongruenzen iibertragen, bei denen (4) nicht erfullt ist. Man
hat dann aber aile x ç^ o mit der Norm | x \ 0 auszustatten, wo-
durch (a) hinfàllig wird.
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8. Wir betrachten jetzt umgekehrt eine Metrik mit den Eigenschaften
(a) und (b) im kongruenzfreien L gegeben und denken uns weiter die
affinen Vergleichsklassen V(x) irgendwie, aber unter Isolierung von
V(o), in disjunkte Mengen eingeteilt und innerhalb dieser Mengen je zu
einer Vergleichsklasse zusammengefaBt. Die Kongruenz, die wir dann
dadurch definieren, daB x ^ y sowohl x ~y als auch | x | | y \ be-
deutet, erfûllt aile bisher gegebenen Postulate. Also ist dies wiederum
eine allgemeine Definitionsmôgliehkeit der durch dièse Eigenschaften
charakterisierten Kongruenz. Wird wiederum (4) nicht verlangt, so haben
wir nur das Normpostulat (b) vorauszusetzen. Weiter muB dann aber
V (o) — statt isoliert zu bleiben - derart mit andern affinen Klassen ver-
einigt werden, daB | x | 0 und x ~o stets gemeinsam auftreten.

9. Wir kônnen bei obiger Erzeugung der Kongruenz durch eine Metrik
speziell auch x ^ y nur mit | x \ \ y | gleichsetzen, was bedeutet,
daB wir aile von o verschiedenen Elemente als vergleichbar betrachten
wollen. Dièse Forderung der vollstândigen Vergleichbarlceit entspricht der
Einfuhrung des Hilbertschen Axioms III. 1 von der ,,Môglichkeit der
Streckenabtragung". Wir wollen sie in folgender Abschwâchung postu-
lieren, wobei die voile Form durch (4) sofort wieder gewâhrleistet wird :

Ist e nicht ^ o, so existiert zu jedem x eine Zahl f, so daB x ^ fe. (5)

Die Kongruenzen mit den Eigenschaften (I), (2), (3), (4) und (5) ent-
sprechen den Metriken mit den Eigenschaften (a) und (b) in der angege-
benen Weise eineindeutig : Wir haben tîbereinstimmung des Kongruenz-
begrifïes mit demjenigen der Normgleichheit in ganz L. Bei Ausschal-

tung der Forderung (5) tritt die Môglichkeit der Unterteilung des Raumes
in mehr als zwei Vergleichsklassen hinzu, wâhrend mit (4) die Norm-
eigenschaft (a) wegfàllt. Dièse Verallgemeinerungen werden in den spàte-
ren Untersuchungen auftreten, indem dann namlich bei andersartigen
Voraussetzungen die Eigenschaften (2) und (3) bewiesen werden, wàh-
rend die Zusâtze (4) und (5) nicht erfullt zu sein brauchen 7).

10. Ist man einmal zur Normzuordnung mit den Eigenschaften (a) und
(b) gelangt, so liegt die Frage nahe, welche zusàtzliche Kongruenzeigen-
schaft der Spe^ialisierung zu einer jBanocAschen Metrik, das heiBt einer
Metrik mit Giiltigkeit der Dreiecksungleichung |# + y|^|#| + |y|>
entspreche. Man kann dièse Forderung wie leicht ersichtlich so fassen,
daB die Eichflâche (Einheitskugel) der Metrik konvex sein muB, das heiBt

7) Vgl. zum Beispiel die Abschnitte 14 und 22.
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daB mit | x \ | y | n fur jedes A im Intervall 0 ^ A ^ 1 gilt
\ Kx + (l — k)y \ ^7t. Dièse Bedingung ist notwendig und hinreichend
fur die Giiltigkeit der Dreiecksungleichung, und zwar auch ohne (a), also
ohne (4). Auf die Kongruenz ûbertragen ergibt sich so folgendes „Postulat

fiir die jBanacA-Struktur" :

Gilt x ^ y und ist 0 ^ à ^ 1, so existiert eine Zahl a mit 0 < a < 1

derart, daB èx -f- (1 — è)y g^. ax ist. (6)

§ 2. Zur Einîuhrung der Winkelkongruenz

11. Die Winkelkongruenz, welche bei Hilbert wiederum axiomatisch
beschrieben wird, kann bekanntlich mittels einer Définition auf der
Strecken- oder Vektorkongruenz aufgebaut werden, sofern dièse mit ge-
eigneten Eigenschaften versehen ist8). Wir wollen jetzt nach solchen

Eigenschaften fragen, und zwar ausgehend von einer Kongruenz, welche

lediglich das Orundpostulat (I) des letzten Paragraphen aufweisen soll.
Wâhrend dièse allgemeine Kongruenz vorher in der Richtung speziali-
siert wurde, daB eine Vergleichbarkeit im Sinne einer Metrik zustande
kam, wird jetzt also die sinnvolle Einfùhrung der Winkelkongruenz an-
gestrebt. Entsprechend der elementargeometrischen Définition berufen
wir uns dabei auf folgenden Winkelbegriff. Wir sagen, daB zwei von o

verschiedene Elemente x und y einen Winkel [x,y] bilden, und zwar
sollen zwei Winkel [x,y] und [xf,yf] genau dann als gleich betraehtet
werden, wenn mit zwei positiven Zahlen X und[i gilt x' Àx, y' pty 9).

Weiter wollen wir unter Bezugnahme auf die zugrunde gelegte
Kongruenz zwei Winkel [x, y] und [x'', yf] vergleichbar nennen, in Zeichen
[x, y] ~ [x', y'], wenn sowohl x o^. x! als auch y c^y1 gilt, was sinn-
voll ist, da mit [x,y]= [xf,yl] sicher auch [x, y] ~ [xr, yf] richtigist.

12. Wie bei der Kongruenz der Raumelemente soll fiir die Kongruenz
der Winkel die Vergleichbarkeit notwendige Bedingung sein. Um noch
festzusetzen, wann mit [x, y] ~ [xf, yf] stàrker [x, y] ^ [xr, y'~\ gilt,
lassen wir uns von der iiblichen Méthode leiten, daB wir anschaulich
ausgedruckt entsprechende Winkel in Dreiecken mit paarweise kon-
gruenten Seiten als kongruent erklâren ; nâmlich mit x ^ axr, y ^ fi y1

(a>o,jS>o) soll [x, y] ^ [xf, yf] genau x — y ^ axf — fi y' bedeu-

8) Ein von B. L. Moore starnmendes System von Kongraenzaxiomen, welches die
Streckenkongruenz allein als Grundrelation betraehtet, findet sich in den Grundlagen der
Mathematik von Hilbert-Bernays, Bd. II, S. 38.

9) Es handelt sich also um orientierte Winkel.
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ten. Hierbei ist nun aber zu beachten, da8 a, /? auf Grund von (I) nicht
eindeutig bestimmt sind. Damit die gegebene Définition die Winkelkon-
gruenz eindeutig festlegt, miissen wir mindestens verlangen, daB

x — y ^ ocx' — {}yf, falls dies fur ein Paar von positiven GrôBen oc, fi
mit x ^ ocx', y ^ $y' gilt, fur aile solche Paare richtig ist. Insbeson-
dere bedeutet dies die Giiltigkeit des folgenden Postulâtes :

Aus x^ Xx, y ^ juy folgt fur X/u>Q stets x — y ^ Xx — /uy (A)

Dies liefert aber aueh sofort die erwâhnte allgemeinere Bedingung : Sei

a', /$' ein Zahlenpaar derselben Eigenschaften wie das oben betrachtete
Paar a, (î ; dann gilt oc' x' ^.ocx' und /5'y' ^ f}yf und es folgt daraus
nach (A) - mit oc Xa', /S /*/?' gesetzt und auf die Elemente oc'x'

und fî'y' angewandt - a x' — $' y' ^ ocx' — fiy1. Bei Giiltigkeit von
(A) ist also das Kriterium x — y ^ ocx' — fiy' von der Auswahl des

Paares oc, f} unabhàngig.

