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Contribution a la théorie
des fonctions pseudo-analytiques

par JosEpH HERSCH, Zurich

1. Fonetions pseudo-analytiques et transformations pseudo-conformes

1.1. Une transformation intérieure (Stoilow [16], p. 107) d’une variété
topologique ¥V & deux dimensions dans une autre W, est une application
jouissant des trois propriétés suivantes :

A) Elle est continue.

B) Elle transforme tout ensemble ouvert de ¥V en un ensemble ouvert
de W.

C) Elle ne transforme aucun continu de V en un point unique de W.

On voit que toute transformation topologique est une transformation
intérieure biunivoque, et réciproquement.

Stoilow a démontré que la notion de transformation intérieure d’une
variété V dans la sphére de Riemann S exprime exactement le contenu
topologique de la notion de fonction analytique. En d’autres termes :
a) Toute fonction analytique est une transformation intérieure. b) Toute
transformation intérieure I : V — S est de la forme

I=AT, (1)

ou T est une transformation topologique de V dans une surface de Rie-
mann, et 4 est une fonction analytique. — On peut par exemple trans-
poser localement la structure conforme (w) de S sur V, c¢’est-a-dire on
construit une surface de Riemann V®) homéomorphe & V ; c’est la sur-
face de recouvrement de S induite par I ; 4 est la ,,projection“ V™) — §.

Tout point pe ¥V a un voisinage U (p) topologiquement équivalent
soit & I(U(p)) (alors p est un ,,point ordinaire® pour I), soit & un élé-
ment de recouvrement sur I(U (p)), ramifié sur I (p) (p = ,,point de rami-
fication®). Dans les deux cas, je désignerai par U'(I(p)) ce voisinage,
tmage topologique de U (p).

1.2. Soit maintenant R une surface de Riemann, avec sa structure
topologique R (variété) et sa structure conforme (z).
Avec Pfluger [13, 14], j’appellerai une fonction complexe w(p) fonction
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(ou application) D-pseudo-analytique dans un domaine G@#) de R'® si c’est
une transformation intérieure de G dans S satisfaisant & la condition
suivante :

D) Tout point p de G'# a un voisinage U (p) tel que, pour tout quadri-
latére!) Qc U(p), un module p = u(Q) et le module correspondant
w=p@) (@ cU'(w(p)) satisfont aux inégalités?)

Dlu<p <Dp (D>1). (2)

J’appellerai transformation D-pseudo-conforme3) une application topo-
logique satisfaisant & la condition D).

1.3. Soit w(p) une application D-pseudo-analytique de G'* c R'*) dans
S (@ - w(G@)c8). L’application G — § (G étant seulement variété) est
une transformation intérieure ; on peut (cf. Stoilow) définir dans @ une
structure conforme (w) (différente de (z)), obtenue par inversion locale de
w(p); G® est une surface de Riemann, et P: GW— w(@)cS une
application analytique (la ,,projection de G dans S).

Occupons-nous maintenant de la transformation F: G(?— G ; elle
est topologique (identité!), car les surfaces de Riemann G et G sont
définies sur la méme variété topologique @ ; elle satisfait & la condition D) ;
F est donc D-pseudo-conforme.

G(z)

F pseudo-conforme

w(2)
pseudo-analytique

G(w)

w(G?) <
P analytique

Théoréme 1. Toute fonction D-pseudo-analytique w(p) peut étre mise
sous la forme

w = PF , (1)

ou F est une transformation D-pseudo-conforme et P est une fonction ana-
lytique. (La réciproque est triviale.)

1) Domaine de Jordan avec quatre points désignés sur la frontiére. — Le module ug’gr
d’un rectangle dont les c6tés f’ et §” ont la longueur b et les c6tés o’ et «” la longueur a,
est a/b; la représentation conforme étend cette définition du module & tout quadrilatére.

%) Nous montrerons (§ 2.1) que le comportement métrigue au voisinage des points de
ramification n’est pas essentiel: il suffit d’imposer D) aux points ordinaires. — Caccioppoli
& indiqué dans un récent travail [2] que, sous des hypothéses de dérivabilité, on peut se
passer de postuler B) et C).

3) Ce terme est employé dans un sens différent en théorie des fonctions de plusieurs
variables complexes; aucune confusion n’est possible ici.

2



Ce théoréme permet de séparer les deux actions d’une fonction pseudo-
analytique : F respecte la topologie, P la métrique locale.

2. Variation du module d’un quadrilatére ou d’un domaine doublement
connexe

Théoréme 2. Soient Q un quadrilatére quelconque, Q' son image par
une transformation D-pseudo-conforme 2z' = f(z), topologique aussi sur le
contour de Q. Alors les inégalités (2) sont aussi satisfaites par les modules

p=pn@) e p' = p@)

Démonstration. D’une propriété locale, il s’agit de déduire la propriété
globale analogue.

Soient @ (By oo f1 1) €t p = pg g - Appelons u la fonction harmo-

nique dans ¢, solution du probléme de Dirichlet-Neumann suivant :
u=0 sur f,, =1 sur fB;, du/on = 0 sur &, et «,. Soient

0= Ag<<hp<- -<A,=1

des nombres réels partageant l'intervalle 0 << A <1 en n parties. Le
domaine @;: A;<u<4,,, est un quadrilatére: sa frontiére est formée
par les lignes de niveau 0, (v = 4;), 0;,, (v = 4,,,) et des portions des
ares oy et oy (09 = Bo, 0, = f1); Hi = Hoi0;4,Qs-

Posons gz (0u/dn) ds = e (% = normale extérieure) ; alors
e = [fograd®udr = 1/u.*)
Considérons maintenant ¢, au lieu de @ ; au lieu de u, on a ici

u; = (U — 4)[(Ain — 4)
donc
1/p; = .”Qi grad? u,dt = (4,1 — 4;)7* ”Qi grad? udr ;
d’ou
pi = (A — A)fe .

