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Uber eine neue Klasse automorpher
Funktionen und ein Gitterpunktproblem
in der hyperbolischen Ebene. L")

von HriNnz HuUBER, Ziirich

Einleitung und Ubersicht

1. In der analytischen Zahlentheorie sind schon die verschiedensten
Gitterpunktprobleme der euklidischen Ebene behandelt worden. Diesen
Betrachtungen liegt jeweils eine diskontinuierliche Translationsgruppe der
euklidischen Ebene mit kompaktem Fundamentalbereich zugrunde. Man
kann nun analoge Gitterpunktprobleme auch fiir Translationsgruppen der
hyperbolischen Ebene mit kompaktem Fundamentalbereich stellen. Als
erschwerendes Moment kommt hier allerdings hinzu, dafl die Mannigfal-
tigkeit dieser hyperbolischen Translationsgruppen bedeutend grofler ist,
und daB diese Gruppen nicht kommutativ sind. Ein weiterer, sehr ins
Gewicht fallender Unterschied gegeniiber den euklidischen Translations-
gruppen besteht darin, daB bei einer hyperbolischen Translation 7' die
Distanz der Punkte z und 7'(z) nicht unabhingig ist von der Lage des
Punktes 2.

Diese hyperbolischen Gitterpunktprobleme scheinen sehr reizvoll zu
sein, besonders auch deshalb, weil zu ihrer Bewiltigung offenbar neue
Ansitze und Methoden gefunden werden miissen. Der so skizzierte Pro-
blemkreis ist meines Wissens bisher noch nicht angegriffen worden; die
vorliegende Arbeit mochte nun einen Beitrag dazu liefern. Um das hier zu
behandelnde Gitterpunktproblem und die dariiber erzielten Ergebnisse
prazis formulieren zu kénnen, miissen wir erst kurz einige Erlduterungen
vorausschicken.

2. Es sei $ die hyperbolische Ebene. Wir denken uns die Lingenmes-
sung in §) etwa so normiert, daf3 der Fldcheninhalt eines Dreiecks gleich
seinem Defekt wird. §) besitzt dann iiberall die konstante GauBlsche

*) Von der Eidgendossischen Technischen Hochschule in Ziirich als Habilitationsschrift
angenommen.
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Kriimmung — 1. Es sei p(z,, 2,) die hyperbolische Distanz der Punkte
21, 25 € 9. Ist nun 7T eine Bewegung?!) von §), so heille die nichtnegative
Zahl
u(T) = info(z, T'(2))
Z€EH

die Verschiebungslinge von 7'. Fiir zwei beliebige Bewegungen 7', V von
9 gilt stets

p(V2TV) = pu(T) . (1)

Eine Bewegung 7' von § heile Translation, wenn u(7') > 0. Zu den
Translationen wollen wir aulerdem auch noch die Identitdt E zéihlen,
welche jeden Punkt von § in Ruhe li8t. Unter den Bewegungen von £
gibt es auBler den Translationen bekanntlich nur noch die Drehungen und
Grenzdrehungen ; sie haben die Verschiebungslinge 0.

Wir betrachten nun eine diskontinuierliche Gruppe I" von Translationen
von §). Identifiziert man die beziiglich I" dquivalenten Punkte von §),
so erhélt man eine orientierbare Riemannsche Mannigfaltigkeit konstanter
Kriimmung — 1: die Mannigfaltigkeit § mod I". Ist insbesondere § mod I"
kompakt 2), so verstehen wir unter dem Geschlecht p der Gruppe I" das
(topologische) Geschlecht der geschlossenen Mannigfaltigkeit § mod I

Wir nennen ein Element P eI — E ein primitives Element von I,
wenn es keine Darstellung P = Q" mit @ ¢ I"’ und » > 1 zuldfit. Jedes
Element 7' eI’ — E besitzt dann eine ,Normaldarstellung® 7 = Pr,
wobei P ein primitives Element von I'ist. Dabei ist die Zahl »(T) = | r |
durch 7' eindeutig bestimmt ; sie heile die Vielfachheit von 7'. Diese Viel-
fachheit »(7') ist eine Klassenfunktion auf I' — E. Ist nun K = {E}
eine Klasse konjugierter Elemente von I', so konnen wir daher definieren

v(R)=»(T), TeRK .

Ebenso ist wegen (1) auch u(7') eine Klassenfunktion auf I'; wir kénnen
daher die Verschiebungslinge () der Klasse | definieren durch

p®) =ul), TeK.

3. Das in dieser Arbeit zu behandelnde Gitterpunktproblem kann nun
folgendermaBen formuliert werden: Es sei I' eine diskontinuier-
liche Translationsgruppe von §; $ mod I sei kompakt und besitze

1) d. h. eine isometrische Abbildung von 9 auf sich selbst, welche die Indikatrix erhalt.
%) dies ist dquivalent mit der Forderung, da8 I' einen kompakten Fundamentalbereich
besitzen soll.
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das Geschlecht p. Essei & 5~ {£} eine Klasse konjugierter Elemente von
I'3). Nun betrachten wir einen hyperbolischen Kreis mit dem Zentrum 2
und dem Radius ¢ und fragen nach der Anzahl Ng(z,t) der in diesem
Kreise liegenden Gitterpunkte 7'(z), wenn 7' alle Elemente von ) durch-
lduft ; mit anderen Worten : wir fragen nach der Anzahl Ng(z,t) der
Elemente der Menge {7 | T ¢, o(z, T2) < t}. Unser Ziel ist, asympto-
tische Aussagen iiber diese Gitterpunkts-Anzahl Ng(z,#) zu machen.
Zu diesem Zwecke fithren wir die Dirichletreihe

Ge(z,8) = 2 (Cos p(z, Tz) — 1)~ (2)
Tef

ein und zeigen zunéchst, dal Gg(z, s) fiir jedes feste s = ¢ 4 ¢¢ mit
o > 1 eine in ganz §) stetige Funktion von z ist, welche daselbst stetige
partielle Ableitungen erster und zweiter Ordnung nach den Koordinaten
des Punktes z besitzt. Dies zu zeigen ist zwar nicht ganz einfach, aber der
Beweis 148t sich doch mit elementaren Mitteln durchfiihren. Wir zeigen
ferner, dal Gg¢(z, s) fir ¢ > 1 die Funktionalgleichung

A,Gq(2,8) + 25(1 —25)Gg(z,8) + 482 (Cos u (R) — 1) Gg(z,s+1)=0 (3)

erfiillt ; dabei ist 4 der zur hyperbolischen Metrik gehorige Laplace-
Beltrami-Operator.

Aus der Definition (2) geht fast unmittelbar hervor, daBl Gg(z, s) eine
beziiglich I" automorphe Funktion von z ist. G¢(z, s) kann daher als ein-
deutige Funktion auf der geschlossenen Mannigfaltigkeit § mod I" auf-
gefalt werden. Dies und das Bestehen der Funktionalgleichung (3) legt
es nun einigermafBen nahe, die Funktion Gg¢(z, s) in Verbindung zu brin-
gen mit dem Eigenwertproblem

do +ip=0 (4)

auf der geschlossenen Mannigfaltigkeit konstanter negativer Kriimmung
$ mod I'. Wir nennen ¢ eine zum Eigenwert A gehorige Eigenfunktion,
wenn folgende Bedingungen erfiillt sind :

a) ¢ ist eine eindeutige und stetige Funktion auf der geschlossenen
Mannigfaltigkeit § mod I"; d. h. ¢(z) ist eine in ganz §) stetige und beziig-
lich I" automorphe Funktion.

b) @(z) besitzt in §) stetige partielle Ableitungen erster und zweiter
Ordnung nach den Koordinaten des Punktes z.

3) & enthalt unendlich viele Elemente.
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¢) ¢(z) ist eine nicht identisch verschwindende Losung der partiellen
Differentialgleichung Adg(z) + A¢(z) = 0.

Das in dieser Weise prizisierte Eigenwertproblem (4) laBt sich im Rah-
men der Theorie linearer Integralgleichungen mit symmetrischem Kern
behandeln4). Es stellt sich dann heraus, da3 es unendlich viele, im End-
lichen sich nirgends hiufende reelle Eigenwerte gibt, die alle nicht-
negativ sind und eine endliche Vielfachheit besitzen. Insbesondere ist
A = 0 ein einfacher Eigenwert. Wir ordnen nun diese Eigenwerte ihrer
GroBe nach ; in der so entstehenden Folge soll aber jeder Eigenwert genau
seiner Vielfachheit entsprechend oft auftreten. Das Eigenwertspektrum
A sieht dann folgendermafien aus :

A=} d=0<h <A <A<-; lmi=-o0 (5)

n—> oo
Es sei {¢,(2)} ein zu (5) gehoriges normiertes Orthogonalsystem reeller
Eigenfunktionen ; es gilt dann also

A(Pn (z) + Anq)n (Z) =0 fur alle n > 0 ,
."-" ¢m(z) (pn (z) dw == 6m’n b n, m > O .
Hmod I

Die Integralgleichungstheorie liefert nun bekanntlich folgenden Entwick-
lungssatz : Ist f(z) eine beziiglich I" automorphe und in ganz § zweimal
stetig nach den Koordinaten von z differenzierbare Funktion, so konver-
giert die Fourierreihe

Zeagal@) , o= ff [2) pu(2) doo

n=0 Hmod I
absolut und gleichméBig und stellt die Funktion f(z) dar. Diesen Satz
wenden wir nun speziell auf unsere Funktion Gg(z, s) an, welche ja fiir
jedes feste s = o + ¢¢ mit o> 1 alle Voraussetzungen des Entwick-
lungssatzes erfiillt. Wir erhalten so die zunéchst fiir ¢ > 1 giiltige Dar-
stellung

oo

G.R(za 8) == Z‘Fn('g) 9%(93) ’ Fn(s) - jj GR(Z, 8) %(z) do .
n=0 Hmod I’

Fiir den Erfolg unserer Untersuchungen ist es nun von ganz ausschlag-
gebender Bedeutung, dafl es gelingt, die Fourierkoeffizienten F,(s) in
sehr expliziter Weise zu bestimmen und dadurch vollsténdigen Aufschluf3
iiber ihre Natur zu erhalten. Diese Erscheinung wurzelt natiirlich letzten
Endes im Bestehen der Funktionalgleichung (3), bleibt aber trotzdem

‘) [4], (6]
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sehr iiberraschend. Auf Grund dieser genauen Kenntnis der Natur der
Funktionen F,(s) konnen wir dann schlieflich das folgende Haupt-
ergebnis beweisen :

Satz A. Es ser
sf=314+31V1—-42,, s =3}—-31V1—-44,, n>1.
Dre Dirichletreihe

Ge(2,8) =2 (Cosp(z,T2) —1)=%, s=o0-+1t,

Tef
besitzt fiir jedes z € § die Konvergenzabszisse ox = % und stellt daher in der
Halbebene o > 1 eine regulir-analytische Funktion von s dar. Diese Funk-
tion Gg(z, 8) ldpt sich fir jedes feste z € § uber die Gerade o = } hinaus
analytisch fortsetzen und erweist sich als eine in der ganzen s-Ebene mero-
morphe Funktion. Es qilt ndamlich die folgende Darstellung :
1

/ 1
Oele8) = @) T ()(OOS” =1 (47:(153)1) s(s—Jr )+F() - 8))

mat o
L_g(z,S) = Zan(ﬁ) F(S _8;1—) P(S _8;) (pn(z)
n=1

wobei die Konstante 9,(R) das geoddtische Integral®) beziiglich K der Eigen-
funktion ¢, (2) ust.