13. Eine weitere Schwierigkeit fur die gegebene Définition der Winkel-
kongruenz stellt die Gleichheit [Xx, juy] [x,y] fur beliebige positive
Zahlen X, ju, dar. Unsere Définition ist aueh erst dann sinnvoll, wenn mit
[x, y] ^ [%f, y'] stets [Xx, jbty] ^ [xf, y'] gilt. Insbesondere bedeutet
dies die Giiltigkeit des folgenden spezielleren Postulâtes, aus dem aber
wieder die allgemeine Forderung als erfiillt nachgewiesen werden kann :

Aus x ^ xr, y g^yf und x — y ^ x' — y' folgt fur beliebige positive

Zahlen X stets Xx — y ^. Xx' — y'. (B)

Dièse Eigenschaft der Vektor- bzw. Streckenkongruenz entspricht dem

Axiom, welehes bei R. L. Moore10) im wesentliehen die Hilbertschen
Axiome III.4 und III. 5 der Winkelkongruenz ersetzt.

14. Indem wir das Nullelement bei der Erzeugung von Winkeln aus-
geschlossen haben, benôtigen wir Postulat (B) bei der obigen Motivie-

rung eigentlich nur fiir von o verschiedene Elemente. DaB wir o aueh

zulassen, liefert gerade die Giiltigkeit des Postulâtes (2) im letzten Para-
graphen, das wir so aueh wiederum anerkennen wollen. Wegen (I) làBt
sieh (B) dahin verallgemeinern, daB aus x ^ x', y ^y' und x — y

^ x' — y' stets Xx — juy ^ Xx' — juy' folgt. Mit x' y und y' x
gesetzt zeigt sich, daB x ^ y wiederum fiir beliebige Koeffizienten oc, /?

stets ax -{- fiy ^ px -\- ocy induziert. Damit làBt sich leicht das friihere
Postulat (3) nachweisen, welehes aus x ^ Xx mit X ^ ± 1 auf
x ^ o schlieBt : x ^ X x liefert nach dem gegebenen Theorem

10) Siehe Anmerkung 8, S. 79.
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(<x + pX)z£*(p + otA)z, das heiBt mit oc= — /SA und /S ^ 0 gewàhlt
/?(1 — X2)x^±o, was wegen i^ ±1 auch x^.o bedeutet. Das
,,Winkelkongruenzpostulat" (B) liefert also seinerseits eine Vergleichbar-
keit der Elemente, wie sie im Abschnitt 6 gefordert wurde.

15. Auf Grund von (I), (A) und (B) stellt die definierte Winkelkon-
gruenz eine eindeutig festgelegte Âquivalenzrelation zwischen den als
Winkel eingefûhrten Objekten dar. Weiter bemerkt man, daB (A) bei
Voraussetzung der Eigenschaften (3) und (4) des letzten Paragraphen
siehergestellt ist, wobei (3) nach oben aus (B) folgt. Die Postulate (/),
(B), (4) und (5) sind also mit den Hilbertschen Forderungen III. 1-5
gleichwertig11) und kônnen deshalb als System der Hilbertschen Kon-
gruenzeigenschaften bezeichnet werden. Dièses System gewàhrleistet neben
der eindeutigen und vollstândigen Vergleichbarkeit im Sinne des letzten
Paragraphen die hier vorgezeichnete Einfuhrung der Winkelkongruenz,
und zwar ist es durch dièse beiden Gesichtspunkte vollstândig motiviert.
LâBt man die Forderung (4) fallen, so braucht (A) nicht erfùllt zu sein,
womit die Winkelkongruenz nicht in der gegebenen Weise festgelegt
werden kann. Dièse Schwierigkeit wird dadurch umgangen, daB man aile
zu o kongruenten Elemente bei der Erzeugung von Winkeln ausschlieBt

(verallgemeinerte Winkeldefinition) ; fur nicht zu o kongruente x, y folgt
(A) aus (3) und damit aus (B).

§ 3. Orthogonalitât

16. Ein Winkel [x, y] heiBt gemâB der elementargeometrischen
Définition recht, wenn [x, y] g^ [x, —y], also x — y x -\- y. Die beiden
den Winkel erzeugenden Elemente werden dann orthogonal zueinander

genannt. Bei der Spezialisierung der allgemeinen Kongruenzen in Rich-
tung der Einfuhrung einer Winkelkongruenz kann man auch vorerst nur
die Orthogonalitât ins Auge fassen und eine spezielle Orthogonalstruktur
der Kongruenz verlangen. Dazu legen wir folgende von der Winkelkongruenz

unabhângige Définition der Orthogonalitât zugrunde : x heiflt zu y
orthogonal, in Zeichen x _[_ y, wenn x — y ^ x + y. Damit ist dièse

Relation auch unabhângig von jedem Kongruenzpostulat erklârt. Unter
Voraussetzung von (I) ist sie symmetrisch, was die Ausdrucksweise

,,orthogonal zueinander" gestattet.

17. Als spezielle Orthogonalstruktur wird man naheliegenderweise und
der Winkeldefinition entsprechend die Ûbertragbarkeit des Orthogona-

n) (I) entspricht III.2, (4) und (5) entsprechen III. 1, (B) ersetzt III.4 und III.5 und
liefert (3), welches III.3 entspricht.
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litâtsbegriffes auf die Geraden (eindimensionalen Unterràume) anstre-
ben in dem Sinne, daB mit x JL y auch L(x) ±_ L(y) definiert werden
kann. Dazu muB wegen L(x) L(Kx) fur jedes A ^ 0 mindestens ver-
langt werden, daB mit x J_ y auch Xx J_ y erfûllt ist. Indem wir (I) so-
wieso als gegeben betraehten, brauchen wir A 0 nicht auszuschlieBen,
wodurch folgendes Postulat der Orthogonalitât gegeben ist :

Aus x JL y folgt fur beliebige Koeffizienten A stets Xx _L y* (II)

Wegen der Symmetrie der Relation gilt mit x _L y sofort allgemeiner
kx J_ fiy, was fur die oben erwàhnte Ûbertragbarkeit der Orthogonalitât
auf Geraden auch hinreichend ist.

18. Nevanlinna verweist in seiner Mitteilung darauf, daB man ,,in der
Richtung der euklidischen Géométrie" schon sehr weit kommt, wenn man
an Stelle der Forderung (B) des letzten Paragraphen das ,,bedeutend
weniger einsehrânkende" Postulat zugrunde legt, welches in Abschnitt 14

von (B) abgeleitet wurde und aus x ^ y fur beliebige Zahlen oc, /? auf
olx + Py ^ jSœ + <*y schlieBt12). Hierin ist insbesondere das Postulat (2)
des ersten Paragraphen sowie nach Abschnitt 14 auch Postulat (3) enthal-
ten. Weiter làBt sich auf dieser Grundlage leicht die Gliltigkeit von (II)
nachweisen: x\_y bedeutet x — y^.x-\-y, woraus (oc-{-p)x — (oc — $)y^,
(a + fi)x + (a — fl)y folgt, das heiBt mit A a + 0, /j, ol — p
gesetzt Xx±_/Lty. Umgekehrt ist das Postulat von Nevanlinna
aber auch eine Folge von (I) und (II) : x ^ y liefert \ (x + y)

l|(ai- y), und daraus folgt A (x + y) J_ ju (x — y), was mit oc A — ju

fi — x + /a gesetzt ocx + (3y ^ fix + ocy bedeutet. Die von Nevanlinna
ins Auge gefaBte Abschwâchung der Forderung (B) entspricht also -
unter stàndiger Voraussetzung von (I) - genau unserer Ersetzung des

,,Winkelkongruenzpostulates" durch das ,,Orthogonalitàtspostulat". Also
sind mit (I) und (II) auch (2) und (3) erftillt.