Donc X u, = u. (Nous avons ici I'additivité des modules au lieu de la
i

suradditivité.)
Appliquons toute cette figure dans le plan (2') par 2’ = f(z). En vertu
de la suradditivité des modules, p' = Mg e = Z u;. Je désigne main-
i

tenant par o la fonction harmonique dans @; telle que ;= 0 sur oy,

4) ds est I’élément linéaire, dt 1’élément de surface.



w; = 1 suroy, dw;/on = 0 sur 0] et 0;,,. Puis je procéde avec ) dans

Q. exactement comme j’ai procédé avec u dans Q. Je coupe @} par des

lignes de niveau 7 : w} = O'k () = 0'0<0'1< -+ <0, = 1) en de petits

quadrilatéres @, (0, < @) < 0py1); Mo = By iy q @it Gréace aux pro-

priétés des représentations topologiques, on peut rendre les images réci-

proques @, arbitrairement petites. On obtient 1/u; = X ), (additivité),
k

et 1/u; = 2 P (suradditivité); dou pu=Zpu, <X (Zp,)t et
i ik
2 py = 2 (2 wix)~t. Supposons que l'on ait construit les Q,, assez

petlts pour que pip < D-pyy. Alors il s’ensuit que g’ > u/D, et (par
une démonstration analogue) u > u'/D, ce qu’on voulait démontrer.
Il reste & montrer qu’il est possible de construire les Q,, assez petits :
c’est possible si toute la fermeture de ¢ est intérieure au domaine de
pseudo-conformité (on peut alors, selon Heine-Borel, recouvrir ¢ par un
nombre fini de voisinages U (p), etc.) ; si tel n’est pas le cas, on procédera
par exhaustion de ¢ au moyen de quadrilatéres intérieurs. c. q. f. d.
Les bornes (2) sont exactes (cas extrémal : @ et @' sont des rectangles).

2.1. La démonstration ci-dessus reste valable si ’'on admet que des
points isolés désobéissent & D) : il suffit de faire passer une ligne 6, par
chacun de ces points.

Corollaire. Toute transformation intérieure pour laquelle chaque point
ordinaire satisfait D), est D-pseudo-analytique.

En effet, elle est (cf. (1)) le produit d’une transformation D-pseudo-
conforme (car les points de ramification sont isolés) et d’une fonction
analytique. — On voit que ces points ne jouent qu’un réle topologique,
mais pas de role métrique.

2.2. Théoréme 2'. Soient D un domaine doublement connexe, de mo-
dule ®) p, et D' (de module u') son image par une transformation D-pseudo-
conforme. Alors u et u' satisfont les inégalités (2).

La démonstration serait calquée sur celle du théoréme 2.

2.3. Les théorémes 2 et 2’ permettent de généraliser immédiatement
aux fonctions pseudo-analytiques plusieurs propriétés des fonctions ana-
lytiques : cf. [9] (I. 3. D).

5) J’appelle module de la couronne circulaire 1 < |z | < R lagrandeur u = (1/2xn)In R;
cette définition s’étend par représentation conforme & tout domaine doublement connexe.
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3. La fonction »(r) et ses principales propriétés

Nous allons avoir besoin de la fonction »(r) définie dans ma theése
([9], Chap. II, § 1); je rappelle ici ses principales propriétés (pour les
démonstrations, voir ce travail).

Définition. »(r) (0 <r<1) est le module du domaine doublement
connexe dont les contours sont le cercle-unité |z| =1 et le segment
réel 0 <z <r.

Propriétés.

(a) » est une fonction monotone décroissante (non-négative).

(b) v(r) = (14) K'(r)|K(r), ou K(r)= [3da/V (1 — 22)(1 — r2a?)
et K'(r)=KWV1-—r?.

() »(r)»(V'1—r2)=1/16.

(d) 2v(r) = (1 — VI — )5 »(r))2 =22 V(1 +1).

e) v(r)v((1 —n)/1+4+7) =1/8.

(f) Cas limite r —0: »(r) = (1/2x) In (4/r) + O(r?).

g) Cas limite »r - 1: #/v(r) = 4In (8/(1 — 7)) + O — ).

(0) In (14 VI =) < 2av(r) <In(4r) ;

d’autres évaluations s’obtiennent & partir de (h) a I’aide de (d) et (e).

(i) Valeurs particuliéres : v(l/ﬂ) = 1/4; v(VE—— 1) = 1/(2 ]/_2—); on
peut deés lors résoudre élémentairement toute équation en r de la forme
v(r) = 2"% (n entier), par application itérée d'une des formules (d).

Exemple: 1/2 = 2»(1/V2) =»((V2 — 1)?) =»(3 — 2V'2).

