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tîber eîne neue Klasse automorpher
Funktionen und ein Gitterpunktproblem

in der hyperbolischen Ebene. I.*)
von Heinz Hubeb, Zurich

Einleitung und tlbersicht

1. In der analytischen Zahlentheorie sind schon die verschiedensten
Gitterpunktprobleme der euklidischen Ebene behandelt worden. Diesen
Betrachtungen liegt jeweils eine diskontinuierliche Translationsgruppe der
euklidischen Ebene mit kompaktem Fundamentalbereich zugrunde. Man
kann nun analoge Gitterpunktprobleme auch fur Translationsgruppen der
hyperbolischen Ebene mit kompaktem Fundamentalbereich stellen. Als
erschwerendes Moment kommt hier allerdings hinzu, daB die Mannigfal-
tigkeit dieser hyperbolischen Translationsgruppen bedeutend grôBer ist,
und daB dièse Gruppen nicht kommutativ sind. Ein weiterer, sehr ins
Gewicht fallender Unterschied gegeniiber den euklidischen Translationsgruppen

besteht darin, daB bei einer hyperbolischen Translation T die
Distanz der Punkte z und T(z) nicht unabhângig ist von der Lage des

Punktes z.
Dièse hyperbolischen Gitterpunktprobleme scheinen sehr reizvoll zu

sein, besonders auch deshalb, weil zu ihrer Bewâltigung offenbar neue
Ansâtze und Methoden gefunden werden miissen. Der so skizzierte Pro-
blemkreis ist meines Wissens bisher noch nicht angegriffen worden; die

vorliegende Arbeit môchte nun einen Beitrag dazu liefern. Um das hier zu
behandelnde Gitterpunktproblem und die dariiber erzielten Ergebnisse
prâzis formulieren zu kônnen, mûssen wir erst kurz einige Erlàuterungen
vorausschicken.

2. Es sei £> die hyperbolische Ebene. Wir denken uns die Lângenmes-

sung in § etwa so normiert, daB der Flâcheninhalt eines Dreiecks gleich
seinem Defekt wird. § besitzt dann uberall die konstante GauBsche

*) Von der Eidgonôssischen Technischen Hochschule in Zurich als Habilitâtionsschrift
angenommen.
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Krummung — 1. Es sei q{zx, z2) die hyperbolische Distanz der Punkte
zi> Z2 € §• Is^ nun ^ eme Bewegung1) von £), so heiBe die nichtnegative
Zahl

die Verschiebungslànge von T. Fur zwei beliebige Bewegungen T, V von
§ gilt stets

(1)

Eine Bewegung T von § heiBe Translation, wenn /u (T) > 0. Zu den
Translationen wollen wir auBerdem auch noch die Identitat E zâhlen,
welche jeden Punkt von § in Ruhe lâBt. Unter den Bewegungen von £>

gibt es auBer den Translationen bekanntlich nur noch die Drehungen und
Grenzdrehungen ; sie haben die Verschiebungslânge 0.

Wir betraehten nun eine diskontinuierliche Gruppe Fvon Translationen
von <r>. Identifiziert man die beziiglich F âquivalenten Punkte von §,
so erhàlt man eine orientierbare Riemannsche Mannigfaltigkeit konstanter
Krummung — 1 : die Mannigfaltigkeit § mod F. Ist insbesondere § mod F
kompakt2), so verstehen wir unter dem Geschlecht p der Gruppe F das

(topologische) Geschlecht der geschlossenen Mannigfaltigkeit § mod F.
Wir nennen ein Elément P e F — E ein primitives Elément von F,

wenn es keine Darstellung P Qn mit Q e F und n > 1 zulàBt. Jedes
Elément T e F — E besitzt dann eine ,,Normaldarstellung" T Pr,
wobei P ein primitives Elément von Pist. Dabei ist die Zahl v(T) \r\
durch T eindeutig bestimmt ; sie heiBe die Vielfachheit von T. Dièse Viel-
fachheit v(T) ist eine Klassenfunktion auf F — E. Ist nun $t ^ {E}
eine Klasse konjugierter Elemente von F, so kônnen wir daher definieren

Ebenso ist wegen (1) auch ju(T) eine Klassenfunktion auf F; wir kônnen
daher die Verschiebungslànge /u ($t) der Klasse 51 definieren durch

p(St) p(T) Te Si.

3. Das in dieser Arbeit zu behandelnde Gitterpunktproblem kann nun
folgendermaBen formuliert werden : Es sei F eine diskontinuierliche

Translationsgruppe von § ; § mod F sei kompakt und besitze

1) d. h. eine isometrische Abbildung von § auf sich selbst, welche die Indikatrix erhàlt.
2) dies ist équivalent mit der Forderung, dafi F einen kompakten Fundamentalbereich

besitzen soll.
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das Geschlecht p. Es sei 51 ^ {E} eine Klasse konjugierter Elemente von
jT3). Nun betrachten wir einen hyperbolischen Kxeis mit dem Zentrum z

und dem Radius t und fragen nach der Anzahl N$(z, t) der in diesem
Kreise liegenden Gitterpunkte T(z), wenn T aile Elemente von Si durch-
làuft ; mit anderen Worten : wir fragen nach der Anzahl N$(z, t) der
Elemente der Menge {T \ T eR, q(z, Tz) < t}. Unser Ziel ist, asympto-
tische Aussagen ùber dièse Gitterpunkts-Anzahl N$(z, t) zu machen.

Zu diesem Zwecke fuhren wir die Dirichletreihe

G9(z, s) 27(Cos q(z, Tz) - 1)- (2)

ein und zeigen zunàchst, da8 G$(z, s) fur jedes feste s a + it mit
a > 1 eine in ganz § stetige Funktion von z ist, welche daselbst stetige
partielle Ableitungen erster und zweiter Ordnung nach den Koordinaten
des Punktes z besitzt. Dies zu zeigen ist zwar nicht ganz einfach, aber der
Beweis laBt sich doch mit elementaren Mitteln durchfûhren. Wir zeigen
ferner, daB G$ (z, s) fur a > 1 die Funktionalgleichung

àMz,s) + 2s(l-2s)Gz(z,s) + ±s*(Cos?i(R)-l)Ga(z,s+l) 0 (3)

erfûllt ; dabei ist A der zur hyperbolischen Metrik gehôrige Laplace-
Beltrami-Operator.

Aus der Définition (2) geht fast unmittelbar hervor, daB G$(z, s) eine

beziiglich F automorphe Funktion von z ist. G$(z, s) kann daher als ein-
deutige Funktion auf der geschlossenen Mannigfaltigkeit § mod F auf-
gefaBt werden. Dies und das Bestehen der Funktionalgleichung (3) legt
es nun einigermaBen nahe, die Funktion G$ (z, s) in Verbindung zu brin-
gen mit dem Eigenwertproblem

A <p + k(p 0 (4)

auf der geschlossenen Mannigfaltigkeit konstanter negativer Krummung
§ mod F. Wir nennen <p eine zum Eigenwert A gehôrige Eigenfunktion,
wenn folgende Bedingungen erfûllt sind :

a) 9? ist eine eindeutige und stetige Funktion auf der geschlossenen

Mannigfaltigkeit § mod F ; d. h. <p (z) ist eine in ganz § stetige und bezûg-
lich F automorphe Funktion.

b) cp(z) besitzt in § stetige partielle Ableitungen erster und zweiter
Ordnung nach den Koordinaten des Punktes z.

3) 51 enthâlt unendlieh viele Elemente.
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c) <p (z) ist eine nicht identisch verschwindende Lôsung der partiellen
Differentialgleichung A(p(z) + Aç?(z) 0.

Das in dieser Weise prâzisierte Eigenwertproblem (4) làBt sich im Rah-
men der Théorie linearer Integralgleichungen mit symmetrischem Kern
behandeln4). Es stellt sich dann heraus, daB es unendlich viele, im End-
lichen sich nirgends hàufende réelle Eigenwerte gibt, die aile nicht-
negativ sind und eine endliche Vielfachheit besitzen. Insbesondere ist
X 0 ein einfacher Eigenwert. Wir ordnen nun dièse Eigenwerte ihrer
GrôBe nach ; in der so entstehenden Folge soll aber jeder Eigenwert genau
seiner Vielfachheit entsprechend oft auftreten. Das Eigenwertspektrum
A sieht dann folgendermaBen aus :

A {h} ; Ao 0 < Ax < Aa < A8 < • • • ; lim K + °° (5)
W-»oo

Es sei {(pn(z)} ein zu (5) gehôriges normiertes Orthogonalsystem reeller
Eigenfunktionen ; es gilt dann also

A<pn(z) + KVnV) 0 fur aile ^ > 0

S S <Pm(Z) Vn(z) d(o Ôm,n » U, M^O
Die Integralgleichungstheorie liefert nun bekanntlich folgenden Entwick-
lungssatz : Ist f(z) eine bezuglich F automorphe und in ganz § zweimal
stetig nach den Koordinaten von z differenzierbare Funktion, so konver-
giert die Fourierreihe

Zcn<pn(z) cn= $$ f(z)<pn(z)dco

absolut und gleichmâBig und stellt die Funktion f(z) dar. Diesen Satz
wenden wir nun speziell auf unsere Funktion G$(z, s) an, welche ja fur
jedes feste s g -+- it mit a > 1 aile Voraussetzungen des Entwick-
lungssatzes erfullt. Wir erhalten so die zunachst fur a > 1 gûltige Dar-
stellung