19. Die Forderungen (I) und (II) sind auch sinnvoll, wenn wir die bis-
herige Beschrânkung auf die reellen Zahlen als Koeffizientenbereich des

linearen Raumes L aufheben. In diesem Sinn wollen wir denn unseren
Betrachtungen jetzt einen weiteren Rahmen geben. Jedoch verlangen wir
stets, daB die skalaren GrôBen, welche zur Multiplikation mit den Raum-
elementen zugelassen werden, einen Koeffizientenkôrper K mit von 2 ver-
schiedener Charahteristih bilden. Dann laBt sich Eigenschaft (3) in der ge-
zeigten Art aus (I) und (II) folgern, was bedeutet, daB in einem eindimen-

12) Die einschrânkende Wirkung von (B) gegenûber diesem Postulat ist allerdings sehr
geringfûgig, was im folgenden gezeigt wird. Vgl. die Absehnitte 20 und 35.
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sionalen Raum die Kongruenz entweder affin oder total sein mufi. Umge-
kehrt sind bei diesen beiden Definitionen - x ^ y genau fur y ± x
bzw. x ^ y fur aile Elemente - die Forderungen (I) und (II) erfùllt, und
zwar gilt dies fur beliebige Dimensionen. Bei den hôheren Dimensionen
lâBt sich das Beispiel der affinen Kongruenz dahin variieren, daB man ein
beliebiges a ^ o auszeichnet und zusâtzlich verlangt, daB im Unter-
raum L(a) die induzierte Kongruenz total sei. Man hat dann also x ^ y
fur y — ± x stets erfullt und zusâtzlich aueh stets dann und nur noch
dann, wenn x und y in L(a) liegen. Bei dieser affinen Kongruenz mit Aus-
artung in L(a) sind die Postulate (I) und (II) wiederum erfullt.

20. Eine Kongruenz mit den charakteristischen Eigenschaften (I) und
(II) induziert in jedem Unterraum des betrachteten Raumes L eine eben-
solehe Kongruenz. Wir kônnen also zuerst die Definitionsmôglichkeiten in
Raumen kleiner Dimension studieren und daraus gewisse Schlusse auf den
allgemeinen Fall ziehen. In der Dimension 1 beschrânken sich die
Definitionsmôglichkeiten wie gezeigt auf die affine und die totale Kongruenz,
welche im O-dimensionalen Fall in trivialer Weise zusammenfallen. Fur
einen zweidimensionalen Raum L2 haben wir als weitere Môglichkeiten die
affinen Kongruenzen mit Ausartung gefunden.

Um hier zu neuen Beispielen zu kommen, muB man annehmen, daB
zwei linear unabhângige Elemente a und 6 kongruent sind, daB also eine

kongruente Basis a, 6 des L2 existiert. Jedes Elément x von L2 kann ein-
deutig dargestellt werden in Form x aa + f3b und das Elément
x' (ïa + ocb ist ihm dann als kongruent zugeordnet. Setzt man als

Définition fest, daB x ^ y genau dann besteht, wenn entweder y ± x
oder aber y ± x\ so lassen sich die zur Diskussion stehenden zwei
Postulate wiederum verifizieren. Das trifft auch dann zu, wenn man dièse

Définition dahin abândert, daB man zusâtzlich in einem der beiden Unter-
râume L{a ± 6) — wo x' mit i x zusammenfâllt - die induzierte
Kongruenz als total erklàrt, also zum Beispiel x ^ y auBerhalb L(a — 6)

mit dem Bestehen einer der Relationen y ± x, y ± x' gleich-
setzt, in L{a — b) aber stets als richtig betrachtet. Dièses letzterwâhnte
Beispiel ist insofern von besonderem Interesse, als hier zum erstenmal nur
(II) und nicht auch (B) gultig ist. Aus a ^b und a — 6 ^.o folgt nàm-
lich bei Anwendung von (B) (X — 1) a + b ^ Xb, mit A 2 also
a + b ^ 26 im Widerspruch zu unseren Festsetzungen. (B) ist also tat-
sâchlich eine Einschrànkung gegenûber (II).

21. Wollen wir die Aufzâhlung der Kongruenzen mit den Eigenschaften
(I) und (II) in einem Raum L2 fortsetzen, so tritt als neue Môglichkeit
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diejenige auf, bei der eine kongruente Basis a, b derart existiert, daB es
zudem ein von ± a sowie von ± b verschiedenes Elément derselben
Kongruenzklasse gibt. Mit dieser Existenzforderung schlieBen wir die im
letzten Abschnitt beschriebenen singulâren Fâlle aus ; wir wollen sie denn
auch beim weiteren Studium im nâchsten Paragraphen direkt zum Postulat

erheben. Es zeigt sich dann nâmlich bald, da8 damit die Struktur der
Kongruenz schon wesentlich pràzisiert wird in Richtung auf die Euklid-
sche Géométrie hin. Dies gilt allerdings nur fur den zweidimensionalen
Raum, auf den die Zusatzforderung ja auch zugesehnitten ist, und es

stellt sich die Frage, wie eine entsprechende Einsehrânkung in hôheren
Dimensionen vorzunehmen ist, wo die Mannigfaltigkeit der singulâren
Fâlle noch weit umfangreicher sein wird. Im Zusammenhang mit dieser

Frage wird es wiinschenswert sein, das erwâhnte Existenzpostulat zu
einer dimensionsunabhàngigen Forderung umzuformulieren derart, daB
im allgemeinen Fall fur die in einem zweidimensionalen Unterraum indu-
zierte Kongruenz die Gultigkeit der gegebenen Existenzaussage zutrifft.

§ 4. Analyse des Orthogonalitâtspostulates im L2

22. Wie in den Abschnitten 20 und 21, betrachten wir in diesem
Paragraphen einen zweidimensionalen Raum L2 ûber einem allgemeinen Koeffi-
zientenkôrper K mit von 2 verschiedener Charakteristik. In diesem Raum
soll eine Kongruenz mit zugehôriger Orthogonalitât analysiert werden, welche

die Grundeigenschaft (I) und die Orihogonalstruktur (II) aufweise. Um die
bereits diskutierten singulâren Fâlle auszuschlieBen, fordern wir als fur
den zweidimensionalen Raum zugeschnittenes Zusatzpostulat :

Es existiert eine Kongruenzbasis des L2. (HI2)

Darunter verstehen wir die geordnete Menge (a,b, c) dreier kon-
gruenter Elemente von der Art, daB a, b eine lineare Basis des L2 bil-
den und c von ±a sowie von ±6 verschieden ist. Durch das triviale Bei-
spiel der totalen Kongruenz in L2 wird die Widerspruchslosigkeit der
Forderungen (I), (II), (III2) belegt. Auf Grund unserer bisherigen
Ausfuhrungen erkennt man auch, daB jede der drei Aussagen von den
ubrigen unabhângig ist. Weiter ist das Postulat (II) gemâB Abschnitt 18

gleichwertig damit, daB aus x ^ y stets Xx -\- juy ^ jux -}- Xy folgt ;

in dieser Form, welche wir den Vertauschungssatz nennen wollen, wird
es im folgenden zumeist angewandt. SchlieBlich erinnern wir daran,
daB durch (I) und (II) auch die frûheren Postulate (2) und (3) impliziert
sind.
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23. Sei (a,b,c) eine ausgeartete Kongruenzbasis, was bedeute, daB
ihre Elemente nicht paarweise linear unabhângig sind. Wegen (2) und
(3) gilt dann a ^.b ^.o, also auch stets Aa^fr, und der Vertau-

vAvx Ax

Abbildung: Der Vertauschungssatz {x ^1 y) -> {Xx + py ^à px -f At/).

schungssatz liefert daraus ôXa + /?& ^^Aa + àb, Das zeigt, daB mit oc fi
y à stets aa -\- fib ^.ya -\- àb gilt, ein Résultat, auf das wir spâter

zurûckgreifen. Hier schlieBen wir noch die Feststellung an, daB die mit
einem A ^ 0 gebildeten Elemente

a -f b b1 Àa+^ cr =¦

nach dem Gezeigten kongruent sind. Unter Voraussetzung von A2 ^ ± 1

sind sie auch paarweise linear unabhângig, womit gezeigt ist : Enthâlt
K eine Zahl A =£ 0 mit A2 ^ ± 1, so existiert stets eine nichtausge-
artete Kongruenzbasis des L2.