4. Variation de la mesure harmonique

4.1. Soit @ un domaine de Jordan de frontiére I', sur lequel on a
désigné un point intérieur p et un arc-frontiére connexe « ; soit z' = f(z)
une transformation D-pseudo-conforme appliquant @ sur un autre domaine

de Jordan G'; w = w,,¢ et ® = ;g ; alors
1 . T . me’ 7w
—y Bkhadl g khadil in—— | 6
Ik (sm 5 ) < v(sm 3 ) < Dv(sm 3 > ) (4)
Démonstration. — Comme représentants des configurations de G**

et G@'?'*, je choisis les cercles-unités |z | <1 et |2'| <1, avec p =0,

%) Ce résultat a été brievement annoncé dans la Note [10].



p' = 0, les arcs & et &' ayant pour milieu le point d’affixe 1. J’appelle
nle segment réel — 1 << 2 << 0; 7' est alors un arc joignant 0 & I —«';
soit @ (w) le quadrilatére de c6tés opposés 7 et « (dans |z | <1). On cal-
cule facilement (cf. [9], Chap.II, § 2) que u, = 2 (sinzww/2); en
vertu de [9] (IIL. 2. C), u,,, <27 (sinzw'/2). Selon le théoréme 2,
Barg == Pon/D, d’out Uinégalité de gauche dans (4). On démontrerait de
méme l'inégalité de droite. c. q. f. d.

La démonstration montre aussi que les évaluations (4) sont exactes,
car les inégalités (2) pour les modules le sont : on peut construire une
transformation extrémale, en appliquant d’abord @ (w) sur un rectangle,
et ' sera de nouveau le segment réel — 1 << 2’ << 0.

Cas limite @ — 0

(/8P tw?(1 + O(w®?)) < o' < (8/m) " YPw!P(1 + O(w¥?)) . (4')

Cas D= 2: (d), § 3 donne

sin o
2

(4")

et naturellement l'inégalité obtenue en permutant w et w'.
En itérant (d), on peut de méme obtenir pour le cas D = 2" (n entier)
des évaluations ol n’interviennent que des fonctions élémentaires.

4.2. Le théoréme 1 et l'inégalité de droite dans (4) permettent,
compte tenu du principe de Nevanlinna sur 'augmentation de la mesure
harmonique par une application analytique, d’arriver au théoréme sui-
vant :

Soient GP* une figure du type considéré; 2z' = f(z) une fonction
D-pseudo-analytique dans G ; alors

/
v (sin n;o ) % Dv(sin 7z2w ) (4™)

quels que soient G' = f(G) et &' = f(x). — Si D = 2, cette inégalité
devient (4”).

5. Variation de la distance hyperbolique (et de la fonction de Green).
Lemme de Schwarz généralisé

5.1. Soient ¢ un domaine simplement connexe, dans lequel on a
désigné deux points p, ¢; 2’ = f(2) une transformation D-pseudo-con-
fm‘me: f(G) =S G’; h = hqu, h’ — hplqlal, g = gpqa, g, - gp’q'G" AlOI'S
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D-1y(e%) < v(e~%') < Dy(e ) } (5)
D1y(e?) <w»(e?) <Dw(e?)
Démonstration. — Il suffit de nouveau de considérer le cas ou G et G’

sont des cercles-unités, avec p =0, p' =0 et g¢,q" réels positifs:
q=Thh=c¢7 ¢q =Thh' =e?. (Th désigne la tangente hyper-
bolique.) Soit 7 le segment réel 0 << x <¢q; le domaine doublement
connexe D de contours I' (|z|=1) et  a un module u = »(q) =
1/8v(e~2*); n' = f(n) est un arc de Jordan joignant p' =0 a ¢'; en
vertu de [9] (IIL. 1. C), u' = u(D') < 1/8v(e~') = »(e?"). Le théo-
réme 2’ dit que u' > p/D, d’ou la moitié des inégalités (5); les autres
s’obtiennent en permutant les réles de z et 2. c. q.f. d.

Les évaluations (5) sont les meilleures possibles, car les inégalités pour
les modules y, u' le sont, ce qui permet de construire une transformation
extrémale (' sera alors le segment réel 0 <<z’ << q'). — Elles restent
valables pour des domaines multiplement connexes (h étant définie & 'aide
de la surface universelle de recouvrement); mais elles sont alors trés
., inexactes®.

Cas limite g —oo:

D-1g—(1—D) In 4+0(e~*?) < ¢’ < Dg+(D—1)In 44+0(e™*%) ()
Cas limite h —oo

D-1h—(1—D) In 2+4+0(e *P) < b' < Dh+(D—1)1In 240 (e~ *P*) (5')
Cas D=2: Chh' <e® ; ¢ > Ch(g/2) , (6")

et les inégalités en sens contraire, obtenues en permutant h et &', g et g’.
De nouveau : simplification pour D = 2" (n entier), par itération de

(d), § 3.

5.2. En vertu du théoréme 1, de (5) et du principe de Nevanlinna sur
la distance hyperbolique, on a la propriété :
Si 2’ = f(z) est une fonction D-pseudo-analytique dans un domaine

@3p,q, () < Dy(e®), soit »(e) > D1v(e) . (57)

Si D = 2, ces inégalités deviennent équivalentes & (5")

5.3. Généralisation du lemme de Schwarz.
Soit w(z) une fonction D-pseudo-analytique définie dans G:|z|<1,
telle que w(0) = 0 et |w(z) | <1 dans G. Alors

v(lw@) ) = D te([2]) . 9) (6)



Ou bien, ce qui revient au méme,

lw(2) | <f3(z21), (6)
la fonction f3(r) (0 <r<1) étant définie par

v(fp (r)) = D1w(r) . (7)
Je définis en méme temps la fonction inverse f;(r) par

v(fp(r) =Dow(r) . (7)

Démonstration par ce qui précede : (6) est une conséquence immédiate
de (51).