Gt(z, s) ZFn(s) cpn(z) Fn(s) $$ Gz(z, s) <pn{z) dco
n=0 ft mod F

Fiir den Erfolg unserer Untersuchungen ist es nun von ganz ausschlag-
gebender Bedeutung, daB es gelingt, die Fourierkoeffizienten Fn(s) in
sehr expliziter Weise zu bestimmen und dadurch vollstândigen AufschluB
liber ihre Natur zu erhalten. Dièse Erscheinung wurzelt naturlich letzten
Endes im Bestehen der Funktionalgleichung (3), bleibt aber trotzdem

4) [4], [6].
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sehr iiberraschend. Auf Grund dieser genauen Kenntnis der Natur der
Funktionen Fn(s) kônnen wir dann sehlieBlich das folgende Haupt-
ergebnis beweisen :

A. Es sei

Die Dirichletreihe

G$(z, s) Z (Cos q(z, Tz) - l)~s, 5 a +
besitzt fur jedes z e § die Konvergenzabszisse aK J wnd steïtt dafeer m der
Halbebene a > J eiwe regulàr-analytische Funktion von s dar. Dièse Funk-
tion G$ (z, 5) Zâ/ft sich fur jedes feste z c § iiôer die Gerade a \ hinaus
analytisch fortsetzen und erweist sich dis eine in der ganzen s-Ebene mero-
morphe Funktion. Es gilt nâmlich die folgende Darstellung :

mit x
Lx(z, s) Z$H{R) r(s - 4) r(s - s-) 9n(z)

n=l
wobei die Konstante 1pn (Si) das geodàtische Intégral5) bezûglich Si der Eigen-
funktion <pn(z) ist.

Ist Q ein beliebiges Kompaktum der s-Ebene, so konvergiert die Reihe

L$(z,s) nach Weglassung der hochstens endlich vielen in S singularen
Beihenglieder absolut und gleichmafiig fur aile s e S und z e § ; L$ (z, s)

ist dalier fïïr jedes feste z e %> eine in der ganzen s-Ebene meromorphe Funktion,

welche nur in den Punkten

s* — m «~—m, n > 1 m^O
Pôle besitzt und sonst ûberall regular ist.

Aus Satz A folgern wir dann endlich mit Hilfe eines Taubersehen Theo-

rems von Ikehara-Wiener2) den

Satz B. Es ist

fur t -> + 00.

5) Siehe die Définition in § 1.7. •) [8] pag. 44.
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Damit ist unser Gitterpunktproblem gelôst. Es ist noch bemerkenswert,
daB in dieser asymptotischen Aussage der Punkt z nicht mehr auftritt.

In einer spâteren Arbeit sollen die hier bewiesenen Sàtze speziell auf
arithmetisch definierte hyperbolische Translationsgruppen angewendet
werden, insbesondere auf diejenigen, welche den indefiniten ternâren
quadratischen Formen mit ganzrationalen Koeffizienten zugeordnet
sind7). Es werden sich auf dièse Weise Beziehungen der hier entwickelten
Sâtze zur analytischen Zahlentheorie in reell-quadratischen Zahlkôrpern
ergeben.

§ 1. Hyperbolische Translationen und diskontinuierliche

Translationsgruppen

Dieser Paragraph enthàlt eine Zusammenstellung einiger einfacher und
vorwiegend bekannter Begriflfe und Tatsachen aus der Théorie der hyper-
bolischen Bewegungsgruppen in einer fur die folgenden Untersuchungen
zweckmàBigen Form.

1. Die hyperbolische Ebene §. Es sei jr> die komplexe Halbebene
3(z) > 0, z x + iy. Durch die Metrik

dS2 y~2(dx2 + dy2) (1)

wird in <r> eine nichteuklidische Géométrie mit konstanter Krummung
— 1 erklart. Ihre Geodàtischen sind die zur reellen Achse y 0 ortho-
gonalen (euklidischen) Kreise und Geraden. Die mit dieser Metrik (1)
behaftete Halbebene <r) ist isometrisches Bild der hyperbolischen Ebene.
(Poincarésches Modell.) Es sei q(zx, z2) die hyperbolische Distanz zweier
Punkte zl9 z2 e § ; bekanntlich gilt

(2)

2. Nichteuklidische Bewegungen8). Unter einer (nichteuklidischen)
Bewegung von § verstehen wir eine umkehrbar eindeutige und bezliglich
der Metrik (1) isometrische Abbildung von § auf sich, welche die Indika-
trix erhàlt. Ist T eine solche Bewegung, so gilt fur aile Punkte

Zl9 Z2 € S •' Q(Tzl> TZ2) Q(Zl> Zi) •

7) vgl. [3] pag. 500-565.
8) vgl. hierzu etwa f2].

25



Jede Bewegung T von § lâfit sich darstellen in der Gestalt

T(z)
aZ "j"

b
; a,b,c,d reell ; ad-&c>0, (3)

und jede solche lineare Abbildung stellt eine Bewegung von <?) dar.

Définition 1: Ist T eine Bewegung von §, so heiBe die niehtnegative
Zahl ft(T) inf @(2, ^(z)) die Verschiebungslânge von î7.

Aus dieser Définition folgt fast unmittelbar das

Lemma 1 : Sind T und F Bewegungen von <rj, so ist fi F"1 T V) ju (T).

Définition 2: Eine Bewegung T von § heiBe (nichteuklidische) Translation,

wenn entweder T E oder /u (T) > 0.
Unter den Bewegungen von § gibt es auBer den Translationen nur

noch die Drehungen und Grenzdrehungen ; sie haben die Verschiebungslânge

0.

Die Translationen kônnen auch noch auf eine andere Weise charakteri-
siert werden : Eine Bewegung T ^ E von § ist dann und nur dann eine

Translation, wenn sie auf der reellen Achse y 0 genau zwei (von-
einander verschiedene) Fixpunkte besitzt. Wir werden sagen, eine Translation

gehôre zum Fixpunktepaar

wenn sie die Fixpunkte xx und x2 besitzt. Offenbar gehôrt die Identitàt E
zu jedem Fixpunktepaar (xl9 x2). Man beweist leicht das

Lemma 2: Es sei T ^ E eine zum Fixpunktepaar (x11 x2) gehôrige
Translation. Dann ist jede Bewegung V von £), fur welche 7"1ÎTF T
gilt, ebenfalls eine zum Fixpunktepaar (xl3 x2) gehôrige Translation.

Définition 3: Es sei T ^ E eine zum Fixpunktepaar (xl9 x2) gehôrige
Translation. Dann verstehen wir unter der Achse a {T) der Translation T
die (eindeutig bestimmte) Geodâtische durch die Fixpunkte xl9 x2,

Offenbar wird die Achse a(T) durch die Translation T in sich iiber-
gefûhrt. Ist F eine beliebige Bewegung von £>, so ist stets

a(F~1î7F)= V-l(a{T)) (4)

Wir beweisen nun ein einfaches Lemma, das sich aber im folgenden
bald als grundlegend erweisen wird.
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Lemma 3: Die Translation 0 von § habe die Gestalt

0(w) $w & > 0

und es sei w re1^, r>0, 0<^<7r. Dann gilt

(a) ju(O) | log ê |

(b) Cos q(w, 0w) — 1 (Cos ju(0) — 1) sin~2 y

Beweis: Nach Formel (2) gilt

w — \

D

somit wird

Cos Q{w,

1 + ê2 —2& cos 2xp '

(5)

Hieraus schlieBt man zunâchst

inf Cos q(w, ©w)

Daraus und aus Définition 1 folgt offenbar fi(0) | log & \, womit die
Behauptung (a) bewiesen ist. Aus (a) und (5) folgt nun auch die Behaup-
tung (b).

Lemma 4: Es sei T ^ E eine Translation von §. Dann ist stets
q(z, Tz) ^ /u>(T) und das Gleichheitszeichen gilt dann und nur dann,
wenn z e a (T).

Beweis: T gehôre zum Fixpunktepaar (xlix2). Dann gibt es eine
solche Bewegung V von §, daB F(0) xlt F(oo) x2. Die Translation

0 V-^TV (6)

gehôrt dann zum Fixpunktepaar (0, oo) und hat daher die Gestalt

0(W) &.w &>0 (7)
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Nach Lemma 1 und nach (4) gilt

/«(©)=/i(ÎT) (8)

(9)
Wir setzen nun

V-1(z) w rei* r>0 0 < y>< jr (10)

Daim ist wegen (6)

q(z, Tz) q(z, VOV^z) o{V-xz,eV-H) g(tt>, <9w)

Daraus und aus (7), (8), (10) folgt nach Lemma 3 :

Cos q(z, Tz) —1 (Cos ju(T) — 1) sin~2 xp

Hieraus ergibt sich aber sofort q(z, Tz) > !*(T), und das Gleiehheits-
zeichen gilt genau dann, wenn xp — nj2. Dann ist aber wegen (7) und (10)
V-1(z)€a{&)9 also wegen (9) : z€d(T).

3. Diskontinuieriiche Translationsgruppen von <r>. Fundamentalberei-
che9). Eine Gruppe F von Translationen von § heiBe diskontinuierlich,
wenn die Punktmenge {T(z) | T e F} fur kein zc§ einen Hâufungs-
punkt in § besitzt. Aus dieser Définition folgt leicht das

Lemma 5: F sei eine diskontinuieriiche Translationsgruppe von § und
es seien 50l1? 30?2 in $ kompakte Punktmengen. Dann gibt es hôchstens
endlich viele Elemente T e F, fur welche der Durchschnitt J7^) (1 S0î2

nicht leer ist.
Identifiziert man bezûglich F âquivalente Punkte von §, so erhàlt man

wegen Lemma 5 offenbar eine orientierbare zweidimensionale Mannig-
faltigkeit, die Mannigfaltigkeit § mod F.