24. Wir betrachten jetzt eine nichtausgeartete Kongruenzbasis (a,b,c)
des L2 gegeben, das heiBt je zwei der kongruenten Elemente a,b, c sollen
den L2 aufspannen. Jedes Elément x làBt sich dann eindeutig zerlegen in
die Linearkombinationen x oca + /?6 p'b + yc y'c + oc'a. Durch
den Vertauschungssatz werden diesem allgemeinen Elément x die drei
Elemente xx j3a + ocb, x2 yb oc'c + y a
kongruent zugeordnet. Speziell sind dann auch wieder jedem Elément xt
drei Elemente xik (xi)k als kongruent zugeordnet. Definieren wir in-
duktiv xix...in (#4l...ini) in, wobei die Indizes iv immer Zahlen
aus der Menge 1,2,3 bedeuten, so gilt wegen dem Âquivalenzcharakter
der Kongruenz xh ...in^.x. Wir haben so ein Verfahren entwickelt,
das einem beliebig vorgegebenen Elément x eine Folge xh...in
(n 1, 2, 3,... von Elementen zuordnet, die sâmtliche der Kon-
gruenzklasse von x angehôren. In den Folgen ai±...in, bix...in, ch...in
haben wir insbesondere Elemente, welche aile zu denjenigen der vor-
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gegebenen Kongruenzbasis kongruent sind. Auf die Folge aller dieser
Elemente verweist Nevanlinna in seiner Mitteilung, und zwar insbeson-
dere auf die Tatsache, daB sie als Ortsvektoren in der reellen Géométrie
gedeutet Punkte auf einem Kegelschnitt mit Mittelpunkt bestimmen.
Unter Annahme, daB die so erhaltene Folge von Punkten auf der Kegel-
schnittkurve tiberall dicht liegt (im Sinne der affinen Topologie in L2),
legt die zusâtzliche Forderung einer stetigen Eichkurve den Kegelschnitt
und damit eine quadratische Form als metrische Fundamentalform fest.
Wie wir sehen werden, ist dièse Einfiihrung zusâtzlicher Annahmen topo-
logischer Natur ûberfliissig, das heiBt es lâBt sich mit unseren Postulaten
allein darauf schlieBen, daB aile Punkte des erwâhnten Kegelschnittes
zueinander kongruente Ortsvektoren bestimmen.

25. Sei c cpa + ipb die eindeutige Darstellung des Elementes c der
Kongruenzbasis (a, b, c) durch die lineare Basis a, b. Ist (a, b, c)

nichtausgeartet, so gilt <p-y> yé 0, und wir kônnen der Kongruenzbasis
durch die Festsetzung 2Qcpy> 1 — <p2 — y)2 eindeutig eine charakte-
ristische Zahl Q zuordnen. Bei der Berechnung der im letzten
Abschnitt konstruierten Elemente #ti...in als Linearkombinationen
von a und 6 erhâlt man dann speziell x^ — 0a -f (2i20 + a)b
und #32 (2Qoc + P)a — ocb.

26. Aus #23 #32 liefert der Vertauschungssatz A#23 + ^#32

fi #23 + A #32. Fur Û=0 ist dies trivial, da dann #23 — #32. Wir schlieBen
diesen Fall vorlâufig aus und nehmen fur einen Moment auch œ^O an.
Dann kônnen A und /i so gewâhlt werden, daB A^O und A (212/? -f~ «)

/ia. Beim Einsetzen der oben gegebenen Darstellungen von #23 und
#32 erhalt man dann (ex2 + /?2 + 2Q<xp)a ^ (a2 — /?2)a + 20(a + Qfi)b.
Dies ist aber auch fur a 0 richtig, bedeutet es doch dann /?2a ^.fi^b^.
SchlieBlich haben wir noch den Fall Q 0 zu erledigen, was durch An-
wendung des Vertauschungssatzes auf # ^ #32 môglich ist. Mit Q 0

gilt #32 pa — ocb, und also bedeutet Xx + ^#32 ^ jjlx + A#32, wenn
wir 0 yé 0 annehmen und X, \x nach den Bedingungen A=^0, A a -f ftP

0 wâhlen, (a2 + /S2)6 ^ (02 — a2)a — 2a06, was auch (a2 + j82)a

^ (a2 — P2)a + 2oc(îb nach sich zieht. In dieser letzten Beziehung darf
offenbar auch /S 0 zugelassen werden und weiter stellt sie gerade den
Fall Q 0 in der oben hergeleiteten Relation dar. Somit ist dièse ohne
Einschrânkung gultig, und zwar - da # <xa + 06 beliebig gewàhlt
wurde - fur irgendwelche Koeffizienten a und 0.

27. Mit 0(oc, 0) a2 + 02 + 2i3a0 gesetzt, lâBt sich die eben be-
wiesene Formel durch 0(oc, 0)a ^ (a2 — 02)a + 20 (a + «00)6 wieder-



geben. Ordnen wir weiter die hier rechtsstehende Linearkombination von
a und b dem Elément x oca + fib als Bildelement

z(x) (oc2 - fi2) a + 2)8(a + &/?)&

zu, so kônnen wir kurz z(x) <^.0(x)a schreiben, wobei fur $(a,/S)
noch 0(x) <P(oca + (3 b) eingefuhrt ist. Aus den Definitionen
von 0(x) und z(x) berechnen sich die Hilfsformeln 0{z(xj)

(0(x))2 und z(x) + 0(x)a 2(a + Qfî)x. Betrachten wir speziell
ein Elément x mit 0(x) 0. Dann gilt z(x) ^ o und aus den
Hilfsformeln folgt (a + Qfi)x ^ o. Mit ex + Qf} ^ 0 Iâ8t sich daraus auf
x ^ o schlieBen. Dies gilt trivialerweise fur x o ; mit x ^ o kann
a + 42/? 0 neben 0(#) 0 hôchstens fiir Q ±1 auftreten. Da-
mit ist gezeigt : Ist i2 ^ ± 1, so folgt aus 0(x) 0 stets a; ^ o.

28. Wenden wir uns jetzt dem Falle 0(x) ^ 0 zu. Hier kônnen wir
weiter durch z (x) 0(a;)e(^) eine Abbildung e(x) einfdhren, fur die
sich die Eigenschaften e(x) ^a, 0(e(x)) 1 und e(e(x) + a) e(x)
ergeben.

X23
Abb.: Konstruktion von e(x) aus a, #23 un(i ^32

Sei 1/ ^a + ab ein Elément mit 0(y) 1. Hieraus bereehnet sich

0(y -f a) 2(1 + g + Dcr), darnach £#(t/ + a) (^ + l)2 — a2 und
o0(y + a) 2cr(^ + 1 + £?<r). Das bedeutet 2(1/ + a) <Ê>(i/ + a)t/.
Setzen wir 0(y -\- a) ^0 voraus, so kônnen wir e(y -{- a) bilden und
erhalten e(y -{- a) y, was y ^a induziert. Ist 0(y + a) 0, so

gilt notwendigerweise 0(— y -\- a) ^ 0 und es ergibt sich nach obiger
Beweisfuhrung — y ç^a, also auch wiederum y ^ a. Aus 0 (^) 1

folgt somit stets y ^a, allgemeiner nach den Àquivalenzgesetzen aus

0(x) 0(y) 1 stets x ^y. Das ist die in Abschnitt 24 aufgestellte
Behauptung.

