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A generalization of Tauber’s theorem and

some Tauberian constants (IlI)
by C. T. RajagcoraL, Madras (India)

1. Introduetion. In a previous paper [6] in this journal, I extended in
a particular direction Tauber’s well-known conditional converses of
Abel’s theorem for power series, following H. Hadwiger and R.P.
Agnew. My extensions concern transformations of the kind

O(t) = [ K@i)d{d(w)} , >0, (1)
0

with suitable K (u), applied to functions A(u) which are assumed to
be of bounded variation in every finite interval of « > 0 and (for sim-
plicity) subject to the condition A4(0) = 0. The results obtained by me
include inequalities of the type :

Lim | A(8)t) — d@)|, >0,

t>+0

7(6)Tm bound 1AM — 4@ 1
g u>00 usu’'<Au 108 2'

- ®
T*(6) lim | w? f zd{4 (x)} | ,

u—> oo 0
where the upper limits are supposed to be finite, and 7'(8), T*(d) are
functions of the parameter 8, involving K (u) but not A (u). My results
thus overlap in part certain theorems of Delange ([2], Théorémes 3, 5),
a fact of which I was unfortunately unaware when I wrote my paper [6].
However, in two later papers bearing the same title as the present one,
I discuss results which supplement the theorems of Delange. In the first
of these papers [7], I treat a general method of obtaining the Tauberian
constants 7'(6) for Riesz, Laplace-Abel, Lambert and Stieltjes trans-
forms of A (u), simultaneously with a similar absolute constant for the
Borel transform of a sequence ; while, in the second paper [8], I intro-
duce a constant analogous to 7'(6) useful in dealing with A (%) which
are A,-step functions defined in relation to a sequence

O<}‘I<Z’2<. Y An —>00 ,
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with “wide steps”, i.e. with liminf (4,,,/4,)>1. In the present note
I modify slightly a lemma of Agnew’s ([1], § 4) and reach with ease
Delange’s 7*(6) in Theorem A and the more general constant 7* (4, )
in Theorem B for the special K (u) of (17), revealing these constants at
the same time as the best possible in the context of our inquiry?).

On the lines of my last-mentioned paper [8], the kernel K (u) of the
transform (1) is defined in terms of a function N (x) which is bounded in

every finite interval of x>0 and such that
N(x) e L(0, c0), N (x)log x € L(0, o0) .
. , (2)
K(u) = | N(x)dx , K@©0)=[N(@)de =1 .
u 0

Thus the ¢(u), w(u) of my previous paper [6] in this journal are re-
placed by the more general K (u), N (u) respectively. Otherwise the
notation of that paper is retained.

2. Lemmas. Two modifications of Agnew’s lemma already referred to,
required for the purpose of this note, will now be established.

Lemma 1. If f(z,t) s a real function of x>0, t>0, integrable in
every finite x-interval and such that

flf@,t)|de<oo, lim f|f(x,t)|de =M, (3)
0 t>+00

lim f(z, t) = 0 uniformly with respect to x in (0, X) (4)
t>-+40

for any fixed X >x,>0, then each real bounded function ¢(x) of x>0,
for which

limg(x) = — L , l—i-n_;g(x)r——L , 0 < L<ox , (5)
has plain;;z; transform ”
() = { f(u, g (w)du . (6)
And this transform is such that, ‘}or any given 6>0 ,
— (M + 1)L <Im [F() + 9] <M +DL. (7)
t>+0

The above conclusion is the best possible in the sense that there are two
real functions g(x) satisfying (5) and such that each of the signs < in (7)
18 in turn reduced to = by one of the functions.

1) My procedure simplifies Delange’s treatment of 7T*(J) in [2], §§ 3.6-3.63, and so
dispenses with the separate discussions of Hadwiger (4] and Hartman [5] which deal with
case 0 =1, N(u) = e ¥,
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Proof. (5) implies that we can choose X >x,>0, corresponding to
any small ¢>0, so that |g(x) | <L 4 ¢ for x>X. Hence (6) gives

X oo
| < JU@0110@ | ds+ o) 1o 42+ g0,
FO+g0) | % x
I =1 f(z.0 1 9(@) | 4z = (L -+ § | 12,0 d& + g (3]).

The first part of the lemma follows at once from the above step when we
let ¢t -+ 0 and use (4), (5).