Ist S ein beliebiges Kompaktum der s-Ebene, so konvergiert die Reihe
Lg(z,8) mnach Weglassung der hochstens endlich vielen in S singuldren
Reihenglieder absolut und gleichmdfig fir alle s e S und z € $; Lg(z, 8)
st daher fiir jedes feste z € §) eine in der ganzen s-Ebene meromorphe Funk-
tion, welche nur in den Punkten

+ —
g —m , 8, —m , n=1l, m=0

Pole besitzt und sonst itberall reguldr st.
Aus Satz A folgern wir dann endlich mit Hilfe eines Tauberschen Theo-
rems von Ikehara-Wiener2) den

Satz B. Es st

1 1 LK) L otl2
Ng(z;t)~4n(p —-—l) . ’V(R) . Sin/‘(R) (2
2

fir t — -+ oo.

5) Siehe die Definition in § 1.7. ¢) [8] pag. 44.
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Damit ist unser Gitterpunktproblem gelost. Es ist noch bemerkenswert,
daB in dieser asymptotischen Aussage der Punkt z nicht mehr auftritt.

In einer spiteren Arbeit sollen die hier bewiesenen Sitze speziell auf
arithmetisch definierte hyperbolische Translationsgruppen angewendet
werden, insbesondere auf diejenigen, welche den indefiniten terniren
quadratischen Formen mit ganzrationalen Koeffizienten zugeordnet
sind?). Es werden sich auf diese Weise Beziehungen der hier entwickelten
Sdtze zur analytischen Zahlentheorie in reell-quadratischen Zahlkérpern
ergeben.

§ 1. Hyperbolische Translationen und diskontinuierliche
Translationsgruppen

Dieser Paragraph enthilt eine Zusammenstellung einiger einfacher und
vorwiegend bekannter Begriffe und Tatsachen aus der Theorie der hyper-
bolischen Bewegungsgruppen in einer fiir die folgenden Untersuchungen
zweckmiBigen Form.

1. Die hyperholische Ebene §. Es sei § die komplexe Halbebene
3(2) >0, z=x + 1y. Durch die Metrik

dS? = y~*(da® + dy?) (1)

wird in §) eine nichteuklidische Geometrie mit konstanter Kriimmung
— 1 erkliart. Thre Geodétischen sind die zur reellen Achse y = 0 ortho-
gonalen (euklidischen) Kreise und Geraden. Die mit dieser Metrik (1)
behaftete Halbebene $) ist isometrisches Bild der hyperbolischen Ebene.
(Poincarésches Modell.) Es sei g(z,, 2,) die hyperbolische Distanz zweier
Punkte z,, z, € §; bekanntlich gilt

1 4 D(zq, 2,)

21 — %
9(21,22) = IOg 1 ——D(Zl zz) ’ D(z19z2) = ! 2

21 — %2

(2)

2. Nichteuklidische Bewegungen®). Unter einer (nichteuklidischen)
Bewegung von $§) verstehen wir eine umkehrbar eindeutige und beziiglich
der Metrik (1) isometrische Abbildung von § auf sich, welche die Indika-
trix erhélt. Ist 7T eine solche Bewegung, so gilt fiir alle Punkte

215 %9 55 : Q(Tzl’ Tzz) = Q(zls 22) .

) vgl. [3] pag. 500-565.
8) vgl. hierzu etwa [2].

25



Jede Bewegung 7' von §) laBt sich darstellen in der Gestalt

T(2) — az + b

v & a,b,c,d reell; ad —bc>0, (3)

und jede solche lineare Abbildung stellt eine Bewegung von §) dar.

Definition 1: Ist 7' eine Bewegung von $), so heille die nichtnegative

Zahl u(T) = info(z, T (z)) die Verschiebungslinge von T'.
Z€EH
Aus dieser Definition folgt fast unmittelbar das

Lemma 1: Sind 7" und V Bewegungen von $, soist u(V-1TV)=u(T).

Definition 2: Eine Bewegung 7' von § heifle (nichteuklidische) Trans-
lation, wenn entweder 7' = E oder u(7) > 0.

Unter den Bewegungen von § gibt es aufler den Translationen nur
noch die Drehungen und Grenzdrehungen ; sie haben die Verschiebungs-
lange 0.

Die Translationen kénnen auch noch auf eine andere Weise charakteri-
siert werden : Eine Bewegung 7' = E von $ ist dann und nur dann eine
Translation, wenn sie auf der reellen Achse y = 0 genau zwei (von-
einander verschiedene) Fixpunkte besitzt. Wir werden sagen, eine Trans-
lation gehore zum Fixpunktepaar

(4, x5) —0 LT < Xy K+ 00,

wenn sie die Fixpunkte x, und z, besitzt. Offenbar gehort die Identitdt £
zu jedem Fixpunktepaar (z,, ,). Man beweist leicht das

Lemma 2: Es sei 7 # E eine zum Fixpunktepaar (z,, z,) gehorige
Translation. Dann ist jede Bewegung V von §, fir welche V1TV =T
gilt, ebenfalls eine zum Fixpunktepaar (z,, x,) gehorige Translation.

Definition 3: Essei 7' = E eine zum Fixpunktepaar (z,, x,) gehorige
Translation. Dann verstehen wir unter der Achse a(7') der Translation T'
die (eindeutig bestimmte) Geodétische durch die Fixpunkte x,, x,.

Offenbar wird die Achse a(7') durch die Translation 7' in sich iiber-
gefiihrt. Ist V eine beliebige Bewegung von §), so ist stets

a(V-1TV) = V-1(a(T)) (4)

Wir beweisen nun ein einfaches Lemma, das sich aber im folgenden
bald als grundlegend erweisen wird.
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Lemma 3: Die Translation @ von § habe die Gestalt
Ow)=93%w, H4>0,
und es sei w = re'¥, r >0, 0 <y < xz. Dann gilt
(a) u(@)=|log?|
(b) Coso(w, Ow)—1 = (Cos u (@) — 1) sin~2yp
Beweis : Nach Formel (2) gilt

14D Clw—dw| |9 —1]
e(w, Ow) =logy—, D"lml“- 1 —ge | °
somit wird
s @ — 1)
1+ 392 —29cos 2y ’
2D () — 1)

Cosp(w, Ow) —1 = }(e® + ¢ —1 =

1 —D2  $(1 — cos 29)

-1 3
Hieraus schlieBt man zunéichst
—1
inf Cos g (w, Ow) = i i A
wES 2

Daraus und aus Definition 1 folgt offenbar © (@) = |log 4 |, womit die
Behauptung (a) bewiesen ist. Aus (a) und (5) folgt nun auch die Behaup-
tung (b).

Lemma 4: Es sei 7 % E eine Translation von §. Dann ist stets
0(z,72) > u(T) und das Gleichheitszeichen gilt dann und nur dann,
wenn zea(7).

Beweis: T gehore zum Fixpunktepaar (z,, x,). Dann gibt es eine
solche Bewegung ¥V von §, da V(0) = z;, V(eo) = z,. Die Trans-
lation

O =V1TV (6)

gehort dann zum Fixpunktepaar (0, oo) und hat daher die Gestalt

Ow) =¢w, 9>0. (7)
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Nach Lemma 1 und nach (4) gilt

#(0) = pu(T) (8)
a(0) = V-1(a(T)) . (9)

Wir setzen nun
V—l(z),:w-—:re""’, r>0, I<p<m. (10)

Dann ist wegen (6)
0(2,T2) = o(2, VOV12) = o(V12,0V12) = o(w, Ow) .
Daraus und aus (7), (8), (10) folgt nach Lemma 3 :
Cosp(z,Tz) —1 = (Cos u(T) — 1) sin2yp.

Hieraus ergibt sich aber sofort ¢(z, 72) > u(7'), und das Gleichheits-
zeichen gilt genau dann, wenn y = #/2. Dann ist aber wegen (7) und (10)
V-1(z) e a (@), also wegen (9): zea(T).

3. Diskontinuierliche Translationsgruppen von $. Fundamentalberei-
che®). Eine Gruppe I von Translationen von §) heifle diskontinuierlich,
wenn die Punktmenge {7T'(z) | T ¢I'} fiir kein z ¢ § einen Hiufungs-
punkt in § besitzt. Aus dieser Definition folgt leicht das

Lemma b: [I'sei eine diskontinuierliche Translationsgruppe von § und
es seien M, , M, in H kompakte Punktmengen. Dann gibt es hochstens
endlich viele Elemente T ¢ I, fiir welche der Durchschnitt 7'(90t,) N I,
nicht leer ist. ~

Identifiziert man beziiglich I" 4quivalente Punkte von §), so erhélt man
wegen Lemma 5 offenbar eine orientierbare zweidimensionale Mannig-
faltigkeit, die Mannigfaltigkeit § mod I".

Definition 4: Eine Punktmenge & c § heile Fundamentalbereich
der diskontinuierlichen Translationsgruppe I', wenn folgende Bedin-
gungen erfiillt sind :

(a) & ist relativ § abgeschlossen.

(b) Zu jedem z e $ gibt es ein solches T ¢ I', daBl T'(z) € .

(c) Aus 2¢{, T(R) e, Tel' — E folgt: z und T'(z) sind Rand-
punkte von .

(d) Der Rand von & hat das (zweidimensionale) Maf} 0.

%) Vgl. hierzu etwa [7] § 20-21.
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Bekanntlich gilt das

Lemma 6: Die Punktmenge

@) = {z]ez,,2) < inf o(T%,,2)} , 2,¢9

Tel'-E

ist ein Fundamentalbereich der diskontinuierlichen Translationsgruppe I.
& (z,) ist ein einfach-zusammenhéngendes, endlich- oder unendlichseitiges
konvexes Polygon der hyperbolischen Ebene §), dessen Eckpunkte sich
im Innern von $ nirgends hiufen.

&(z,) heile Normalpolygon von I' zum Zentrum z,. Ist § mod I' kom-
pakt, so ist jedes Normalpolygon & (z,) von I'in § kompakt und besitzt
nur endlich viele Seiten.

4. Primitive Elemente. Vielfachheit. Es sei I eine diskontinuierliche
Translationsgruppe von §. (z,, *,) heile Fixpunktepaar von I', wenn es
mindestens ein Element 7'« I' — E gibt, das zu (z,, x,) gehort.

Definition 5: Ein Element P ¢ I' — E heile primitives Element von I,
wenn aus P = R™ Rel folgt: |m|=1.

Ist P ein primitives Element von I'und T e I', so ist offenbar auch
T-1PT primitiv. Die Primitivitit ist daher eine Klasseneigenschaft.