Démonstration n’utilisant pas le principe de Nevanlinna: Soient de
nouveau (cf. § 5.1) # le segment rectiligne joignant 0 & z; D le domaine
doublement connexe de contours I' et n; up, =17v(2]|); w(z) = PF(2)
(# est D-pseudo-conforme, P est analytique); ]appllque a P la pro-
priété [9] (I. 3. D. f): soient I le ,,contour extérieur” de w() et 7,
celui de w(n); ppp)< tip,, <v(|w()|); mais ppp > D'uy, (théo-
réme 2'), d’ou (6). c.q.f. d.

Remarque. — Si D=1, (6) exprime le lemme de Schwarz
|w(z)| <|z|, et 'extrémale (w = ¢"*z) est indépendante de z; si
D>1, (6) reste exacte, mais Uapplication extrémale dépend alors de z.

Cas limite |z| —0: |w(z)| < 47V |2 |Y2(1 4 O(] = |?™P)) (6'")
Cas limite |z]| —1:1—|w()]| =821 — |2 )P+0((1 — | z|)*P) (6”)
Cas D =2: lw) | <2V]z]/Q +|z2]) (6%)
Cas D=4 lwi) | <22V 2 Viz )0+ VIziE ()

6. Généralisation du théoréme de Schottky

6.1. Soit {w(z)} la classe des fonctions D-pseudo-analytiques dans
le cercle-unité ¢, telles que w(0) =c (¢ donné), et qui ne prennent nulle
part dans G les p > 3 valeurs a,,...,a,. Alors la distance sphérique
Ou(z,qap, du point w(z) et du point a, posséde une borne inférieure

dpllz],c5a1,...,a,]>0 .
La démonstration est analogue & celle du cas analytique D = 1: Clest
une conséquence de la quasi-invariance de k., par la transformation

pseudo-conforme F(z) qui applique G dans la surface universelle de re-
couvrement relative & a,,...,a, en sorte que w = PF (§5.1).
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Supposons connue la borne exacte du théoreme classique de Schottky
(D = 1), c’est-a-dire la fonction d,[|z2]|,c;a,,...,a,]; je veux alors
déterminer dp[...]. Il est clair que d, et d; sont des fonctions décrois-
santes de |z |. — Pour tout ¢>0, il existe une fonction w(z) du type
considéré et telle que 4, ., <dpllz|,...]1 4+ ¢ pour un z,e@
donné; w = PF (F étant D-pseudo-conforme, P analytique); appli-
quons conformément F(G) sur G par une transformation 7' telle que
T(F(0)) = 0. On a alors dans le cercle-unité G deux structures con-
formes différentes, et 'application T'F fait passer de I'une a 'autre ; elle
est D-pseudo-conforme et satisfait les hypotheses du lemme de Schwarz
généralisé (§ 5.3). Donc | TF (zo) | <15 (] 20 1)

q — TF(Q)
w l r TT (8)
w(G) P F(®)

PT-1 est une fonction analytique; PT-1(0) = PT-1TF(0) = PF(0)
= w(0) = c¢; on voit que P71 est du type considéré; donc

dpll 2o ],... 1+ e> 6w(zo),ap = csPT-I(TF(ZO)),a,,> A [|TF () |,...]
XA

L’inégalité entre les membres extrémes ayant lieu pour tout ¢>0, on
en déduit que dp[|z],c;ay,...,a,]1 =di[f5(2]),¢;a4,...,a,].
Inversement, soit (z) une transformation D-pseudo-conforme de G
sur lui-méme extrémale du lemme de Schwarz: p(0) =0, |v(z) |
= 5 (] 2,|) pour un point z, particulier. Il existe pour tout ¢>0 une
fonction analytique ¢ dans G telle que ¢(0)=c, ¢ #a,,...,a, et

6,,,(«#(%»,@,, <d[f5( 2 ]),.-.1+ ¢; w(z)=¢(p() est une fonction
D-pseudo-analytique du type considéré ;

G L » (@) =G
w (9)
@
w(G)
donc dp[|zel,...1<d:[fp(%]1),...] +& pour tout >0, dou
dpll 2o ],.-.1<dy[f}(12])s--.]; on obtient ainsi finalement
dD[lzl:C;ab-":ap]:dl[fg(lz‘),C;a’laﬂ"ap] . (10)
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Remarque. — 1l est tout & fait indifférent, pour notre raisonnement,
que d et d se rapportent a la distance sphérique ou & une autre métrique.
— La méthode de démonstration caractérisée par les schémas (8) et (9) est
adéquate pour généraliser au cas D >1 des propriétés connues pour D = 1
(fonctions analytiques).