29. Fiir die in Abschnitt 24 gegebene Folge x{i...in von zu
# «a + /S6 kongruenten Elementenbereehnet sich 0(xh...in) 0(x).
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Weiter erkennt man leicht, daB mit 0(x) ^0 dièse Folge zwei Ele-
mente x und ~x enthàlt, so daB (x, x,~x) eine nichtausgeartete Kon-
gruenzbasis darstellt. Ist also 0{x) 0{y) n ^ 0 gegeben, so gibt
es eine nichtausgeartete Kongruenzbasis (u,v,w) mit 0(u) 0(v)

0(w) n, Ordnet man dieser Kongruenzbasis in gleicher Weise, wie

_ _>s& x —y + ou

Abbildung : Veranschaulichung des Falles Q — 1.

wir das fur (a,b,c) getan haben, eine Funktion &f(x) in L2 zu, so

gilt 0 n0f und damit 0'(x) 0'{y) 1, was nach den Ûberle-

gungen des letzten Abschnittes x ^ y impliziert. In Verallgemei-
nerung des Résultâtes von Abschnitt 28 kônnen wir also sagen : Aus
0(x) 0{y) ^0 folgt stets x ^ y.

30. Um die gewonnenen Resultate in einer ûbersichtlicheren Form
auszusprechen, ordnen wir jetzt jeder Kongruenzbasis {a, b, c) in L2 ein-
deutig eine symrnetrische Bilinearform 0 zu, das heiBt eine Funktion
0(x,y) in L2 mit Funktionswerten in K und mit folgenden charakte-
ristischen Eigenschaften : 0(x, y) 0(y, x), 0(Xx, y) X0{x, y),
0(x + xr, y) 0(x, y) + (P^', y). Falls (a,b, c) ausgeartet ist, soll
0 durch die Festsetzungen 0(a, a) 0(b, b) 0 und 0(a,b) f
bestimmt sein; falls (a,6,c) nichtausgeartet ist durch 0(a,a)
0(b,b) 1 und 0(a,b) Q mit der charakteristischen Zahl â der
Kongruenzbasis. x oca + /?&, t/ ya + 56 gesetzt, liefert im ersten
Fall 0(x,y) J(ad + j^y), insbesondere 0(x, x) ocj3, so daB nach
Abschnitt 23 aus 0(o;? x) 0(y,y) stets x ^y folgt. Im zweiten Fall
wird 0(x,y) ocy -\- fiô -{- £2(<xô -{- (}y), insbesondere 0(o;, x)
a2 _|_ ^52 _j_ 2Qoùjî, also gleich unserer bisherigen Funktion 0(x), so daB
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hier die Resultate der Abschnitte 27 und 29 das Theorem ergeben :

Aus 0(x, x) 0(y, y) ^ 0 folgt x^.y, und dasselbe gilt fur
0(x,x) 0(y,y) O, falls 0(a,b) J= ±1.

31. Das Ergebnis unserer Analyse besteht also in folgendem Haupt-
satz: Ist 0 die einer Kongruenzbasis (a,b, c) zugeordnete Bilinearform
und gilt 0(a, b) ^ ± 1, so folgt aus 0(x, x) 0(y, y) stets x ^ y.
ira Faite 0(a,b) ±1 gilt x gn y mit 0(x, x) 0(y, y) sicher stets

dann, wenn zusâtzlich 0{x, x) ^ 0 erfullt ist.
Es stellt sich natiirlich sofort die Frage, ob die Sonderstellung des Falles

0(a, b) i 1 hier notwendig ist. Wie wir in Abschnitt 36 sehen werden,
trifiEt dies tatsâchlich zu. Nach den Bilinearitàtsgesetzen folgt aus

0(x,y) O sofort 0(x-\-y,xJry) 0(x—y,x—y), was folgenden Zu-
satz zum genannten Ergebnis liefert : Ist 0 die einer Kongruenzbasis
(a, b, c) zugeordnete Bilinearform und gilt 0(a,b) ^ ± 1, so folgt aus

0(x,y) O stets x±y. ImFalle 0(a,b) ±l gilt x±y mit 0(x,y)=O
sicher stets dann, wenn zusâtzlich 0(x, x) + @(y,y) =fi 0 erfullt ist.

§ 5. Diskussion im reellen L2

32. Wir beschrânken uns hier wieder auf den reellen Koeffizientenkôrper
und betrachten vorerst neben den Postulaten (I), (II), (III2) auch die
friihere Forderung (4) erfullt, wonach x ^ o nur fur x o gilt. Dann
ist jede Kongruenzbasis (a, b, c) nichtausgeartet und die zugeordnete
Bilinearform 0 notwendig nicht indefinit, was 0(x, x)0(y ,y) ^ 0 im-
pliziert. Mit 0(x, x) =jà 0 gibt es dann ein A > 0, so daB 0(y,y)
X20(x, x) 0(Xx, Xx) und damit y ^ Xx. Setzen wir noch x eu y
voraus, so folgt x ^ Xx, das heiBt wegen (4) X 1. Aus 0(x, x) ^0
und x^y folgt also 0(x, x) 0(y,y). Ist die Form définit
(\ 0(a,b) \<l), so ist x^.y demnach genau dann erfullt, wenn

33. Wir bezeichnen eine symmetrische Bilinearform 0 von der Eigen-
schaft, daB 0(x, x) 0(y,y) mit x gn y Equivalent ist, als Funda-
mentalform der zugrunde gelegten Kongruenz. Ist eine solche gegeben,
so ist auch X0 eine Fundamentalform, sofern X ^ 0. Ist u nicht gn o, so
existiert also eine Fundamentalform 0' mit 0' (u, u) 1, nàmlich gemâB
0 0(u, u)0f. Wir nennen diesen Ûbergang von 0 zu 0' die Normie-
rung der Fundamentalform 0 auf die Einheit u und kônnen also sagen :

Ist u nicht ^ o, so lâBt sich jede Fundamentalform der Kongruenz auf
die Einheit u normieren. Damit ergibt sich leicht, daB die Fundamentalform

einer Kongruenz bis auf die Normierung eindeutig bestimmt ist.



34. Ist einer Kongruenzbasis (a,b,c) der durch (I), (II), (III2) und
(4) charakterisierten Kongruenz eine definite Bilinearform zugeordnet,
so stellt dièse nach Abschnitt 32 die bis auf die Normierung eindeutig
bestimmte Fundamentalform der Kongruenz dar. Ist die zugeordnete
Bilinearform dagegen semidefinit (| 0(a, b) \ 1), so gilt die Âqui-
valenz von x ^ y mit 0 (x, x) 0(y, y) nur auBerhalb der Geraden
Lx, in der 0=0; innerhalb Lt muB die Kongruenz wegen (4) gesondert
affin sein, das heiBt jedes z mit 0(z, z) 0 kann nur zu ±2 kongruent
sein. Die den verschiedenen Kongruenzbasen zugeordneten Bilinear-
formen stellen auch hier eine bis auf Normierung eindeutig bestimmte
,,Fundamentalform" dar, doch ist dièse in dem erwâhnten Sinne aus-
geartet. Zusammenfassend kônnen wir als Ergebnis dieser Analyse fest-
halten : Eine den Postulaten (/), (//), (III2) und (4) genûgende Kongruenz
im reellen L2 besitzt entweder eine definite Fundamentalform oder eine semi-

definite ausgeartete Fundamentalform,

35. Eine Kongruenz mit definiter Fundamentalform geniigt auch dem
frûheren Postulat (5) der vollstàndigen Vergleichbarkeit. Umgekehrt im-
plizieren (I), (II) und (5) die Existenzforderung (III2) und zusammen
mit (4) ergibt sich dann, daB die Kongruenz eine definite Fundamentalform

besitzt. Damit gelten auch die Postulate (A) und (B) der Winkel-
kongruenzstruktur, das heiBt es sind hier sâmtliche Hilbertschen Kon-
gruenzeigenschaften erfullt. Wir haben gezeigt : Durch die Postulate (/),
(//), (4) und (5) werden die Hilbertschen Kongruenzen charakterisiert. Das
bedeutet, daB in dem in Abschnitt 15 gegebenen System der die Hilbertschen