To prove the second part of the lemma we argue with M >0 and
L>0, say L =1, the case of either M = 0 or L = 0 being trivial.
By (3) we can choose t = ¢, and then x,>max (x,, d/t;) so that

}olf(x,tl)ldx>M—e , flf(x,t1)|dx<e :

1
In fact, we can determine inductively a null sequence {¢,} and a diver-
gent sequence {x,.}, r=1,2,3,..., as follows. After {,_, and =z,_,
have been chosen. ¢, <<min (¢,_;, 6/z,_;) is chosen subject to the condi-

tion z

Tlf@, t) | de<er,  [|f(zt)|de>M — e, (8)
0 0

and then z,>max (x,_,, d/t,) is chosen so that

flf(=,t) | de<e , (8")

the choices of ¢, and z, in (8') and (8”) being possible by (4) and (3).
Now let

g(z) = sgn f(x,t,) . T, <x F Oft, <z, , l
goft) =1, gla)=—1, |

where as usual sgnf =0 when f=0 and sgnf=|f|/f when f # 0.
Then ¢(x) satisfies (5) with L = 1, and we obtain from (6) :

re=1,2,..., (9)

Ft) = | Ha, thg@)de + -+ - -
0 Ty_1 zr
> T fw ) L da + [ (s £) sgn fle, t)de — | | f(, ) | de
0 Tp_1 zr

> 2§ fle, t) [de + [ | fa,t) | de — 2| f(z,6,) | d

0

> — 26"+ M — " — 2" =M — 5¢"
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by (8') and (8"). Therefore, for the g(x) in (9),
Lm [F(t,) +g(8t)] =M + 1= (M + 1)L;

r>o0
while, by the first part of the lemma, the above relation is also true
with < instead of >>. Hence, for the g(z) defined by (9),

Lim [F () + g(/t)] = (M + 1)L .

r—->»oo

For the g(x) which is the negative of the ¢(z) in (9), we have
lim [F(¢,) + gop)]=— (M + 1)L,

r->oo

and so the proof is complete.

Lemma 2. This is a restatement of Lemma 1 for complex-valued g(zx)
with

(5) replaced by : lim | g(x)| = L , (5a)
(7) replaced by : lim | F(t) + g(/t) | < (M + 1)L , (7a)
t>+0

where the equality signs cannot be omitted.

3. Theorems. The theorems which follow are implicit in Lemmas 1, 2.

Theorem A. In (1), let A (u) be real- or complex-valued, in the latter case
the real and the imaginary parts of A(u) satisfying the condition already
imposed on real A (u). Also let

lim | w'B(u)| = Lim | 4 () —-u~15“A(x)dx|<oo . (10)

U-» oo U->oo 0
Then, for any 6>0,
lim | A(8/t) — D) | < T*(8)lim | w1 B(u) | (11)
t>+0 U->» oo

where the equality sign is indispensable and

T*((S):-—l—*}—j _l_:_xl_{ﬁ)_

oo

— N(z)|dx + |

+ N ()

K;“’) dz .2) (12)

2) Hypotheses (2) ensure the existence of the integrals composing 7'*(d) since it can
be proved that they ensure the existence of

1 —K(x) T | K(z)
pli=K@| ,, = FlE@)

dx .

0
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Proof. It is easy to show that (10) ensures first

bound | A(u') — A(u)| =0(1)[1 + log 4] , U —>00

usu’'<Au

and thence A4 (u) = O(logu). The last relation, in conjunction with the
manner of our defining K (u) in (2), gives us, as u—>co,

H

K (ut)A (u) = K (ut)O(log u) = o(1)
for every {>0. Hence we get, by an integration of (1) by parts,
O(t) = [ K (ut)d{A )} =t | N(ut) A w)du = () .
(10) also ensures th(; existence of 0

Y. () Et}oN(ut)é&f—qfldu , t>0, A;(u) _:_fA x)dx

through the existence of ¥(t). In the above step we can express first
A;(u) and then Y,(¢) as follows:

> %) (13)

K(xt)dx , (14)

justifying the inversion of integration by an appeal to Fubini’s theorem
with the help of (10). Hence the identity
A, (u
|- o — v + [~ wi0]

Ay (w)
u
yields, when we use (13) and (14) in the last term [ - - - ] of the right-hand
member, and put u = d/t, the following relations :