6.2. Cas particulier p=3; a, =0, a,=1, a;,=00; My(r,c)
= Sup|y<, | w(2) |, ol sont admises & concurrence toutes les fonc-
tions D-pseudo-analytiques w(z) e {w(z)}. W. K. Hayman [6] a obtenu
pour M, (r,c) les évaluations suivantes :

M,(r,c) < (Max[1,]|c|]em)+tna-n,
si |c] =e?<l, alors M,(r,c) < @Y a+na-n

(11)

Pour les fonctions D-pseudo-analytiques, on obtient des évaluations

correspondantes en remplagant dans (11) M,(r,c) par M,(r,c) et,

dans les membres de droite, r par f}(r); en vertu de (e), § 3, cela équi-

vaut & remplacer (1 — 7)/(1 +7) par f;((1 — r)/(1 + 7)). — Le cas

limate intéressant ici est celui ol r — 1: Il faut alors remplacer, dans

(11), (1 + 7)/(Q —r) par 4°7'(1 4 NP/(1 — NP(1 + O((1 — r)*P)).
Cas D = 2: ]l faut remplacer, dans (11),

147 par (1+ Vr)2.
1 —7 1— Vr

Les recettes indiquées ci-dessus permettent aussi de généraliser les
évaluations obtenues par R. M. Robinson [15] pour le cas p =3,
a,=—1, ay=1, a, =00 (ce cas se ramene immédiatement au pré-
cédent : il suffit de considérer, au lieu de w, la fonction (w + 1)/2): il
obtenait

8M, — 10<(8|c| + 10)4+t/A=n et M, + 10>(8|c| — 10)3+n/A=n

ces deux évaluations lui fournissaient la formule asymptotique
8M, ~ (8] c|)**t"A=" Jorsque ¢ oo (A~B signifie : 4 = B (14 0o(1))).
On généralise ces évaluations en posant de nouveau

My(r,...) = M,(f5(r),...), Ccest-a-dire que f;((1 — r)/(1 + 7))
remplace (1 — r)/(1 + 7).

7. Généralisation de I’inégalité de Jensen et du théoréme de Blaschke

7.1. La multiplicité n d’un point @ pour une transformation inté-
rieure 2z’ = f(z) est le nombre de tours que décrit z’ autour de a’ lorsque
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z tourne une fois autour de a (dans un voisinage U (a) sans point de
ramification différent de a) (,,degré de l'application”). — Si f(z) est
topologique, m = 1 en tout point.

Si f(z) est une fonction D-pseudo-analytique, on montre facilement
a l’aide de (6") et du théoréme 1 qu’il existe un voisinage de a et une
constante K >0 tels que

K1l|lz—aP"< |2 —ad | < K|z —a|? (12)
dans ce voisinage.

7.2. Inégalité de Jensen. — Soit w(z) ume fonction D-pseudo-analy-
tique dans |z|<<1, satisfaisant |w(z)|<<1, et dont les points a; (en
nombre fint ou dénombrable) sont des zéros de multiplicités n, . Alors

[0(0) | < IT[f5 (| a, 1™ . (13)
ou f} est définie par (7).

Démonstration. — w(z) = PF(z) (F est D-pseudo-conforme, P ana-
lytique) ; je construis encore I’application conforme 7' en sorte de com-
pléter le schéma (8). w(z) = PT-'TF(z); TF satisfait le lemme de
Schwarz généralisé (§ 5.3), donc | TF(a;) | < f3 (1 a;|); la fonction ana-
lytique PT-! satisfait 'inégalité classique de Jensen (7'F(a;) est un
zéro de multiplicité »,), donc

|w(0) | < I | TF(a) "< H[f5 (| a; DT" .
c. q.f. d. ¢ ¢

Remarque. — La borne donnée par (13) n’est pas la meilleure possible
(,,pas exacte) ; en effet (cf. la remarque au § 5.3),si D>1, la fonction
extrémale dulemme de Schwarz généralisé dépend du point z ; aucune fonc-
tion 7T'F ne réalise simultanément | TF (a;) | = f3 (| @; |) pour tous les a,.

7.3. L’inégalité (13) peut aussi étre interprétée sous la forme sui-
vante :

Soit w(z) wune fonction D-pseudo-analytiqgue dans |z |<<1, telle que
w(0) =0 et |w(z)|<1; et sotent a,,a,,... les points ou elle prend la
valeur a (avec les multiplicités ny, n,,...); alors

la| < OMff (e DT . (14)

Démonstration. — (14) s’obtient & partir de (13) par un mouvement
hyperbolique (dans le cercle-unité) amenant w(0) & l’origine, et I’origine
ena. c.q.f d.
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Cette facon particuliérement élégante de formuler I'inégalité de Jensen
est due (pour D = 1; alors |a| < II|a,;|") & Lehto ([12], p. 8). Sous
i

cette forme, I'inégalité de Jensen apparait comme un renforcement du
lemme de Schwarz.

7.4. Dans le cas limite |a;| -1,
1 —f5(la; ) =870 —]a; )’ (14 0(1)

(cf. (6™)), ce qui permet de généraliser au cas D>1, par une formule
simple, le théoréme de Blaschke :
Sotent w(z) wune fonction D-pseudo-analytique bornée dans |z |<<1 et

Gy, Ay, Qg, . ... Seszéros (de multiplicités ny, ny, ns,...). Alors la somme
Zn;(1 —|a;|)? converge. )
i=1

Démonstration. — w(z) = PT-*TF(z) comme au § 7.2. En vertu du

théoréme classique de Blaschke (conséquence immédiate de 1'inégalité

de Jensen), appliqué a la fonction analytique (non constante) PT-1, le

produit 17| TF (a;) |** converge (>0), c’est-a-dire X n,(1—|7TF(a,)|)
i i

converge, donc a fortiori Xn,(1 — |a;|)?. c.q.f. d.