Définition 4: Eine Punktmenge g c § heiBe Fundamentalbereich
der diskontinuierlichen Translationsgruppe F, wenn folgende Bedin-

gungen erfullt sind :

(a) g ist relativ § abgeschlossen.

(b) Zu jedem z c § gibt es ein solches T e F, daB T(z) € g.
(c) Aus z e g, T(z) e Ç, T €F -E folgt : 2 und T(z) sind Rand-

punkte von g.
(d) Der Rand von g hat das (zweidimensionale) MaB 0.

») Vgl. hierzu etwa [7] § 20-21.
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Bekanntlich gilt das

Lemma 6: Die Punktmenge

Sf(3o)= {*le(2o>*)< inî q(Tzo,z)}

ist ein Fundamentalbereieh der diskontinuierlichen Translationsgruppe F.
5 (z0) ist ein einfach-zusammenhângendes, endlich- oder unendlichseitiges
konvexes Polygon der hyperbolischen Ebene <r>, dessen Eckpunkte sich
im Innern von £> nirgends hàufen.

3f(z0) heiBe Normalpolygon von F zum Zentrum z0. Ist <r) mod .Fkom-
pakt, so ist jedes Normalpolygon g (z0) von F in <r> kompakt und besitzt
nur endlich viele Seiten.

4. Primitive Elemente. Vielfachheit. Es sei F eine diskontinuierliche
Translationsgruppe von £>. (xl9 x2) heiBe Fixpunktepaar von F, wenn es

mindestens ein Elément T e F — E gibt, das zu (xx, x2) gehôrt.

Définition 5: Ein Elément P e F — E heiBe primitives Elément von F,
wenn aus P B™, ReF folgt : | m \ 1.

Ist P ein primitives Elément von F und T € F, so ist offenbar auch
T~XPT primitiv. Die Primitivitàt ist daher eine Klasseneigenschaft.

Lemma 7: Es sei (xl9 x2) ein Fixpunktepaar von r"und3 die Gruppe
aller Elemente von F, welche zu (xl9 x2) gehôren. Dann gilt :

(a) 3 i8^ eule zyklische Gruppe unendlicher Ordnung.

(b) 3 enthàlt genau zwei primitive Elemente von F: Ist P eine Erzeu-
gende der zyklisehen Gruppe 3? so sin(i P und P~x dièse primitiven
Elemente.

Beweis von (a) : Es gibt eine solche Bewegung V von §, daB

F(0) xx F(oo) x2

Fur jedes T e3 gehôrt dann

î7* V-XTV (11)

zum Fixpunktepaar (0, oo) und hat daher die Gestalt

T*(z) &T-z êT>0 (12)

Die durch (11) und (12) fur aile T e% erklàrte Zuordnung T -+êT
ist offenbar eine isomorphe Abbildung von 3 in die multiplikative Gruppe
der positiven reellen Zahlen. Da3 als Untergruppe von /Miskontinuierlich
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ist, so folgt aus (11), (12), daB die Zahlenmenge {êT | T *3} im offenen
Intervall 0 < # < oo keinen Hàufungspunkt besitzen kann. Dann miis-
sen aber dièse Zahlen êT eine zyklische Gruppe der Ordnung 1 oder oo
bilden. Folglich ist auch 3 eine zyklische Gruppe der Ordnung 1 oder oo.
Da aber 3 nach Voraussetzung mindestens ein Elément von F — E
enthàlt, so muB die Ordnung von 3 unendlich sein.

Beweis von (b) : Es ist klar, daB hôchstens P und P"1 in 3 [P]
enthaltene primitive Elemente von JHsein kônnen. Dièse beiden sind aber
auch wirklich primitiv ; denn aus

P R™ ReF (13)

folgt zunâchst, daB P und R zum selben Fixpunktepaar (x1, x2) von F
gehôren. Nach der eben bewiesenen Behauptung (a) ist daher R P1

und somit wegen (13) : P Plm. Da aber 3 ~ [P] die Ordnung oo

besitzt, so muB Im 1, also | m | 1 sein. Damit ist Lemma 7 voll-
stândig bewiesen.

Aus Lemma 7 folgt sofort

Lemma 8: Zu jedem Elément T e F — E gibt es eine ,,Normal-
darstellung" T Pn, wobei P ein primitives Elément von F ist.

Ferner folgt offenbar aus Lemma 7 : Sind P und Q primitive Elemente
von F und ist Pn Qm, so ist | m | | n \. Daher wird die folgende
Définition sinnvoll :

Définition 6: Es sei T e F — E und T Pn eine Normaldarstellung
von T mit primitivem P e F. Dann verstehen wir unter der Vielfachheit
von T die natûrliche Zahl v(T) | n |.

Da die Primitivitât eine Klasseneigenschaft ist, so ist offenbar v(T)
eine Klassenfunktion auf F — E. Ist nun R =fc {E} eine Klasse kon-
jugierter Elemente von F, so kônnen wir daher definieren :

v^^vi^T) T€$ï
f

(14)

5. Invariante Intégration. Das zur Metrik (1) gehôrige Flàchen-
element

dcoz y~~2dxdy z x + iy
ist invariant gegenûber allen Bewegungen T von §. Ist © c § eine
meBbare Punktmenge und f(z) eine iiber T((5) integrierbare10) Funktion,
so gilt daher

dœa Hf(z)dw9 (16)
T(@)

10) d. h. f(z) mefibar in !F(©) und Si[\f | dm < oo.
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Unter einer hyperbolischen Kreisscheibe mit dem Zentrum z0 und dem
Radius r verstehen wir die Punktmenge

K[zoir]= {z\Q(z0,z)<r} (17)

Fur den hyperbolischen Flâcheninhalt A (r) von K [z0, r] gilt die Formel

A(r) JJ dco an Sin2^ 2tc(Cos r - 1) (18)

Man beweist leicht das wichtige

Lemma 9 : Es sei F eine diskontinuierliche Translationsgruppe von
§ und f(z) eine in £> meBbare und beziiglich F automorphe Funktion.
gi, g2 seien zwei Fundamentalbereiche von Fini Sinne von Définition 4,
und es sei f(z) liber Ci integrierbar11). Dann ist f(z) auch uber 2r2 inte-
grierbar und es gilt

Si M **>. H*) *<». -

6. Das Geschlecht p einer Gruppe. Es sei F eine diskontinuierliche
Translationsgruppe von §, und es sei § mod /* kompakt. Unter dem
Geschlecht p der Gruppe F verstehen wir dann das (topologische)
Geschlecht der geschlossenen orientierbaren Mannigfaltigkeit § mod F.
Da dièse geschlossene Flache die konstante Knimmung — 1 besitzt, so

folgt aus dem GauB-Bonnetschen Integralsatz, daB

$$da>=:±n{p~ 1) (19)

fiir jeden Fundamentalbereich g von F, und daB p > 1. Ûbrigens lâBt
sich das Geschlecht p von F auch rein gruppentheoretisch definieren :

Ist C die Kommutatoruntergruppe von F, so ist 2^? Rang(/1/C).

7. Geodâtische Intégrale. Es sei Peine diskontinuierliche Translationsgruppe

von § und <p(z) eine in § stetige und beziiglich F automorphe
Funktion. Wir setzen noch fest, daB im folgenden Kurvenintegrale der

Gestalt Sq)(z)dSz stets lângs der geodâtischen Strecke [»1,22] în Ô
*1

zu erstrecken sind. Solche geodâtische Intégrale besitzen natiirlich keinen
Z2 Zl

ausgezeichneten Durchlaufungssinn ; es ist also J <p(z) dSz J q>(z) dSe
zu setzen. Zl z%

n) d.h. //|/|dû><oo.
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Sei nun T c F — E. Die zyklische Grappe 3 [T] ist offensichtlich
eine Grappe umkehrbar eindeutiger Abbildungen von a(T) auf sich, und

dSz y-^dx* + dy*)i z x + iy c a(T)

ist ein bezûglich 3 invariantes MaB auf a(T). Fur jedes z0 c a(T) ist die
geodâtische Strecke [z0, T(z0)] c a(T) offenbar ein Fundamental-
bereich bezûglich 3 auf ci (T). Da ferner cp (z) nach Voraussetzung ins-
besondere bezûglich 3 automorph ist, so ist daher das geodâtische
Intégral T(Zq)

S <p(*)dSz

unabhângig von der speziellen Wahl des Punktes zoe a (T). Wir defi-
nieren nun fur jede Translation T e F — E

T(z0)
S <p(z)dSz. (20)

Fur die spezielle automorphe Funktion e (z) 1 gilt dann nach Lemma 4 :

T(z0) T(z0)

Î(T)= J e(z)dSz= J T T
zo€*(T) z

Man iiberlegt sich sofort, da8 allgemein

$ $ (21)
Wir zeigen noch, daB

y(V~lTV) y{T) fur aile TeF-E V <• F. (22)

In der Tat : Sei z0 c o(F-1î7F). Wir setzen w F (2) und w;0 V(z0).
Dann ist nach (4) wQ e a (T). Daher folgt nach Définition (20) unter
Beriicksichtigung der Tatsache, da6 <p(z) bezûglich F automorph ist :

(0) TV(zQ) T{w0)

J <p(z)dSz= J v(V-*w)dSw= J <p

Wegen (22) ist tp(T) eine Klassenfunlction auf F — E. Ist nun S* ^ {E}
eine Klasse konjugierter Elemente von F, so kônnen wir daher definieren :

${$) $(?), Te St. (23)

8. Beltramische Differentialoperatoren. Die Funktion /(z), z=x+iy,
sei in § definiert und besitze dort stetige partielle Ableitungen erster und
zweiter Ordnung nach x, y. Die zur Metrik (1) gehôrigen Beltramischen
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Differentialoperatoren erster und zweiter Ordnung werden dann folgen-
dermaBen definiert :

4^)2(f)2) (24)

(25)

Bekanntlich sind dièse Beltramioperatoren invariant gegeniiber allen
Bewegungen von § ; d. h. es gilt

Lemma 10: Es sei T eine Bewegung von <?>, w u + iv T(z),
f(z) f(T-*w) g(w). Dannist Vzf(z) Vwg{w), Azf(z) Awg(w).

