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Contribution à la théorie
des fonctions pseudo-analytiques

par Joseph Hersch, Zurich

1. Fonctions pseudo-analytiques et transformations pseudo-conformes

1.1. Une transformation intérieure (Stoïlow [16], p. 107) d'une variété
topologique F à deux dimensions dans une autre W, est une application
jouissant des trois propriétés suivantes :

A) Elle est continue.
B) Elle transforme tout ensemble ouvert de F en un ensemble ouvert

de W.

C) Elle ne transforme aucun continu de F en un point unique de W.

On voit que toute transformation topologique est une transformation
intérieure biunivoque, et réciproquement.

Stoïlow a démontré que la notion de transformation intérieure d'une
variété F dans la sphère de Riemann S exprime exactement le contenu
topologique de la notion de fonction analytique. En d'autres termes :

a) Toute fonction analytique est une transformation intérieure, b) Toute
transformation intérieure / : F -> S est de la forme

I AT (1)

où T est une transformation topologique de F dans une surface de

Riemann, et A est une fonction analytique. — On peut par exemple transposer

localement la structure conforme (w) de S sur V, c'est-à-dire on
construit une surface de Riemann V{w) homéomorphe à F ; c'est la surface

de recouvrement de S induite par / ; A est la „projection" V{w) -> S.
Tout point peV a un voisinage U(p) topologiquement équivalent

soit à I(U(p)) (alors p est un ,,point ordinaire" pour /), soit à un
élément de recouvrement sur I(U(p)), ramifié sur I(p) (p ,,point de
ramification"). Dans les deux cas, je désignerai par Uf(I(p)) ce voisinage,
image topologique de U(p).

1.2. Soit maintenant Riz) une surface de Riemann, avec sa structure
topologique R (variété) et sa structure conforme (z).

Avec Pfluger [13, 14], j'appellerai une fonction complexe w(p) fonction
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(ou application) D-pseudo-analytique dans un domaine Giz) de R{z) si c'est
une transformation intérieure de G dans 8 satisfaisant à la condition
suivante :

D) Tout point p de Giz) a un voisinage U(p) tel que, pour tout
quadrilatère1) QaU(p), un module fi fz(Q) et le module correspondant
p' fx(Q') (Q'<zUf(w(p))) satisfont aux inégalités2)

D/* (2)

J'appellerai transformation D-pseudo-conforme 3) une application
topologique satisfaisant à la condition D).

1.3. Soit w(p) une application D-pseudo-analytique de G{z) c R{z) dans
S (G{z)-> w(G)cz8). L'application G -> S (G étant seulement variété) est
une transformation intérieure ; on peut (cf. Stoïlow) définir dans G une
structure conforme (w) (différente de (z)), obtenue par inversion locale de

w(p) ; Giw) est une surface de Riemann, et P: G{w)->w(G)c:8 une
application analytique (la ,,projection" de G{w) dans S).

Occupons-nous maintenant de la transformation F : G{Z)->G{W) ; elle
est topologique (identité!), car les surfaces de Riemann G(z) et G{w) sont
définies sur la même variété topologique G ; elle satisfait à la condition D) ;

F est donc D-pseudo-conforme.

w(z)
pseudo-analytique

F pseudo-conforme

(3)

G(w)

P analytique

Théorème 1. Toute fonction D-pseudo-analytique w(p) peut être mise

sous la forme
w PF (1;)

où F est une transformation D-pseudo-conforme et P est une fonction
analytique. (La réciproque est triviale.)

x) Domaine de Jordan avec quatre points désignés sur la frontière. -Le module fA$>p"
d'un rectangle dont les côtés /?' et p" ont la longueur 6 et les côtés a' et a" la longueur a,
est ajb ; la représentation conforme étend cette définition du module à tout quadrilatère.

2) Nous montrerons (§2.1) que le comportement métrique au voisinage des points de
ramification n'est pas essentiel : il suffit d'imposer D) aux points ordinaires. - Caccioppoli
a indiqué dans un récent travail [2] que, sous des hypothèses de dérivabilité, on peut se

passer de postuler JB) et C).
8) Ce terme est employé dans un sens différent en théorie des fonctions de plusieurs

variables complexes; aucune confusion n'est possible ici.



Ce théorème permet de séparer les deux actions d'une fonction
pseudoanalytique : F respecte la topologie, P la métrique locale.

2. Variation du module d'un quadrilatère ou d'un domaine doublement
connexe

Théorème 2. Soient Q un quadrilatère quelconque, Q' son image par
une transformation D-pseudo-conforme z' f(z), topologique aussi sur le
contour de Q, Alors les inégalités (2) sont aussi satisfaites par les modules

et p'=
Démonstration, D'une propriété locale, il s'agit de déduire la propriété

globale analogue.
Soient Q (/So oco /?x ocx) et /i fo plQ Appelons u la fonction harmonique

dans Q, solution du problème de Dirichlet-Neumann suivant :

u 0 sur j80, u 1 sur pl9 dujdn 0 sur oco et ocx. Soient

0

des nombres réels partageant l'intervalle 0 < a < 1 enn parties. Le
domaine Qt : Xt<u< At+1 est un quadrilatère : sa frontière est formée

par les lignes de niveau 0t (u AJ, 6l+1 {u Aî+1) et des portions des

arcs *0 et ocx (0O =/90, 0n ft), pt fAetot+lQt-

Posons jp^du/dn) ds e (n normale extérieure) ; alors

e §fQ grad2 udr Ij/bt. 4)