Lemma 7: Es sei (z,, x,) ein Fixpunktepaar von I"und 3 die Gruppe
aller Elemente von I', welche zu (x,, x,) gehéren. Dann gilt :

(a) 3 ist eine zyklische Gruppe unendlicher Ordnung.

(b) 3 enthilt genau zwei primitive Elemente von I': Ist P eine Erzeu-
gende der zyklischen Gruppe 3, so sind P und P-! diese primitiven
Elemente.

Beweis von (a): Es gibt eine solche Bewegung V von §), da@l
V)=, , V(wo)==2,.
Fir jedes 7' e¢3 gehort dann
T* = VATV (11)
zum Fixpunktepaar (0, co) und hat daher die Gestalt
T*(z) =Op2, Pp>0. (12)

Die durch (11) und (12) fiir alle 7' €3 erklirte Zuordnung 7' — 9,
ist offenbar eine isomorphe Abbildung von 3 in die multiplikative Gruppe
der positiven reellen Zahlen. Da 3 als Untergruppe von I" diskontinuierlich
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ist, so folgt aus (11), (12), dal die Zahlenmenge {#,| 7T €3} im offenen
Intervall 0 < ¢ < oo keinen Haufungspunkt besitzen kann. Dann miis-
sen aber diese Zahlen 9, eine zyklische Gruppe der Ordnung 1 oder oo
bilden. Folglich ist auch 3 eine zyklische Gruppe der Ordnung 1 oder oco.
Da aber 3 nach Voraussetzung mindestens ein Element von I' — E
enthdlt, so muB die Ordnung von 3 unendlich sein.

Beweis von (b): Es ist klar, dafl hochstens P und P! in 3 = [P]
enthaltene primitive Elemente von I sein kénnen. Diese beiden sind aber
auch wirklich primitiv; denn aus

P=Rm, Rel (13)

folgt zunéchst, dal P und R zum selben Fixpunktepaar (z,, ,) von I"
gehoren. Nach der eben bewiesenen Behauptung (a) ist daher R = P!
und somit wegen (13): P = P!™ Da aber 3 = [P] die Ordnung oo
besitzt, so muBl Im = 1, also | m| =1 sein. Damit ist Lemma 7 voll-
stindig bewiesen.

Aus Lemma 7 folgt sofort

Lemma 8: Zu jedem Element 7 eI — E gibt es eine ,,Normal-
darstellung” T = P™, wobei P ein primitives Element von I ist.

Ferner folgt offenbar aus Lemma 7 : Sind P und  primitive Elemente
von I'und ist P" = @™, soist | m| = | n|. Daher wird die folgende
Definition sinnvoll :

Definition 6: Essei T'e¢ I' — E und 7T = P" eine Normaldarstellung
von 7' mit primitivem P ¢ I". Dann verstehen wir unter der Vielfachheit
von 7' die natiirliche Zahl »(T) = |n|.

Da die Primitivitdt eine Klasseneigenschaft ist, so ist offenbar »(7)
eine Klassenfunktion auf I' — E. Ist nun & = {£} eine Klasse kon-
jugierter Elemente von I', so konnen wir daher definieren :

Q) =v(T'), TeK. ‘ (14)

5. Invariante Integration. Das zur Metrik (1) gehorige Flichen-

element
do,=y?*dzdy , z=2a+1y (15)

ist invariant gegeniiber allen Bewegungen 7T von $. Ist ® c § eine
meBbare Punktmenge und f(z) eine iiber 7' (®) integrierbare!®) Funktion,
so gilt daher

f@)ff(Tz) do, = || [(2) do, . (16)

()

10) d. h. f(z) meBbar in T(®) und S |f| dw < co.
V{(G))
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Unter einer hyperbolischen Kreisscheibe mit dem Zentrum z, und dem
Radius r verstehen wir die Punktmenge

Klz,,r1 = {z|0(z,,2) <7} (17)
Fiir den hyperbolischen Flicheninhalt A4 (r) von K{[z,, r] gilt die Formel
A@r) = ([ do = 4= smz-:;T — 27 (Cosr — 1) . (18)

Klzqy,7]

Man beweist leicht das wichtige

Lemma 9: Es sei I' eine diskontinuierliche Translationsgruppe von
$ und f(z) eine in $ meflbare und beziiglich I" automorphe Funktion.
&1, &2 seien zwei Fundamentalbereiche von I'" im Sinne von Definition 4,
und es sei f(z) iber &, integrierbar!!). Dann ist f(z) auch iiber §, inte-

grierbar und es gilt
.{fg.”(z) dw, = ~€fgf}‘(z) dw

6. Das Geschlecht p einer Gruppe. Es sei I' eine diskontinuierliche
Translationsgruppe von §, und es sei § mod I kompakt. Unter dem
Geschlecht p der Gruppe I' verstehen wir dann das (topologische) Ge-
schlecht der geschlossenen orientierbaren Mannigfaltigkeit $ mod I'.
Da diese geschlossene Fliche die konstante Kriimmung — 1 besitzt, so
folgt aus dem GaufB-Bonnetschen Integralsatz, daB

[f do = 4a(p — 1) (19)
g

fir jeden Fundamentalbereich § von I', und daB8 p > 1. Ubrigens li8t
sich das Geschlecht p von I' auch rein gruppentheoretisch definieren :
Ist C die Kommutatoruntergruppe von I, so ist 2p = Rang(I'/C).

7. Geoditische Integrale. Es sei I'eine diskontinuierliche Translations-
gruppe von § und ¢(z) eine in § stetige und beziiglich I" automorphe
Funktion Wir setzen noch fest, dafl im folgenden Kurvenintegrale der

Gestalt f @(2) dS, stets lings der geoditischen Strecke [z,,z,] in §
zu erstrecken sind. Solche geoddtische Integrale besﬂ:zen naturhch keinen

ausgezeichneten Durchlaufungssinn ; es ist also j qo(z) s, = j @(z)dS,
zu setzen. % 2

) d. h. ff]|f]do < oo.

1
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Seinun 7 ¢ I' — E. Die zyklische Gruppe 3 = [T'] ist offensichtlich
eine Gruppe umkehrbar eindeutiger Abbildungen von a(7') auf sich, und

dS, =y (dx® +dy*)t, z=2x+iyea(T)

ist ein beziiglich 3 invariantes Maf} auf a(7'). Fiir jedes z,e a(T') ist die
geoditische Strecke [z, 7'(z,)] < a(7) offenbar ein Fundamental-
bereich beziiglich 3 auf a(7"). Da ferner ¢(z) nach Voraussetzung ins-
besondere beziiglich 3 automorph ist, so ist daher das geoditische
Integral T(z,)

| 9(2)ds,

20€a(T)
unabhingig von der speziellen Wahl des Punktes z,ea(7). Wir defi-
nieren nun fiir jede Translation T e I" — E

T(z2)

(T = | p(2)dS,. (20)

20€0(T)
Fiir die spezielle automorphe Funktion ¢(z) = 1 gilt dann nach Lemma 4 :

A T(zo) T(20)
ST = e()dS, = | dS, = o(ze) T2o) = u(T) .

zp€a(T) Zp€a(T)
Man iiberlegt sich sofort, dafl allgemein

P =|n|-$(T) . (21)
Wir zeigen noch, dafl

S(VITV) =$(T) firalle Tel'—E, Vel. (22

In der Tat : Sei zye a(V-1TV). Wirsetzen w = V(2) und w, = V(z,p).
Dann ist nach (4) w,ea(7). Daher folgt nach Definition (20) unter
Beriicksichtigung der Tatsache, daBl ¢(z) beziiglich I" automorph ist :

N V-1TV(2,) TV(20) T(wo) "
eV 1TV)= [ ¢@)dS,= [ o(Vw)dS,= | ¢w)dS, = 9(T)
2 V(zg) wo

Wegen (22) ist ¢ (T) eine Klassenfunktion auf I' — E . Ist nun & # {E}
eine Klasse konjugierter Elemente von I', so konnen wir daher definieren :

PR)=9(T), TeR. (23)

8. Beltramische Differentialoperatoren. Die Funktion f(z), z=z+1y,
sei in §) definiert und besitze dort stetige partielle Ableitungen erster und
zweiter Ordnung nach z, y. Die zur Metrik (1) gehorigen Beltramischen
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Differentialoperatoren erster und zweiter Ordnung werden dann folgen-
dermafBen definiert :

Vi) =v.[@) =4y ((a%)er (%—)2) (24)
41(6) = 4,16) = v* (5 + 35) - (25)

Bekanntlich sind diese Beltramioperatoren invariant gegeniiber allen
Bewegungen von §; d. h. es gilt

Lemma 10: Es sei 7T eine Bewegung von §, w = u + tv = T'(2),
f(z) = {(T7'w) = g(w). Dannist p.f(z) = p,g9w), 4.f(k) = 4,9(w).

§ 2. Hilfssiitze

In diesem Paragraphen beweisen wir einige Hilfssétze. Die fiir die fol-
genden Paragraphen wichtigen Ergebnisse sind Lemma 1 (a) und Lemma
4. Die iibrigen Lemmata sind lediglich Zwischenstationen auf dem Wege
zu Lemma 4.

Lemma 1: Essei T # E eine Translation von §) und s eine komplexe
Zahl. Dann gilt :

(a) 4,(Cos g(z, Tz) — 1)=* = 2s(2s — 1) (Cos g (2, T2) — 1)=*
— 452 (COS M(T) — 1) (COS g(z’ Tz) —_ 1)—8—1

(b) 4, (Cosg e, T2)—1) =2 Cose(e, T2)—1) (3—2 5 D=2 )= 0

Cosu(T)—1
Cosp(z,T2)—1

(d) Esist p,(Cos o(z, T?) — 1) = 0 dann und nur dann, wenn z € a(7').
(e) V2(Cosp(z,T2) — 1)

_ ' Cos u(T)—1 Cosu(T)—1 \2
= 82(Cos (2, T?) — 1)4(1“—Cos9(z,Tz)—1>(2_— COSQ(Z’Tz)‘“1> .

(c) Vz(Cosg(z,Tz)—l)=4(CosQ(z,Tz)—l)2<1—

Beweis : T 14Bt sich darstellen in der Form

T=V10V (1)
wobei @ die Gestalt
Ow)y=93%w, 34>0 (2)
besitzt und
p(@) =u(T)>0. (3)
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Wir setzen nun
V() =w=wu -4 itv=re¥ (4)

Dann ist ¢(z, T2) = o(z, V-1OVz) = o(Vz, O Vz) = o(w, Ow). Daraus
und aus (2), (3) und Lemma 3, § 1 folgt
Cosp(z,T2) — 1 =Cosp(w, Ow) — 1 = (Cos u(T) — 1) sin—2 yp.