Kongruenzen bestimmenden Postulate (I), (B), (4) und (5) die
Mooresche Forderung (B) durch das schwâchere Orthogonalitâtspostulat
(II) ersetzt werden kann. Weiter kônnen (4) und (5) durch folgende Ver-
schârfung von (III2) ersetzt werden :

Es existiert eine orthonormierte Basis des L2- (HI*2)

Darunter verstehen wir eine lineare Basis nicht zu o kongruenter Ele-
mente a, b mit a ^.b und a J_ b. Es ist trivial, daB (III*2) in einer
Kongruenz mit definiter Fundamentalform gilt. Umgekehrt liefern (I),
(II), (III*2) die Giiltigkeit von (III2) sowie das Bestehen einer definiten
Fundamentalform.

36. Geben wir in einem Raum L2 eine definite Bilinearform 0 vor und
erklâren wir sie zur Fundamentalform einer Kongruenz, das heiBt defi-
nierenwir x^y durch 0(x, x) 0(y, y), so ist dadurch eine HUbert-
sche Kongruenz in L2 bestimmt. Damit ist der gewiinschte Ûberblick ûber
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dièse Kongruenzen gewonnen : Jede Hilbertsche Kongruenz im reellen L2
besitzt eine definite Fundamentalform, und jede definite Bilinearform in L2
bestimmt eine Hilbertsche Kongruenz, deren Fundamentalform sie ist. Wird
eine semidefinite Bilinearform im L2 als ausgeartete Fundamentalform
im Sinne von Abschnitt 34 vorgegeben, so erfiillt aueh die hier zugehôrige
Kongruenz die Postulate (I), (II), (III2) und (4). Das bedeutet, daB die
Sonderstellung des Falles @(a,b) ±1 im Hauptsatz des letzten Para-
graphen wirklich notwendig ist.

37. Die Einfuhrung einer semidefiniten Bilinearform als nichtausgear-
tete Fundamentalform ergibt eine Kongruenz mit den Eigenschafben (I),
(II) und (III2) unter Wegfall von (4). Dasselbe gilt bei der Zugrunde-
legung einer indefiniten Fundamentalform. Anderseits stellt man fest,
daB jede Kongruenz, welche den Forderungen (I), (II), (III2) gehorcht
ohne (4) zu erfûllen, eine Fundamentalform besitzen muB. Fur solche

Kongruenzen folgt nach Abschnitt 32 fur die einer Kongruenzbasis zu-
geordnete Bilinearform 0 aus 0(x, x)0(y, y) > 0 und x^y ent-
weder 0(x, x) 0(y, y) oder x^.o. Mit 0(x,x)^O und x^±o
ergibt sich sofort, daB die Kongruenz total ist und damit die konstante
Fundamentalform $* 0 besitzt. SchlieBen wir diesen Fall aus, so ist
die Âquivalenz von 0(x, x) 0(y,y) mit x^.y fur 0(x, x)0(y,y)^ 0

gesichert. Fur eine semidefinite Form 0 ist daraus die gegebene
Behauptung ersichtlich. Es bleiben noeh die indefiniten Formen 0, bei
denen man die Kongruenzbasis speziell als ausgeartet annehmen kann.
Hier muB man noch zeigen, daB x ^ y mit 0(x, x)0(y,y)<O unver-
tràglich ist. Da der Beweis hierfûr in spâteren Betrachtungen enthalten
sein wird, soll er hier nicht aufgefuhrt werden.

38. ZusammengefaBt hat die Diskussion dièses Paragraphen gezeigt :

Eine den Postulaten (/), (//) und (III2) genûgende Kongruenz im reellen
L2 besitzt entweder eine Fundamentalform oder eine semidefinite ausgeartete
Fundamentalform. Umgekehrt bestimmt jede symmetrische Bilinearform in
L2 eine Kongruenz mit den Eigenschaften (/), (//) und (III2), deren
Fundamentalform sie ist. Semidefinite Formen durfen dabei auch als ausgeartete
Fundamentalformen angesetzt werden.

Der indefinite Fall, welcher die sogenannte Lorentzsche Metrik in L2
darstellt, kann dadurch ausgesondert werden, daB man (III2) ersetzt
durch die Forderung :

Es existiert eine zu o kongruente lineare Basis des L2. (III**2)
Hierbei ist als Ausartung auch die konstante Fundamentalform zuge-
lassen.
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§ 6. Normalprojektion
39. Um den Sonderfall der Kongruenzen mit ausgearteter Fundamen-

talform im reellen L2 auszuschlieBen, kann man nach einer das Postulat
(III2) ersetzenden Eigenschaft fragen, die bei nichtausgearteten Funda-
mentalformen gilt, im erwàhnten Sonderfall aber verletzt wird. Eine Er-
setzung von (III2) ist aueh wie schon fruher erôrtert im Hinblick auf den
Ûbergang zu hôheren Dimensionen wûnschenswert ; nâmlich die Er-
setzung durch ein dimensionsunabhàngiges Postulat. SehlieBlich gestattet
eine solehe Abànderung der zugrunde gelegten charakteristischen Eigen-
schafben vielleieht aueh eine einfaehe Weiterfiïhrung der Analyse des

Paragraphen 4 bei allgemeinen Koeffizientenkôrpern. Eine die drei ge-
nannten Gesichtspunkte befriedigende Eigenschaft wird dureh die Ein-
fûhrung des Begriffes der Normalprojektion geliefert, wobei wir folgende
Définition zugrunde legen : Eine Darstellung x Xu + h hei/ie
Normalprojektion von x auf u, sofern h ±_u. Existiert eine solehe Normalprojektion,

so sagen wir kurz, x lâBt sich auf u normalprojizieren. Das bedeutet
also die Existenz einer Zahl A, so daB x — Xu J_ u oder nach Définition
der Orthogonalitat x — (A + l)u ^ x — (A — \)u. Trifft dies aber
aueh nur fur einen bestimmten Koeffizienten A zu, so reden wir von einer
eindeutigen Normalprojektion von x auf u.

40. Um zu der erwàhnten Ersatzforderung fur (III2) zu gelangen, be~

trachten wir wieder den zweidimensionalen Raum L2 liber einem
allgemeinen Koeffizientenkôrper K und darin eine Kongruenz mit den Eigen-
schaften (I), (II), (III2). In (a,b,c) sei eine Kongruenzbasis ausgewâhlt,
und 0 sei wieder die ihr zugeordnete Bilinearform. Nehmen wir vorerst
0(a,b) =£ ±1 an, so folgt nach dem Hauptsatz des Paragraphen 4 aus

<P(x,x) @(y,y) stets x^y und aus 0(x,y) 0 stets x±y. Zuwnicht

^ o gibt es dann fur jedes x eine Zahl ô, so daB 0(x, u) Ô0(u, u),
und man verifiziert sofort x — ou J_ u, das heiBt jedes x lâBt sich auf u
normalprojizieren. Im Falle 0(a,b)= ±1 erkennt man leicht, daB

ûberhaupt jedes Elément x sich auf jedes Elément u normalprojizieren
làBt. Also kônnen wir in der in Paragraph 4 gefûhrten Analyse den Satz

aussprechen : Ist u nicht ^ o, so lâBt sich jedes x auf u normalprojizieren.