§ 3. Hilfssâtze

In diesem Paragraphen beweisen wir einige Hilfssâtze. Die fur die fol-
genden Paragraphen wichtigen Ergebnisse sind Lemma 1 (a) und Lemma
4. Die ûbrigen Lemmata sind lediglich Zwischenstationen auf dem Wege
zu Lemma 4.

Lemma 1: Es sei T =£ E eine Translation von § und s eine komplexe
Zahl. Dann gilt :

(a) zl2(Cos q(z, Tz) - l)-« 2s(2s - 1) (Cos q(z, Tz) - l)~s

- 4s2(Cos fi(T) - 1) (Cos q(z, Tz) - l)-8"1

(b) Az(Co8Q(z,Tz)-l) 2(Cosô(z,Tz)-l) ^-2^^^-^j> 0

(d) Esist [72(Cose(z, Tz) — 1) 0 dann und nur dann, wenn z ea(T).

(e) VÎ(Cos q(z,Tz)- 1)

Tz) — l Cosq(z,Tz)~
Beweis : T làBt sich darstellen in der Form

T= F"1© F (1)
wobei 0 die Gestalt

0(w) &w &>0 (2)
besitzt und

(3)
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Wir setzen nun
V(z) =w u + iv re1* (4)

Dann ist g(z, Tz) g(z, V~10Vz) g(Vz, 0Vz) g(w, 0w). Daraus
und aus (2), (3) und Lemma 3, § 1 folgt

Cos g(z, Tz) — 1 Cos g(w, 0w) — 1 (Cos ^(î7) — 1) sin~2 xp.

Hieraus und aus der Invarianz des Operators A gegeniiber der
Transformation (4) folgt nun :

Az(Cosq(z,Tz)-1)-8=Aw(Cosq(w,Ow)-1)-s

>0W)--l)~8
(6)

(Cos ju, (T) -1) ~8 sin2 w~ (sin28 w)
o\pà

Nach (5) ist aber

sin2y; (Cos ju(T) - 1) (Cos q(z, Tz) - l)-1 (7)

Setzt man dièses in (6) ein, so ergibt sich gerade die Formel (a). Formel

(b) folgt aus (a) fur den speziellen Wert s — 1. DaB schlieBlich
A (Cos g (z, Tz) — 1) >0, ergibt sieh sofort aus der Formel (b) und
Lemma 4, § 1.

Aus (5) und aus der Invarianz des Operators p gegeniiber der Transformation

(4) folgt12) :

Fz(Cos g(z, Tz) - 1) Pw(Cos g(w, 0w) - 1)

12) Die im folgenden angewandte symbolische Schreibweise dûrfte kaum zu Mifiver-
stândnissen Anlafi geben.
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Naeh einer kleinen Rechnung folgt daraus

F,(Cos q(z,Tz) ~1) 4(Cos fx(T) - l)2 (sin~4 y ~ sin~2 y) (8)

Setzt man auf der rechten Seite dieser Gleichung wieder (7) ein, so ergibt
sich die Formel (c). Die Behauptung (d) folgt sofort aus der eben bewie-
senen Formel (e) und Lemma 4, § 1.

Aus (8) und aus der Invarianz des Operators p gegentiber der
Transformation (4) folgt nun weiter

Vz (4(Cos

Setzt man hier wieder (7) ein, so ergibt sich die Formel (e). Damit ist
Lemma 1 vollstândig bewiesen.

Lemma 2: Die réelle Funktion f(x1,x2) sei in der Halbebene x2 > 0

defîniert und besitze dort stetige erste und zweite partielle Ableitungen.
Dann gilt fur k, l 1,2:

(a)

(b)

dxk

Vf
dxkdxt

wo uf =é 0.

in allen Punkten

Beweis : Wâhrend des Beweises schreiben wir x, y statt xl3 x2. Naeh
der Définition in § 1.8 ist Vfz=y2(fl + fl)' D^ / naeh Voraussetzung
reell ist, folgt hieraus offenbar

I/J, ifvK-^1 W

Damit ist die Behauptung (a) schon bewiesen. - Setzen wir nun

F(x,y) ]7f y*(fl + fl) (10)
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y*f — \/F y2

Da F reell ist, folgt hieraus

I Fx | \Fy
y

Andererseits berechnet man aber aus (10) sofort

(H)

Daraus und aus (11) schlieBt man leicht

I fxfxx H" fvfxv
21/3

I îxîxv i /^/î/

Nach der Définition des Opérators /d in § 1.8 gilt

Aus (13) und (15) folgt

JxïxV i Jy o Ivîxx

also, wenn wir noch (9) berucksichtigen :

\-ff +ffI lv!xx-rlxïx
I

2

(12)

(13)

(14)

(15)

Auf dieselbe Weise folgt aus (12) und (14) unter Beriicksichtigung von (9)

\tt ft |< ^P

Wir setzen jetzt

2^3

fxfxx + fvfxV

/î//«a; + fxfxv ~

P

(18)

(19)



Dann besagen die Ungleiehungen (12), (13), (16), (17)

2y3 ' '

P '
(20)

Nun fassent wir (18) bzw. (19) als lineares inhomogenes Gleichungssystem
fur die Unbekannten fxx, fxy bzw. fxy, fyy auf. Beide Système haben die

Déterminante fx -\- fy ^—-. Ist \/f =£ 0, so gelten daher die folgenden
if

Auflôsungsformeln :

ff (bf. + a/,) -

Hieraus und aus (20) folgt nun unter Berûcksichtigung von (9) :

Damit ist Lemma 2 bewiesen.

Lemma 3: Es sei T =fi E eine Translation von § und 2 xt + ix2i
x2> 0. Dann gilt fur k, l 1,2 und aile z e §

(a)

(b)

dxk

a2

2x~1(Cosg(z! Tz) - 1)

Q(z,Tz) -
Beweis : Wir setzen

f(xx,xt) Go* q(z,Tz)-\
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Dann folgt aus Lemma 1 (c) und Lemma 4, § 1 sofort

0 < p/< 4(Coa q{z,Tz) - l)2

Da / eine réelle Funktion ist, so folgt hieraus naeh Lemma 2 (a) :

dxl < 2a;2-1(Cos q{z, Tz) - 1) k 1, 2

Damit ist die Behauptung (a) schon bewiesen.
Nach Lemma 1 (d) gilt :

Vf ^0 fur aile 2(§- a(T). (21)

Aus den Formeln (b), (c), (e) von Lemma 1 ergibt sich sofort fur

x\Vvf

Daraus folgt wegen Lemma 4, § 1

Vt+ (z, Tz) — 1) fur

Hieraus und aus (21) folgt nun nach Lemma 2 (b)

< 16x~2(Cos q(z,Tz) — \) fur aile z c \
dxkdxl

Da aber beide Seiten dieser Ungleichung offenbar in ganz § stetige
Funktionen sind, so folgt sofort, da6

1

(Cos q{z, Tz) — 1) fur aile z c §

Damit ist Lemma 3 bewiesen.

Lemma 4: Es sei T yéi E eine Translation von § und z xx + ix2,
x2 > 0 ; s a + it. Dann gilt fur k,l 1,2 :

21 s | a:"1 (Cosq(z, T2;) - 1)

dxkdxt
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Beweis: Es ist

dxk

und

Daraus und aus Lemma 3 folgt nun :

\s\(Cose(z,Tz)-l)-<>-1
dx, {Cosq(z,Tz)-1)

dx (Cosq(z,Tz)-1)

dxkdxl
d

(Cosq(z,Tz)-1)

^16\8\x-l(CœQ(z,Tz) — l)-°+ 4:\s\\s+l\ xf
Damit ist Lemma 4 offenbar bewiesen.

Tz) -

§ 3. Die Funktion G${z, s) und ihre Funktionalgleiehung

Von nun an sei F stets eine diskontinuierliche Translationsgruppe von §
mit kompaktem Fundamentalbereich und Si ^ {E} eine Klasse konju-
gierter Elemente von F.

Aus der Voraussetzung, dafi § mod F kompakt sei und aus Lemma 4,
§ 1 schlieBt man leicht, da8 ju0 inf (à(T) > 0. Es gilt dann also

Ter-E

q(z, Tz) > ili0 > 0 fur aile z e % und T * F - E (1)

Wir beweisen nun das

Lemma 1: Es sei n > 0. ganz ; r ^ //0 ; cr > 1

27 (Cos
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Es gibt eine fur a ^ 1 stetige Funktion m (a) > 0 derart, daB gilt :

8n(z, a ; r) ^ m (a) e-(a"1)r e-*"-1^»

fur aile Z€$, o^l, n^O, r ^ ^0.