Hieraus und aus der Invarianz des Operators 4 gegeniiber der Trans-
formation (4) folgt nun:

4,(Cosp(z,T2)-1)"=4,(Coso(w, Ow) —1)~*

2 az 32 —~8
=0 W—}‘W (COSQ(@U,@’U))——I)

(6)

2 190 1 o2 )((COSH(T)—I)"‘sin“w)

e g2l A g
r2sin w(ar2+r 5 o2
. 0% .
= (Cos u(T')—1)~*#sin? ""{352 (sin2 p)
= (Cos u(T)—1)"%(2s(28—1) sin28 p—4 s2gin2(s+y) |
Nach (5) ist aber

sin?2yp = (Cos u(7T) — 1) (Cos p(z, T2) — 1)1 (7)

Setzt man dieses in (6) ein, so ergibt sich gerade die Formel (a). For-
mel (b) folgt aus (a) fiir den speziellen Wert s = — 1. Daf} schliefllich
A(Cos p(z, Tz) — 1) > 0, ergibt sich sofort aus der Formel (b) und
Lemma 4, § 1. ‘

Aus (5) und aus der Invarianz des Operators |7 gegeniiber der Transfor-
mation (4) folgt1?):

V.(Coso(z, Tz) — 1) = p,,(Cos o(w, Ow) — 1)
el (20
S LR

= (Cos u(T)—1)2%sin%y (—a% sin—2 w)2 :

12) Die im folgenden angewandte symbolische Schreibweise diirfte kaum zu Mifver-
stdndnissen Anlaf geben.
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Nach einer kleinen Rechnung folgt daraus
V,(Coso(z, Tz) — 1) = 4(Cos u(T) — 1)% (sin~*yp —sin—2yp) (8)

Setzt man auf der rechten Seite dieser Gleichung wieder (7) ein, so ergibt
sich die Formel (c). Die Behauptung (d) folgt sofort aus der eben bewie-
senen Formel (c) und Lemma 4, § 1.

Aus (8) und aus der Invarianz des Operators |7 gegeniiber der Trans-
formation (4) folgt nun weiter

P2 (Coso(z, Tz)—1)=p (V,(Cos g(z, Tz)—1))
=, (4 (Cos u(T)—1)%(sin~*yp—sin—2y))

=P (4(Cos 1 (T) —1)2(sin~*y—sin—2y))
: [0\ o\, . .
=r2sin?y l(a—;‘) + ;15(%) J (4 (Cos u(T)—1)%(sin~4yp—sin—2y))

=42(Cos u(T) — 1)* sin%(—a% (sin—4yp — sin‘qu))

=82(Cos u(T') — 1)*sin—8yp (1 —sin2yp)(2—sin2yp)? .
Setzt man hier wieder (7) ein, so ergibt sich die Formel (e). Damit ist

Lemma 1 vollstdndig bewiesen.

Lemma 2: Die reelle Funktion f(z,, x,) sei in der Halbebene xz,> 0
definiert und besitze dort stetige erste und zweite partielle Ableitungen.
Dann gilt fir £, I = 1,2:

of | « Vri
(a) vy < 2,
) | B | < ZEE VPP VPI 1A en Punkten (2, 2,),
wo pf # 0.

Beweis : Wihrend des Beweises schreiben wir z, y statt z,, x,. Nach
der Definition in § 1.8 ist f = y2(f2 + f2). Da f nach Voraussetzung
reell ist, folgt hieraus offenbar

-
JARNTARS44 ©
Y
Damit ist die Behauptung (a) schon bewiesen. — Setzen wir nun
F(z,y)=vf=9fz + 1)) (10)
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"o il vif=PF = y:(F + F3)

Da F reell ist, folgt hieraus

-
FANNFARSLAS (11)

Andererseits berechnet man aber aus (10) sofort

Fo=202(fofun + fufes) »  Fy= f—/— P+ 202 (futun + fofur)

Daraus und aus (11) schlieft man leicht

Vi
ifa:f:w'i_fyf:wl < 2y3 (12)
V¥ + 2pf
| Fabon + fub | <55 (13)
Nach der Definition des Operators 4 in § 1.8 gilt
A4
fa:acz %—fw (14)
A
f!lil:?é"—fo:m (15)
Aus (13) und (15) folgt '
Af Vr?f + 24f
fa'fmy—{"f'y?{“fvfwm < 23/3 ’

also, wenn wir noch (9) beriicksichtigen :

2 Vo2f Vif.
(TR ML e N PTG R e LUZRLINT

Auf dieselbe Weise folgt aus (12) und (14) unter Beriicksichtigung von (9)

ol = oty | < VIR VPLLAL (1)

Wir setzen jetzt

fmfxw + fﬂf:w =a
- fﬂfa:m + fmfmv ==b

fﬂfmy — fwf?l’y =«
f:r;fwy + .fwfw = ﬂ

(18)

(19)
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Dann besagen die Ungleichungen (12), (13), (16), (17)

jal <52t o) < D20l + 2 Vpl] 4]
y
ol < YU T2Vl 1AFL ) Vi A 20
~ 2y3 ) ~ 2y3 (20)

Nun fassen wir (18) bzw. (19) als lineares inhomogenes Gleichungssystem
fir die Unbekannten f,,, f,, bzw. f.,, f,, auf. Beide Systeme haben die

Determinante f2 4 f; = Z—g Ist pf+#0, so gelten daher die folgenden

Auflosungsformeln :
yZ
zz Afy — b
f V j @f. —0f))

fos =L (0fu +afy) =L o7 (Bl + o)

Vf
_¥
fow = l7,( f-+ Bl

Hieraus und aus (20) folgt nun unter Beriicksichtigung von (9) :

[foul < ,lal ol 1611 D) < <2 (a4 b)) <ZIEYPTH VT 14)

N7 2V}
Feul <101 1fol + 10l 1fu]) < ~£_:]a|—}—[b|)<[7f+' 2£+V7 44|
f l7f VVf
+Vp2i+Vpi-| 4]

Y e T vf
wl<pzllel 1l + 181 1)) < f(l I+1BD)< Vo

Damit ist Lemma 2 bewiesen.
Lemma 3: Essei 7 s E eine Translation von § und z = z, + t2,,

x,> 0. Dann gilt fir £,/ =12undalleze$

(a) < 22;'(Cos p(z, T2) — 1)

az
0x,,0

(b)

(Cos o(z,Tz) — 1) l 16,2 (Cos g(z,T2) — 1) .

Beweis: Wir setzen

f(zy, x5) = Cos g(z, T2) —
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Dann folgt aus Lemma 1 (¢) und Lemma 4, § 1 sofort
0 <pf<4(Cosp(z,Tz) — 1)2.
Da f eine reelle Funktion ist, so folgt hieraus nach Lemma 2 (a) :

of

<2z;'(Cos (2, T2) — 1), k=1,2,
ox,

Damit ist die Behauptung (a) schon bewiesen.
Nach Lemma 1 (d) gilt:

Vf#0 firalle ze$H — a(T). (21)
Aus den Formeln (b), (c), (¢) von Lemma 1 ergibt sich sofort fiir
zeH —a(T):

vi+ ViVt 14f]
2 Vpf
_ Cospu(T)—1 %—1”7——4 Cos u(T)—1
Cose(z,Tz)—l) Coso(z,Tz)—1|"

=2x;%(Cosp(z,T2)—1) {(1

Daraus folgt wegen Lemma 4, § 1

v+ Vyef+ Vif-| Af|

<16z;%(Cos o (2, Tz) — 1) fir zeDH — a(T).

x2 Vit
Hieraus und aus (21) folgt nun nach Lemma 2 (b)
0% f 2 "
35,07, <16x;%(Cos p(z,T2) —1) furalle ze¢$H —a(T).

Da aber beide Seiten dieser Ungleichung offenbar in ganz § stetige
Funktionen sind, so folgt sofort, daf}

0% f

e -2 . . ‘
axkaxl < 16%2 (COS (_)(Z, TZ) 1) fir alle 2 € Sj .

Damit ist Lemma 3 bewiesen.

Lemma 4: Essei 7 # E eine Translation von Hund z = x, + ix,,
%y >0; s =0 -+ it. Dann gilt fir k£,1=1,2:

d
ox,

(Cosg(z,Tz)—1)—%| < 2|s8| 2, (Cosplz, T2)—1)~°

2

(Cos o(z, T2)—1)=#| < 4[s] (4 s+ 1]) 5 (Cos o(z, T2)—1)~°.

0%, 0x,
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Beweis: Es ist

(2,T2z)—1)-%=—s(Coso(z, Tz)——l)—s*l'gi— (Cosp(z,T2)—1)
k

und

(Cosp(z,T2)-1)*=—-s(Cosp(z,T2)-1)"*1. azax (Cos g(z, T2)—1)

ox,0x,

+ s(s+1) (Cos o (z, T2)-1)"*"2. ——Z—— (Cospo(z,T2)- ) (Cosg(z Tz)-1)
k

Daraus und aus Lemma 3 folgt nun:

d -8 —-0-1
—a—g—c—;(Cosg(z,Tz)-l) )-1) .

d
7z, (Cospo(z,T2)-1) |

< 2]s| x5t (Cos oz, Tz)—l)—‘r

)-1)" l<fs|(Cosg(z Tz —I)“"‘1

B (Cos o(z,Tz)— l)l

+|s|-1s+1]| (Cos o(z,T2)-1)"

E(Cos o(z, Tz)—l)l '(az,

<16]|s|a2(Cosp(z,T2) — 1)~ + 4|s| |s+ 1] 232 (Cosp(z,T2) —1)~° .

Damit ist Lemma 4 offenbar bewiesen.

§ 3. Die Funktion G¢(z, s) und ihre Funktionalgleichung

Von nun an sei I stets eine diskontinuierliche Translationsgruppe von $)
mit kompaktem Fundamentalbereich und K # {E£} eine Klasse konju-
gierter Elemente von I'.

Aus der Voraussetzung, dal $ mod I" kompakt sei und aus Lemma 4,

§ 1 schlieBt man leicht. daBl u, =infu(7)> 0. Es gilt dann also
Tel'-E

0(2,Tz) > uy>0 firalle ze$H und Tel' — E . (1)
Wir beweisen nun das
Lemma 1: Essei n >0, ganz; r > py; 0 >1 .

T,@r)={T|Te]R, r4+mnu<o@ Tz)<r+ (n+ 1)y}
S.(z,0;7) = X (Cosg(z, T2) — 1)~°.

T€$n(7r;7)
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Es gibt eine fiir ¢ > 1 stetige Funktion m(s) > 0 derart, dafl gilt:
8, (2, 03 7) < m(o) e~(o-Dr g~(o=Dug
firalle ze9H, o =1, n >0, r > u,.