41. Es liegt nun nahe, zu fragen, ob der obige Satz - an Stelle von
Postulat (III2) gesetzt - umgekehrt die Existenz einer Kongruenzbasis
des L2 garantiert. Seien u, v zwei linear unabhângige Elemente des L2.
Mit u^v^.o ist (u,v,o) eine Kongruenzbasis. Wir kônnen demnach
fur das weitere u nicht ^ o voraussetzen. Dann lâBt sich v auf u normal-
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projizieren, das heiBt es gibt ein X, so daB v — (X + l)u^.v — (X — l)u.
Dabei sind a — v — {X -\- \)u und b v — (X — 1)% wieder linear un-
abhângig. Gehôren sie zur Kongruenzklasse von o, so haben wir in
(a,b,o) eine Kongruenzbasis. Andernfalls gibt es eine Normalprojek-
tion b fia + h von b auf a, was b — 2/ua ^ b impliziert. Mit /f^O
stellt dann (a, b,b — 2jua) eine Kongruenzbasis dar. SehlieBlich haben
wir noch den Fall fji 0, das heiBt a J_ 6, zu betrachten. Hier ist
((5a — b, ôa -{- b, a -{- ôb) eine Kongruenzbasis, sobald ô ^ 0 und
$ ^ -j-1. Setzen wir die Existenz einer solchen Zahl ô voraus, so kann
also die eingangs dièses Abschnittes gestellte Frage in positivem Sinne
beantwortet werden.

42. Die oben gemachte Zusatzbedingung ûber K, daB eine von 0 und
± 1 verschiedene Zahl existiere, ist auch tatsàchlich notwendig fur die
dort bewiesene Behauptung. Sie soll fortan als erfiïllt betrachtet werden,
und zwar wollen wir stàrker annehmen, da/i der Koeffizientenkôrper eine

von 0 verschiedene Zahl enthalte, deren Quadrat nicht gleich ±1 sei. Dann
lâBt sich (III2) also ersetzen durch das dimensionsunabhângig formu-
lierte Postulat :

Ist u nicht ^ o, so lâBt sich jedes Elément auf u normalprojizieren. (III.)
Weiter gibt es dann nach Abschnitt 23 sogar immer eine nichtausgeartete
Kongruenzbasis.

43. Innerhalb des Systems (I), (II), (III) kann das Postulat (I) in fol-
gender Abschwâchung genommen werden :

Aus x^z, y^z folgt x ^ y (I.)

Der andere Teil, die Forderung x ^ — x fur jedes x, wird nâmlich hier
logisch abhângig. Beweis : Ist — x nicht ^ o, so folgt durch Normalpro-
jektion (X — 1)#J_— x von —x auf sich oj_—x, wasgerade xc^ — x be-

deutet. Mit obigem (I) erhalten wir weiter x ^ x. Dies ist auch richtig,
falls — x ^ o, da dann — x ^ — x, damit — x J_ o, weiter x J_ o,
somit x ^ x. Wir haben so die Reflexivitàt der Kongruenz verifiziert,
und damit folgt aus obiger Transitivitât ihr Âquivalenzcharakter. Das
bedeutet wiederum, daB mit x ^ y stets | {x + y) _]_ \ (x — y) und
damit — \ (x + y) _L \ (# + y), wa® — x ^ — y liefert. Hieraus er-
gibt sich x ^ —- x auch fur den Fall — x ^ o.

44. Betrachten wir wieder speziell den reellen L2 und darin eine den
Postulaten (I), (II), (III) genûgende Kongruenz. Unter Voraussetzung
einer Fundamentalform 0 ist nach den Bilinearitàtsgesetzen jede Nor-

93



malprojektion auf ein nicht zu o kongruentes u eindeutig bestimmt. Im
Falle einer semidefiniten Form 0 haben wir mit 0(u,u) 0 und
&(x,x)=£O stets 0(x — Xu,u) 0(x,u) O und 0(x — Xu,x — Xu)

0(x, x) ^ 0, also x — Xu J_ u fur beliebiges A, so daB die Normal-
projektion von x auf u dann mehrdeutig ist. Die Forderung der Eindeu-
tigkeit jeder Normalprojektion auf ein nicht zu o kongruentes u wurde
hier also u^o verlangen und somit die ausgearteten Fundamentalformen
verunmôgliehen. Allgemeiner fàllt mit dieser Forderung nach dem hier
gegebenen Beweis die Sonderstellung des Falles 0(aib) il im Haupt-
satz des Paragraphen 4 weg. Verlangen wir also neben (I), (II) und (III)
auch die Eindeutigkeit der Normalprojektion, so sind dadurch im reellen
L2 genau jene Kongruenzen charakterisiert, welche sich durch eine belie-
bige Fundamentalform beschreiben lassen. Dasselbe gilt, wie wir im nâeh-
sten Paragraphen zeigen werden, fur einen allgemeinen L2, das heiBt fur
einen beliebigen Koeffizientenkôrper K mit den von uns verlangten
Eigenschaften.

§ 7. Normale Kongruenzen

45. Entsprechend den Betrachtungen im vorangehenden Paragraphen
definieren wir : Eine Kongruenz (mit zugehôriger Orthogonalitât und
Normalprojektion) heifit normal, wenn sie folgende vier Postulate erfûllt :

(I.) Aus x^z, y^z folgt x^y.
(II.) Aus x _L y folgt stets A #_]_?/.

(III.) Ist u nicht ^ o, so lâBt sieh jedes x auf u normalprojizieren.

(IV.) Die Normalprojektion von x auf ein nicht zu o kongruentes u ist
eindeutig bestimmt.

Durch das triviale Beispiel der totalen Kongruenz wird die Widerspruchs-
losigkeit dieser Aussagen belegt, und auf Grund unserer Untersuchungen
ist auch klar, daB die Postulate lauter voneinander unabhângige Forde-

rungen darstellen.

46. Nach unseren Abmachungen setzen wir vom Koeffizientenkôrper K
voraus, dafi seine Charakteristik von 2 verschieden sei und da/3 er eine Zahl

2^0 mit A2 ^ ± 1 enthalte. Dann gilt das Theorem, daB eine normale
Kongruenz in einem zweidimensionalen Raum L2 eine nichtausgeartete
Kongruenzbasis im Sinne des Paragraphen 4 besitzt, und also gilt der
dortige Hauptsatz, und zwar in der Verschàrfung : Ist 0 die einer Kon-
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gruenzbasis des L2 zugeordnete Bilinearform, so folgt aus 0(x, x)
0(y,y) stets x ^ y und damit aus 0(x, x) 0 stets x ±_y. Dièse
Schliisse lassen sich jetzt fur nichttotale Kongruenzen auch leicht um-
kehren, so da6 der Begriff der Fundamentalform, wie er in Paragraph 5

bei reellen Koeffizienten verwendet wurde, allgemein eingefuhrt werden
kann.