Considérons maintenant Qt au lieu de Q ; au lieu de u, on a ici

ut=(u- K)liK+i ~ K)
donc

*K JJgt g^d2 u%dx (At+1 - AJ"2 JJQt grad2 ^dr ;

d'où

t*t (K+i — k)lz •

Donc E [Àt fji. (Nous avons ici Yadditivité des modules au lieu de la
i

suradditivité.)
Appliquons toute cette figure dans le plan (z') par z' f(z). En vertu

de la suradditivité des modules, // fip* ^q* ^ E jm[. Je désigne

maintenant par co[ la fonction harmonique dans Q[ telle que co[ 0 sur afQ,

4) d« est Pélément linéaire, dr l'élément de surface.



co[ 1 sur oc[, dco'Jdn 0 sur 0[ et 0[+1. Puis je procède avec cù[ dans
Q[ exactement comme j'ai procédé avec u dans Q. Je coupe Q[ par des

lignes de niveau rfk : a>£ ok (0 cr0<o<1< • • • <om 1) en de petits
quadrilatères Q'a (or*. < œ't < ak+1) ; /^ iM^^ + 1Q^- Grâce aux Pro'
priétés des représentations topologiques, on peut rendre les images
réciproques Qtk arbitrairement petites. On obtient \\ii% E /u[k (additivité),

k
et H(jl% > E fxlk (suradditivité) ; d'où \x E pt < E (E ^lk)-x et

k % % k

fi' > S /bt[ E (E fi!^)"1. Supposons que l'on ait construit les Qlk assez
% % k

petits pour que jbi[l ^D-/Lilk. Alors il s'ensuit que \il ^/â/D, et (par
une démonstration analogue) [x > fJt'jD, ce qu'on voulait démontrer.

Il reste à montrer qu'il est possible de construire les Qlk assez petits :

c'est possible si toute la fermeture de Q est intérieure au domaine de

pseudo-conformité (on peut alors, selon Heine-Borel, recouvrir Q par un
nombre fini de voisinages U(p), etc.) ; si tel n'est pas le cas, on procédera
par exhaustion de Q au moyen de quadrilatères intérieurs, c. q. f. d.

Les bornes (2) sont exactes (cas extrémal : Q et Q' sont des rectangles).

2.1. La démonstration ci-dessus reste valable si l'on admet que des

points isolés désobéissent à D) : il suffit de faire passer une ligne 6t par
chacun de ces points.

Corollaire. Toute transformation intérieure pour laquelle chaque point
ordinaire satisfait D), est D-pseudo-analytique.

En effet, elle est (cf. (1)) le produit d'une transformation Z>-pseudo-
conforme (car les points de ramification sont isolés) et d'une fonction
analytique. — On voit que ces points ne jouent qu'un rôle topologique,
mais pas de rôle métrique.

2.2. Théorème 2'. Soient D un domaine doublement connexe, de
module 5) ju, et D' {de module //) son image par une transformation D-pseudoconforme.

Alors ii et p! satisfont les inégalités (2).
La démonstration serait calquée sur celle du théorème 2.

2.3. Les théorèmes 2 et 2f permettent de généraliser immédiatement
aux fonctions pseudo-analytiques plusieurs propriétés des fonctions
analytiques : cf. [9] (I. 3. D).

5) J'appelle module de la couronne circulaire 1 < | z | < R la grandeur fi {lj2n)\nR;
cette définition s'étend par représentation conforme à tout domaine doublement connexe.



3. La fonction v(r) et ses principales propriétés

Nous allons avoir besoin de la fonction v(r) définie dans ma thèse

([9], Chap. II, § 1) ; je rappelle ici ses principales propriétés (pour les

démonstrations, voir ce travail).

Définition. v(r) (0 <r<l) est le module du domaine doublement
connexe dont les contours sont le cercle-unité | z \ 1 et le segment
réel 0 < x < r.

Propriétés.

(a) v est une fonction monotone décroissante (non-négative).
(b) v(r) (ll4)Kf(r)/K(r), où K(r) JJ

(c) v(r) v(Vl —r2) 1/16.

(d) 2v(r) v((l - Vl - r2)2/r2) ; v(r)f2 v(2 Vrj(l + r)).
(e) V(r)v((l-r)l(l + r)) ll8
(f) Cas limite r -> 0 : v(r) (l/2jr) In (4/r) + O(r2).

(g) Cas limite r -> 1 : rc/r(r) - 4 In (8/(1 - r)) + 0(1 - r).
(h) In ((1 + ]/l - r)2/r) < 2tt *(r) < In (4/r) ;

d'autres évaluations s'obtiennent à partir de (h) à l'aide de (d) et (e).

(i) Valeurs particulières : v(l/V2) 1/4 ; v(V2 - 1) 1/(2 j/2) ; on
peut dès lors résoudre élémentairement toute équation en r de la forme
v(r) 2W/2 (n entier), par application itérée d'une des formules (d).