Beweis: Es sei N,(z,r) die Anzahl!?) der Elemente 7 e I,(z,7).
Dann gilt offenbar

8,2, 057) < No(z,7)- (Cos(r + npg) — 1)~ fir a>1. (2)
Wir denken uns nun (bei festen z€¢$, r > uy, n > 0) die Elemente 7'
von I,(z, r) numeriert :

T,z,r)={T;}, 1<K<i<N,(z,7).
Dann gilt
Nn(z,r)
U K[T(2), $pol € Klz,7+npo+$pd — Klz.7+npg— 3 p0] . (3)
1=1
Ferner folgt aus (1):
K[T;(2), 3pe) N K[T;(2), $pe) = 0 fir ¢ 5 (4)

Es sei nun A(t) der hyperbolische Flicheninhalt der hyperbolischen
Kreisscheibe K|[z,t]. Dann folgt aus (3) und (4):

A(5) Moo r) S A+ npto+ ) — A+ mmn— b,
also nach Formel (18) § 1.5:

(COS%“) - l) No(z,7) < Cos (r + npy + Fpe) — Cos(r + npy — 3u) . (5)

Eine leichte Rechnung ergibt

L]
Cos (r+npo+ § o) — Cos (r+-npo— o) = €2 Sin prge™ "o (1 — =272k~ o)
o
<e? Sin yger+Ho .
Daraus und aus (5) folgt
Ho
e? Sin p,

Cos%—"—-l

N.(z,7r) < ertmho | (6)

13) Wegen der Diskontinuitat von I” ist diese Anzahl offenbar stets endlich.
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Da nach Voraussetzung r + nyu, > r > u,, so folgt |
Cos(r + muy) — 1 = Jermro(1 — e~ (r+71))2 > Ler+nug(1 — e Ho)?
= e #o(Cos uy — 1) e ko .
Daher wird fiir ¢ > 1
(Cos(r + nuy) — 1)~ < et09(Cos py — 1)~ %e0lr+nug)
Daraus und aus (2), (6) folgt aber

Ho
e? Sin p,

CosH2—°—— 1

S,(z,0;7) < er09 (Cos pg — 1)=9 e—(9-1r g—(a=Dipgn |
Damit ist aber Lemma 1 bewiesen mit

FHo

e? Sin Lo

m(o) =
Cos’—;i’ —1

et (Cos ug — 1) fir o>=1.

Lemma 2: Essei K = {T,},n > 1, eine beliebige Anordnung der

Elemente der Klasse &. Dann gilt: Fir jedes feste o> 1 konvergiert
die Reihe .
2(Cosp(z,T,z) — 1)=°

n=1

gleichmiBig in z auf jeder in § kompakten Punktmenge M.

Beweis: Da IR in § kompakt ist, gibt es eine solche endliche Zahl
R> 0, dal M c K|[¢, R]. Es geniigt daher, die gleichméfBige Konver-
genz fiir alle z e K[¢, R] zu beweisen. Sei nun

T 2= o (7)

Nach Lemma 5 § 1.3 gibt es hochstens endlich viele Elemente 7', ¢ ],
fiir welche der Durchschnitt 7,(K[¢, R]) N K[¢, R + r] nicht leer ist.
Daher gibt es zu jedem r einen solchen Index n, = n,(r), daB

0(¢,T,() >R+ r firalle zeK[¢, R] undalle n>mn,(r). (8)
Offenbar gilt fiir alle z e K[z, R]:
0, T,2) <oli,2) + 0z TW(2) < B+ oz, T,(2)) -
Daraus und aus (8) folgt
0(2,T,(2)) >r firalle zeK[¢t,R] undalle n>mnyr). (9)
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Aus (7), (9) und der Definition von 8, (z, o; ) in Lemma 1 folgt offen-
bar: Ist p,q>mny(r), ze K[¢, R], so gibt es eine solche ganze Zahl
l=1Up,q,2), daB

g'(Cosq(z, T,2) — 1) <28, (z,0;7). (10)

n=p n=90

Sei nun ¢ > 1. Dann folgt aus (10) und Lemma 1 :

a !
Z(Coso(z, T,2) — 1)=° < m(o)elo-Vr X g=(o-Dp,n

n=p n=0

oo
< m(c)e~(o-1r Y g—(o-Dppn — m (0) e—lo-1r

n=0 1 P e_(a—l) I"O

Wir haben also fiir ¢ > 1:

q
2(Cosp(z,T,2) — 1) < C(o)eto-1r fiiralle z e K{i, R]; p, q>ny(r).
n=p
Bei festem o > 1 kann aber die rechte Seite dieser Ungleichung durch
Wahl eines geniigend groflen r > u, beliebig klein gemacht werden.
Damit ist die behauptete gleichméfBige Konvergenz bewiesen.
Aus Lemma 2 und Lemma 4, § 2 folgt nun unmittelbar der

Satz I: R = {T,},n > 1, sei eine beliebige Anordnung der Elemente
der Klasse K, und es set z =2, + 1Z,, , > 0;8 =0 + tt. Dann gilt :
Fir jedes feste s mit o > 1 konvergieren die Reihen

Gﬁ(zs 8) = Z(COS Q(Z, Tnz) - 1)—.8 »

n=1
00

Z'_?_.(Cos 02, T,2) —1)~¢, X

n=1 xk n:laxk xl

(COS Q(za Tnz) - 1)—8

absolut und gleichmdfig in z auf jeder in § kompakten Punktmenge.

Da offenbar die Glieder der in Satz I auftretenden Reihen in ganz $
stetige Funktionen von z sind, so folgt aus Satz I und elementaren
Reihensitzen sofort der

Satz II: Fir jedes feste s = ¢ + it mit o> 1 1ist

Galz,8) = E(Cos o(z, T,2z) — 1)~*

n=1

eine in §) stetige Funktion von z = x, + 12, und besitzt dort stetige erste
und zweite partielle Ableitungen nach den x,; es qilt fir k,1=1,2:
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0 - 0
%;Gﬁ(z: S) :nfl‘a“x‘; (COS Q(Z, Tnz) - 1)_8 s
® @ 5P (Coselz, T,2) — 1
, 8) = S : — 1)~3
0z, 0x, 2 9) n=102,0, RIS 2a® )

und daher insbesondere

A,0q(z,8) =24,(Cos oz, T,z) — 1)~5.
n=1

Bemerkung zu Satz II: Da die in Satz II auftretenden Reihen fiir
o > 1 und alle z ¢ § nach Satz I absolut konvergieren, so ist ihre Summe
invariant gegeniiber beliebigen Umordnungen der Glieder. Wir brauchen
daher — solange es sich nicht gerade um GleichméfBigkeitsfragen handelt —
die Anordnung der Elemente der Klasse & nicht zu prézisieren und diirfen
kurz schreiben

Gglz,8) = 2 (Cos (2, Tz) — 1)~%,

Tefk
iGﬁ(z, g} =2 2 (Cos o (2, Tz) — 1)~—=.
ox, TeR 0%,

UsSw.

Satz II1: Fiir jedes feste s mit o> 1 st
Gg(z,8) = 2(Cosp(z, Tz) — 1)~°
Tef
etne beziiglich der Gruppe I' automorphe Funktion von z.
Beweis: Sei U eI. Aus der Tatsache, da mit 7 auch UTU

genau einmal simtliche Elemente der Klasse & durchlduft und aus der
Bemerkung zu Satz II folgt :

Ge(U(z),8) = 2 (Cos o(Uz. TUz) —1)~3= X (Cos p(2, U1TUz) —1)~*

Tef TeRk

= Gg(z,s) .

Satz IV: Die Funktion Gg(z,s) erfullt fir o> 1 die Funktional-
gleichung

A4,Gq(z,8) + 25(1 — 28) Gg(z, ) + 482(Cos u(R) — 1) Ge(z,8+1) =0
Beweis: Aus Satz IT und Lemma 1 (a), § 2 folgt fir ¢ > 1:
A4,Ge(z,8)=24,(Cosp(z,Tz)-1)"* (11)

Tef

= X' {2s(2s~1) (Cos o (z, Tz)—1)*—4s2(Cos u(T)-1)(Cos o (z, T2z)-1)"*1} .

Tef
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Nach Lemma 1, § 1.2 ist aber u(7) = u(R) fir alle 7 ¢R. Daher
folgt aus (11) weiter
A,Gq(z,8) = 2s(2s — 1) 2 (Cos g(z, T'2) — 1)~—3

Tef

— 482 (Cos u(]) — 1) X (Cos o(z, Tz) — 1)—ts+D)

TeR
= 28(28 — 1) Gg(z,s) — 482 (Cos u(R) — 1) Qg(z,8 + 1) .

Damit ist Satz IV bewiesen.
Nun beweisen wir noch einen Hilfssatz, den wir erst in § 5 anwenden
werden :

Lemma 3: Fiir alle z¢$ und alle s = ¢ + it mit
1<61<U<02<OO
gilt: | Ge(z, )| < M(o,, g,) <oo .

Beweis: Sei ¢ > 1. Dann ist

|Gz, 8)| < Z|(Cos gz, T2) —1)~*| = X (Cos o(z, T2) — 1)=o. (12)
Tef Tef

Fiir alle z¢$ und T e gilt aber nach (1): o(z, T2) > pu,. Daraus
und aus Lemma 1 folgt :

Z(Coso(z,Tz) — 1)~ =X 8, (2, 0; u) < m(c)e(eDpg X g—(o-1pgn

Te& n=0 n=0
—_ m(cr) e-—(a—l)p.o(l — e-—(a—l)y.o)—l

Daraus und aus (12) ergibt sich nun
| Gg(z, 8) | <m(o) e 9V (1 —e— (o)1 fijr alle ze$H und o> 1. (13)

Da m (o) nach Lemma 1 eine fiir ¢ > 1 stetige Funktion ist, so ist offen-
bar

M(o,,0,)= Max m(c)e o Dro(1 — e~ (9 Do)l < oo fiir 1 <o, << o,<00.
algogaz

Daraus und aus (13) folgt aber die zu beweisende Behauptung.

§ 4. Bemerkungen iiber das Eigenwertproblem Ad¢ 4 ip = 0
auf der geschlossenen Mannigfaltigkeit $ mod I”

Zunichst wollen wir ein fiir allemal einen festen Fundamentalbereich
von I' wihlen, etwa das Normalpolygon zum Zentrum ¢, (vgl. § 1.3):

8= {z]e(t,2) < inf o(T(i), 2)} (1)

Tel'-E
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Da nach Voraussetzung $ mod I' kompakt ist, so ist nach Lemma 6,
§ 1.3 § kompakt in §.
Nun betrachten wir das Eigenwertproblem

Ap + Ap =0 (2)

auf der geschlossenen Mannigfaltigkeit $ mod I". Dabei sei 4 der zur
hyperbolischen Metrik gehorige Laplace-Beltrami-Operator (§ 1.8).
@ (2) heiBe Eigenfunktion zum Eigenwert 1, wenn folgende Bedingungen
erfiillt sind :

(a) @ ist eine eindeutige und stetige Funktion auf der geschlossenen
Mannigfaltigkeit § mod I, d. h. ¢ (2) ist eine in ganz § stetige und beziig-
lich I' automorphe Funktion.

(b) ¢(2), 2z = x, 4+ 1x,, besitzt in § stetige partielle Ableitungen erster
und zweiter Ordnung nach den z,.

(d) @(z) verschwindet nicht identisch.

Das Eigenwertproblem (2) la8t sich im Rahmen der Theorie linearer
Integralgleichungen mit symmetrischem Kern behandeln!4). Es ergeben
sich dann folgende bekannte Tatsachen (Lemma 1-4).

Lemma 1: Es gibt unendlich viele Eigenwerte, die sich aber im End-
lichen nirgends héufen. Jeder Eigenwert ist reell, nichtnegativ und besitzt
eine endliche Vielfachheit.