Beweis: Es sei IB(2,r) die Anzahl13) der Elemente Î7€2n(2;,r).
Dann gilt offenbar

>Sw(^(T;r)<^w(2,r).(Cos(r + ^0)-l)- fâr a > 1 (2)

Wir denken uns nun (bei festen Z€§, ^>/io?n^^) die Elemente T
von ïw(2, r) numeriert :

Xn(z,r)= {T{} l<i <#„(*, r)
Dann gilt
Nn(z,r)

U

Ferner folgt aus (1) :

Z[3T/(»),i/ift]=0 fur i#7" (4)

Es sei nun ^l(^) der hyperbolische Flâcheninhalt der hyperbolischen
Kreisscheibe K[z,t]. Dann folgt aus (3) und (4) :

A (^\ Nn(z, r)^A(r

also nach Formel (18) § 1.5 :

Ç - lWn(z? r) < Cos (r + ^/^o + i/«o) - Cos(r + n^ - J//o). (5)

Eine leichte Rechnung ergibt

e~ï Sin^

Daraus und aus (5) folgt

Cosf-1

13) Wegen der Diskontinuitât von J1 ist dièse Anzahl offenbar stets endlich.
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Da nach Voraussetzung r + nfi0 ^ r > /u3, so folgt

Cos(r + n/Li0) — 1 |

Daher wird fur a > 1

(Cos(r + w/z0) — 1)-* <
Daraus und aus (2), (6) folgt aber

Sn(z,a;r) e

OobÇ-1

Damit ist aber Lemma 1 bewiesen mit
Mo

m{a)= e'Sm^o e^g(Cos^0- I)~g fur <x > 1

CobÇ-1

Lemma 2: Es sei Si — {Tn}, n > 1, eine beliebige Anordnung der
Elemente der Klasse R. Dann gilt : Fur jedes feste a > 1 konvergiert
die Reihe œ

n=l

gleichmâBig in z auf jeder in § kompakten Punktmenge SDÎ.

Beweis: Da 9Jt in § kompakt ist, gibt es eine solche endliche Zahl
R > 0, daB S(R c ii [i, S]. Es genugt daher, die gleichmâfiige Konver-
genz fur aile z e K[i, R] zu beweisen. Sei nun

r > f*o (7)

Nach Lemma 5 § 1.3 gibt es hôchstens endlich viele Elemente Tn € R,
fur welche der Durchschnitt Tn(K[i, R]) 0 K[i, R + r] nicht leer ist.
Daher gibt es zu jedem r einen solchen Index n0 no(r), daB

q(i, Tn(z)) > R + r fur aile zeK[i,R] und aile n > n0(r). (8)

Offenbar gilt fur aile z e K[i, R] :

g(i, Tn(z)) < Q(i, z) + q{z, Tn(z)) ^R + Q(z, Tn(z))

Daraus und aus (8) folgt

q(z, Tn(z)) >r fur aile z c K[i, R] und aile n > no(r). (9)
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Aus (7), (9) und der Définition von 8n(z, o;r) in Lemma 1 folgt offen-
bar : Ist p, q > w>o(r), z c K[i, R], so gibt es eine solche ganze Zahl
1 HP> <!>*), da8

z,o;r) (10)

Sei nun a > 1. Dann folgt aus (10) und Lemma 1 :

Q l
Z(Cos g(z,Tnz) - 1)-* ^m(o)e-i°-»r Ze~<a-i

Wir haben also fiir a > 1 :

r(Cos0(2,2^2) — l)~cr<(7((y)c-(ff-1>r fur aile z € K[i, R] ; p, q>no(r).
n=p

Bei festem o* > 1 kann aber die rechte Seite dieser Ungleichung durch
Wahl eines genûgend groBen r ^ /âq beliebig klein gemacht werden.
Damit ist die behauptete gleichmâBige Konvergenz bewiesen.

Aus Lemma 2 und Lemma 4, § 2 folgt nun unmittelbar der

Satz I: 51 {Tn}, n ^ 1, sei eine beliebige Anordnung der Elemente
der Klasse R, und es sei z xx + ix2i x2 > 0 ; s a + it. Dann gilt :

Fur jedes feste s mit a > 1 konvergieren die Reihen

s) r(Cos q{z, Tnz) -
zJ-(Çk*e{z,Tnz) - 1)-', S ^^-(Cos Q{z,Tnz) - 1)-

absolut und gleichmâfîig in z auf jeder in § kompakten Punktmenge.
Da offenbar die Glieder der in Satz I auftretenden Reihen in ganz §

stetige Funktionen von z sind, so folgt aus Satz I und elementaren
Reihensâtzen sofort der

Satz II: Fiir jedes feste s a + it mit a > 1 ist

G^z, s) Z{Coz Q{z,Tnz) - l)-*

eine in § stetige Funktion von z xx + ix2 und besitzt dort stetige erste

und zweite partielle Ableitungen nach den xk; es gilt fiir k)l= 1,2:
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s) z t (Cos q(z, Tnz) - 1)

Gs(z.s) Z-^—(Cos e(z.Tnz)- 1)-*
dxkdxt

und daher insbesondere

âzG%(z, s) ZAz(CosQ(z,Tnz)- 1)~°.
n=l

Bemerkung zu Satz II : Da die in Satz II auftretenden Reihen fur
a > 1 und aile z e § nach Satz I absolut konvergieren, so ist ihre Summe
invariant gegeniiber beliebigen Umordnungen der Glieder. Wir brauchen
daher - Solange es sich nicht gerade um GleichmâBigkeitsfragen handelt -
die Anordnung der Elemente der Klasse R nicht zu prâzisieren und dùrfen
kurz schreiben

Gg(z,$) E (Cos q(z, Tz) - \)~\

axk
(Cos q{z, Tz) - 1)-,

axk T€$°%i
usw.

Satz III: Fur jedes feste s mit a>l ist

G${z, s) E(Cosq(z, Tz) - l)-8

eine bezilglich der Gruppe F automorphe Funktion von z.

Beweis: Sei U e F. Aus der Tatsache, daB mit T auch U'lTU
genau einmal sâmtliche Elemente der Klasse R durchlâuft und aus der
Bemerkung zu Satz II folgt :

Qx(U(z).8) E (Cos q(Uz. TUz) - l)-8 E (Cob q(z, U^TUz)-!)-8

<**(*,*) '

Satz IV : Die Funktion G$ (z, s) erfûllt fur a > 1 die Funktional-
gleichung

1) G^(z,s+l) 0

Beweis : Aus Satz II und Lemma 1 (a), § 2 folgt fur a > 1 :

- (11)
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Naeh Lemma 1, § 1.2 ist aber jli(T) /a(Si) fur aile TeR. Daher
folgt aus (11) weiter

AzG$(z,s) 2s(2s - 1)£(Cobq(z9 Tz) - l)~s

- 4s2(Cos/*(5t) - 1) Z (Cos e(z, Tz) -rc5Ç

— 1) G^(z, s) — 4s2(Cos

Damit ist Satz IV bewiesen.
Nun beweisen wir noch einen Hilfssatz, den wir erst in § 5 anwenden

werden :

Lemma 3: Flir aile z e § und aile s a + it mit

gilt : | <?s(z, 5) | < M(al9 o2)<oo

Beweis : Sei a > 1. Daim ist

| Q%(z,8) | < 2: | (Cos q(z, Tz) - 1)- | E (Cos ^(z, Tz) - 1)-'. (12)

Fur aile z c § und Te 51 gilt aber nach (1): g(z,Tz) ^//0. Daraus
und aus Lemma 1 folgt :

i7(Cos^(z, Tz) — 1)-* Z8n(z, o;ju0) ^^W

Daraus und aus (12) ergibt sich nun

\Qx(z,s)\ ^m(a) e-<a-1^0(l — e-^-^^o)-1 fur aile zc§ und a>l. (13)

Da m (a) nach Lemma 1 eine fur a ^ 1 stetige Funktion ist, so ist offen-
bar

M(ol9o2)= Maxm(or)e-((7-1)/io(l-e-{a~1)tlo)-1<oo fur

Daraus und aus (13) folgt aber die zu beweisende Behauptung.

§ 4, Bemerkungen ûber das Eigenwertproblem Aq> + fop 0
auf der geschlossenen Mannigfaltigkeit § mod F

Zunâchst wollen wir ein fur allemal einen festen Fundamentalbereich
von F wâhlen, etwa das Normalpolygon zum Zentrum i, (vgl. § 1.3) :

3r= {z\Q(i,z)^ infQ(T(i),z)} (1)
Ter-E
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Da nach Voraussetzung £> mod F kompakt ist, so ist nach Lemma 6,

§ 1.3 g kompakt in £.
Nun betrachten wir das Eigenwertproblem

Ay + X<p 0 (2)

auf der geschlossenen Mannigfaltigkeit § mod F. Dabei sei A der zur
hyperbolischen Metrik gehôrige Laplace-Beltrami-Operator (§ 1.8).
(p (z) heiBe Eigenfunktion zum Eigenwert X, wenn folgende Bedingungen
erflillt sind :

(a) cp ist eine eindeutige und stetige Funktion auf der geschlossenen
Mannigfaltigkeit <r> mod F, d. h. y(z) ist eine in ganz £> stetige und bezug-
lich F automorphe Funktion.

(b) cp(z), z xx + ix2, besitzt in § stetige partielle Ableitungen erster
und zweiter Ordnung nach den xt.

(c) A,<p(z) + Xcp(z) O.

(d) cp(z) verschwindet nicht identisch.

Das Eigenwertproblem (2) lâBt sich im Rahmen der Théorie linearer
Integralgleichungen mit symmetrischem Kern behandeln14). Es ergeben
sich dann folgende bekannte Tatsachen (Lemma 1-4).