8. Généralisation du théoréme de Phragmén-Lindelot

8.1. Forme générale (cf. [8], [9] (III. 3. C)).

J’appelle coupure d’un domaine un arc de Jordan a extrémités sur la
frontiére. — Soient @ un domaine de Jordan (de frontiere I'), qu’une
coupure 6, partage en deux domaines G, et G} ; p un point de G,; {0, }
(0<A<<oo, A = parameétre continu ou discret) des coupures emboitées
intérieures & G, (6, sépare p de tous les 0,,, o A'>1) telles que
Uop = M6y6, oo quand A4 —oo. Les 0, convergent vers un point £
de I'.

Soit w(z) une fonction D-pseudo-analytique dans G, telle que
lim sup, , .|w(2)| <1 pour chaque { e I'— E. Je pose M, =Max,q, |w(2)],

o® =lim inf, , (e~ In M,) et 7P=1liminf, (eP"a1ln M,). (15)

8¢ lim inf, |

M,>1, alors In|w(p)| <(8/n)clD) e~ CrDIvEin(rwpe /) (16)

Démonstration. — w = PF (F est D-pseudo-conforme, P analytique).

J’écris w, Pour w,e,q,, W3 POUT gy Fo,), F@y) > €6 Man POUT Up ) Fee,) -
L’évaluation ([9], formule (III. 8) ; soit [8] (6)) est valable pour la fonc-
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tion %(t) =1In| P(t)|, sous-harmonique dans F (G); donc
In | w(p)| = In| PF(p)| < (8/m) lim inf, , (e~ "¥or In M, )¢~ 27*Gnawgim

comme puh = pp /D et, selon (4), v (sinzwwl/2) = (1/D) »(sin ww,/2),
on en déduit (16). c. q.f. d.

Comme le montre {9] (I. 3. C), u, = o + O(1) lorsque A — oo
» restant fixe; donc les ¢!?) sont soit tous nuls, soit tous différents de
zéro. ol”’= 0 entraine o”= 0 pour tous les x, donc, en vertu de
(16) (ou l'on peut remplacer I'indice 0 par ») In|w(z)| <0 dans

UG == .

Théoréme. — St o{?<< 0, alors |w(z) | <1 dans tout G.
Une transformation intérieure conservant les ensembles ouverts, le
principe du maximum est valable ici: le théoréme est banal dans le cas
(D)
gy ' <0.

Théoréme. — Pour tout », 7'?>—oo.

Démonstration. — Supposons lim inf, M, <1 (sinon le théoréme
est trivial). w(z) = PF(z) comme plus haut. Le théoréme 2 de [9]
(II1. 3. C), appliqué a la fonction sous-harmonique % (f) = In| P(t) |
dans F(G), montre que

—oo < lim inf, , (e~ " In M,) < lim inf,  _(e" 2" In M,) = oD,

c.q.f.d.

Dans les applications (cf. par exemple [9] (III. 3. A)), on ne connait
souvent pour y,, qu’'une évaluation par défaut ; le second théoréme est
alors inutilisable.

8.2. Pour un domaine angulaire: 0<argz<o;0p = arc du cercle
|z]| = R; G =secteurde |z|<R.

Soit w(z) une fonction D-pseudo-analytique dans ce domaine angu-
laire @, telle que limsup,,,|w(z)| <1 pour [ =0 et pour arg{(
= 0 ou «. Soit M le maximum de |w(z)| sur l'arc 0.

(R—nfD(! In MR) ; T(D) = ]_]_m inf (R—Dn/a In MR)' (15,)

o\? = lim inf .

R->oo

On a de nouveau les deux théorémes ci-dessus ; le calcul direct & partir
de (4) donne plus précisément ceci: Supposons argp = «/2; alors
wp = wpogap ~ (4/7)(| p |/R)™™ lorsque R —oo; w = PF; en vertu
de (¢), (2P)(| p /RP™ < wh < (2¥m)(| p /RY™®*. Je con-
sidére de nouveau dans F(Gy) la fonction sous-harmonique () =
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In| P()| (¢ =F(z)). En vertu du principe de la majorante harmo-
nique :

Si liminf,, Mzp>1, In|w(p))]|
Si liminfp, , Mp <1, In|w(p)]

(2P m) o | p |7P* . (17)

<
< (@ Pm) P | p PP (18)

(17) est valable a fortiori si arg p 7% «/2; (18) n’est valable que si
arg p = «/2. — (On remarquera que l’on n’a pas fait I’hypothése
lp| <1.)

9. Fonctions pseudo-analytiques & dérivées partielles continues et trans-
formations quasi-conformes. Variation de la longueur extrémale

9.1. J’appellerai transformation D-quasi-conforme une application
topologique douée de dérivées partielles continues et satisfaisant a la
condition

D’) En tout point p, le quotient des dilatations

Q(p) = | w[0z | e/l OWO2 |y, Teste <D (D >=1) .

On peut aussi dire que I'image d’un cercle infinitésimal est une ellipse
infinitésimale dont le rapport a/b des axes est borné supérieurement par
une constante D > 1. (Cf. Grotzsch [3] [4].)