Exemple : 1/2 2 v(ljV~2) v((\/2 - l)2) v(3 - 2 ]/2).

4. Variation de la mesure harmonique

4.1. Soit G un domaine de Jordan de frontière F, sur lequel on a

désigné un point intérieur p et un arc-frontière connexe oc ; soit z' / (z)

une transformation D-pseudo-conforme appliquant G sur un autre domaine
de Jordan G' ; co co^ et a/ ^Va'G' > alors

j < v ^sin —j-j < 2)y I sm -y-j 6) (4)

Démonstration. — Comme représentants des configurations de Gpcc

et 6?/p'a', je choisis les cercles-unités | z \ < 1 et | zf \ < 1, avec p 0,

6) Ce résultat a été brièvement annoncé dans la Note [10].



pr 0, les arcs <x et <x! ayant pour milieu le point d'affixe 1. J'appelle
ri le segment réel — 1 < x < 0 ; rjf est alors un arc joignant 0 à F — od ;

soit Q((o) le quadrilatère de côtés opposés rj et oc (dans | z \ < 1). On
calcule facilement (cf. [9], Chap. II, § 2) que jbtari 2 v (sinn co/2) ; en
vertu de [9] (III. 2. C), /jaV < 2 v(sinwa//2). Selon le théorème 2,

^«v ^ft»/^> c^°k Inégalité de gauche dans (4). On démontrerait de
même l'inégalité de droite, c. q. f. d.

La démonstration montre aussi que les évaluations (4) sont exactes,
car les inégalités (2) pour les modules le sont : on peut construire une
transformation extrémale, en appliquant d'abord Q(co) sur un rectangle,
et rf sera de nouveau le segment réel — 1 ^ x' < 0.

Cas limite œ -> 0 :

(je/8) 0} 1 -f- 0 {o) ^ co ^ (8/tt) go (1 -f- O(co (4

Cas D 2 : (d), § 3 donne

710} ^ 710} iAtl\

et naturellement l'inégalité obtenue en permutant œ et co'.

En itérant (d), on peut de même obtenir pour le cas D 2n (n entier)
des évaluations où n'interviennent que des fonctions élémentaires.

4.2. Le théorème 1 et l'inégalité de droite dans (4) permettent,
compte tenu du principe de Nevanlinna sur l'augmentation de la mesure
harmonique par une application analytique, d'arriver au théorème
suivant :

Soient GV0L une figure du type considéré ; zf f (z) une fonction
D-pseudo-analytique dans G ; alors

v(BinJïr)<Dv(*in^r)

quels que soient G' f(G) et a' f(oc). — Si D 2, cette inégalité
devient (4/;).

5. Variation de la distance hyperbolique (et de la fonction de Green).
Lemme de Schwarz généralisé

5.1. Soient G un domaine simplement connexe, dans lequel on a

désigné deux points p, q ; z' f(z) une transformation D-pseudo-con-
forme : f(G) =0' ; h hpq0, h' hp,q,G,, g gpqQ, gf gp>q>0>. Alors



D v{e~) \

Démonstration. — II suffit de nouveau de considérer le cas où G et G'
sont des cercles-unités, avec p 0, pr 0 et g, g' réels positifs :

q Thh e~°y q' Th hf e~g\ (Th désigne la tangente
hyperbolique.) Soit rj le segment réel 0 < x < q ; le domaine doublement
connexe D de contours jT (| z | 1) et rj a un module ^ v(q)
l/8v(e~2ft) ; rf f(rj) est un arc de Jordan joignant p' 0 à g' ; en
vertu de [9] (III. 1. C), fi' /i(D') < l/8^(e-2^') v(e^'). Le théorème

2' dit que ^ ^ /^/-D, d'où la moitié des inégalités (5) ; les autres
s'obtiennent en permutant les rôles de z et zf. c. q. f. d.

Les évaluations (5) sont les meilleures possibles, car les inégalités pour
les modules jll, jh' le sont, ce qui permet de construire une transformation
extrémale (rf sera alors le segment réel 0 < xf < qf). — Elles restent
valables pour des domaines multiplement connexes (h étant définie à l'aide
de la surface universelle de recouvrement) ; mais elles sont alors très
.inexactes".

Cas limite g ->oo :

D-ig-il-D-1) In 4+0(e~2flr/jD) < gr < Dg+(D—1) In 4+O(e"2i)flr) (5')

Cas limite h

D-iA-(l-D-i) in 2+O(e-u/D) < h' < Dh+(D-1) In

Cas D 2 : Ch *' < e2^ ; egf^ Ch(g/2) (5W)

et les inégalités en sens contraire, obtenues en permutant h et hr, g et g'.
De nouveau : simplification pour D — 2n (n entier), par itération de

(d), § 3.

5.2. En vertu du théorème 1, de (5) et du principe de Nevanlinna sur
la distance hyperbolique, on a la propriété :

Si zf f(z) est une fonction D-pseudo-analytique dans un domaine

G 3 p,q, v{e~2h') < Dv(e~^), soit v{e'gt) ^D~xv{e-9) (5IV)

Si D 2, ces inégalités deviennent équivalentes à (5W).