Lemma 1: Es gibt unendlich viele Eigenwerte, die sich aber im End-
lichen nirgends hâufen. Jeder Eigenwert ist reell, nichtnegativ und besitzt
eine endliche Vielfachheit.

Ofïensichtlich ist insbesondere K 0 ein Eigenwert und jede Funktion

<p(z) — const ^ 0 ist eine zugehôrige Eigenfunktion. Umgekehrt
ist jede Eigenfunktion zum Eigenwert X 0 offenbar harmonisch auf
der geschlossenen Mannigfaltigkeit § mod F und somit konstant. Daher
gilt

Lemma 2: Xo 0 ist ein einfacher Eigenwert und die zugehôrigen
Eigenfunktionen sind konstant.

Wir ordnen nun die sich im Endlichen nirgends hâufenden Eigenwerte
ihrer GrôBe nach ; in der so entstehenden Folge soll aber jeder Eigenwert
genau seiner Vielfachheit entsprechend oft auftreten. Wegen Lemma 1

und Lemma 2 sieht dann das Eigenwertspektrum A ofiEenbar folgender-
maBen aus :

A {Xn},n^0; AO O<A1, Xn^Xn+1 fur n^l; lim Aw +oo. (3)
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Es sei nun {<pn (z)}, n ^ 0, ein zu (3) gehôriges, normiert orthogonales
System von Eigenfunktionen. Da die An reell sind, kônnen offenbar auch
die Eigenfunktionen <pn(z) reell gewàhlt werden. Es gilt dann also

*mVA*) + K<Pn(*) 0 fur aile n > 0 (4)

H<Pn(z)<Pm(z) do) <5n,w fur aile n, m > 0 (5)

Aus (5) und Lemma 2 folgt insbesondere, daB

Daher ist nach Formel (19) § 1.5

wobei ^o das Geschlecht von /'ist.
Die Théorie der linearen Integralgleichungen liefert nun bekanntlich

den folgenden Entwicklungssatz :

Lemma 3: Es sei f(z), z xx + ix2, eine in § stetige und bezuglich
F automorphe (réelle oder komplexe) Funktion. f(z) besitze in ganz §
stetige partielle Ableitungen erster und zweiter Ordnung nach x1% x2.
Dann konvergiert die Fourierreihe

n=0 §

absolut und gleichmâBig fur aile z e § und stellt die Funktion f(z) dar.
Ferner gilt das wichtige

oo I
çp (z\ 12

Lemma 4 : Die Reihe Z —~^ konvergiert gleichmâBig fur aile

Da die Eigenfunktion q>n {z) eine in ganz § zweimal stetig difïerenzier-
bare Lôsung der linearen elliptischen Dififerentialgleichung (4) ist, so gilt

Lemma 5 : Die Eigenfunktionen <pn(z), z xx + ix2, sind in ganz
§ analytisch in den Variabeln xlt x2.

§ 5. Die Fourierkoeîîizienten Ft(s)

In diesem Paragraphen untersuchen wir die Fourierkoeffizienten der
Funktion Q$(z9 s) bezuglich des normierten Orthogonalsystems {<pl(z)} :

Ft(s) $$ Q*(z,8)<Pi(z) dco Z>0, s o + it, o>l. (1)
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Da 3 in § kompakt und G$ (z, s) nach Satz II eine fur o > 1 in ganz §
stetige Funktion von z ist, so sind die Ft (s) fur aile s mit a > 1 definiert.

Wir wâhlen nun ein beliebiges, aber im folgenden fest zu haltendes
Elément

(2)

jT* besitzt nach Lemma 8, §1.4 eine Normaldarstellung

T* Pk P e T, P primitiv ; (3)
dabei ist

| 4 | V{T*) v(R) (4)

Es sei 3 [P] die von P erzeugte zyklische Gruppe unendlicher Ord-
nung. Wir zerlegen nun die Gruppe F in Rechts-Restklassen mod3
und wàhlen aus jeder solchen einen festen Repràsentanten An, n ^ 1.
Dann gilt :

(5)

Aus A.A-1 eS [P] folgt : m n (6)

Nun beweisen wir ein sehr einfaches Lemma, das aber fur den Erfolg der
nachstehenden Untersuehungen in nicht geringem MaBe verantwort-
lich ist.

Lemma 1 : Durchlàuft n aile ganzen Zahlen >1, so durchlâuft
Tn A~1PkAn genau einmal aile Elemente von 51 ; d. h. es gilt

(a) Es ist A~ïPkAn e Si fur aile n ^ 1, und zu jedem T e$t gibt es
ein solches n, daB T A~1PkAn.

(b) Aus A~1PkAn A~1PkAm folgt : m n.

Beweis : Die Behauptung (a) folgt offenbar sofort aus (2), (3) und (5).
Nicht trivial ist hingegen die Behauptung (b). Aus A~1PkAn A^n1PkAm

folgt zunàchst
G~1PkC Pk (7)

mit
C AnA-1eT. (8)

Aus (7) folgt nach Lemma 2, § 1.2, daB C und Pk zum gleichen Fix-
punktepaar gehôren. Folglich gehôren auch C € F und P € F zum
gleichen Fixpunktepaar von F. Da aber P primitiv ist, so gibt es nach
Lemma 7,, § 1.4 eine solche ganze Zahl q, daB C PQ. Daraus und aus
(8) folgt aber nach (6), daB m n. Damit ist Lemma 1 bewiesen.

47



Da g in <?> kompakt ist, folgt jetzt aus Lemma 1 und Satz I, daB fur
jedes feste s mit a > 1

Gt(z, s) Z(Cos q(z, A~1PkAnz) - 1)-
n=l

auf 5 gleiehmâBig konvergiert. Daher gilt fur a > 1 :

^iW !$&$(*> *) y,(«)rf€O =f JJ(COB Ç(2, i^PM^) - l)-?>,(3) d0>

Z H(Co*Q(Anz,P*Anz) - l)->,(iln(2)) rfft> (9)
n=l S

Z jj (Cos ^(2, Pfc^) - l)"s <pt(z) dco
n=l

Dabei wurde beriicksichtigt, daB q?i(z) bezûglich Pautomorph ist. In der-
selben Weise ergibt sich fur a > 1 :

HGt(z,o)\Vl(z)\d<» Z $$ (Co8Q(z,P*z)-l)-°\<pl(z)\d«>

r JJ | (Cos e(3, pfcz) - i)-yi(«) | rfoj.
«=1 An(%)

Hieraus folgt insbesondere

H I (Cos Q(z> pkz) - l)~8 <Pi(z) \ dco <oo fur a > 1 (10)
n=l

Wir definieren nun ^
g* U^n(5) (11)

g* ist als Vereinigungsmenge der abzàhlbar vielen Normalpolygone
An($) meBbar. Die in £> kompakten Normalpolygone An(i$) und AmC\$)

iiberlappen offenbar nicht, wenn n ^ m. Daher folgt aus (10) und (11),
daB das Intégral $$ \ (Cos q(z, Pkz) — 1)~* <Pi(z) \ dco und somit auch

S*
das Intégral JJ(Cos q(z, Pkz) — l)~8 y>i{z) dco fur a > 1 existiert,
und daB s*

Z $$ (CosQ{z,Pkz)-l)-8cpl(z)dco mCosQ(ziPkz)-iy8q>l(z)dco. (12)
n=l An<Ç) S*

Aus (9) und (12) ergibt sich jetzt

$$ (Cos Q(z,Pkz) - lyvttydœ a> 1 (13)
g*
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Da Ç ein Normalpolygon von F ist, so folgt aus (5), (6) und (11) leicht,
daB 5* em Fundamentalbereich der zyklischen Gruppe 3 [P] im
Sinne von Définition 4, §1.3 ist. Nun ist aber offensichtlich die Funktion
(Cos g(z, Pkz) — I)~s<Pi(z) automorph bezuglich der zyklischen Gruppe
3 [P]. Daher andert sich nach Lemma 9, § 1.5 der Wert des Intégrais
(13) nicht, wenn wir darin 5* durch einen anderen Fundamentalbereich
von 3 im Smne von Définition 4, § 1.3 ersetzen. Wir werden nun einen
fur unsere Zwecke besonders gunstigen konstruieren. Es gibt offenbar
eine solche Bewegung F von j?>, daB

0 VPV-1 (14)
die Gestalt

0{w) 0 w 0> 1 (15)

erhalt. Aus (2), (3), (14) und Lemma 1, § 1.2 folgt dann

(16)
Ferner ist

F-i(a(0)) a(P) (17)
Wir setzen noch

V(z) =: w u + iv reH" r>0, 0<y<^ (18)

Nun ist wegen (15) die Punktmenge

© {w =- rel* | 1 < r < # 0<^<^} (1»)

ein Fundamentalbereich der zyklischen Gruppe [0] im Sinne von
Définition 4, § 1.3. Wegen (14) ist daher F~1(@) ein Fundamentalbereich
von 3 [P]- Folglich kann nun 5* m (13) durch F~1((5) ersetzt werden.