Offensichtlich ist insbesondere A = 0 ein Eigenwert und jede Funk-
tion @(z) = const # 0 ist eine zugehorige Eigenfunktion. Umgekehrt
ist jede Eigenfunktion zum Eigenwert i1 = 0 offenbar harmonisch auf
der geschlossenen Mannigfaltigkeit § mod I' und somit konstant. Daher
gilt

Lemma 2: A, = 0 ist ein einfacher Eigenwert und die zugehorigen
Eigenfunktionen sind konstant.

Wir ordnen nun die sich im Endlichen nirgends hdufenden Eigenwerte
ihrer GroéBe nach ; in der so entstehenden Folge soll aber jeder Eigenwert
genau seiner Vielfachheit entsprechend oft auftreten. Wegen Lemma 1
und Lemma 2 sieht dann das Eigenwertspektrum A offenbar folgender-
mafen aus :

A={2},n>=0; 2=0<2y, 4, <Ay, fiir n>1; lim 4, = +oo. (3)

n—>oc

) [4]), [6].
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Esseinun {¢,(2)},n > 0, ein zu (3) gehoriges, normiert orthogonales
System von Eigenfunktionen. Da die 4, reell sind, konnen offenbar auch
die Eigenfunktionen ¢, (z) reell gewihlt werden. Es gilt dann also

A,0,(2) + Ag,(z) = 0 firalle 7 >0 (4)

. @n(z)dw = 6, ,, firalle =n,m>0. (5)
g
Aus (5) und Lemma 2 folgt insbesondere, daf3

Po(2) = (_g dw)~% .

Daher ist nach Formel (19) § 1.5
O p———
Vo dn(p — 1) ’

wobei p das Geschlecht von I ist.
Die Theorie der linearen Integralgleichungen liefert nun bekanntlich
den folgenden Entwicklungssatz :

(6)

Lemma 3: Essei f(z),z = z, 4+ t2,, einein § stetige und beziiglich
I' automorphe (reelle oder komplexe) Funktion. f(z) besitze in ganz $
stetige partielle Ableitungen erster und zweiter Ordnung nach z,, z,.
Dann konvergiert die Fourierreihe

Zepnls) , €= IFOIXCER

n=0
absolut und gleichméBig fur alle z ¢ $ und stellt die Funktion f(z) dar.
Ferner gilt das wichtige

o0 2
Lemma 4: Die Reihe X ﬂi‘l—(ﬁi

zeh. =k
Da die Eigenfunktion ¢, () eine in ganz $ zweimal stetig differenzier-
bare Losung der linearen elliptischen Differentialgleichung (4) ist, so gilt
Lemma 5: Die Eigenfunktionen ¢,(2),2 = x, + tx,, sind in ganz
9 analytisch in den Variabeln x,, ,.

konvergiert gleichméBig fiir alle

§ 6. Die Fourierkoeffizienten F',(s)

In diesem Paragraphen untersuchen wir die Fourierkoeffizienten der
Funktion Gg(z, s) beziiglich des normierten Orthogonalsystems {g,(z)}:

F,(8) = [l Gez,8) 9,(?)dw, 1>=0, s=o0+1it, o>1. (1)
&
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Da & in § kompakt und Gg(z, s) nach Satz II eine fiir 6 > 1 in ganz
stetige Funktion von z ist, so sind die F,(s) fiir alle s mit ¢ > 1 definiert.

Wir wihlen nun ein beliebiges, aber im folgenden fest zu haltendes
Element '

T* e R # {E} (2)
T* besitzt nach Lemma 8, § 1.4 eine Normaldarstellung
T* =P¢, PelI, P primitiv ; (3)
dabei ist
| k| =»(T*) =»(&) . (4)

Es sei 3 = [P] die von P erzeugte zyklische Gruppe unendlicher Ord-
nung. Wir zerlegen nun die Gruppe I" in Rechts-Restklassen mod 3
und wihlen aus jeder solchen einen festen Reprisentanten A,,n > 1.
Dann gilt : o
Ir=uy34, (5)

n=1

Aus A,4;'e3 =[P] folgt: m=mn. (6)

Nun beweisen wir ein sehr einfaches Lemma, das aber fiir den Erfolg der
nachstehenden Untersuchungen in nicht geringem MafBle verantwort-
lich ist.

Lemma 1: Durchliuft » alle ganzen Zahlen > 1, so durchliuft
T,= A;'P¥A, genau einmal alle Elemente von & ; d. h. es gilt

(@) Esist A,;'P*4,e8 firalle » > 1, und zu jedem 7T ¢ K] gibt es
ein solches n, dall 7' = 4,;'P*A4,.
(b) Aus A, *P*A, = A 'P¥4, folgt: m = n.

Beweis: Die Behauptung (a) folgt offenbar sofort aus (2), (3) und (5).
Nicht trivial ist hingegen die Behauptung (b). Aus 4,'P¥A, = A 'P*A
folgt zunichst

m

C1PkC = Pk (7)
mit
C=A,A"el. (8)

Aus (7) folgt nach Lemma 2, § 1.2, daB C und P* zum gleichen Fix-
punktepaar gehoren. Folglich gehoren auch C e I'und P e I' zum glei-
chen Fixpunktepaar von I'. Da aber P primitiv ist, so gibt es nach
Lemma 7, § 1.4 eine solche ganze Zahl ¢, daB C = P?. Daraus und aus
(8) folgt aber nach (6), daB m = n. Damit ist Lemma 1 bewiesen.
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Da § in § kompakt ist, folgt jetzt aus Lemma 1 und Satz I, daB fiir
jedes feste s mit ¢ > 1

Gg(z,8) = 2 (Cos o(z, A1 P¥A,2) — 1)~

n=1

auf & gleichmiBig konvergiert. Daher gilt fir ¢ > 1:

Fi(6) = [ Ga (e, ) gy (e) dos = Z [ (Cos o (z, A7*P*A, 2) — 1)~* ¢,() dw

n=1§ .
5 11 (Cos 04,2, PF4,2) — 1) pu(4, (2) do (9)
= 2 ff (Cosp(z, P¥z) — 1)~¢ ¢,(2) do .
n=1 An(F)

Dabei wurde beriicksichtigt, da ¢,(z) beziiglich I" automorph ist. In der-
selben Weise ergibt sich fir o> 1:

H Gg(2, 0) | 9u(2) | do ——21 Af{%)(COS e(z, P¥2) —1)77 [ ;(2) | do

— 3 ff | (Cosolz, P*2) — 1)=*q,(2) | dov.

n=1 An(F)

Hieraus folgt insbesondere
2 [ | (Cosp(z, Pk2) — 1)~ 2 ¢,(2) |dw <oo fiir o>1. (10)
n=1 An(g)

Wir definieren nun

3" = U 4,(5) (11)

" ist als Vereinigungsmenge der abzihlbar vielen Normalpolygone
4, (%) meBbar. Die in §) kompakten Normalpolygone 4, (&) und 4,,(F)
iiberlappen offenbar nicht, wenn n % m. Daher folgt aus (10) und (11),
daB das Integral fj'l (Cos (2, P*z) — 1)~*¢,(2) | do und somit auch

das Integral ff (Cos o(z, P¥2) — 1)~ % ¢,(2)do fiir o> 1 existiert,
und daB B

E‘ [f (Cosp(z,Pk2)-1)"@,(2)dw = H(COSQ(z Pkz)—1)*,(2)dw . (12)

n=1 An(F)

Aus (9) und (12) ergibt sich jetzt

F,(s) = ”(Cos o(z, Pk2) — 1)~%¢,(2)dw , o>1. (13)
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Da § ein Normalpolygon von I' ist, so folgt aus (5), (6) und (11) leicht,
da F* ein Fundamentalbereich der zyklischen Gruppe 3 = [P] im
Sinne von Definition 4, § 1.3 ist. Nun ist aber offensichtlich die Funktion
(Cos o(z, P*¥z) — 1)~2*¢p,(2) automorph beziiglich der zyklischen Gruppe
3 = [P]. Daher dndert sich nach Lemma 9, § 1.5 der Wert des Integrals
(13) nicht, wenn wir darin * durch einen anderen Fundamentalbereich
von 3 im Sinne von Definition 4, § 1.3 ersetzen. Wir werden nun einen
fiir unsere Zwecke besonders giinstigen konstruieren. Es gibt offenbar
eine solche Bewegung V von §, da}

O = VPV (14)
die Gestalt
Ow)y=9%w, 9>1 (15)
erhilt. Aus (2), (3), (14) und Lemma 1, § 1.2 folgt dann
(0% = p(P¥) = p(R) . (16)
Ferner ist
V=(a(@)) = a(P) (17)
Wir setzen noch
Ve)=w=u+iv=re¥. r>0, O<y<a (18)

Nun ist wegen (15) die Punktmenge
G={w=re?|1<r<d, O<yp<na} (19)

ein Fundamentalbereich der zyklischen Gruppe [@] im Sinne von Defi-
nition 4, § 1.3. Wegen (14) ist daher V-!(®) ein Fundamentalbereich
von 3 = [P]. Folglich kann nun &* in (13) durch V-1(®) ersetzt wer-
den. Es folgt dann aus (13) unter Beriicksichtigung von (14), (18):

Fi(s) = [f (Cosp(z, P¥2) — 1)7% ¢, (2)dw,
7-1(8)

— ff (Coso(z, V1 0%V2) — 1)=7p,(2) dov,
V-1(®)

— [ (Cos o(Vz, Ok Vz) — 1)=2¢,(V-1V2) do,
V-1(8)

— [f (Cos o(w, OFw) — 1) =g, (V-10) dov,, -
(U]

Definieren wir noch

@ (w) = @ (Vw) , (20)
so wird daher

F,(s) = [f(Cos o(w, O%w) — 1)~2 g, (w)do,, , o>1. (21)
&
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Aus (15), (16), (18) folgt nach Lemma 3, § 1.2
(Cos p(w, OFw) — 1)—* = (Cos u(]) — 1)~3sin22y (22)
Ferner ist :
dw,, = v2dudv = r'sin2y drdy (23)
Aus (19), (21), (22) und (23) folgt nun

F,(s) = (Cos u(]) — 1)—¢ j’zsinz"‘2 ( j? (ret?) )dzp , a>1. (24)
P=0

Fiihren wir die neue Variable

x = logr (25)
ein und definieren
gj(x,p) =@, (re¥) ., —oco<a< 400, O<y<m, (26)
so wird
.9__ . dr log 9
| @u(rett)y = f g (z, p)de . (27)
1
Wir setzen nun noch
log ¢ %
O,(p)= [ g (z,p)de, O<yp<nm (28)
0
Dann folgt aus (24), (27), (28)
Fi(s) = (Cos u(]) — 1)~ fsin** 2y P (p)dy , o>1. (29
0

Nun zeigen wir zunichst

Lemma 2: Die Funktion ¢} (x,y) besitzt im Parallelstreifen
—o<r< oo, O<y<am

stetige partielle Ableitungen beliebig hoher Ordnung nach z, v und ist
periodisch in # mit der Periode log 3.