5.3. Généralisation du lemme de Schwarz.
Soit w(z) une fonction D-pseudo-analytique définie dans G: \ z |<1,

telle que w(0) 0 et \w(z)\<l dans G. Alors

v(\w(z)\)^D-*v(\z\) «) (6)



Ou bien, ce qui revient au même,

|w(*)l </i(|2|) (6')

la fonction fp(r) (0 < r < 1) étant définie par

*(/£(»¦)) =-D-M»0 • (7)

Je définis en même temps la fonction inverse /^(r) par

v(fi(r))=Dv(r) (7')

Démonstration par ce qui précède : (6) est une conséquence immédiate
de (5IV).

Démonstration n'utilisant pas le principe de Nevanlinna : Soient de

nouveau (cf. § 5.1) r\ le segment rectiligne joignant 0 à z ; D le domaine
doublement connexe de contours F et rj ; fiD i>(| 2 |) ; w(z) PF(z)
(F est D-pseudo-conforme, P est analytique); j'applique à P la
propriété [9] (I. 3. D. f) : soient Ft le „contour extérieur" de w(G) et ^
celui de w(rj) ; ^F(D) < /fr^ < *(l w(z) I) ; mais /*w>) > ^""Vd (théo"
rème 2'), d'où (6). c. q. f. d.

Remarque. — Si D 1, (6) exprime le lemme de Schwarz

\w(z) | < | z |, et l'extrémale (w e*az) est indépendante de z ; si

2)>1, (6) reste exacte, mais Vapplication extrémale dépend alors de z.

Cas limite | z | -> 0 : | ^(2) | < é1""1^ | 2 |1/2)(1 + O(| z |2/jD)) (6/;)

0a5 Zimfe | z | -> 1 : 1-| ^(2) | > S1"^! - | 2 1)^+0((1 - | z \fD) (6W)

Cas D 2 : | «;(») | < 2 V\7\l(l + \z\) (6IV)

D 4: | w(z) \ < 23/2 ]/l + \z\ \/]V\l(l + VW\f (6V)

6. Généralisation du théorème de Schottky

6.1. Soit {w(z)} la classe des fonctions D-psevdo-analytiques dans
le cercle-unité 0, telles que w(0) c (c donné), et qui ne prennent nulle
part dans G les p > 3 valeurs ax,..., ap. Alors la distance sphérique
ôw(z)a du point w(z) et du point ap possède une borne inférieure

dD[\z\,c;al9...9ap]>0
La démonstration est analogue à celle du cas analytique D 1 : C'est
une conséquence de la quasi-invariance de h0z0 par la transformation
pseudo-conforme F (z) qui applique 0 dans la surface universelle de
recouvrement relative à ax,..., ap en sorte que w PF (§ 5.1).

8



Supposons connue la borne exacte du théorème classique de Schottky
(D 1), c'est-à-dire la fonction dx\\ z \, c ; a1}.. ap] ; je veux alors
déterminer dD[... ]. Il est clair que dx et dD sont des fonctions décroissantes

de | z |. — Pour tout e>0, il existe une fonction w(z) du type
considéré et telle que àw{Zo)a < dD [| z0 |,... ] + e pour un z0 e G

donné ; w PF (F étant D-pseudo-conforme, P analytique) ;

appliquons conformément F {G) sur G par une transformation T telle que
^(^(O)) 0. On a alors dans le cercle-unité G deux structures
conformes différentes, et l'application TF fait passer de l'une à l'autre ; elle
est D-pseudo-conforme et satisfait les hypothèses du lemme de Schwarz
généralisé (§5.3). Donc | TF(z0) | < /+(| z0 |).

(8)

F(G)

est une fonction analytique ; PT'1^) PÏT-12TF(0) PF(0)
w(0) c ; on voit que PT'1 est du type considéré; donc

dD[\z0\,...] e> w{Zohap ,>dxWTF(zt)l...-\
>d1[JÏ(\z0\),...]

L'inégalité entre les membres extrêmes ayant lieu pour tout e > 0, on
en déduit que dD[\ zo\,c;al9.. .,ap] > di[/i(| z0 |), c;al9..., ap].

Inversement, soit y>(z) une transformation Z>-pseudo-conforme de G

sur lui-même extrémale du lemme de Schwarz : ip(O) 0, | y)(zQ) |

/^ (| z0 |) pour un point z0 particulier. Il existe pour tout e>0 une
fonction analytique (p dans G telle que ç> (0) c, cp ^ ax,..., ap et

est une fonction

(9)

'o l)> • • •] + e pour tout £>0, d'où
] ; on obtient ainsi finalement

p
D-pseudo-analytique du type considéré ;

G

donc rfjD

dj) [| Zo I
• ] ^ à\ Un (I zo |)î •

(10)



Remarque. — II est tout à fait indifférent, pour notre raisonnement,
que Ô et d se rapportent à la distance sphérique ou à une autre métrique.
— La méthode de démonstration caractérisée par les schémas (8) et (9) est

adéquate pour généraliser au cas D>1 des propriétés connues pour D 1

(fonctions analytiques).