47. Sei (a, b, c) eine nichtausgeartete Kongruenzbasis einer normalen
Kongruenz in L2 und 0 die ihr zugeordnete Bilinearform. In u und z neh-
men wir zwei kongruente Elemente als gegeben an, fur die 0(u,u)
^= 0(z, z). Wir behaupten, daB die Kongruenz dann total sein muB, also

umgekehrt, daB bei nichttotaler Kongruenz mit x ^ y auch 0(x, x)
— ®(y>V) g^lten muB. Ohne Einschrânkung kann 0(u, u) n ^ 0

vorausgesetzt werden, so daB nach Abschnitt 29 eine nichtausgeartete
Kongruenzbasis (u,v,w) mit 0(u,u) 0(v,v) 0(w,w) n exi-
stiert. Dieser ist die Bilinearform 0f 0\n zugeordnet. (u,v,z) ist
wieder eine Kongruenzbasis mit zugeordneter Bilinearform W. Nehmen
wir (u, v, z) nichtausgeartet an, so gilt fur beliebiges x :

x — 0f (x, u)u J_ u x — W(x, u)u J_ u

x — 0f (x, v)v J_ v x — ï7^, v)v J_ v

Unter Voraûssetzung, daB u nicht ^ o ist, muB damit sowohl 0' (x,u)=
W(x,u) als auch 0'(x, v)=W(x, v) gelten, woraus W=0' ersichtlich ist.
Insbesondere erhalten wir so 0(z, z) jzW(z, z) n 0(u, u) im
Widerspruch zu unseren Grundvoraussetzungen. Die Zusatzannahmen
u nicht ^ o und (u, v, z) nichtausgeartet vertragen sich also nicht, was

u^.o besagt. Also stellt (u,v,o) eine Kongruenzbasis dar, welcher die
Bilinearform % zugeordnet sei. Zu einem nicht zu o kongruenten r laBt
sich dann ein s finden, so daB x(r>r) — %(s>s)> 3^8° r 5? a^er
0(r, r) yéz 0(s, s). Nach dem SchluB von oben folgt dann der Widerspruch

r ^ o. Also gibt es kein solches r : die Kongruenz ist total.

48. Das gewonnene Ergebnis laBt sich so deuten, daB eine bis auf Nor-
mierung eindeutig bestimmte Fundamentalform existiert. Umgekehrt
bestimmt auch im allgemeinen L2 jede symmetrische Bilinearform 0
durch die Définition von x ^ y mittels 0 (x, x) 0(y,y) eine
normale Kongruenz, so daB wir folgenden Hauptsatz fur zweidimensionale
Baume aussprechen kônnen : Jede normale Kongruenz im (allgemeinen)
L2 besitzt eine Fundamentalform, und umgekehrt bestimmt jede symmetrische

Bilinearform in L2 eine normale Kongruenz, deren Fundamentalform
sie ist. Unsere normalen Kongruenzen stimmen also hier uberein mit dem
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allgemeinen Metrikbegriff, wie er in der Théorie der linearen Ràume
mittels einer symmetrischen Bilinearform 0 analytiseh eingefiïhrt wird
durch die Erklârung des skalaren Produktes xy 0(x,y). Sie stellen
gewissermaBen eine geometrische Motivierung dieser analytischen
Définition dar, eine Motivierung, wie sie Nevanlinna in seiner Mitteilung an-
geregt hat.

49. Der obige Hauptsatz gilt aueh fur die Dimensionen 0 und 1. Ande-
rerseits induziert eine normale Kongruenz in einem L beliebiger Dimension

in jedem Unterraum wieder eine normale Kongruenz. Fur den Ûber-

gang zu hôheren Dimensionen kônnen wir also sagen : Eine normale
Kongruenz im (allgemeinen) L lâjit sich in jedem Unterraum L' mit
dim (U) ^ 2 durch eine bis auf Normierung eindeutig bestimmte (,,lokaleu)
Fundamentalform beschreiben. Es stellt sich dann im Falle dim (L) > 2

die Frage, ob auch eine (,,globale") Fundamentalform fur den ganzen
Raum L gefunden werden kann. Sicher erfûllt auch hier eine durch Vor-
gabe einer symmetrischen Bilinearform als Fundamentalform in L er-
zeugte Kongruenz die Postulate (I), (II), (III) und (IV), denn dièse sind
ja rein zweidimensionaler Natur.

§ 8. Vollstândige normale Kongruenzen

50. Der Ùbergang zu hôheren Dimensionen soll hier noch kurz fur eine

spezielle Klasse von normalen Kongruenzen weiterdiskutiert werden ;

nàmlich fur die vollstândigen Kongruenzen, welche durch die Zusatzforde-

rung (5) ausgezeichnet werden, daB aile nicht zu o kongruenten Elemente
miteinander vergleichbar sind. Mit u nicht ^ o gibt es dann zu jedem x
einA,sodaB x^Ku. Ist weiter y^juu, so besteht x^y genau dann,
wenn A2 //2. Wir zeigen, daB hier die ,,lokalen Fundamentalformen"
mit geeigneter Normierung zu einer ,,globalen Fundamentalform" zu-
sammengesetzt werden kônnen. Da der Fall der totalen Kongruenz
évident ist, denken wir uns eine nichttotale, vollstândige normale Kongruenz
in L gegeben. u sei ein fest ausgezeichnetes, nicht zu o kongruentes
Elément und L(u, x) der durch u und x aufgespannte Unterraum, in dem
die Kongruenz sich durch eine Fundamentalform 0X mit 0X (u, u) 1

beschreiben lâBt. Die Funktion cp(x) — @x(x, x) in L besitzt dann die
Eigenschaft cp(Xx) X2(p(x) und gemâB (p(x) cp(Xu) A2 fur
x ^ lu ist <p(x) cp(y) âquivalent mit x ^ y ; und zwar stimmt
dann die Funktion <P(x, y) | {cp(x + y) —- (p(x) — <p(y)} in jedem
zweidimensionalen Unterraum notwendig mit der dort gegebenen und
geeignet normierten Fundamentalform ûberein. 0 ist also in jedem zwei-
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dimensionalen Unterraum bilinear und damit besitzt <p die weiteren
Eigenschaften <p(x) + y (y) J {cp(x + y) + cp(x — y)} und

<p(x + 2y) — cp(x — 2y) 2 {çp(x + y) — <p(x — y)}.

Dièse implizieren fiir <P das noch offene Bilinearitâtsgesetz

0(x + x\ y) *(«, 2/) + #(«', y),

nâmlich gemàB der Berechnung

(p{x + x' + y) + <p(x — y) — {<p(x + x' — y) + <p(x + y)}
{9(a;' + 2y) - cp(xf - 2y)} cp(xf + y) - <p(x' - y)

0 ist also Fundamentalform der Kongruenz in L, das heiBt es ist gezeigt :

Jede vollstândige normale Kongruenz in einem (allgemeinen) linearen Raum
L besitzt eine Fundamentalform.

51. Fur die Gultigkeit der Vollstandigkeitseigenschaft kommt dem
zugrunde gelegten Koeffizientenkôrper K wesentliche Bedeutung zu. Bei
den reeïlen Zahlen ist sie genau dann erfullt, wenn aile zweidimensionalen
Fundamentalformen nicht indefinit sind. Speziell gilt sie hier fiir die
Hilbertschen Kongruenzen, welche unter den normalen Kongruenzen
durch die Zusatzforderung (4) ausgezeichnet sind, daB x ^ 0 nur fur
x 0. Dieser Forderung ist die Verscharfung der Postulate (III) und
(IV) gleichwertig, daB sich jedes Elément auf ein u ^ o eindeutig nor-
malprojizieren lâBt. Hier haben wir das Endergebnis : Jede Hilbertsche

Kongruenz in einem reeïlen Raum L besitzt eine definite Fundamentalform,
und umgekehrt bestimmt jede definite Bilinearform in L eine Hilbertsche
Kongruenz, deren Fundamentalform sie ist. Die Einfuhrung einer Hilbert-
schen Kongruenz in unserem Sinne ist also mit der ublichen Metrik-
einfilhrung in der Théorie der reeïlen Hilbertschen Baume beliebiger (end-
licher oder unendlicher) Dimension gleichwertig. Dièse kann geometrisch
motiviert und charakterisiert werden durch unsere Postulate, welche hier
nochmals zusammengestellt seien :

(I) Aus x^.z, y^z folgt x^y.
(II) Aus x J_ y folgt stets Xxj^y.

(III*) Ist u ^z o, so lâBt sich jedes x eindeutig auf u normalproji-
zieren.

(Eingegangen den 29. Juli 1954.)
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