Es folgt dann aus (13) unter Berucksichtigung von (14), (18) :

*»= JJ (Cob q(z,P*z)~ 1)-Vl(z)d<»,
r-i(@)

^ (Co8 g(z,V-10kVz) - l)-s9>i(z)dco,

- JJ (Cose(F«,©*F«) - l)"Vl(V'1Vz)dœM
F~i(«J)

JJ (Cos ^(w, 0fcw) - lJ-'y^F-1^ dco^
@

Definieren wir noch

ViM <Pi(V-xw) (20)

so wird daher

Ft(s) JJ (Cos q(w, 0kw) - l)-"#9,(w)daiw a > 1 (21)
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Aus (15), (16), (18) folgt nach Lemma 3, § 1.2

(Cos q(w, 6kw) — l)~8 (Cos /*{${) — l)-8 sin2> (22)

Ferner ist
dcow v2dudv r~x sin"2^ drdtp (23)

Aus (19), (21), (22) und (23) folgt nun

Ft(s) (Cos/*(fl) - l)-8 Jsin2«-2^( J ^(rc^) *1)dtp a> 1 (24)

Fuhren wir die neue Variable
x log r (25)

ein und definieren

<p*(x,xp) =^(re^) — oo<a;<+oo; 0<^<7r, (26)

so wird
8- 7 log ^
/^(re^') — J <pï{x,rp)dx. (27)
1 P 0

Wir setzen nun noch
log#

Q^ip) jj <p*(z,ip)dx 0<xp<7t (28)
0

Dann folgt aus (24), (27), (28)

Fz(8) (Cos^(il) - l)-s/sin2«-2Y><Z>j(y>)# a > 1 (29)
o

Nun zeigen wir zunâchst

Lemma 2: Die Funktion <p*(x,ip) besitzt im Parallelstreifen

stetige partielle Ableitungen beliebig hoher Ordnung nach z, tp und ist
periodisch in z mit der Période log &.

Beweis: Nach (26), (25), (20), (18) gilt

Durch (31) wird der Parallelstreifen

ty:—oo<z<-j-oo, 0 < y) <n
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der komplexen (x + iy)-Ebene umkehrbar eindeutig und konform auf
die Halbebene § abgebildet. Nach Lemma 5, § 4 ist aber

(pt(z) z xx + ix2

in ganz <r> analytisch in den Variabeln zl9 x2. Daher ist wegen (30), (31)
die Funktion <p* (x, y>) in ^3 analytisch in den Variabeln x, \p und besitzt
somit daselbst stetige partielle Ableitungen beliebig hoher Ordnung nach

x, \p.
Aus (26), (25), (20), (18) und (14), (15) folgt

<p*(x + log ê, y) yti&re^)
<pt(V-WVz) Vl(P(z))

^t(w) ^(re^) ç?*(z, xp)

Damit ist Lemma 2 bewiesen.

Lemma 3 : Die Funktion 0t (y>) geniigt im Intervall 0 < %p < n der
linearen Differentialgleichung ^(yi) + Aj sin"~2^0j(^) 0.

Beweis : Es ist

(32)

Wegen (25) ist aber -— —-—, —— — —— —- und somit& dr r dx dr2 r2 dx2 r2 dx

Aus (26),

Nach (18)

(32),

(20)

a2 i
dv2 t

(33) folgt

a

nun

ft{w) sm8y(-

ist

i a2

r2a^2

ax2 ^^

i / a2 a2

t2 \ 3x2 a^2

a2 *

?'i(«) w=V(z). (35)

Daraus folgt wegen der Invarianzeigenschaft des Operators A (Lemma 10,

§1.8)
AwVl(w) Az<pt(z) (36)

Nun ist aber
Az9l(z) + XlVtW 0 (37)
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Aus (35), (36), (37) ergibt sich jetzt :

also, wenn wir noch (26) berucksichtigen : A^^w) — Aj<p*(a;,

Daraus und aus (34) folgt endlich

und daher

o c'a;'5 o oy> o

Daraus und aus Lemma 2 folgt offenbar

d2 r * r *
—s- J ^(ic,y)) c?#) + ^i sin~2 ^ J 9?^ (x, ip) dx 0

o

also wegen (28): 0fl(ip) -{- klsin~2y)0l(y)) 0. Damit ist Lemma 3

bewiesen.
Fur den weiteren Verlauf unserer Untersuehungen wird die Tatsache

ausschlaggebend sein, daB dem Funktionswert 0j(?r/2) eine invariante
Bedeutung zukommt ; wir zeigen

Lemma 4: Fur l > 0 gilt V^(rc/2) ^
Beweis: Nach (27), (28) und wegen (15) gilt offenbar

*iW2) S9i(reinl2)^= § <Pl{w)d8w

wobei das letzte Intégral ein geodâtisches Intégral im Sinne von §1.7 ist.
Hieraus folgt wegen (20) und (18) weiter

S(i) F-i@(i)
0l(n/2)= S 9>l(V^w)dSw= J <Pl(z)dSz (38)

i V-Hi)

Wegen (15) ist offenbar i c a(@) und daher wegen (17)

zo= V-Hi)ea(P) (39)

Berucksichtigen wir noch (14), so folgt aus (38), (39) :

«0
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Daraus folgt nun nach § 1.7: 0^/2) $,(P) -^ ^t(Pk), also,
wenn wir noch (2), (3) und (4) beriicksichtigen :

Damit ist Lemma 4 bewiesen.
Jetzt kehren wir wieder zu unserem Intégral (29) zuriick. Wir zerlegen

dièses in ein Intégral iiber das Intervall (0, nj2) und in ein Intégral ûber
das Intervall (n/2, n). Alsdann machen wir im ersten Teilintegral die
Substitution \p — n\2 — y und im zweiten Teilintegral die Substitution
xp n\2 + y. Dann folgt aus (29)

Ft(s) (Cos ju(R) - l)-8 J cos28"2*/- f,(y) dy a > 1 (40)
mit °

çt(y) 01(tz/2 — y) + 0^71/2 + y) 0 < ?/ < tt/2 (41)

Aus (41) folgt insbesondere : ft(0) 2 0^/2), ^(0) 0, also naeh
Lemma 4 : ^

1,(0) 2-^-, fJ(O) O (42)

Ferner folgt aus (41) und Lemma 3 sofort

ï"i (y) + h cos~2^ (y) 0 fur 0 < 2/ < W2 • (43)

Durch (42) und (43) wird die Funktion ^(y) offenbar eindeutig be-
stimmt. Wir fiihren nun noch die Variabelntransformation rj tgy aus ;

dann folgt aus (40), (42), (43) sofort das

Lemma 5 : Fur aile s a + it mit g > 1 gilt

mit ^

o (1 +î?2)s

Dabei ist Bl(rj) diejenige fur 0 ^ rj < oo regulàre Lôsung der linearen
Differentialgleichung

B\ (rj) + n B[ {ri) + * Bt (rj) 0, (46)

welche durch die Anfangsbedingungen

eindeutig bestimmt ist.
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Ausgehend von (46), (47) wâre es nun nicht schwierig, die Funktion
2?j (rj) mit Hilfe einer geeigneten hypergeometrischen Funktion explizite
darzustellen. Wir verziehten aber darauf und wenden uns gleich der
nâheren Untersuchung von It(s) zu. Wir beweisen zunâchst das

Lemma 6: lim ai It(a)

Beweis: Machen wir im Intégral (45) die Substitution 1 4- rf eT,

so wird œ

Ii(s) J fi(t) e~8Tdr a > 1 (48)
mit °

0<r<oo (49)

Damit ist I^s) als ein (mindestens) in der Halbebene a > 1 konver-

gentes Laplace-Integral dargestellt. Nach Lemma 5 ist Bt (0) 2 ^
'

Daraus und aus (49) folgt v^'ii^ (50)

Aus (48) und (50) folgt aber nach einem bekannten Satz Abelscher Art
fur Laplace-Integrale15) :

lim cri Ix (cr)

Damit ist Lemma 6 bewiesen.

Lemma 7 : Es sei

Sj 4- -4- 4- r i 4Xi Sj

(52)

Dann gilt : Die durch (52) zunâchst nur in der Halbebene a > 1 defi-
nierte Funktion Ht (s) ist sogar eine ganze Funktion von s und genugt der
Funktionalgleichung Ht(s + 1) Ht(s).

Beweis : Aus der Funktionalgleichung flir G$ (z, s) (Satz IV, § 3)

folgt sofort :

H Vi(*) àzG^(z, s) dco + 28(1 - 2s) $$ G9(z, s) Vl(z) dco

+ 4s2(Cos fi(R) — 1) JJ G9(z, 5+1) <pt(z) dco 0

15) [1] Satz 12 pag. 200.
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also wegen (1)

JS(pl(z)AzG^z,s)dco+2s(l-2s)Fl(s)+^(CosfJc(R)-l)Fl(s+l)=0. (53)

Da q>i(z) und G$(z, s) bezuglich F automorphe Funktionen von

z xx-\- ix2

sind und stetige partielle Ableitungen erster und zweiter Ordnung nach
den xk besitzen, weil ferner die Mannigfaltigkeit <?) mod F geschlossen
ist, so gilt die Greensche Formel

Mz. s) dco JJ <?,(*, s) Az<pt(z) dœ (54)

Nun ist aber Az(pl(z) + ^t(pi(z) 0. Daraus und aus (54) ergibt sich

Hieraus und aus (53) folgt endlich

(2^(1 - 2s) - A,) Ft(s) + 4s2(CoSiie(ft) - 1) Fz(s + 1) 0

Daraus folgt unter Berucksiehtigung von (51)

(s - 8+) (s - «r) Fi(*) s*(Co

Setzen wir hier (44) ein. so ergibt sich fur It(s) folgende Funktional-
gleichung :

(S - 8+) (S - 8Ï) 1,(8) sHt(s + 1) CT > 1 (55)

Nach Définition (52) gilt

r(Pff~'f) g,(«), «r>l. (56)

Setzen wir nun (56) in (55) ein und berucksichtigen, daB

so ergibt sich fiir Hl(s) die Funktionalgleichung

^(«4- l) #i(«) cr> 1 (57)

Aus (48) und (52) folgt sofort, daB Hl(s) mindestens in der Halbebene
a > 1 regulâr analytisch ist. Daraus und aus (57) folgt aber? daB Ht(s)
sogar eine ganze Funktion ist. Damit ist Lemma 7 bewiesen.