Beweis : Nach (26), (25), (20), (18) gilt
9 (z, 9) = ¢:(2) (30)
et = V(2) (31)
Durch (31) wird der Parallelstreifen

P:—w<z< o0, O<p<na
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der komplexen (x + 7y)-Ebene umkehrbar eindeutig und konform auf
die Halbebene $ abgebildet. Nach Lemma 5, § 4 ist aber

@), z=2z,+tx, ,

in ganz §) analytisch in den Variabeln z,, z,. Daher ist wegen (30), (31)
die Funktion ¢; (z, ) in P analytisch in den Variabeln x, v und besitzt
somit daselbst stetige partielle Ableitungen beliebig hoher Ordnung nach

x.y.
Aus (26), (25), (20), (18) und (14), (15) folgt

g1 (x + log &, y) = @, (dre'?) = 9 (O(w)) = ¢(V6Ow)
= @(V10Vz2) = ¢, (P(2)) = ¢,(2) = ¢, (Vw)
= E’l(w) = _‘;z(reiw) = V)’; (x,v) .

Damit ist Lemma 2 bewiesen.

Lemma 3: Die Funktion @,(y) geniigt im Intervall 0 <y <=z der
linearen Differentialgleichung @) (y) + 4, sin~29 @, (p) = 0.

Beweis: Es ist

— 0% 2 4 — 2 10 1 0%2\—, .
— 2l . — 2 qin2 - o R 04
Aw (pl(w) v (aug + a,og) <Pz(w) resm w(arz + r a7'+ 7’2 awg)(pl(re )
(32)
i 0 1 0 02 1 02 1 o .
Wegen (25) 18t a:ber W == 7 —é}.}; s W = T—zw' — 'ﬁ‘-é—x— und somit
0? 1 0 1 02 1/ 02 02
372‘“‘”7‘5;"**72‘5,,72‘—;5("552“*’5@5) (33)
Aus (26), (32), (33) folgt nun
Ay (w) = sintp(-20 (@, 9) + oy g1 ) (34)
w P _ Y axz(Pl > Y atpz(pl r,y .
Nach (18), (20) ist
p(w) =@, (z) , w=V(). (35)

Daraus folgt wegen der Invarianzeigenschaft des Operators 4 (Lemma 10,
§ 1.8)

Aw-‘}—”z('w) = A4,9,(2) . (36)
Nun ist aber

A4,0,(2) + Ap(2) =0 . (37)
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Aus (35), (36), (37) ergibt sich jetzt :

Appr(w) = — Lg(w) = — 2@,(7'6""’) )
also, wenn wir noch (26) beriicksichtigen: 4, ¢,(w)= — 4,¢;(x, ).
Daraus und aus (34) folgt endlich

2 o° .
722 % @ 0 50 (2. 9) + Asinygi(e, y) = 0

und daher

log & o2 log & ~g log &

d .
j Y] ‘7’7‘(“’: p) dx + _f —~Eq)}"(x, y)dx + 2l81n“2zpj(p’;(x, p)de=0.
0 dx 0 av) .

Daraus und aus Lemma 2 folgt offenbar

qz los¥ . log &
W(I @, (x,p)dx) + A,;sin2p | ¢, (z,p)de =0,
0 0

also wegen (28): @ (yp) + A;sin"2p®P,(yp) = 0. Damit ist Lemma 3
bewiesen.

Fiir den weiteren Verlauf unserer Untersuchungen wird die Tatsache
ausschlaggebend sein, dafl dem Funktionswert @,(x/2) eine invariante
Bedeutung zukommt ; wir zeigen

?,(R)
()

Beweis : Nach (27), (28) und wegen (15) gilt offenbar

Lemma 4: Fir [ >0 gilt &,(n/2) =

8_ o gp OW_
¢z(ﬂ/2) = f ‘Pt("eml )——7’ == j‘ V’z(w) dSw 3
1 i

wobei das letzte Integral ein geoditisches Integral im Sinne von § 1.7 ist.
Hieraus folgt wegen (20) und (18) weiter

8 (i) V-10(i)
D, (7/2) = ;f @, (V-1w)dS, = v—”’;(i)q)l(Z) as, (38)
Wegen (15) ist offenbar ¢ € a(®) und daher wegen (17)
zg = V1(2) e a(P) (39)
Beriicksichtigen wir noch (14), so folgt aus (38), (39):
D, (n/2) =P:j:°;,(z) S, , zea(P) .
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Daraus folgt nun nach § 1.7: @,(n/2) = ¢,(P) =~——l—~$,(P"), also,

wenn wir noch (2), (3) und (4) beriicksichtigen : [ &l

®,(n)2) = ‘f‘(g) :

Damit ist Lemma 4 bewiesen.

Jetzt kehren wir wieder zu unserem Integral (29) zurick. Wir zerlegen
dieses in ein Integral iiber das Intervall (0, #/2) und in ein Integral iiber
das Intervall (n/2, ). Alsdann machen wir im ersten Teilintegral die
Substitution y» = n/2 — y und im zweiten Teilintegral die Substitution
v = /2 4+ y. Dann folgt aus (29)

a2
F,(s) = (Cos u(]) — 1)~2 fcos?2y- & (y)dy , o>1 (40)
mit 0
W) =D(7)2 —y) + P2 +y), O0<y<=/2. (41)

Aus (41) folgt insbesondere: &,(0) = 2®,(n/2), &;(0) = 0, also nach
Lemma 4:

q0=2080 o) =0 (42)
Ferner folgt aus (41) und Lemma 3 sofort
£ () + A cos2yé(y) =0 fir 0<y<a/2. (43)

Durch (42) und (43) wird die Funktion &,(y) offenbar eindeutig be-
stimmt. Wir fiihren nun noch die Variabelntransformation # = tgy aus;
dann folgt aus (40), (42), (43) sofort das

Lemma 5: Fiiralle s = ¢ 4+ ¢t mit o > 1 gilt

F,(s) = (Cos u(R]) — 1)=* I,(s) (44)
mit = B (n)
— i 77

Dabei ist B,(n) diejenige fir 0 << n < oo regulidre Losung der linearen
Differentialgleichung

_2q A
B/ () + 5 Biln) + g Bl = 0, (46)
welche durch die Anfangsbedingungen
_ 5, %(® oy

eindeutig bestimmt ist.
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Ausgehend von (46), (47) wire es nun nicht schwierig, die Funktion

B, (n) mit Hilfe einer geeigneten hypergeometrischen Funktion explizite
darzustellen. Wir verzichten aber darauf und wenden uns gleich der
niheren Untersuchung von I,(s) zu. Wir beweisen zuniichst das

Lemma 6: lim ¢! I,(0) = I'(}) ?u(R) .
0—>+ »(R)

Beweis : Machen wir im Integral (45) die Substitution 1 + 72 = €7,
so wird

Ii(s)=ffi(x)e*dr , o>1 (48)
mit 0
el’ PR

fz(T)ZmBz(Vet_l)a 0<T <00 . (49)
Damit ist I,(s) als ein (mindestens) in der Halbebene o > 1 konver-
gentes Laplace-Integral dargestellt. Nach Lemma 5ist B,(0) = 2 %?:) .

Daraus und aus (49) folgt &)
lim 7% f,(z) = P& (50)

7—>0 (R)
Aus (48) und (50) folgt aber nach einem bekannten Satz Abelscher Art
fiir Laplace-Integrale %) :

‘pz R)
Jim ot Lio) = I'h) Zes

Damit ist Lemma 6 bewiesen.

Lemma 7: Es sei
S?Zi——}—%‘/l——411, Sl—zi'——i"/l*‘ill: l;O (51)

_ *(s)
H,(s) = Te—s) e —s) I,(s), o>1. (52)

Dann gilt : Die durch (52) zunédchst nur in der Halbebene o > 1 defi-
nierte Funktion H,(s) ist sogar eine ganze Funktion von s und geniigt der
Funktionalgleichung H,(s + 1) = H,(s).

Beweis: Aus der Funktionalgleichung fiir Gg(z,s) (Satz IV, § 3)
folgt sofort :

” @, (2) 4,G4(2,8) dw + 28(1 — 2s) j'j' Gg(z, 8) ¢,(2) dw
+4s2(Cos,u(R — 1) ff Gg(z, s + )(p,(z Jdw = 0 .
]

15) [1] Satz 12 pag. 200.
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also wegen (1)

[§9.(2)4,G(z, s)dw+25(1-2s) F,(s)+452(Cos u(R)—1) F,(s+1)=0. (53)

8

Da ¢,;(z) und Gg(z, s) beziiglich I automorphe Funktionen von
z=1x,+ 12,

sind und stetige partielle Ableitungen erster und zweiter Ordnung nach
den x, besitzen, weil ferner die Mannigfaltigkeit § mod I" geschlossen
ist, so gilt die Greensche Formel

{gf ¢i(2) 4,G4(2. 8) do» = y Gg(2.8) 4,9,(2) dov (54)
Nun ist aber 4,¢,(2) + 4,9,(2) = 0. Daraus und aus (54) ergibt sich
IJ 9.(2) 4,G4(z,8)do» = — 4 {Yf Ge(z,8) () dw = — A, F(s) .

Hieraus und aus (53) folgt endlich
(2s(1 — 28) — 4) F(s) + 4s2(Cos u(]) — 1) Fy(s+ 1) =0 .
Daraus folgt unter Beriicksichtigung von (51)
(s — 8§) (s — 57) Fy(s) = 82 (Cos u(8) — 1) Fyls + 1)

Setzen wir hier (44) ein. so ergibt sich fiir I,(s) folgende Funktional-
gleichung :

s—s)(s—s)1)(s)=82;(s+1), o>1. (55)
Nach Definition (52) gilt

L) = 8= 8?2g§8 —%)

Setzen wir nun (56) in (55) ein und beriicksichtigen, daf3

Hy(s), o>1. (56)

L(s+1)=sI(s),
so ergibt sich fiir H,(s) die Funktionalgleichung
H(s+1)=H,(s), o>1. (57)

Aus (48) und (52) folgt sofort, daB H,(s) mindestens in der Halbebene
o > 1 reguldr analytisch ist. Daraus und aus (57) folgt aber, dal H,(s)
sogar eine ganze Funktion ist. Damit ist Lemma 7 bewiesen.

Nun sind wir in der Lage, das Hauptresultat dieses Paragraphen zu
beweisen :
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Satz V: Es se:

F(8) = {gj‘ Gel(2,8) ;(2)dw , o>1

sT=3%+3V1—42, s5=3—3V1—44, 1>=0

Dann st

s—s) I (s—s;)
I'*(s)

[ r
(Z‘((S?)) (Cos u(R]) — 1)—* (

Beweis: Aus der Stirlingschen asymptotischen Darstellung von I'(s)
gewinnt man leicht
I'*(o)
I'c—sf)I(c—s;)

Fi(s) = I'(})

+sl

o+ )
~ ¢’ fir o— 4+oo.

Nach (51) ist aber s + s; = !/, ; somit wird

re)
I'c—s))I'(oc—s))

fir o — 4+ o0 (58)

Aus (52), (58) und Lemma 6 folgt nun

lim H,(0) = ') P&

0—>+ o ”(R)

Daraus und aus Lemma 7 folgt offenbar

?,(R)
y(®)

Hieraus und aus (52) und Lemma 5 ergibt sich aber die zu beweisende
Behauptung.