6.2. Cas particulier p 3; a1 — 0, a2=l, a3 =oo; MD(r, c)

Supjzj<r | w(z) |, où sont admises à concurrence toutes les fonctions

D-pseudo-analytiques w(z) c {w(z)}. W. K. Hayman [6] a obtenu

pour M1(r,c) les évaluations suivantes :

Mx{r, c) < (Max [1, | c |] ef ;

si |c|=éry<i alors Mx(r,c) <g e>W • (i+r)/<i-r) V

Pour les fonctions D-pseudo-analytiques, on obtient des évaluations
correspondantes en remplaçant dans (11) M1(r,c) par MD(r,c) et,
dans les membres de droite, r par /J (r) ; en vertu de (e), § 3, cela équivaut

à remplacer (1 — r)/(l + r) par /^((l — r)/(l + r)). — Le cas
limite intéressant ici est celui où r -> 1 : II faut alors remplacer, dans
(11), (1 + r)/(l - r) par ^(l + rfl(l - rf(l + O((l - rf»)).

D 2 : II faut remplacer, dans (11),

l-r
Les recettes indiquées ci-dessus permettent aussi de généraliser les

évaluations obtenues par R. M. Robinson [15] pour le cas p=3,
ax — 1, a2 1, az=oo (ce cas se ramène immédiatement au
précédent : il suffit de considérer, au lieu de w, la fonction {w + l)/2) : il
obtenait

~ 10 < (8 | c | + îo^+'W1-') et 8^ + 10 > (8 | c | - 1

ces deux évaluations lui fournissaient la formule asymptotique

8^ ~ (8 | c |)<1+*p)/<1-') lorsque c ->oo (^^5 signifie : A =B{\ + o(l))).
On généralise ces évaluations en posant de nouveau

^,..)=*i(/ÎW-.)5 c'est-à-dire que /^((l - r)/(l + r))

remplace (1 — r)/(l + r).

7. Généralisation de l'inégalité de Jensen et du théorème de Blaschke

7.1. La multiplicité n d'un point a pour une transformation
intérieure z' f (z) est le nombre de tours que décrit z' autour de a' lorsque

10



z tourne une fois autour de a (dans un voisinage U(a) sans point de
ramification différent de a) (,,degré de l'application"). — Si f(z) est
topologique, n 1 en tout point.

Si f(z) est une fonction D-pseudo-analytique, on montre facilement
à l'aide de (6") et du théorème 1 qu'il existe un voisinage de a et une
constante K > 0 tels que

K-11 z - a \Dn < | zr - a' | < K | z - a \n{D (12)

dans ce voisinage.

7.2. Inégalité de Jensen. — Soit w(z) une fonction D-pseudo-analytique

dans | z \ < 1, satisfaisant | w (z) | < 1, et dont les points at (en
nombre fini ou dénombrable) sont des zéros de multiplicités nx Alors

où f% est définie par (7).

Démonstration. — w(z) PF(z) (F est D-pseudo-conforme, P
analytique) ; je construis encore l'application conforme T en sorte de
compléter le schéma (8). w(z) PT^TFiz); TF satisfait le lemme de
Schwarz généralisé (§5.3), donc | TF(at) \ < /^ (j at\) ; la fonction
analytique PT~X satisfait l'inégalité classique de Jensen {TF(at) est un
zéro de multiplicité nt), donc

| w(0) | < n | TF(at) T< n\fi (I », l)fl •

c. q. f. d.

Remarque. — La borne donnée par (13) n'est pas la meilleure possible
(,,pas exacte") ; en effet (cf. la remarque au § 5.3), si D > 1, la fonction
extrémale du lemme de Schwarz généralisé dépend du point z ; aucune fonction

TF ne réalise simultanément \ TF(at) | fi(\at\) pour tous les a%.

7.3. L'inégalité (13) peut aussi être interprétée sous la forme
suivante :

Soit w(z) une fonction D-pseudo-analytique dans |z|<l, telle que
w(0) 0 et | w(z) | < 1 ; et soient at, a2,... les points où elle prend la
valeur a (avec les multiplicités nx, n2,...); alors

\a\ </7[/i(|af|)r (14)
%

Démonstration. — (14) s'obtient à partir de (13) par un mouvement
hyperbolique (dans le cercle-unité) amenant w(0) à l'origine, et l'origine
en a. c. q. f. d.
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Cette façon particulièrement élégante de formuler l'inégalité de Jensen
est due (pour D 1 ; alors \a\ < U \ at \nt) à Lehto ([12], p. 8). Sous

cette forme, l'inégalité de Jensen apparaît comme un renforcement du
lemme de Schwarz.

7.4. Dans le cas limite \at\ -> 1,

(cf. (6'")), ce qui permet de généraliser au cas D>1, par une formule
simple, le théorème de Blaschke :

Soient w(z) une fonction D-pseudo-analytique bornée dans \ z \ <1 et

ax, a2, aB, «ses zeras (de multiplicités nly n2, n3i...). Alors la somme
oo

1^(1 — | at j)-0 converge. 6)

Démonstration. — w(z) PT-xTF(z) comme au § 7.2. En vertu du
théorème classique de Blaschke (conséquence immédiate de l'inégalité
de Jensen), appliqué à la fonction analytique (non constante) PT~X, le

produit II\TF{at)\nt converge (>0), c'est-à-dire Znt(l—\TF(at)\)

converge, donc a fortiori Znt{\ — | ax \)D. c. q. f. d.
i

8. Généralisation du théorème de Phragmén-Lindelof

8.1. Forme générale (cf. [8], [9] (III. 3. C)).
J'appelle coupure d'un domaine un arc de Jordan à extrémités sur la

frontière. — Soient G un domaine de Jordan (de frontière F), qu'une
coupure 00 partage en deux domaines Go etG'o; p un point de Go ; {0A }
(0<A<oo, A paramètre continu ou discret) des coupures emboîtées
intérieures à G'o (0X sépare p de tous les 0^,, où X'>X) telles que
juoX jbie0Ox ~>o° quand A -> oo. Les 0X convergent vers un point E
de F.