Nun sind wir in der Lage, das Hauptresultat dièses Paragraphen zu
beweisen :
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Satz V: Es sei

0) G > 1

Dann ist

v(St) v

Beweis: Aus der Stirlingschen asymptotischen Darstellung von F (s)

gewinnt man leicht

o8i +8i fur a -> + o° •

Nach (51) ist aber sf + «f 1/2 j somit wird

^ ~ al fur a -> + oo (58)

Aus (52), (58) und Lemma 6 folgt nun

Km

Daraus und aus Lemma 7 folgt offenbar

Hieraus und aus (52) und Lemma 5 ergibt sich aber die zu beweisende

Behauptung.
Im AnschluB an Satz V beweisen wir noch einen Hilfssatz, der in § 6

eine entscheidende Rolle spielen wird.

Lemma 8: Fur aile s a + it mit 1 < at < a < a2<oo gilt :

Z\ Vn(&)r(s —si)F(S -*-) |2 <Jf*(0T1?(T2)<CX)
n==l

Beweis : Da {9?^ (z)}, n > 1, ein normiertes Orthogonalsystem ist,
gilt die Besselsche Ungleichung

Z\Fn(s)\*^$$\Gz(zis)\*dœ fur g > 1
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Daraus und aus Satz V und Lemma 3, § 3 ergibt sich fur

1 < o1 ^ g ^ a2 < oo :

also wegen Formel (19), § 1.6

n=l

Hieraus folgt offenbar die zu beweisende Behauptung mit

^1,a2). Max

§ 6. Analytische Fortsetzung von G$(z, s)

Es sei s =- a + it fest und a > 1. Dann ist 6r$(z, s) nach Satz II
und Satz III, § 3 eine in § stetige und bezûglich F automorphe Funktion
von z xx -f- ix2, welche in § stetige partielle Ableitungen erster und
zweiter Ordnung naeh xl9 x2 besitzt. Nach Lemma 3, § 4 konvergiert
daher die Fourierentwicklung von G$(z, s) nach dem Orthogonalsystem
{<Pn (z)} absolut und gleichmaBig fiir aile z e § und stellt die Funktion
Gg(z, s) dar. Daraus und aus Satz V, § 5 folgt nun fur a > 1 :

^. (Ces M) - 1)-. r<* <W S^ vM (1)

Nach § 4 ist Ao 0 ; daraus und aus der Définition der GrôBen s^ in
Satz V folgt

*o+ i ^0" 0 (2)
Nach § 4 ist ferner
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Daraus folgt nach §1.7 sofort

Aus (1), (2), (3) und (4) ergibt sich nun offenbar der

Satz VI: Fur <x > 1 gilt

mit x
Lx(z, s) i7$n(ft) r(s - s+) r(s - s-) <pn(z)

w=l

Fur jedes feste s a -f- it mit a > 1 konvergiert die Reihe L$ (z, s)

absolut und gleichmâflig fur aile z e %.
Jetzt beweisen wir den fur die analytische Fortsetzung von G$(z, s)

entscheidenden

Satz VII : Es sei g > 1 eine beliebige ganze Zahl,

Qg= {s a + il\\a\^g \t \ < g}

n0 no(g) werde so gewàhlt1*), dafi

Àn > 16gr2 + \ fiir aile n ^ no(g)

Dann ist F (s — s+) F (s — s~) in Qg regular fur aile n > ^o(^)
die Reihe ^

Z $n(R) F(s - <) F(s - s~) cpn(z)

konvergiert absolut und gleichmâjiig fur aile s cQg und z e

Beweis : Nach der Définition in Satz V, § 5 ist

< 1 + ï ^î - 4An s' i - i V\ - 44 (5)

Dalier ist
<K^ An. (6)

Nach Voraussetzung ist

Xn > 16^2 + | fur aile n > wo(^) ; g > 1

16) Dies ist ofFenbar fur jedes g ^> 1 raôglich, da ja nach § 4 lira Xn +00.
n—>oo
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Daraus und aus (5) folgt offenbar

fur aile n>^no(g) (7)
-t-

Ist nun k eine beliebige ganze Zahl, so folgt aus (7)

| s -f k — s* | > tn — g > ^ fur aile 5 c(^ und w> ^o^)- (^)

5
Ferner folgt aus (7) fur s eQg:

2-V2
; daher

also sicher

9 ' \s±
s

also 1

-1
n

1-
s \\ ^ (2-/2)2

— fiir aile
20

1 —

und n ^ no(g) (9)

Aus (7) folgt auBerdem, da8 F (s — s+) F (s — s~) fur ^>no(^) in
ganz Q^ regulàr analytisch ist.

Aus der Funktionalgleichung F (s + 1) s F (s) ergibt sich sofort :

r(s - s+)r(S - s-) (s - «+)

Hieraus und aus (6) folgt weiter

,-)/7(« + 4 - *»

"\-a-)(-^-l)t^r-l) "n\s + k - si) (s + k -s~)

Daraus und aus (8), (9) ergibt sich nun :

fur aile s e Qg und n ^ ^o^)-
Daher gilt fur aile l, m > no(g), s eQg

slTn

(10)

l An
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Fur aile s €Qg ist offenbar 2<5R(s + 0+2)<20-f2. Daher ist
nach Lemma 8, § 5

fur seQg.

Daraus und aus (10) ergibt sich endlich

fur aile 5 €Qg und aile m, Z > n(#)
00 I <P (z) I2

Da aber die Reihe Z —~^ nach Lemma 4, § 4 gleichmaBig fur aile
n=l ^n

2 € § konvergiert, so folgt aus (11) offenbar die zu beweisende Behaup-
tung.

Da die meromorphe Funktion F (s) genau in den Punkten s — m,
m > 0 ganz, Pôle besitzt, so folgt aus Satz VII sofort

Satz VIII : Die Reihe

L*(z, s) ZyJSt) r(s ~ si) r(s - s') cpn{z)

konvergiert absolut fur aile z e $ und s ^ s^ — m, (n ^ 1, m ^ 0),
und stellt fur jedes feste z e § eine in der ganzen s-Ebene meromorphe
Funktion dar, welche nur in den Punkten

si — m s~ ~ m (n > 1, m > 0)

Pôle besitzt und sonst ûberall regular ist.
Nach § 4 gilt

0 < Ai < À2 ^ A3 < lim Xn — + oo

und nach Satz V, § 5 ist

4 i + i Vl - 4An «- J - J yi - 4AW n > 1

Daraus folgt offenbar :

(a) Ist Ax > J, so liegen aile Punkte «+, «~ fur n > 1 auf der Geraden

(b) Ist 0 < Ax < J, so gibt es einen solchen Index n0, da8

0 < %x < An < | fur 1 < n < ^0, und Xn > J fur n > %.
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Dann liegen die Punkte s% sn fur 1 ^ n ^ n0 im reellen Intervall

|<cr^J + JI/l — 4Aj < |, und fur n > n0 auf der Geraden a J.
Aus (a), (b) und Satz VIII folgt nun der

Satz IX : Es gibt eine solche réelle Zahl <x0 < \, dafi gilt : Fur jedes
feste z e $ ist die Funktion L% (z, s) regulàr analytisch in der Halbebene

a > a0. Es ist g0 | falls k1 ^ J ; ïs£ Mngegen 0 < X± < ^, so ist

i<ao=i + i)/l-4A1<|.
Es sei nun 2 € § fest und aK die Konvergenzabszisse der Dirichletreihe

G$(z, s) Z(Cos g(z,Tz)~ l)-°
Nach Satz I, § 3 wissen wir, da8 jedenfalls aK ^ 1. Da die Dirichletreihe

G$(z, s) lauter positive Koeffizienten besitzt, so folgt aus einem
bekannten Satz von Landau17) : Der Punkt s aK ist eine singulâre
Stelle der in der Halbebene g > aK regulàr analytischen Funktion
G$(z, s). Daraus und aus Satz VI und Satz IX folgt nun offenbar,
daB aK J sein muB. Wir haben also

Satz X: Die Dirichletreihe

G%{z,s) Z(Cos q(z.Tz) - l)~s
Te®

besitzt fur jedes 2e§ die Konvergenzabszisse oK 1/2.

Fassen wir nun die in den Sâtzen VI, VII, VIII, X enthaltenen Resul-
tate zusammen, so ergibt sich offenbar gerade der in der Einleitung aus-
gesprochene Satz A.

Aus Satz A und Satz IX folgt fur jedes feste z € § :

(a) Die Dirichletreihe mit positiven Koeffizienten

konvergiert in der Halbebene a > 1.

(b) In der Halbebene a > 1 gilt die Darstellung

wobei g(z, s) sogar in der grôfieren Halbebene

a>2o0 2oro<
regulàr analytisch ist.

17) [5] pag. 880.
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Es sei nun N {T \ T eR, J log(Cos q(z, Tz) — 1) < t} die Anzahl der
Elemente der Menge {T \ T e R, £ log (Cos q (z Tz) — 1) < r}. Daim
folgt aus (a) und (b) nach dem Taubersehen Theorem von Wiener -

Ikehara18) :

fur t -> + oo. Daraus ergibt sich aber sofort der in der Einleitung
ausgesproehene Satz B.
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