Im Anschlu3 an Satz V beweisen wir noch einen Hilfssatz, der in § 6
eine entscheidende Rolle spielen wird.

H(s) = I'(3)

Lemma 8: Firalle s =0 4+ ¢ mit 1 <o; <0 <0, <00 gilt:

ZI &n(ﬁ) F(S ——81-:) F(S - 8;;) l2 <M*(G’1,0’2)<OO .
n=1
Beweis: Da {p,(2)},n > 1, ein normiertes Orthogonalsystem ist,
gilt die Besselsche Ungleichung

oo

2IF,(8)12<[f|Gglz,8) |?dow fir o>1.
1]

n=1
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Daraus und aus Satz V und Lemma 3, § 3 ergibt sich fir
l<o, <o <<o,<00::
Zl%( ) I'(s —s7) I'(s — s,) |

2(R)
I'2(3)

<Y (Cos u(R) — 1)20 I'(0) M2(s,, 05)- ff do
g

also wegen Formel (19), § 1.6

8

Z|9.®) I'(s —s7) I'(s — s3) |

<dalp — 1) )

M2(a,, 0,) (Cos u(R)—1)2°I' (g
Hieraus folgt offenbar die zu beweisende Behauptung mit

() M2(0,,0,)- Max (Cos u(R)-1)* I'()<oo

F2(§) 1<01 <00 <

M (Gl} 02)=47t(p—1)

§ 6. Analytische Fortsetzung von Gg(z, s)

Es sei s =0+ it fest und ¢> 1. Dann ist Gg(z, s) nach Satz II
und Satz III, § 3 eine in §) stetige und beziiglich I" automorphe Funktion
von z = x, + tx,, welche in § stetige partielle Ableitungen erster und
zweiter Ordnung nach z,, x, besitzt. Nach Lemma 3, § 4 konvergiert
daher die Fourierentwicklung von G¢(z, s) nach dem Orthogonalsystem
{p.(2)} absolut und gleichméaBig fiir alle z ¢ $ und stellt die Funktion
Gg (2, s) dar. Daraus und aus Satz V, § 5 folgt nun fiir ¢ > 1:

Ge(z,8) = ZF,(5) pul2)

n=0

ot I's—sHI'(s—
—__—nzi'ol‘(f} (};’253) (Cos u(]) — 1)-¢ (s — I’)2(s)(8 $x)

Pa(2) - (1)

Nach § 4 ist A4, = 0; daraus und aus der Definition der Groflen s in
Satz V folgt

T=1. s =0 2)
Nach § 4 ist ferner
1
= e, 3
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Daraus folgt nach § 1.7 sofort

Aoy (&)

Aus (1), (2), (3) und (4) ergibt sich nun offenbar der

Satz VI: Far o> 1 gilt

@ 1

Gale:9)=018)  Tw)

1
(Cos p(@)-1)~+ (200 HEAR 1 e, o)

oe

Lg(z,8) = Zu(R) I'(s — 7)) I'(s — 87) ¢u(2)

n=1

Fiur jedes feste s = o + it mit o> 1 konvergiert die Rethe Lg(z,s)
absolut und gleichmdflig fir alle z € $).

Jetzt beweisen wir den fiir die analytische Fortsetzung von Gg(z, s)
entscheidenden

Satz VII: Es set g > 1 eine beliebige ganze Zahl,
Q={=c+it]lo|<g, [t]|<g}.
ne = Ny(g) werde so gewdhlt'®), daf3
A, = 16g%2 + } fiur alle n = mny(g) .

Dann ist I'(s — sf)I'(s —s;) in Q, reguldr fir alle n = ny(g) wund
die Reihe -
Z 9 R) I'(s — 57) I'(s — 57) 9u(2)

n=mny(g)

konvergiert absolut und gleichmdfig fir alle se€Q, und z€%.
Beweis : Nach der Definition in Satz V, § 5 ist

st =31+3V1—42,, s;=%—31V1—-44,. (5)
Daher ist
4sts, = 2,. (6)
Nach Voraussetzung ist

A, =16g2 + 1 fir alle n>mne(9); ¢g=1.

16) Dies ist offenbar fiir jedes g > 1 méglich, da ja nach § 4 lim 1, = + oo.
n—>o0
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Daraus und aus (5) folgt offenbar
sf=4%+1t,, s, =%}—1t,, ¢ -—iVelA —1>2g fir alle n>mny(g). (7)
Ist nun £ eine beliebige ganze Zahl, so folgt aus (7)

|s+k—s5|>t, —g=>g firale se¢@, und n>ny(g). (8)
| s Vag V2

Ferner folgt aus (7) fiir s e@,: ] STT, STz also 1 — ;ﬁ >
n n
2 —V2 8 s (2- V2)
>~ " daher |— — 1|.|=—1 >(1 )(1— ——) ,
- 2 r S:' l n \ - \ Sn Sy 4

also sicher

8
e —1
Sn

>§% fir alle se@, und n>=mnyg) . (9)

Aus (7) folgt auBerdem, daBl I'(s — s, ) I'(s — s;) fiir n > ny(g9) in
ganz @, regulir analytisch ist.
Aus der Funktionalgleichung I'(s + 1) = sI'(s) ergibt sich sofort :

F's+g+2—s)l(s+g+2—s,)
1
=F(s—s;f)l’(s—s;)(s———s;f)(sws,j)g;](s—{—k——s:{)(s—}—k——s;).

k=1
Hieraus und aus (6) folgt weiter

FT+g+2—s)Tls+g+2—s;)
i 8 g+1
:I’(s——s,‘f)]’(s—s;)(-—;——lwm———1) IHs+k—sH)(s+k—s;) .
Sy S8y, k=1

Daraus und aus (8), (9) ergibt sich nun:
| T(s—s3) I's— 57) | < 80g=20D . L | T(s4g+ 2~ ) (s g + 2 —s57)|

fir alle s @, und n > ny(g).
Daher gilt fur alle I, m > ny(g9), se@,:

2| u SV T (s— 55\ (5—57) pul?)|

n=1
< 80g-204 T3, (R) Do+ g-+2— ) Mo+ g+2—57) [ 12281 (10)
n=_( n
_ ™ . _ ™| @, (2)|%\¢
< 80920+ X9, (R) [(s+g+2—s ) [(s+g+2—s;)|2)}- Z——r .
n=I| n=1 n

59



Fiir alle se@, ist offenbar 2 < R(s + g + 2) < 2¢ + 2. Dabher ist
nach Lemma 8, § 5

23'I(pn(R)I’(s+g+2——s+)F(s+g+2——s N2 M*(2,29+2)<oco fiir se@),.

n=

Daraus und aus (10) ergibt sich endlich

gl@n(R)F(S—-S:)F(S—s;)(pn(z)| < 809‘:2("+1)VM*(2, 2g+2)( 2”; | @ (z)l2>%
n=1

2
n=1 }.

fir alle s €@, und alle m,l > ny(g).

2
Da aber die Reihe X J_‘E_d_)_L nach Lemma 4, § 4 gleichmaflig fiir alle

n=1 }'i
z € $ konvergiert, so folgt aus (11) offenbar die zu beweisende Behaup-
tung.
Da die meromorphe Funktion I'(s) genau in den Punkten s = — m,
m > 0 ganz, Pole besitzt, so folgt aus Satz VII sofort

Satz VIII: Die Reihe

Le(z, 8) = Z9.(8) I's — 8) T'(s — 7) 9, (2)

n=1

konvergiert absolut fir alle ze$ und s#sF —m,(n>1,m > 0),
und stellt fir jedes feste ze$ eine in der ganzen s-Ebene meromorphe
Funktion dar, welche nur in den Punkten

+

s, —m, S,

—m, (@®=1,m2z=0)

Pole besitzt und sonst iberall regulir ist.
Nach § 4 gilt

O< A, <AL, <A<...., lmi, =+,
n —> oo
und nach Satz V, §5 ist
Daraus folgt offenbar :

(a) Ist 4, >}, so liegen alle Punkte s;, s, fiir » > 1 auf der Geraden

c=%.
(b) Ist 0 < 4, < , so gibt es einen solchen Index n,, daf3

O< i, <A, <} fir 1<n<n, und 4,21 fir =»n>mn,.
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Dann liegen die Punkte s ,s, fir 1 <n <m, im reellen Intervall

l<o<}+131V1—4i, <}, und fir »n>n, aufder Geraden ¢ = }.
Aus (a), (b) und Satz VIII folgt nun der

Satz IX: Es gibt eine solche reelle Zahl oy << %, daf gilt: Fiir jedes
feste ze 9 ist die Funktion Lg(z, s) reguldr analytisch in der Halbebene
o> 0y. Hsist op=1% falls A, > %; ist lingegen O < A; < %}, so ist
t<oy=1+1V1—-42<}.

Es sei nun z € § fest und o die Konvergenzabszisse der Dirichletreihe

Gg(z,8) = X (Cosp(z, Tz) — 1)=° .

Tef
Nach Satz I, § 3 wissen wir, dal jedenfalls o; <<1. Da die Dirichlet-
reihe Gg(z, s) lauter positive Koeffizienten besitzt, so folgt aus einem
bekannten Satz von Landaul?): Der Punkt s = oy ist eine singulire
Stelle der in der Halbebene o> o, regulir analytischen Funktion
Ggq(z,8). Daraus und aus Satz VI und Satz IX folgt nun offenbar,
daBl og = } sein mull. Wir haben also

Satz X: Die Dirichletreihe

Ge(z,8) =2 (Cosp(z, Tz) — 1)
Tef

besitzt fiir jedes z € § die Konvergenzabszisse og = 1/,.

Fassen wir nun die in den Sitzen VI, VII, VIII, X enthaltenen Resul-
tate zusammen, so ergibt sich offenbar gerade der in der Einleitung aus-
gesprochene Satz A.

Aus Satz A und Satz IX folgt fiir jedes feste z ¢ §:

(a) Die Dirichletreihe mat positiven Koeffizienten
Gq (z, -s—) = 2 (Cosp(z, T2) — 1)"'2“
2, Te K
konvergiert in der Halbebene o > 1.
(b) In der Halbebene o > 1 gilt die Darstellung
- L _ 1 L w®)
2V2n(p—1) »(&) Siniu(®) s—1

wobet g (z, s) sogar in der groferen Halbebene

Z (Cosp(z, Tz) — 1) +9(2,9),
Tef

o6>20,, 20,<1
reguldr analytisch ist.

17) [5] pag. 880.
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Esseinun N{T |T «&, 1log(Cos g(z, T2) — 1) < 7} die Anzahl der
Elemente der Menge {T'|T &, }log(Cosg(z,T2z) — 1) <7}. Dann
folgt aus (a) und (b) nach dem Tauberschen Theorem von Wiener-
Ikehara 18) :

1 1
N{T|TeR, }log(Cose(z, T~ <v}~_ Sria 1).1’(3).8'#(’5‘{‘)‘“'87
- b
2

fir T - 4 co. Daraus ergibt sich aber sofort der in der Einleitung
ausgesprochene Satz B.
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