Soit w(z) une fonction D-pseudo-analytique dans G, telle que
lim sup^çlw(z)|<1 pour chaque ÇeF—E. Je pose Mx=M.axz€6}\w(z)\,

et T(xD)=liminfx^00(e-i)^^lnMx). (15)

Si liminf^^Jfx^l, alors In\w(p)\ <{Sfn)^e-(27l/i))l/<8m(7ra>W2». (16)

Démonstration. — w PF (F est D-pseudo-conforme, P analytique).
J'écris wx pour <o^x(?A, cof pour coF(p))F(exhm^, et //fx pour f*F(ejtFi0y)
L'évaluation ([9], formule (III. 8) ; soit [8] (6)) est valable pour la fonc-
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tion u(t) In | P(t) |, sous-harmonique dans F (G) ; donc

In | w(p)\ ln| PF(p)\ <(8/rc) lim inf^Je-^ox In jfj.e-2
comme /^x^//oX/Z> et, selon (4), ^ (sin Tro^/2) > (1/jD) *>(sin 7zco0/2),

on en déduit (16). c. q. f. d.
Comme le montre [9] (I. 3. C), fioX — [xkX + 0(1) lorsque A ~> oo

« restant fixe ; donc les o^ sont soit tous nuls, soit tous différents de
zéro. o(q>)= 0 entraîne o^= 0 pour tous les x, donc, en vertu de
(16) (où Ton peut remplacer l'indice 0 par x) In | w(z) | < 0 dans
U (?„
X

Théorème. — Si a(0D)^ 0, alors \ w(z) \ < 1 dans tout G.
Une transformation intérieure conservant les ensembles ouverts, le

principe du maximum est valable ici : le théorème est banal dans le cas

Théorème. — Pour tout x, r^ > — oo.

Démonstration. — Supposons lim inf^^ifcf^ < 1 (sinon le théorème
est trivial). w(z) PF(z) comme plus haut. Le théorème 2 de [9]
(III. 3. C), appliqué à la fonction sous-harmonique u(t) In | P(t) \

dans F (G), montre que

-oo^iminf^Je-^fx In Mx) < lim inî^^(e~Dn^ In

c. q. f. d.

Dans les applications (cf. par exemple [9] (III. 3. A)), on ne connaît
souvent pour //xX qu'une évaluation par défaut ; le second théorème est
alors inutilisable.

8.2. Pour un domaine angulaire : 0<arg z<<% ; 0R arc du cercle
\ z\ B; GR secteur de \ z\<R.

Soit w(z) une fonction D-pseudo-analytique dans ce domaine angulaire

G, telle que lim supz_^ | w(z) \ < 1 pour f 0 et pour arg C

0 ou oc. Soit MR le maximum de | w(z) \ sur Tare 6R.

(R-»lD«lnMR); tf>= lim inf^iî-^ln MR). (15')

On a de nouveau les deux théorèmes ci-dessus ; le calcul direct à partir
de (4) donne plus précisément ceci : Supposons arg p a/2 ; alors
coR o)peRoR ~ (4/tt) (I p \/R)nlct lorsque R -> oo ; w PF ; en vertu
de (4'), (2Z-D/Tt)(\ p \/R)Dnl(X < o)FR< (2z~1fD/7t)(\ p \jR)niDa Je
considère de nouveau dans F(GR) la fonction sous-harmonique u(t)
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In | P(t) | (t F(z)). En vertu du principe de la majorante harmonique

:

Si lim inf^^ MR > 1 In | w(p) | < (23-1/2)/^) crf>
| ^ |w/I)a (17)

Si lim infj^ MR < 1 In | ti?(p) | < (23~1>/^) t^ | 2? |^/a (18)

(17) est valable a fortiori si arg p ^ oc/2 ; (18) n'est valable que si

arg p a/2. — (On remarquera que l'on n'a pas fait l'hypothèse

9. Fonctions pseudo-analytiques à dérivées partielles continues et trans¬
formations quasi-conformes. Variation de la longueur extrémale

9.1. J'appellerai transformation D-quasi-conforme une application
topologique douée de dérivées partielles continues et satisfaisant à la
condition

Df) En tout point p, le quotient des dilatations

Q(p) | dwjdz \mJ\ dw/dz \Mn reste < D (D > 1)

On peut aussi dire que l'image d'un cercle infinitésimal est une ellipse
infinitésimale dont le rapport ajb des axes est borné supérieurement par
une constante D > 1. (Cf. Orôtzsch [3] [4].)