9.2. Soit ¢ une répartition (fonction réelle non-négative) dans un
domaine G ; elle fait correspondre & toute courbe ¢ dans G' le nombre
C,(c) = f, 0 ds; nous posons encore A, = 4,(Q) = [fq 0*dz.7)

J ’appeTle famille numérique de courbes dans G une loi C faisant cor-
respondre & toute courbe ccG un nombre réel C(c) > 0. Le module
de C est défini par M (C) = inf, 4,, ou U'on admet & concurrence toutes
les répartitions o telles que C, > C (cf. [9], Appendice du Chap. I). —
Si la loi € n’attribue que les valeurs 0 ou 1, elle désigne simplement une
famille (ordinaire) de courbes {c}, et M(C) = M{c} = Ly}, ou Ly,
est la longueur extrémale de la famille {c¢} (c’est essentiellement la défini-
tion d’4hlfors et Beurling [1]).

9.3. Théoréme 3. — Soit 2z’ = f(z) wune transformation D-quasi-
conforme d’un domaine G sur un autre @' ; soient C une famille numérique

dans G et C' son image : C'(f(c)) = C(c). Alors
DMQC)<M{C')<DM(QO) . (19)

7) J est I'intégrale supérieure, J I’intégrale inférieure de Darboux.
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Démonstration. — Soit g(z) une répartition concurrente pour M (C),
c’est-a-dire C,(c) > C(c) pour toute courbe c; la répartition p’(2') =
0(z) | 02/02" | ,x est alors concurrente pour M (C'), car

Cor(¢)) = Cole) > Cle) = C'(¢))
pour toute courbe ¢’ = f(c). En outre A,.(G") < D-A4,(G), car
| 92/02" |2 << D | 02/02" | oy | 02/02' |yp = D-d/dT’ .

Donc C, > C entraine A4, > D*M(C'), dou M(C) = DM(C'). —
On montrerait de méme M (C') > DM (C), d’ou (19). c.q.f. d.?)

9.4. Corollaire. — Toute transformation D-pseudo-conforme & dérivées
partielles continues est D-quasi-conforme, et réciproquement.

Démonstration. — a) Soit w(z) une transformation D-quasi-conforme ;
il suffit d’appliquer le théoréme 3 au probléme de longueur extrémale
définissant un module d’un quadrilatere ([9] (I. 3. a)), on voit ainsi
que D’) entraine D) (§ 1.2). — b) Soit maintenant w(z) une transfor-
mation D-pseudo-conforme & dérivées partielles continues; soit p un
point quelconque ; choisissons pour ¢ un carré infinitésimal dont p est un
sommet, et dont les c6tés ont les directions de la plus grande et de la
plus petite dilatation ; son image est (si I’on néglige des infiniment petits
d’ordre supérieur) un rectangle de module @(p) << D; la condition D’)
est donc bien satisfaite. c. q. f. d.

On montre de méme : Sous Uhypothése de la continuité des dérivées par-
tielles, toute fonction D-pseudo-analytique est une transformation inté-
rieure satisfaisant D'), et réciproquement. (Utiliser le corollaire 2.1.)

9.5. Théoréme 4. — Soient C une famille numérique dans un domaine
G; 2 = f(z) une fonctron D-pseudo-analytique & dérivées partielles conti-
nues, définie dans G ; et C' la famille numérique définie dans Q' = f(Q)
par C'(c') = Max;,_,. C(c). Alors

M(C') < DM(O) . (20)

Démonstration. — 1°) Il suffit de modifier légérement la démonstration
de [11] ou [9] (Appendice Chap. I, C. i) : définir

o' (2') = Max,[o(z;) | 02,/02" | pax] >

etc.; 2°) On peut aussi écrire f(z) = PF(z) (F étant D-pseudo-con-
forme, P analytique) ; en vertu de [11] ou [9] et du théoréme 3,
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M) <M(F(@C) <DM(C) .
c.q.f. d.s8)
On peut préciser I'inégalité (20), en vertu de [9] (Appendice Chap. I,
C. j): on a encore
M(C*) < DM(C) (207)

pour la famille numérique C* définie par C*(c') =V X [C(c)]2.
fey=c’

9.6. Les théorémes 3 et 4 permettent de retrouver immédiatement,
a partir des formules (II. 12) et (II. 13) de [9] (mettant en rapport lon-
gueurs extrémales d’une part, mesure harmonique et distance hyper-
bolique d’autre part), les évaluations exactes (4), (4”), (5), (5'), pour
les cas ot 2’ = f(z) est une transformation quasi-conforme ou une fonc-
tion pseudo-analytique & dérivées partielles continues. ?)

10. Transformations intérieures i dérivées partielles continues: Variation
de la longueur extrémale et lemme de Schwarz

10.1. Soient 2' = f(z) wune transformation topologique @& dérivées
partielles continues dans un domaine G'; @ (z) son quotient des dilata-
tions (§ 9.1) ; C une famille numérique et C' son image.

Soit p(z) une répartition concurrente pour M (C) ;

Q, (zl) = Q(Z) ' az/az, lmax
est alors concurrente pour M (C'); |02/02' |2, <@ (2)-dr/dr'; donc
M(C) < [fa0? (@) dv" < [fgQ(2) 0%(2) dv. 9)
Théoréme 5. — Sz p(z) est concurrente pour M (C), alors
M(0) <[laQ@ ¢*@) dv . 19) (21)

En particulier, si le probléme variationnel définissant M (C) admet
une répartition extrémale o,, M (C) = [fq 0;(2)dz, d’oul?)

M) — M(©0) < ffs Q@) — 1] d(z)dz . 1) (21')

8) La continuité des dérivées partielles n’est pas essentielle & la démonstration; il faut
seulement que |0z/02’ |2,x < D -dt/d7’. En outre, on peut admettre des points isolés
ot les dérivées partielles n’existent méme pas (cf. Teichmiiller [17], p. 666—667).