A(u) — D(t) = [A(u

A(é/t)——@(t):ga(—ﬁ/—t)——th(xt B2 4 +[8”B‘ da _jB(“ K(x tdx]
B(dt) 3/i[1 — K (xt) | B(x)
5 +§_T_tN(xt)_ . dx
—}—j [ K(=t) tN(xt)— Blx) dz . (15)
8t | x _

%) To avoid useless complications we may suppose that A (u) = O(u) as u— +0 and
thus ensure the existence of the integral in (13).
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Now, in Lemma 2, we can choose

g(x) = B(x)/x ,
[1 — K(zt)]/Jx —tN(xt) for O<ax<ift, (16)

f(x? t) - {
— K (zt)/x — tN (xt) for x>/t .

The above choice of g(x) is justified by the fact that (5a) holds in the
form (10). And the choice of f(x,?) is justified by the following facts.
(a) If ¢t <1 (such a restriction on ¢ being permissible as we are going
tolet t — + 0), and « is in any finite interval (0, X) where X >z,=9,
then

t[}tN(u)du [zt + ¢ | N(xt) | <Cit + Cot (0<zt<<d)

t| K(2t)|/xt +¢| N(xt)| <Cst+ Cit (6 <at<X),

where the C’s are constants depending only on § and X, and therefore (4)

holds. (b) Furthermore (3) holds since, defining 7'*(J) by (12), we have
3/t

i olde=f 4 f o =TH0)—1.
0 0 t
Thus, finally, an appeal to Lemma 2, with the choices of f and ¢ in (16),

enables us to pass from (15) to the conclusion (11). That the equality
sign in (11) is indispensable is established by choosing the particular
g(x) of (16), in terms of the particular f(x,t) of (16), exactly as in the
general case where we establish the indispensability of the equality sign
in (7a). Of course the specification of ¢ involves the following specifica-
tion of A4 (u) in consequence of (13):
o -1
AW =g +erhi) | g
=g + J27lg(2)dw v
A generalization of the proof of Theorem A brings to light a constant
Tt (6) which is featured in the corollary that follows.

Corollary A. In the integral transform defined by

V(@) =t | N(ut)o,(wdu , t>0, k=0,
0
where
or(u) E;Tr— jy(u — x)1A(x)dx , r>0, oo(u)=A4(u),
0

let
lim | w1 By (w) | = lim (k 4 1) | 04 (u) — 0341 (w) | <oo .

U->- oo U-> o0
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Then, for any 6>0,

lim | 0, (8/t) — Wi(t) | < T5(0)1im | w1 By (u) |4)
t>+0 u-> o
where T (8) is obtained from T*(8) by changing N (x) to N(x)/(k + 1)
in the two integrals composing T*(8) in (12).
The proof of Corollary A is like that of Theorem A but makes use of
the following easily proved relations in place of (13) and (14):
By(@)

Orer1 () :bf Tkt P ( “I k+2 K( t)ydx .

Next follows a theorem which supplements Theorem A in the following
cases of K (u) considered in my previous paper [6].

(i) K(u)=(1 —u)k, k=1, for u <1; K(u)=0 for u>1.
(i) K(u) =e. (iii) K(u) = (1 4 )¢, 9<O0. (17)
(iv) K(u) = uf(e® ) for u 420, K(0) =

Theorem B. Suppose that, in Theorem A, A(u) is real and N (u) ts

additionally assumed to be positive and monotonic decreasing for u>0.
Suppose further that the hypothesis (10) is replaced by

limwB(u) = — Llp , limw'B(u)= Llq ,

#U-—>0o0 U—> 00

L>0, p>0, ¢>0, pl4gl=1.