9.2. Soit q une répartition (fonction réelle non-négative) dans un
domaine G ; elle fait correspondre à toute courbe c dans G le nombre

CQ (c) ie gds; nous posons encore AQ AQ (G) JJG g2dr. 7)

J'appelle famille numérique de courbes dans G une loi C faisant
correspondre à toute courbe ce:G un nombre réel O(c)^0. Le module
de C est défini par M(C) infe AQ, où Von admet à concurrence toutes
les répartitions q telles que GQ > G (cf. [9], Appendice du Chap. I). —

Si la loi G n'attribue que les valeurs 0 ou 1, elle désigne simplement une
famille (ordinaire) de courbes {c}, et M(C) M{c) Ljc*, où L{e}
est la longueur extrémale de la famille {c } (c'est essentiellement la définition

d'Ahlfors et Beurling [1]).

9.3. Théorème 3. — Soit z' f(z) une transformation D-quasi-
conforme d'un domaine G sur un autre G' ; soient C une famille numérique
dans G et C son image : Cr(f(c)) C(c). Alors

D-*M(C) < M {C') < DM(C) (19)

7) J est l'intégrale supérieure, / l'intégrale inférieure de Darboux.
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Démonstration. — Soit q(z) une répartition concurrente pour M (C),
c'est-à-dire CQ(c) ^ C(c) pour toute courbe c; la répartition q'(z1)

q(z) | dzjdz' \WKSi est alors concurrente pour M(C), car

Ce,(c') ^ CQ(c) ^ C (c) C (cf)

pour toute courbe c' /(c). En outre Aq,(G') < D-Ae(G), car

Donc CQ^C entraîne AQ > D~W (C), d'où M(C)
On montrerait de même Jf (C) > D-1M(C)i d'où (19). c. q. f. d. 8)

9.4. Corollaire. — Toute transformation D-pseudo-conforme à dérivées

partielles continues est D-quasi-conforme, et réciproquement.

Démonstration. — a) Soit w(z) une transformation Z)-quasi-conforme ;

il suffit d'appliquer le théorème 3 au problème de longueur extrémale
définissant un module d'un quadrilatère ([9] (I. 3. a)), on voit ainsi

que D') entraîne D) (§ 1.2). — b) Soit maintenant w(z) une transformation

D-pseudo-conforme à dérivées partielles continues ; soit p un
point quelconque ; choisissons pour Q un carré infinitésimal dont p est un
sommet, et dont les côtés ont les directions de la plus grande et de la
plus petite dilatation ; son image est (si l'on néglige des infiniment petits
d'ordre supérieur) un rectangle de module Q(p) < D ; la condition D')
est donc bien satisfaite, c. q. f. d.

On montre de même : Sous Vhypoihèse de la continuité des dérivées
partielles, toute fonction D-pseudo-analytique est une transformation
intérieure satisfaisant D'), et réciproquement. (Utiliser le corollaire 2.1.)

9.5. Théorème 4. — Soient C une famille numérique dans un domaine
G; zf f(z) une fonction D-pseudo-analytique à dérivées partielles continues,

définie dans G ; et C la famille numérique définie dans Gf / (6?)

par C (c1) Max/(c)r=c, C(c). Alors

M{C) ^DM(C) (20)

Démonstration. — 1°) II suffit de modifier légèrement la démonstration
de [11] ou [9] (Appendice Chap. I, C. i) : définir

etc.; 2°) On peut aussi écrire f(z) PF(z) (F étant D-pseudo-conforme,

P analytique) ; en vertu de [11] ou [9] et du théorème 3,
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M(C)
c. q. f. d. 8)

On peut préciser l'inégalité (20), en vertu de [9] (Appendice Chap. I,
C. j) : on a encore

M(C*) ^DM(C) (20')

pour la famille numérique 0* définie par C*(cr) V S [O(c)]2.

9.6. Les théorèmes 3 et 4 permettent de retrouver immédiatement,
à partir des formules (II. 12) et (II. 13) de [9] (mettant en rapport
longueurs extrémales d'une part, mesure harmonique et distance
hyperbolique d'autre part), les évaluations exactes (4), (4'"), (5), (5^), pour
les cas où z' — f(z) est une transformation quasi-conforme ou une fonction

pseudo-analytique à dérivées partielles continues.9)

10. Transformations intérieures à dérivées partielles continues: Variation
de la longueur extrémale et lemme de Schwarz

10.1. Soient zf f(z) une transformation topologique à dérivées

partielles continues dans un domaine G ; Q (z) son quotient des dilatations

(§ 9.1) ; C une famille numérique et C son image.
Soit q(z) une répartition concurrente pour M (C) ;

est alors concurrente pour M(C')\ \dzjdz1 |^ax ^Q{z)-drjdx' ; donc

M(C) < He<<?'2(z') dr' < f$aQ(z) <?{z) dr. ¦)

Théorème 5. — 8i q(z) est concurrente pour M(C), alors

^ÏÏ0Q(z)Q*(z)dT ") (21)

En particulier, si le problème variationnel définissant M (C) admet

une répartition extrémale q0, M(C) $$Q Q%{z)dr, d'où11)

M(C) - M{C) ^f$0 [Q(z) - 1] el(z)dr 10) (21')

8) La continuité des dérivées partielles n'est pas essentielle à la démonstration; il faut
seulement que | dzjdz' ||,ax ^ D * drjdrf. En outre, on peut admettre des points isolés
où les dérivées partielles n'existent même pas (cf. Teichmûller [17], p. 666—667).