?) I1 se peut que (19) soit valable pour toutes les transformations D-pseudo-conformes,
et (20) pour toutes les fonctions D-pseudo-analytiques. Je n’ai pu I’établir que dans les
cas se ramenant au module d’un quadrilatére ou d’'un domaine doublement connexe
(théorémes 2 et 2’ du § 2).

10) Ce résultat a été briévement annoncé dans la Note [7].

1) Car,si f>0 et g >0, IT(f+ g)dr < IT fdv + If gdz.
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Cette inégalité est particuliérement utile st Q(z) n’est différent de 1 que
dans une partie de G (par exemple dans le voisinage d’un point). — La
borne donnée par (21') n’est pas en général , ,exacte”.12)

Dans le cas particulier ou G est un domaine doublement connexe,
(21') devient équivalente & un théoréme récent de G. af Hdillstrom ([5],
p. 5); voir aussi Teichmiiller [17], p. 668.

10.2. Les inégalités (21) et (21') restent valables si z' = f(z) est une
transformation intérieure a dérivées partielles continues, la famille numé-
rique C' étant définie par C'(c') = Max,,_., C(c); on a méme le droit
d’y remplacer C' par C*, définie par C*(c') =V X [C(c)]*.. — On le dé-

f(e)=c’
montre (comme au § 9.5) & 'aide de [9] (Appendice Chap. I, C. i et j).

(21) et (21’) restent encore valables si ’on y remplace ¢ (z) par toute
fonction majorante connue D(z) > @(z); elles prennent alors la place
de (19) et (20) : elles donnent une précision bien meilleure (si D(z) est une
,,bonne“ majorante), et restent applicables si ¢ (z) n’est pas borné dans G.

10.3. Généralisation du lemme de Schwarz.

10.3.1. Transformation topologique & dérivées partielles continues
2’ = f(z) du cercle-unité G sur lui-méme, telle que f(0) = 0.

Soit I' la frontiére |z| = 1 de G. Désignons dans  les points 0 et r
(0<r<1). Considérons la famille {c} des courbes fermées de Jordan
séparant 0 et » de I, et la famille {y} des coupures séparant 0 de r.
Nous avons alors (cf. [9], Chap. II, § 3) M{c} =v»(r), M{y}=
[4v()]7; {flo)}={c}, {W}= 0"} M }=»([0)]), M{P'}=
[4»( f(r) DI

Pour déterminer les répartitions extrémales g, et g, pour M{c}
et pour M {y}, il suffit d’appliquer conformément le quadrilatére (dé-
fini par le demi-plan inférieur et les points-frontiére oo, 1/r, r, 0) sur le
rectangle (0, w;, w; + wy, ®,) (w; réel>0, w, =1t | w,|) par l'inté-

grale elliptique w(z) = j' 2 dzfVz(z — r)(z — 1r);
w,=wlr)=2VrK@r) e |w,|=2VrK(r)
(cf. § 3 et [9] (II. 1. B)). On obtient

1 dw | 1 1
2w, | dz 4 K(r) Vlzl-lz—r|-|1-7‘z|

Qoc =—

12) Exemple: @ = rectangle de c6tés 1 et 3; @ = 1 dans un carré de c6té 1, @ = 2
ailleurs; @’ = rectangle de cotés 1 et 2.
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et 1

lwz‘

dw 1 1

~ 2K'(r) Viz|- |z —r|- |1 —7rz|

Si, au lieu du point réel r, on a z, (| 2,|<1), il faut remplacer K (r)
par K(| zo_l), K'(r) par K'(]2]), |2 — 7] par |z —2z,]|, et |1—rz |
par |1 — zyz|. L’inégalité (21') fournit donc les deux évaluations :

Qoy =

’ (2) — 1 .
() = %) < Fyzag nffw|u~%ul~%ﬂd“‘”)

! ! Q@ —1
CEORRTEY KﬂmnffMI%%dH~%ﬂdL =9

10.3.2. Transformation intérieure a dérivées partielles continues
z' = f(z) dans le cercle-unité, telle que f(0) = 0 et | f(z) | <1.

Tout comme au § 1.3, on voit que f(z) = PF(z), ou F(z) est topolo-
gique a dérivées partielles continues, et de quotient des dilatations =
@ (z) en tout point ordinaire z (les points de ramification sont isolés, cf. 8)),
et P est analytique; on peut choisir F(z) du type considéré ci-dessus
(§ 10.3.1): comme P obéit alors au lemme classique de Schwarz,
|20 | < | F(20) |-

L’inégalité (23) reste donc valable : c’est la généralisation cherchée du
lemme de Schwarz.

(23) se réduit & (6) (§ 5.3) lorsqu’on sait seulement de @ (z) qu’il est
borné par une constante D > 1. .

Ce travail est fortement imprégné d’idées du Prof. A. Pfluger, auquel
j’exprime ma vive reconnaissance.

Note complémentaire. Aprés la correction des épreuves, je constate que deux idées im-
portantes des paragraphes 4 et 5 se trouvent déja dans le travail de H. Grétzsch: Uber
moglichst konforme Abbildungen von schlichten Bereichen, Ber. Verh. Séachs. Akad. Wiss.
Leipzig, Math.-Nat. K1. 84, 1932, p. 114—120.
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