Then the conclusion (11) will be replaced by

— L (s, p) < Tm [A(80) — D)) <o T*(8, q)
p t=+o q
where the equality signs are indispensable and
81 —
T (6, 2) = 1+§[Li§l§) _ (x)]d r+(-1)j [K("”) Nz )]dx a1,
0

%) On condition that (i) @(¢) in (1) exists as a Lebesgue-Stieltjes integral (and not
merely as a Riemann-Stieltjes integral which sufficies for the results of this note), (ii) N (u)
1s positive and monotonic decreasing, as in the cases of the K (u) of (17), it can be shown
that W, (t) exists for ¢ > 0 and

lim .
lim inf @ (1) < (o ¢ Wy (6) < limsup D (1) t>+ 0,

provided that the extreme members of the above inequalities are finite. Thus, assuming
(i), (ii) and the last-stated proviso, we can connect ¢,(d/t) with @ () as well as with
"Uk (), as, for instance, in the special relations (29), (30) of my paper [6].
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Proof. Theorem B is easily deduced from Lemma 1, exactly as Theorem
A from Lemma 2, with the same choice of f(x,?) as in (16) but with

B(x) ( 1 1 )
L|———].
x * P q
In the particular cases of the K (u) of (17), there is a result which
includes Theorem A and may be proved like that theorem. This result.
stated below as Theorem C, is similar to Agnew’s ([1], Theorem 3.1)

where the Tauberian condition on A4 (u), instead of being in the Kro-
necker form (10), is in the simpler Hardy form 3).

g(x) = 2

Theorem C. Suppose that, 1n Theorem A, the T*(0) of (12), considered
as a function of >0, has a unique minimum which is necessarily the least
T*(6), a condition which is satisfied in the cases of the K (u) of (17). Then
we have, wn addition to (11),

lim | () — ®(t) | < max {T*(x), 7% ()} lim | u=* B(u) |

t—>+0 U—>00

where the equality sign is indispensable and w in the left-hand member is
such that

0<o = limut <limut = f<oo .
t—+0 t—>+0

The various special types of elementary Tauberian theorems dedu-
cible from Theorems A, B, by known methods ([6], pp. 222-223) are
collected here for convenience.

(I) In Theorem A, the additional condition limD(t) =c0 as t -+ 0
implies lim A (u) = oo as u—oo.

(IT) In the specral case of Theorem A where the upper limit wn (10) is 0,
the limat points of @(t) and A(u) are identical.

(III) In Theorem A, whenever T*(6) has an absolute minimum t* as in
the cases of the K (u) of (17), each limit point z' of A (u) corresponds to a
limit point 2" of D(t), and conversely, such that

|2 — 2" | <v*lim|u1B(w)]| . (18)
U—> 0

5) Theorems A and B, like Theorem C, have analogues, suggested by my earlier work
([6], § 2), in which the Tauberian condition is of the Hardy form and involves wua (%)

instead of w!'B(u), a(u) being such that A4 (u) = }t a(x)dz. The treatment of these
0

analogues is of course similar to, but simpler than, that of Theorems A, B.

6) As Garten has shown ([3], Satz 2), v* in the particular case of the K (u) of 17(i) is
also the constant figuring in the analogue of (18) which connects a limit point 2’ of a
sequence s, and a limit point z” of the sequence of kth Cesaro meansofs, (k =1, 2, 3...).
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It is not known whether t* is the best (or least) constant in the above
inequality 7).
(IV) In the special case of Theorem B in which q¢ -1 (or p — o0), we
have the following result (which is best-possible since Theorem B is so):
if
limu1B(u) =0, l—i_n—l-u—lB(u)<oo ,
U—>oc U—>00

then

lim 4 (w) = lim @) . lim 4 (w) < lim @ () + lim u* B(u) .

Y —>00 t—>+0 U >0 t—>+0 U—>o0

4. Corrigenda. Vol. 24 (1950), pp. 219-231. I take this opportunity to
list the corrections which should be made in my paper [6]:

P.219. Inrelation (2), read ‘p(u)=..." for ‘p(u)=...
P. 220. At the end of relation (9), replace 1) by ¢4).
P. 223. In line 10, read

‘lim S (u) = lim F ()’ for ‘lim S(u) = lim F(¢) .

U—>oc t—>+0 ©%—> o0 t—>+0
223. In the Note, read ‘bt >1" for ‘b4 > 1’.

1 u
r—{—lf,‘

In line 2, read “(r + 1) ij,.(u)du’ for ° A (u)du' .
0

229. In line 7, read “J,.,(t) for ‘J,.(¢) .

IR
W]
[ 8]
~1

.231. Inline 5read ‘0 <u<i, for 0 <u<i.

) Agnew ([1], § 4) has partially answered the corresponding question for the absolute
minimum of 7'(8) defined in the Introduction, in certain cases which include the K (u)
of (17).
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