9) II se peut que (19) soit valable pour toutes les transformations D-pseudo-conformes,
et (20) pour toutes les fonctions D-pseudo-analytiques. Je n'ai pu l'établir que dans les
cas se ramenant au module d'un quadrilatère ou d'un domaine doublement connexe
(théorèmes 2 et 2' du § 2).

10 Ce résultat a été brièvement annoncé dans la Note [7].
u) Car, si / > 0 et g > 0, JJ (/ + g)dr <7J fdr + TJ gdt.
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Cette inégalité est particulièrement utile si Q(z) n'est différent de 1 que
dans une partie de G (par exemple dans le voisinage d9un point). — La
borne donnée par (21/) n'est pas en général ,,exacte".12)

Dans le cas particulier où G est un domaine doublement connexe,
(21') devient équivalente à un théorème récent de G. af Hâllstrôm ([5],
p. 5) ; voir aussi Teichmûller [17], p. 668.

10.2. Les inégalités (21) et (21') restent valables si z' f(z) est une
transformation intérieure à dérivées partielles continues, la famille numérique

C étant définie par C (cf) Max/(c)==c, C(c) ; on a même le droit

d'y remplacer G' par C*, définie par C*(cf) V Z [C(c)]2. — On le dé-
/<c)=C

montre (comme au § 9.5) à l'aide de [9] (Appendice Chap. I, C. i et j).
(21) et (21') restent encore valables si l'on y remplace Q(z) par toute

fonction majorante connue D(z) ^Q(z); elles prennent alors la place
de (19) et (20) : elles donnent une précision bien meilleure (si D(z) est une
,,bonne" majorante), et restent applicables si Q(z) n'est pas borné dans G.

10.3. Généralisation du lemme de Schwarz.

10.3.1. Transformation topologique à dérivées partielles continues
z' f(z) du cercle-unité G sur lui-même, telle que /(0) 0.

Soit F la frontière | z \ 1 de G. Désignons dans G les points 0 et r
(0<r<l). Considérons la famille {c} des courbes fermées de Jordan
séparant 0 et r de F, et la famille {y} des coupures séparant 0 de r.
Nous avons alors (cf. [9], Chap. II, §3) M{c} v(r), M{y}
[4*(r)]-i; {f(c)}= {c'}, tf(y)}= {/}; M {c'} v(\ f(r) |)

Pour déterminer les répartitions extrémales qOc et Qoy pour M{c}
et pour M {y}, il suffit d'appliquer conformément le quadrilatère (défini

par le demi-plan inférieur et les points-frontière oo, 1/r, r, 0) sur le
rectangle (0, eo1? 0}x + w2, g>2) (a^ réel>0, co2 i \ co2\) par l'intégrale

elliptique w(z) J^ dz/]/z(z — r)(z — 1/r) ;

a>x w{ljr) 2 V7Z(r) et | co2 \ 2 l/rîf'(r)
(cf. § 3 et [9] (II. 1. B)). On obtient

dw
Qoc dz \z~r\ • |1 - rz\

12) Exemple : G rectangle de côtés 1 et 3 ; Q 1 dans un carré de côté 1, Q 2

ailleurs ; Q' rectangle de côtés 1 et 2.
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et
Qoy

1 dw
~dz

1

2K'(r) - rz

Si, au lieu du point réel r, on a z0 (| z0 | < 1), il faut remplacer Jf (r)
par JT(l«oJ)> K'(r) par jfiL;(|z0|), |z —r| par | z — z0 \, et |1— rz \

par ] 1 — zoz |. L'inégalité (21') fournit donc les deux évaluations :

/7
JJ \

\\l
g) - 1

JJ \z\.\z-zo\.\l~zoz\
\z\<l

10.3.2. Transformation intérieure à dérivées partielles continues
zf f(z) dans le cercle-unité, telle que /(0) 0 et | f(z) \ < 1.

Tout comme au § 1.3, on voit que f(z) PF(z), où F(z) est topologique

à dérivées partielles continues, et de quotient des dilatations
Q(z) en tout point ordinaire z (les points de ramification sont isolés, cf. 8)),

et P est analytique ; on peut choisir F (z) du type considéré ci-dessus

(§ 10.3.1): comme P obéit alors au lemme classique de Schwarz,

L'inégalité (23) reste donc valable : c'est la généralisation cherchée du
lemme de Schwarz.

(23) se réduit à (6) (§ 5.3) lorsqu'on sait seulement de Q(z) qu'il est
borné par une constante D ^ 1.

Ce travail est fortement imprégné d'idées du Prof. A. Pfluger, auquel
j'exprime ma vive reconnaissance.

Note complémentaire. Après la correction des épreuves, je constate que deux idées

importantes des paragraphes 4 et 5 se trouvent déjà dans le travail de H. Orôtzsch : Vber
môglichst Jconforme Abbildungen von sMickten Bereichen, Ber. Verh. Sachs. Akad. Wiss.
Leipzig, Math.-Nat. Kl. 84, 1932, p. 114—120.
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